
Log-Concave Sampling
(unfinished draft)

Sinho Chewi

February 29, 2024



2



Contents

Preface i

I Diffusions in Continuous Time 1

1 The Langevin Diffusion in Continuous Time 3
1.1 A Primer on Stochastic Calculus . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Markov Semigroup Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 The Geometry of Optimal Transport . . . . . . . . . . . . . . . . . . . . . 30
1.4 The Langevin SDE as a Wasserstein Gradient Flow . . . . . . . . . . . . . 45
1.5 Overview of the Convergence Results . . . . . . . . . . . . . . . . . . . . 51
Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2 Functional Inequalities 65
2.1 Overview of the Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2 Proofs via Markov Semigroup Theory . . . . . . . . . . . . . . . . . . . . 68
2.3 Operations Preserving Functional Inequalities . . . . . . . . . . . . . . . 77
2.4 Concentration of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.5 Isoperimetric Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.6 Metric Measure Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.7 Discrete Space and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3



4 CONTENTS

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3 Additional Topics in Stochastic Analysis 137
3.1 Quadratic Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.2 Change of Measure in Path Space . . . . . . . . . . . . . . . . . . . . . . 141
3.3 Doob’s Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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Preface

What This Book Contains
As discussed in the next section, a large portion of this book is dedicated to a systematic
and unified treatment of recent developments in the complexity theory for log-concave
sampling, with a particular emphasis on connections with the field of optimization. Many
of these developments appear here in textbook form for the first time. Although this is
still an active area of research, at this time there is enough beautiful mathematics and
canonical theory that it seemed a shame not to have available an exposition which is
accessible to, say, an ambitious graduate student.

From a broader view, however, it is not the specific applications to log-concave sam-
pling, but rather the general perspective and techniques used, that will have the largest
impact on the reader. With this in mind, the book includes several topics which are not di-
rectly related to sampling, but loosely illustrate the general theme of “modern applications
of stochastic analysis to probability and statistics”. The applications range from classical
mathematical questions, such as concentration of measure and geometry, to instances in
which the philosophy of diffusion processes has inspired recent algorithms for machine
learning tasks. Although tastes change, the overall importance of this perspective only
seems to grow with time.

The subject matter of this book touches upon many fields, such as geometry, PDE,
stochastic calculus, etc., and a primary goal of the exposition here is to make the material
accessible without extensive background knowledge in these topics. This means that at
several places we have sacrificed full mathematical rigor in favor of (hopefully) more
lucid explanations, referring to the original sources for details. As such, these subjects are
not prerequisites for this book, although more background knowledge on the reader’s
part naturally translates into an healthier understanding of the context of the material.
The main exceptions to this statement are: (1) we assume that the reader is familiar
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with graduate-level analysis and probability; (2) since much of the theory of sampling
is inspired by ideas from optimization, we highly recommend that the reader is familiar
with the latter, as treated in, e.g., [Bub15; Nes18].

The Complexity of Sampling
In this book, we consider the following canonical sampling problem:

Given query access to a smooth function 𝑉 : R𝑑 → R, what is the mini-
mum number of queries required to output an approximate sample from the
probability density 𝜋 ∝ exp(−𝑉 ) on R𝑑?

The problem formulation is chosen due to the following considerations. In many
applications (some described below), we wish to sample from a probability density 𝜋 ,
and we have an explicit function 𝑉 : R𝑑 → R such that 𝜋 ∝ exp(−𝑉 ). In other words,
since 𝜋 is a probability density, then 𝜋 = 1

𝑍
exp(−𝑉 ), where 𝑍 B

∫
exp(−𝑉 ) is called the

normalizing factor (or the partition function in statistical physics). Although 𝑍 (and thus
𝜋 ) are explicitly given in terms of the known function 𝑉 , a naı̈ve evaluation of 𝑍 as a
high-dimensional integral is intractable. Indeed, the usual approach of approximating an
integral by a sum requires discretizing space via a fine grid whose size scales exponentially
in the dimension 𝑑 . Moreover, even if we had access to 𝑍 , it is still not clear how we could
use this to sample from 𝜋 . Therefore, the focus here is to develop direct methods for the
sampling task which bypass the computation of 𝑍 .1

Not only do we want to develop fast algorithms, we also want to understand the
inherent complexity of the sampling task, which in turn allows us to identify optimal
algorithms. By complexity, we do not mean computational complexity, since proving
lower bounds in that context is out of reach (besides, we would have to spend too much
time worrying about the bit representation of 𝑉 ). Instead, following the well-trodden
path of optimization, we adopt a model in which we only have access to 𝑉 through
queries made to an oracle, and our notion of complexity is the number of queries made.
This is known as oracle complexity or query complexity; see [NY83, §1] for a detailed
discussion. We will usually consider a first-order oracle, i.e. given a point 𝑥 ∈ R𝑑 , the
oracle returns (𝑉 (𝑥),∇𝑉 (𝑥)). Since 𝑉 is only well-defined up to an additive constant, we
can equivalently imagine that the oracle returns (𝑉 (𝑥) −𝑉 (0),∇𝑉 (𝑥)).

Before considering the problem further, here are some important applications.
1In fact, it goes the other way around: the state-of-the-art methods for approximately computing 𝑍 are

based on the sampling methods we develop here.
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1. (Bayesian statistics) Suppose that we wish to make inferences about a parameter
𝜗 of interest, which lies in a space Θ ⊆ R𝑑 . As a Bayesian, we have a prior density
𝑝𝜗 over Θ which encodes our subjective beliefs about the value of 𝜗 prior to seeing
any data. Next, we collect some data 𝑋 which, conditionally on the value of 𝜗 , is
drawn from a density 𝑝𝑋 |𝜗 (· | 𝜗). According to Bayesian statistics, we should then
compute the posterior distribution

𝑝𝜗 |𝑋 (𝜃 | 𝑋 ) ∝
𝑝𝜗 (𝜃 ) 𝑝𝑋 |𝜗 (𝑋 | 𝜃 )∫

Θ
𝑝𝜗 (d𝜃 ′) 𝑝𝑋 |𝜗 (𝑋 | 𝜃 ′)

,

which encodes our new beliefs about 𝜗 after seeing the data.
Typically, we have access to the functional forms of 𝑝𝜗 and {𝑝𝑋 |𝜗 (· | 𝜃 )}𝜃∈Θ, so we
can evaluate these densities and compute gradients. However, the denominator
of 𝑝𝜗 |𝑋 is precisely the normalizing constant described previously and cannot be
naı̈vely evaluated. Moreover, even if we had the functional form of 𝑝𝜗 |𝑋 (· | 𝑋 ), we
would still not be able to compute expectations E[𝜑 (𝜗) | 𝑋 ] of test functions w.r.t.
the posterior without evaluating another high-dimensional integral. Instead, the
sampling methods we discuss in this book can output random variables 𝜗1, . . . , 𝜗𝑛
whose distributions are approximately 𝑝𝜗 |𝑋 (· | 𝑋 ), and the expectation can be
approximated to arbitrary accuracy via the averages 𝑛−1 ∑𝑛

𝑖=1 𝜑 (𝜗𝑖).

2. (high-dimensional integration) More generally, computing integrals of functions
against a known density 𝜋 is a fundamental task in scientific computing. In many
high-dimensional applications, the strategy of drawing samples from 𝜋 and then
approximating integrals via Monte Carlo averages is in fact the only known way to
efficiently tackle this problem.

3. (privacy) As machine learning algorithms are continually deployed in application
domains with personal and sensitive information, there is growing concern about
maintaining the privacy of the data on which the machine learning models are
trained. One way to address this issue is to require that the algorithm be differentially
private, which loosely speaking requires the output of the model to not depend
too much on the presence or absence of a single data point. The most common
method to achieve this goal is via the careful addition of noise to the algorithm.
Readers who are interested in the mathematics of privacy will benefit from a healthy
understanding of the analysis of sampling algorithms, and vice versa.

4. (statistical physics) In a physical system, 𝑉 (𝑥) represents the energy of a state
𝑥 . In this situation, thermodynamics predicts that the equilibrium distribution
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over states is the Boltzmann (or Gibbs) distribution whose density is proportional
to exp(−𝑉 /𝑇 ) (where 𝑇 is the temperature of the system). Naturally, sampling
provides a method for probing properties of the equilibrium distribution. More
subtly, the mixing time of specific sampling algorithms also provides information
about the system such as metastability phenomena; we revisit this in Chapter 11.
Due to this physical interpretation, we will often refer to 𝑉 as the potential energy.

5. (uncertainty quantification) In order to better understand the risks inherent in
any given system, it is important to quantify how much uncertainty is present
in any given prediction. This application is closely related to the discussion on
Bayesian statistics, since a Bayesian framework is a natural approach for performing
uncertainty quantification. More generally, the choice to use sampling rather than
optimization reflects a desire to understand typical outcomes of a procedure rather
than choosing a single fitted model which may fall victim to model misspecification.

Besides these examples, it is no surprise that sampling arises in many other applications,
since sampling is a fundamental algorithmic primitive. As such, sampling methods are
employed daily in applied domains such as biology, climatology, and cosmology.

Example 0.E.1 (Bayesian logistic regression). For concreteness, let us consider the
application of sampling to a Bayesian logistic regression problem. Suppose we have
collected data in the form of pairs (𝑋𝑖, 𝑌𝑖), 𝑖 = 1, . . . , 𝑛, where 𝑋𝑖 ∈ R𝑑 is a vector
of covariates and 𝑌𝑖 ∈ {0, 1} is a binary outcome. For example, 𝑌𝑖 might represent
whether or not a certain drug is effective on the 𝑖-th patient in a clinical study. Here,
we regard the covariates {𝑋𝑖, 𝑖 = 1, . . . , 𝑛} to be deterministic and fixed, and we posit
that the outcomes {𝑌𝑖, 𝑖 = 1, . . . , 𝑛} are independent with distributions

𝑌𝑖 ∼ Bernoulli
( exp ⟨𝜗,𝑋𝑖⟩
1 + exp ⟨𝜗,𝑋𝑖⟩

)
,

Moreover, we take a Gaussian prior normal(0, 𝜆−1𝐼𝑑) for 𝜗 , where 𝜆 > 0. The likeli-
hood is given by

𝑝𝑌𝑖 |𝜗 (𝑦𝑖 | 𝜃 ) =
( 1
1 + exp ⟨𝜃, 𝑋𝑖⟩

)1−𝑦𝑖 ( exp ⟨𝜃, 𝑋𝑖⟩
1 + exp ⟨𝜃, 𝑋𝑖⟩

)𝑦𝑖
, 𝑦𝑖 ∈ {0, 1} ,

and by independence, 𝑝𝑌1,...,𝑌𝑛 |𝜗 (𝑦1, . . . , 𝑦𝑛 | 𝜃 ) =
∏𝑛
𝑖=1 𝑝𝑌𝑖 |𝜗 (𝑦𝑖 | 𝜃 ). A computation via
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Bayes rule yields the posterior 𝑝𝜗 |𝑌1,...,𝑌𝑛 ∝ exp(−𝑉 ), where

𝑉 (𝜃 ) =
𝑛∑︁
𝑖=1

(
ln(1 + exp ⟨𝜃, 𝑋𝑖⟩) − 𝑌𝑖 ⟨𝜃, 𝑋𝑖⟩

)
+ 𝜆2 ∥𝜃 ∥

2 .

Note that 𝑉 is 𝜆-strongly convex. It is straightforward to find the minimizer of 𝑉
via standard optimization methods (e.g., gradient descent), and this corresponds to
finding the mode or maximum a posteriori (MAP) estimate of the parameter 𝜗 . On
the other hand, it is less obvious how to obtain (approximate) samples from the
posterior. In this book, we study algorithms which can solve this task accompanied
by non-asymptotic complexity estimates.

Next, we turn towards the how rather than the why. A key theme of this book is
the surprising and close connection between methods in optimization and methods in
sampling. To illustrate, we introduce our first sampling method, which is the sampling
analogue of the well-known gradient descent algorithm from optimization. The Langevin
diffusion is the solution (𝑍𝑡 )𝑡≥0 to the stochastic differential equation (SDE)

d𝑍𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡︸        ︷︷        ︸
gradient flow

+
√

2 d𝐵𝑡︸ ︷︷ ︸
Brownian motion

.

With a pure gradient flow d𝑍𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡 , we would expect the dynamics to converge to
stationary points of𝑉 . The Brownian motion ensures that we fully explore the distribution
𝜋 , as is required in sampling. Under mild conditions, the unique stationary distribution
of the Langevin diffusion is indeed 𝜋 ∝ exp(−𝑉 ), which makes this diffusion a good
candidate upon which to base a sampling algorithm.

Since the Langevin diffusion is “a gradient flow + noise”, it is no wonder that researchers
have drawn parallels between this diffusion and the gradient flow from optimization.
However, the connection actually lies much deeper than this superficial observation would
suggest. There is a natural geometry on the space of probability measures with finite
second moment, P2(R𝑑), namely the 2-Wasserstein distance𝑊2 from the theory of optimal
transport. The space (P2(R𝑑),𝑊2) turns out to be much richer than a metric space; in fact,
it is almost a Riemannian manifold. In turn, the Riemannian structure allows us to define
gradient flows on this space. The punchline here is that if 𝜋𝑡 denotes the law of 𝑍𝑡 , then
the curve of measures 𝑡 ↦→ 𝜋𝑡 is the gradient flow of the Kullback–Leibler (KL) divergence
KL(· ∥ 𝜋) with respect to the𝑊2 geometry. Hence, at the level of the trajectory (𝑍𝑡 )𝑡≥0,
the Langevin diffusion is a noisy gradient flow, but at the level of measures (𝜋𝑡 )𝑡≥0, it is
precisely a gradient flow! This remarkable connection was introduced in the seminal work
of Jordan, Kinderlehrer, and Otto [JKO98].
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This perspective suggests that we can study the convergence of the Langevin diffusion
using tools from optimization. For example, a standard assumption in the optimization
literature which allows for fast rates of convergence is that of strong convexity of the
objective function. Hence, we can ask under what conditions the functional KL(· ∥ 𝜋)
on the space of measures is strongly convex along𝑊2 geodesics. Quite pleasingly, this
is equivalent to the (Euclidean) strong convexity of the potential 𝑉 . Consequently, the
assumption of strong convexity of𝑉 , which is natural in optimization for studying gradient
flows, turns out to be natural in the sampling context as well.

Much of this book is devoted to the case when 𝑉 is strongly convex; we refer to 𝜋
as being strongly log-concave. Besides its naturality and simplicity, it is also a practical
assumption. For example, in the application to Bayesian statistics, the Bernstein–von
Mises theorem states that as the number of data points tends to infinity, the posterior
distribution closely resembles a Gaussian distribution and is thus (almost) strongly log-
concave, a fact which has already been exploited to give sampling guarantees in the
context of Bayesian inverse problems (see, e.g., [NW20]). However, some of the results
also apply to restricted classes of non-log-concave measures, and in Chapter 11 we will
see what can be said about non-log-concave sampling in general.

Before using the Langevin diffusion for sampling, however, it is first necessary to
discretize the process in time. The simplest discretization, known as the Euler–Maruyama
discretization, proceeds by fixing a step size ℎ > 0 and following the iteration

𝑋(𝑘+1)ℎ B 𝑋𝑘ℎ − ℎ ∇𝑉 (𝑋𝑘ℎ) +
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ) .

Since the Brownian increment 𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ has the normal(0, ℎ𝐼𝑑) distribution, this
iteration can be easily implemented once we have access to a gradient oracle for 𝑉 and
the ability to draw standard Gaussian variables. This iteration is commonly known as the
Langevin Monte Carlo (LMC) algorithm, or the unadjusted Langevin algorithm (ULA); in
this book, we stick to the former acronym.

The LMC algorithm is the starting point of our study. As a result of research in the
last decade, we now have the following guarantee. For any of the common divergences
d between probability measures, e.g., d(𝜇, 𝜋) = 𝑊2(𝜇, 𝜋) or d(𝜇, 𝜋) =

√︁
KL(𝜇 ∥ 𝜋), and

with an appropriate choice of initialization and step size, the law 𝜇𝑁ℎ of the 𝑁 -th iterate
of LMC satisfies d(𝜇𝑁ℎ, 𝜋) ≤ 𝜀 with a number of iterations 𝑁 which is polynomial
in the problem parameters (the dimension 𝑑 , the condition number 𝜅 of 𝑉 , and the
inverse accuracy 1/𝜀). For example, when d =

√
KL, the state-of-the-art guarantee reads

𝑁 = 𝑂 (𝜅𝑑/𝜀2). Whereas the convergence of the continuous-time diffusion is classical and
typically proven via abstract calculus, the quantitative non-asymptotic convergence of the
discretized algorithm necessitates the development of a new toolbox of analysis techniques.
A primary goal of this book to make this toolbox more accessible to researchers who are
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not yet acquainted with the field.
Beyond the standard LMC algorithm, there is now a rich arsenal of algorithms in

the sampling literature. Some algorithms are directly inspired by other optimization
algorithms (e.g., mirror descent), whereas other algorithms have their roots in the classical
theory of Markov processes (e.g., the use of a Metropolis–Hastings filter). We will also
explore some of these more sophisticated algorithms in detail, as in many cases they
represent substantial improvements over standard LMC.

Finally, although we began this introduction by discussing the goal of understanding
the complexity of sampling, in fact the complexity is not yet fully understood. The issue
here is that there are currently very few lower bounds on the complexity of sampling. This
is in contrast with the field of optimization, in which oracle complexity lower bounds have
in most situations identified nearly optimal algorithms for optimizing various function
classes. In Chapter 9, we will explain the current progress towards achieving this goal for
sampling, but much work remains to be done.

For example, here is the precise statement for a fundamental open question about the
complexity of sampling.

Let 𝜋 ∝ exp(−𝑉 ) be a probability density on R𝑑 . Determine, up to a universal
constant, the minimum number of queries to a first-order oracle for𝑉 required
to output a sample whose law 𝜇 satisfies ∥𝜇 − 𝜋 ∥TV ≤ 𝜀, uniformly over the
following class of potentials: 𝑉 is twice continuously differentiable, satisfying
the conditions 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and ∇𝑉 (0) = 0.

What This Book Does Not Contain
At the risk of offending researchers who are omitted even from the list of omissions, here
we point out a few egregious exclusions. First, as mentioned previously, the price we paid
for a succinct exposition of a variety of fields is a lack of rigorous development of the
fundamentals of said fields, which we leave to the reader to pursue more thoroughly.

The field of sampling has a rich literature spanning decades, and although we have
made an effort to cite the works most relevant to the modern perspective, it was not
possible to cite even a vanishing fraction of the applied and/or classical literature. This
extends to even recent theoretical works on log-concave sampling, for which we have
omitted any discussion of sampling from convex bodies or polytopes. Although these
works constitute fundamental developments in the field, here we chose to limit our focus
to the part of the literature which is more strongly inspired by optimization algorithms.

Naturally, the other topics we explore in the book are far from comprehensive.
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Notational Conventions
The symbols ∧ and ∨ mean “minimum” and “maximum” respectively. We write 𝑎 ≲ 𝑏 or
𝑎 = 𝑂 (𝑏) to mean that 𝑎 ≤ 𝐶𝑏 for a universal constant𝐶 > 0. Similarly, 𝑎 ≳ 𝑏 or 𝑎 = Ω(𝑏)
mean that 𝑎 ≥ 𝑐𝑏 for a universal constant 𝑐 > 0, and 𝑎 ≍ 𝑏 or 𝑎 = Θ(𝑏) mean that both
𝑎 ≲ 𝑏 and 𝑎 ≳ 𝑏. We write 𝑎 = 𝑂 (𝑏) to mean that 𝑎 = 𝑂 (𝑏 log𝑂 (1) 𝑏), i.e., we suppress
polylogarithmic factors, and we similarly use the notation Ω̃ and Θ̃.

For a function 𝑓 : R𝑑 → R, we write 𝜕𝑖 𝑓 to denote the 𝑖-th partial derivative of 𝑓 . The
gradient ∇𝑓 is the vector of partial derivatives (𝜕1𝑓 , . . . , 𝜕𝑑 𝑓 ), and the Hessian ∇2𝑓 is the
matrix (𝜕𝑖𝜕 𝑗 𝑓 )𝑖, 𝑗∈[𝑑] . For a vector field 𝑣 : R𝑑 → R𝑑 , we also use the notation ∇𝑣 to denote
the Jacobian matrix of 𝑣 . The divergence of a vector field 𝑣 is div 𝑣 = ∇ · 𝑣 = ∑𝑑

𝑖=1 𝜕𝑖𝑣𝑖 , and
the Laplacian of 𝑓 is Δ𝑓 = tr∇2𝑓 =

∑𝑑
𝑖=1 𝜕

2
𝑖 𝑓 .

Finally, we will sometimes use 𝑡− to denote ⌊𝑡/ℎ⌋ ℎ, the largest multiple of the step
size ℎ which is smaller than 𝑡 . This is not to be confused with the negative part of 𝑡 .
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CHAPTER 1

The Langevin Diffusion in Continuous Time

In this chapter, we study the continuous-time Langevin diffusion with potential 𝑉 ,
which is the solution to the following stochastic differential equation (SDE):

d𝑍𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡 +
√

2 d𝐵𝑡 . (1.E.1)

We begin with a quick introduction to stochastic calculus in order to make sense of this
equation. Then, we introduce two powerful frameworks for analyzing the Langevin diffu-
sion: Markov semigroup theory, and the calculus of optimal transport. These frameworks
are two perspectives on the same diffusion, and the abstract calculus rules we develop
within each framework streamline important computations.

A rigorous mathematical treatment of the theory in this chapter requires addressing
substantial analytical technicalities, such as checking that the various partial differential
equations (PDEs) are well-posed and that the calculations are carefully justified. We will
not attempt to do so here and instead refer to bibliography for detailed treatments. In
particular, the “proofs” in this section are more like “proof sketches” which are meant to
convey the main intuition.

1.1 A Primer on Stochastic Calculus
In this section, we introduce just enough stochastic calculus to understand the meaning
of the SDE (1.E.1). See [Ste01; Le 16] for thorough expositions. We treat further topics in
stochastic calculus in Chapter 3.

3



4 CHAPTER 1. THE LANGEVIN DIFFUSION IN CONTINUOUS TIME

In Section 1.1.4, we discuss the rather technical construction of the Itô integral. For
the remainder of the book, the details of the construction are less important than the
calculation rules that follow. The reader who is unfamiliar with stochastic calculus is
encouraged to skip Section 1.1.4 upon first reading.

1.1.1 The Itô Integral

Definition 1.1.1. (Standard) Brownian motion is a stochastic process (𝐵𝑡 )𝑡≥0 in R𝑑
satisfying the following properties:

1. 𝐵0 = 0.

2. (independence of increments) For all 0 < 𝑡1 < · · · < 𝑡𝑘 , the random variables
(𝐵𝑡1, 𝐵𝑡2 − 𝐵𝑡1, . . . , 𝐵𝑡𝑘 − 𝐵𝑡𝑘−1) are mutually independent.

3. (law of the increments) For all 0 ≤ 𝑠 < 𝑡 < ∞,

𝐵𝑡 − 𝐵𝑠 ∼ normal(0, 𝑡 − 𝑠) .

4. (continuity of the paths) Almost surely, 𝑡 ↦→ 𝐵𝑡 is continuous.

Brownian motion was originally introduced over a century ago as a model for the
jittery path of a particle which is constantly colliding with surrounding molecules. Since
its inception, Brownian motion has been used to model the flow of heat, to price options
at the financial market, to solve partial differential equations, to tease out the geometry of
manifolds, and of course, to sample from probability distributions. It is perhaps not clear
at first sight that such a process even exists,1 but it would take us too far afield to give a
construction here.

Instead, our goal is to compute integrals involving Brownian motion: given a stochastic
process (𝜂𝑡 )𝑡≥0, how do we make sense of an expression such as

∫ 𝑇
0 𝜂𝑡 d𝐵𝑡? Once we have

stochastic integration in hand, we can then formulate and solve stochastic differential
equations. The solution to such an equation is a diffusion process, no less jittery than the
Brownian motion which drives it, and yet in the right hands it becomes an incredible tool
for solving a plethora of disparate problems.

The main technical difficulty in defining the stochastic integral is that Brownian motion
is an irregular process: for small 𝑡 > 0, by definition 𝐵𝑡 ∼ normal(0, 𝑡), which means that
|𝐵𝑡 | is typically of size ≍

√
𝑡 . In particular, this prevents Brownian motion from being

1Of course, this did not stop Einstein from using it to probe the microscopic structure of matter.



1.1. A PRIMER ON STOCHASTIC CALCULUS 5

differentiable at 0, or indeed, anywhere. Nevertheless, such stochastic integrals can be
meaningfully defined and used to build a far-reaching calculus.

We give the high-level idea of the construction of the Itô integral here, deferring details
to Section 1.1.4. We work on a probability space (Ω,ℱ, P) which is complete, filtered, and
right-continuous, meaning that there is an increasing family (ℱ𝑡 )𝑡≥0 of 𝜎-algebras with⋃∞
𝑡=0 ℱ𝑡 ⊆ ℱ, with

⋂
𝑡>𝑠 ℱ𝑡 = ℱ𝑠 for all 𝑠 ≥ 0, and such that ℱ0 contains all subsets of null

sets. We assume that Brownian motion is adapted to the filtration: 𝐵𝑡 is ℱ𝑡 -measurable
for each 𝑡 ≥ 0.

Defining the Itô integral at a single time 𝑇 . Suppose first that (𝜂𝑡 )𝑡≥0 is a process of
the form

𝜂𝑡 =

𝑘−1∑︁
𝑖=0

𝐻𝑖 1{𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1]} (1.1.2)

for some 0 ≤ 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 , where 𝐻𝑖 is bounded and ℱ𝑡𝑖 -measurable. We call 𝜂 an
elementary process. In this case, perhaps the only reasonable definition of the stochastic
integral is to take ∫ 𝑇

0
𝜂𝑡 d𝐵𝑡 B

𝑘−1∑︁
𝑖=0

𝐻𝑖 (𝐵𝑡𝑖+1∧𝑇 − 𝐵𝑡𝑖∧𝑇 ) . (1.1.3)

This is indeed what we shall do, but for the moment we will refrain from using the integral
symbol and write this as I[0,𝑇 ] (𝜂) to avoid confusion.

We would like to extend this definition to more general processes, but before doing so
we record two key properties of the stochastic integral. The first is that 𝑡 ↦→ I[0,𝑡] (𝜂) is a
continuous martingale, i.e., it is continuous and satisfies the following definition.

Definition 1.1.4. A process (𝑀𝑡 )𝑡≥0 is a martingale w.r.t. the filtration (ℱ𝑡 )𝑡≥0 if
for all 𝑡 ≥ 0, 𝑀𝑡 is ℱ𝑡 -measurable and integrable, and

E[𝑀𝑡 | ℱ𝑠] = 𝑀𝑠 , for all 0 ≤ 𝑠 < 𝑡 .

Indeed, we deduce that 𝑡 ↦→ I[0,𝑡] (𝜂) is a martingale from the fact that 𝐻𝑖 is ℱ𝑡𝑖 -
measurable for each 𝑖 , and because (𝐵𝑡 )𝑡≥0 is a martingale.

The second key property is that we can compute the variance:

E[I[0,𝑇 ] (𝜂)2] = E
[���𝑘−1∑︁
𝑖=0

𝐻𝑖 (𝐵𝑡𝑖+1∧𝑇 − 𝐵𝑡𝑖∧𝑇 )
���2] = 𝑘−1∑︁

𝑘=0
E[|𝐻𝑖 (𝐵𝑡𝑖+1∧𝑇 − 𝐵𝑡𝑖∧𝑇 ) |2] (1.1.5)
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=

𝑘−1∑︁
𝑘=0
E[𝐻 2

𝑖 ]
(
(𝑡𝑖+1 ∧𝑇 ) − (𝑡𝑖 ∧𝑇 )

)
= E

∫ 𝑇

0
𝜂2
𝑡 d𝑡 . (1.1.6)

Here, we used the basic properties listed in the definition of Brownian motion, such as
independence of increments. This equation shows that if P𝑇 B P ⊗ 𝔪 | [0,𝑇 ] , where 𝔪 | [0,𝑇 ]
is the Lebesgue measure on [0,𝑇 ], then the mapping 𝜂 ↦→ I[0,𝑇 ] (𝜂) is an isometry from
𝐿2(P𝑇 ) to 𝐿2(P). We use this isometry to extend the definition of the stochastic integral
as follows.

For a more general process (𝜂𝑡 )𝑡≥0, assume that it is progressive2 and satisfies the
integrability condition

∥𝜂∥2
𝐿2 (P𝑇 ) = E

∫ 𝑇

0
𝜂2
𝑡 d𝑡 < ∞ .

One shows that (𝜂𝑡 )𝑡≥0 can be approximated by elementary processes {(𝜂 (𝑘)𝑡 )𝑡≥0 : 𝑘 ∈ N}
of the form (1.1.2) in the 𝐿2(P𝑇 ) norm. For each 𝑘 , the stochastic integral I[0,𝑇 ] (𝜂 (𝑘)) is
defined via (1.1.3), and lim𝑘→∞ I[0,𝑇 ] (𝜂 (𝑘)) exists in 𝐿2(P) thanks to the isometry. We can
then take the limit to be the definition of the stochastic integral I[0,𝑇 ] (𝜂).

Defining the Itô integral as a stochastic process. Although the procedure above
successfully defines I[0,𝑡] (𝜂) for a fixed time 𝑡 > 0, there is no guarantee of coherence
between different times 𝑡 . The trouble arises because I[0,𝑡] (𝜂) is defined as a limit, but
this limit is only well-specified up to an event of measure zero, and these measure zero
events for different times 𝑡 might conceivably accumulate into something more. This
is undesirable because the true power of stochastic calculus comes from viewing the
stochastic integral as a time-indexed stochastic process in its own right.

The key insight is to go back to the approximating sequence {(𝜂 (𝑘)𝑡 )𝑡≥0 : 𝑘 ∈ N}. For
each 𝑘 , the Itô integral is defined as an entire process 𝑡 ↦→ I[0,𝑡] (𝜂 (𝑘)) via (1.1.28), and
moreover this process is a continuous martingale. We can then apply powerful results
on martingale convergence, which are developed in Section 1.1.4, in order to prove the
following theorem.

Theorem 1.1.7. Suppose that (𝜂𝑡 )𝑡≥0 is progressive and satisfies E
∫ 𝑇

0 𝜂2
𝑡 d𝑡 < ∞. Then,

there exists a continuous martingale, denoted (
∫ 𝑡

0 𝜂𝑠 d𝐵𝑠)𝑡≥0, which is adapted to (ℱ𝑡 )𝑡≥0

2The process (𝜂𝑡 )𝑡≥0 is progressive if for all 𝑇 ≥ 0, the mapping (𝜔, 𝑡) ↦→ 𝜂𝑡 (𝜔) is measurable w.r.t.
ℱ𝑇 ⊗ℬ[0,𝑇 ] , where ℬ[0,𝑇 ] is the Borel 𝜎-algebra on [0,𝑇 ].
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and satisfies

E
[���∫ 𝑡

0
𝜂𝑠 d𝐵𝑠

���2] = E∫ 𝑡

0
𝜂2
𝑠 d𝑠 , for all 𝑡 ∈ [0,𝑇 ] . (1.1.8)

The formula (1.1.8) is called the Itô isometry.
Also, for each 𝑡 ∈ [0,𝑇 ], it holds that

∫ 𝑡
0 𝜂𝑠 d𝐵𝑠 = I[0,𝑡] (𝜂) a.s.

Extending the definition via localization. There is one final step which is traditionally
taken, namely to expand the class of allowable integrands to progressive processes 𝜂 with∫ 𝑇

0
𝜂2
𝑠 d𝑠 < ∞ almost surely . (1.1.9)

Note that this condition is weaker than the condition E
∫ 𝑇

0 𝜂2
𝑠 d𝑠 < ∞. Such an extension

is evidently mathematically interesting, as we would like our definitions to be as broad as
possible. However, equally important is that it introduces the device of localization. On
the whole, localization actually serves to reduce the number of technicalities in the subject:
once introduced, it allows us to always work with a stopping time up to which the process
is as nice as one desires (e.g., bounded). The flexibility and utility that localization thus
brings cements its place as the natural mathematical framework for stochastic calculus.
However, this is not the focus of the book, and in what follows we will usually brush over
such localization arguments. For now, we simply introduce the basic definitions in order
to show the reader that the idea is actually fairly straightforward.

Definition 1.1.10. A stopping time 𝜏 is a random variable such that for each 𝑡 ≥ 0,
the event {𝜏 ≤ 𝑡} is ℱ𝑡 -measurable.

Definition 1.1.11. An increasing sequence of stopping times (𝜏𝑛)𝑛∈N is called a
localizing sequence for 𝜂 on [0,𝑇 ] if:

1. for all 𝑛 ∈ N, (𝜂𝑡 1{𝑡 ≤ 𝜏𝑛})𝑡≥0 has finite ∥·∥𝐿2 (P𝑇 ) norm, and

2. 𝜏𝑛 → 𝑇 almost surely.

The good news is that localizing sequences are easy to find, and the following proposi-
tion barely needs a proof (and so we omit it).
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Proposition 1.1.12. If 𝜂 is a progressive process satisfying the condition (1.1.9), then
the sequence (𝜏𝑛)𝑛∈N defined by

𝜏𝑛 B inf
{
𝑡 ≥ 0

��� ∫ 𝑡

0
𝜂2
𝑠 d𝑠 ≥ 𝑛

}
∧𝑇

is a localizing sequence for 𝜂 on [0,𝑇 ].

The idea now is simple: for each progressive process 𝜂 satisfying (1.1.9), let (𝜏𝑛)𝑛∈N
be a localizing sequence for 𝜂 on [0,𝑇 ]. For each 𝑛 ∈ N, by the definition of a localizing
sequence, we can apply our existing definition of the Itô integral, which gives us a
continuous martingale

𝑡 ↦→
∫ 𝑡

0
𝜂𝑠 1{𝑠 ≤ 𝜏𝑛} d𝐵𝑠 . (1.1.13)

Then, we can define the Itô integral of 𝜂 to be a limit of the processes (1.1.13). The details
are straightforward, and omitted.

We can also define an analogue of martingales using localizing sequences; these are
almost martingales, but lack the required integrability.

Definition 1.1.14. A process (𝑀𝑡 )𝑡≥0 is a local martingale if it is adapted to the
filtration (ℱ𝑡 )𝑡≥0 and there is an increasing sequence (𝜏𝑛)𝑛∈N of stopping times such
that 𝜏𝑛 →∞ and for each 𝑛, the process 𝑡 ↦→ 𝑀𝑡∧𝜏𝑛 −𝑀0 is a martingale w.r.t. (ℱ𝑡 )𝑡≥0.

Proposition 1.1.15. If 𝜂 is a progressive process satisfying (1.1.9), then the Itô integral
𝑡 ↦→

∫ 𝑡
0 𝜂𝑠 d𝐵𝑠 is a continuous local martingale.

Looking forward. The construction of the Itô integral may seem quite abstract; indeed,
we are sorely lacking in examples. At this juncture, it is common to work out simple
exercises such as computing

∫ 𝑡
0 𝐵𝑠 d𝐵𝑠 , and while this is pedagogically natural it is also

liable to mislead the reader into thinking that the main use of Itô integration is to solve
synthetic problems with no apparent purpose. As counterintuitive as it may seem, our
solution to the heavy amount of abstraction will be more abstraction. In the next section,
we will develop the single most important computation rule in stochastic calculus (along
with the Itô isometry (1.1.8)), called Itô’s formula, after which we will hardly need to
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return to the definition of a stochastic integral ever again. And even Itô’s formula will be
abstracted out into the language of Markov semigroups in Section 1.2. The upshot is that
we introduced the Itô integral because it is the foundation of our field, but most of what
we have developed thus far is not necessary for the remainder of the book.

1.1.2 Itô’s Formula
With the Itô integral in hand, we consider the following class of processes.

Definition 1.1.16. A stochastic process (𝑋𝑡 )𝑡≥0 is an Itô process if it is of the form

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏𝑠 d𝑠 +

∫ 𝑡

0
𝜎𝑠 d𝐵𝑠 , for 𝑡 ≥ 0 ,

where (𝑏𝑡 )𝑡≥0 takes values inR𝑑 , (𝜎𝑡 )𝑡≥0 takes values inR𝑑×𝑁 , and (𝐵𝑡 )𝑡≥0 is a standard
Brownian motion in R𝑁 .

Implicit in the above definition is that the process should be well-defined: the coeffi-
cients (𝑏𝑡 )𝑡≥0 and (𝜎𝑡 )𝑡≥0 should be progressive processes for which the integrals exist.
Also, the random variable 𝑋0 should be ℱ0-measurable, in which case the process (𝑋𝑡 )𝑡≥0
is also progressive.

We refer to (𝑏𝑡 )𝑡≥0 as the drift coefficient and (𝜎𝑡 )𝑡≥0 as the diffusion coefficient.
When the drift coefficient is zero, then (𝑋𝑡 )𝑡≥0 is simply an Itô integral, and thus a
continuous local martingale (Proposition 1.1.15). Otherwise, for a non-zero drift coefficient,
the process (𝑋𝑡 )𝑡≥0 is no longer necessarily a local martingale. As a shorthand, we often
write the Itô process in differential form:

d𝑋𝑡 = 𝑏𝑡 d𝑡 + 𝜎𝑡 d𝐵𝑡 . (1.1.17)

Our goal is to understand how the Itô process transforms when we compose it with a
smooth function 𝑓 : R𝑑 → R. This leads to Itô’s formula, which is the bread and butter of
stochastic calculus computations.

Although the notation (1.1.17) is informal, it conveys the main intuition. For ℎ > 0
small, we can approximate 𝑋𝑡+ℎ ≈ 𝑋𝑡 + ℎ 𝑏𝑡 +

√
ℎ 𝜎𝑡𝜉 , where 𝜉 ∼ normal(0, 𝐼𝑁 ). Note

that the
√
ℎ scaling comes from the fact that the Brownian increment 𝐵𝑡+ℎ − 𝐵𝑡 has

the normal(0, ℎ𝐼𝑑) distribution. Now suppose that 𝑓 : R𝑑 → R is twice continuously
differentiable. Normally, to compute 𝑓 (𝑋𝑡+ℎ) − 𝑓 (𝑋𝑡 ) up to order 𝑜 (ℎ), a first-order Taylor
expansion of 𝑓 suffices, but in stochastic calculus this would miss important terms arising
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from the Brownian motion: indeed, second-order terms in 𝐵𝑡+ℎ − 𝐵𝑡 are of order ℎ and
hence not negligible.

Therefore, we carry out the Taylor expansion to an extra term:

𝑓 (𝑋𝑡+ℎ) − 𝑓 (𝑋𝑡 ) ≈ ⟨∇𝑓 (𝑋𝑡 ), ℎ 𝑏𝑡 +
√
ℎ 𝜎𝑡𝜉⟩ +

1
2 ⟨ℎ 𝑏𝑡 +

√
ℎ 𝜎𝑡𝜉,∇2𝑓 (𝑋𝑡 ) (ℎ 𝑏𝑡 +

√
ℎ 𝜎𝑡𝜉)⟩

= ℎ
{
⟨∇𝑓 (𝑋𝑡 ), 𝑏𝑡 ⟩ +

1
2 ⟨𝜎𝑡𝜉,∇

2𝑓 (𝑋𝑡 ) 𝜎𝑡𝜉⟩
}
+
√
ℎ ⟨𝜎T

𝑡 ∇𝑓 (𝑋𝑡 ), 𝜉⟩ + 𝑜 (ℎ) .

This expression suggests that (𝑓 (𝑋𝑡 ))𝑡≥0 is also an Itô process. The third term, which is of
order

√
ℎ, turns into an Itô integral once integrated. Perhaps the most interesting term is

the second term, ℎ2 ⟨𝜎
T
𝑡 ∇2𝑓 (𝑋𝑡 ) 𝜎𝑡 , 𝜉𝜉T⟩, which is a genuinely new feature of stochastic

calculus. If we sum up many of these increments, we end up with an expression like
1
2
∑𝐾
𝑘=0 ⟨𝜎T

𝑡+𝑘ℎ ∇
2𝑓 (𝑋𝑡+𝑘ℎ) 𝜎𝑡+𝑘ℎ, ℎ 𝜉𝑘𝜉T

𝑘
⟩. If we replace each ℎ 𝜉𝑘𝜉T

𝑘
by its expectation ℎ 𝐼𝑁

(which must be carefully justified; see the calculation of quadratic variation in Section 3.1),
then this resembles a Riemann sum, which converges to the integral of 1

2 ⟨∇
2𝑓 (𝑋𝑡 ), 𝜎𝑡𝜎T

𝑡 ⟩.
This is formalized in the following theorem.

Theorem 1.1.18 (Itô’s formula). Let (𝑋𝑡 )𝑡≥0 be an Itô process, d𝑋𝑡 = 𝑏𝑡 d𝑡 +𝜎𝑡 d𝐵𝑡 , and
let 𝑓 ∈ C2(R𝑑). Then, (𝑓 (𝑋𝑡 ))𝑡≥0 is also an Itô process which satisfies, for 𝑡 ≥ 0:

𝑓 (𝑋𝑡 ) − 𝑓 (𝑋0) =
∫ 𝑡

0

{
⟨∇𝑓 (𝑋𝑠), 𝑏𝑠⟩ +

1
2 ⟨∇

2𝑓 (𝑋𝑠), 𝜎𝑠𝜎T
𝑠 ⟩
}

d𝑠 +
∫ 𝑡

0
⟨𝜎T
𝑠 ∇𝑓 (𝑋𝑠), d𝐵𝑠⟩ .

We omit the proof, since the bulk of the intuition is carried in the informal Taylor
series argument described above. Observe that since Itô integrals are (under appropriate
integrability conditions) continuous martingales, the expectation of the last term in Itô’s
formula is typically zero. Therefore,3

E 𝑓 (𝑋𝑡 ) − E 𝑓 (𝑋0) =
∫ 𝑡

0
E
[
⟨∇𝑓 (𝑋𝑠), 𝑏𝑠⟩ +

1
2 ⟨∇

2𝑓 (𝑋𝑠), 𝜎𝑠𝜎T
𝑠 ⟩
]

d𝑠 , (1.1.19)

or in differential form,

𝜕𝑡 E 𝑓 (𝑋𝑡 ) = E
[
⟨∇𝑓 (𝑋𝑡 ), 𝑏𝑡 ⟩ +

1
2 ⟨∇

2𝑓 (𝑋𝑡 ), 𝜎𝑡𝜎T
𝑡 ⟩
]
.

Itô’s formula can also be extended to time-dependent functions via

𝑓 (𝑡, 𝑋𝑡 ) − 𝑓 (0, 𝑋0) =
∫ 𝑡

0

{
𝜕𝑠 𝑓 (𝑠, 𝑋𝑠) + ⟨∇𝑓 (𝑠, 𝑋𝑠), 𝑏𝑠⟩ +

1
2 ⟨∇

2𝑓 (𝑠, 𝑋𝑠), 𝜎𝑠𝜎T
𝑠 ⟩
}

d𝑠

3Even when the Itô integral is only a local martingale, one can usually justify the formula (1.1.19) anyway
using the localizing sequence and the dominated convergence theorem.
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+
∫ 𝑡

0
⟨𝜎T
𝑠 ∇𝑓 (𝑠, 𝑋𝑠), d𝐵𝑠⟩ .

We revisit and streamline Itô’s formula in Section 3.1.

1.1.3 Existence and Uniqueness of SDEs
Let𝑏 : R+×R𝑑 → R𝑑 and 𝜎 : R+×R𝑑 → R𝑑×𝑁 . We now consider the stochastic differential
equation (SDE)

d𝑋𝑡 = 𝑏 (𝑡, 𝑋𝑡 ) d𝑡 + 𝜎 (𝑡, 𝑋𝑡 ) d𝐵𝑡 . (1.1.20)

Suppose we are given a complete filtered probability space (Ω,ℱ, (ℱ𝑡 )𝑡≥0, P) which
supports a standard 𝑁 -dimensional adapted Brownian motion 𝐵. A solution to the SDE
is an adapted R𝑑-valued process 𝑋 such that

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏 (𝑠, 𝑋𝑠) d𝑠 +

∫ 𝑡

0
𝜎 (𝑠, 𝑋𝑠) d𝐵𝑠 .

The question we address in this section is under what conditions there exists a unique
solution to the SDE. This is a question of a technical nature, but the answer is instructive
because the proof introduces standard arguments that recur frequently in stochastic
calculus. The main result is that if the coefficients 𝑏, 𝜎 are Lipschitz in space uniformly in
time, then the SDE admits a unique solution.

Before proceeding, we need the following lemma, which is used throughout the book.

Lemma 1.1.21 (Grönwall’s lemma). Let 𝑇 > 0 and let 𝑔 : [0,𝑇 ] → [0,∞) be bounded
and measurable. Assume there exists 𝐶1,𝐶2 ≥ 0 such that

𝑔(𝑡) ≤ 𝐶1 +𝐶2

∫ 𝑡

0
𝑔 , ∀𝑡 ∈ [0,𝑇 ] .

Then,

𝑔(𝑡) ≤ 𝐶1 exp(𝐶2𝑡) , ∀𝑡 ∈ [0,𝑇 ] .

Proof. By iterating the assumption, for each 𝑛 ∈ N,

𝑔(𝑡) ≤ 𝐶1 +𝐶2

∫ 𝑡

0
𝑔(𝑠1) d𝑠1 ≤ 𝐶1 +𝐶1𝐶2𝑡 +𝐶2

2

∫ 𝑡

0

∫ 𝑠1

0
𝑔(𝑠2) d𝑠2 d𝑠1 ≤ · · ·
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≤ 𝐶1

𝑛∑︁
𝑘=0

(𝐶2𝑡)𝑘

𝑘! +𝐶𝑛+12

∫ 𝑡

0
· · ·

∫ 𝑠𝑛

0
𝑔(𝑠𝑛+1) d𝑠𝑛+1 · · · d𝑠1 .

The remainder term is bounded by���𝐶𝑛+12

∫ 𝑡

0
· · ·

∫ 𝑠𝑛

0
𝑔(𝑠𝑛+1) d𝑠𝑛+1 · · · d𝑠1

��� ≤ ∥𝑔∥sup (𝐶2𝑡)𝑛+1

(𝑛 + 1)!
𝑛→∞−−−−→ 0 ,

which gives the result. □

In the following theorem, for a matrix 𝑀 ,

∥𝑀 ∥2HS B tr(𝑀𝑀T) = tr(𝑀T𝑀)

denotes the Hilbert–Schmidt (or Frobenius) norm of 𝑀 . The uniqueness result states that
if there are two solutions 𝑋 , 𝑋 to SDE on the same probability space, driven by the same
Brownian motion, then 𝑋 = 𝑋 .

Theorem 1.1.22 (existence and uniqueness of SDE solutions). Assume that 𝑏 and 𝜎
are continuous, and there exists 𝐶 > 0 such that for all 𝑡 ≥ 0 and 𝑥,𝑦 ∈ R𝑑 ,

∥𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦)∥ ∨ ∥𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)∥HS ≤ 𝐶 ∥𝑥 − 𝑦∥ .

Then, for any complete filtered probability space (Ω,ℱ, (ℱ𝑡 )𝑡≥0, P) and 𝑥 ∈ R𝑑 , there
exists a unique solution (𝑋𝑡 )𝑡∈[0,𝑇 ] for the SDE (1.1.20) with 𝑋0 = 𝑥 . Moreover, the
solution (𝑋𝑡 )𝑡∈[0,𝑇 ] is a Markov process.

Proof. Uniqueness. Fix a time 𝑇 > 0 and suppose there exist two solutions (𝑋𝑡 )𝑡∈[0,𝑇 ]
and (𝑋𝑡 )𝑡∈[0,𝑇 ] of the SDE on [0,𝑇 ] with 𝑋0 = 𝑋0. For 𝑡 ≥ 0, we compute the difference
between 𝑋𝑡 and 𝑋𝑡 using the Itô isometry (1.1.8), the Cauchy–Schwarz inequality, and the
Lipschitz assumption:

E[∥𝑋𝑡 − 𝑋𝑡 ∥2] ≤ 2E
[


∫ 𝑡

0
{𝑏 (𝑠, 𝑋𝑠) − 𝑏 (𝑠, 𝑋𝑠)} d𝑠




2
+



∫ 𝑡

0
{𝜎 (𝑠, 𝑋𝑠) − 𝜎 (𝑠, 𝑋𝑠)} d𝐵𝑠




2]
≤ 2E

[
𝑇

∫ 𝑡

0
∥𝑏 (𝑠, 𝑋𝑠) − 𝑏 (𝑠, 𝑋𝑠)∥2 d𝑠 +

∫ 𝑡

0
∥𝜎 (𝑠, 𝑋𝑠) − 𝜎 (𝑠, 𝑋𝑠)∥2HS d𝑠

]
≤ 2𝐶2 (1 +𝑇 ) E

∫ 𝑡

0
∥𝑋𝑠 − 𝑋𝑠 ∥2 d𝑠 .
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From Gronwall’s lemma (Lemma 1.1.21), we obtain 𝑋𝑡 = 𝑋𝑡 almost surely. Actually, this
proof has a gap: we have not fully justified why we can apply the Itô isometry. To get
around this, one may use technique of localization, the details of which are omitted.

Existence. We use a method of establishing existence of solutions to ODEs, known as
Picard iteration. We start by defining the process 𝑋 (0) to be the constant process with
value 𝑥 , and for 𝑛 ∈ N+ we let

𝑋
(𝑛)
𝑡 B 𝑥 +

∫ 𝑡

0
𝑏 (𝑠, 𝑋 (𝑛−1)

𝑠 ) d𝑠 +
∫ 𝑡

0
𝜎 (𝑠, 𝑋 (𝑛−1)

𝑠 ) d𝐵𝑠 . (1.1.23)

In other words, we “freeze” the coefficients of the SDE using the process from the previous
stage of the iteration. The stochastic integrals make sense because inductively, each 𝑋 (𝑛)
is adapted and has continuous sample paths. Thus, since

𝑋
(𝑛+1)
𝑡 − 𝑋 (𝑛)𝑡 =

∫ 𝑡

0
{𝑏 (𝑠, 𝑋 (𝑛)𝑠 ) − 𝑏 (𝑠, 𝑋 (𝑛−1)

𝑠 )} d𝑠 +
∫ 𝑡

0
{𝜎 (𝑠, 𝑋 (𝑛)𝑠 ) − 𝜎 (𝑠, 𝑋 (𝑛−1)

𝑠 )} d𝐵𝑠

we bound

E sup
[0,𝑡]
∥𝑋 (𝑛+1) − 𝑋 (𝑛) ∥2 ≤ 2E

[
sup
𝑢∈[0,𝑡]




∫ 𝑢

0
{𝑏 (𝑠, 𝑋 (𝑛)𝑠 ) − 𝑏 (𝑠, 𝑋 (𝑛−1)

𝑠 )} d𝑠



2

+ sup
𝑢∈[0,𝑡]




∫ 𝑢

0
{𝜎 (𝑠, 𝑋 (𝑛)𝑠 ) − 𝜎 (𝑠, 𝑋 (𝑛−1)

𝑠 )} d𝐵𝑠



2]

C I + II .

The first term is handled via Cauchy–Schwarz:

I ≤ 𝑇 E
∫ 𝑡

0
∥𝑏 (𝑠, 𝑋 (𝑛)𝑠 ) − 𝑏 (𝑠, 𝑋 (𝑛−1)

𝑠 )∥2 d𝑠 ≤ 𝐶2𝑇

∫ 𝑡

0
E sup
[0,𝑠]
∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2 d𝑠 .

For the second term, recall that 𝑡 ↦→
∫ 𝑡

0 {𝜎 (𝑠, 𝑋
(𝑛)
𝑠 ) − 𝜎 (𝑠, 𝑋 (𝑛−1)

𝑠 )} d𝐵𝑠 is a martingale. By
Doob’s 𝐿2 maximal inequality (Corollary 1.1.31 in Section 1.1.4) and the Itô isometry (1.1.8),
we can bound

II ≤ 4E
[


∫ 𝑡

0
{𝜎 (𝑠, 𝑋 (𝑛)𝑠 ) − 𝜎 (𝑠, 𝑋 (𝑛−1)

𝑠 )} d𝐵𝑠



2]

= 4E
∫ 𝑡

0
∥𝜎 (𝑠, 𝑋 (𝑛)𝑠 ) − 𝜎 (𝑠, 𝑋 (𝑛−1)

𝑠 )∥2HS d𝑠

≤ 4𝐶2
∫ 𝑡

0
E sup
[0,𝑠]
∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2 d𝑠 .
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Putting these two bounds together,

E sup
[0,𝑡]
∥𝑋 (𝑛+1) − 𝑋 (𝑛) ∥2 ≤ 2𝐶2 (4 +𝑇 )

∫ 𝑡

0
E sup
[0,𝑠]
∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2 d𝑠 .

By induction (and using the fact that E sup[0,𝑇 ] ∥𝑋 (1) − 𝑋 (0) ∥2 ≤ 𝐶𝑇 for some constant
𝐶𝑇 < ∞, which follows from similar arguments), we get

E sup
[0,𝑇 ]
∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2 ≤ 𝐶𝑇

{2𝐶2𝑇 (4 +𝑇 )}𝑛−1

(𝑛 − 1)! .

If we sum this, then we obtain

E
∞∑︁
𝑛=1

sup
[0,𝑇 ]
∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2 < ∞ =⇒

∞∑︁
𝑛=1

sup
[0,𝑇 ]
∥𝑋 (𝑛) − 𝑋 (𝑛−1) ∥2 < ∞ almost surely .

By completeness of C([0,𝑇 ]), it implies that 𝑋 (𝑛) converges uniformly on [0,𝑇 ] to a
continuous process 𝑋 as 𝑛 →∞.

Using again the Lipschitz assumption on the coefficients of the SDE, we have∫ 𝑡

0
𝜎 (𝑠, 𝑋 (𝑛)𝑠 ) d𝐵𝑠 −

∫ 𝑡

0
𝜎 (𝑠, 𝑋𝑠) d𝐵𝑠 → 0 ,∫ 𝑡

0
𝑏 (𝑠, 𝑋 (𝑛)𝑠 ) d𝑠 −

∫ 𝑡

0
𝑏 (𝑠, 𝑋𝑠) d𝑠 → 0 ,

almost surely. Passing to the limit in (1.1.23) shows that 𝑋 solves the SDE on [0,𝑇 ].
There is one last argument to make, which is to find a solution for the SDE on the

entire time interval [0,∞). For each 𝑡 > 0, let𝑇 > 𝑡 and define 𝑋𝑡 to be the solution of the
SDE on [0,𝑇 ] at time 𝑡 . The uniqueness assertion in the first half of the theorem shows
that this is well-defined (regardless of the choice of𝑇 ), and it also shows that the resulting
process 𝑋 is adapted, has continuous sample paths, and solves the SDE on [0,∞).

We omit the proof that (𝑋𝑡 )𝑡∈[0,𝑇 ] is Markov. □

Reflecting on the proof, the basic strategy is to coupling together two diffusions (with
the same driving Brownian motion), use Lipschitz bounds on the coefficients, and apply
Gronwall’s inequality. The same strategy will also be used to obtain convergence bounds
for sampling algorithms, albeit with a more quantitative goal in mind.

A theorem similar in spirit to Theorem 1.1.22 can be established under the assumption
that 𝑏 and 𝜎 are only locally Lipschitz, but in this case the solution to the SDE is not
guaranteed to last for all time. The issue is that when the coefficients grow faster than
linearly, there can be a finite (random) time𝔢, called the explosion time, such that ∥𝑋𝑡 ∥ → ∞
as 𝑡 → 𝔢. This phenomenon is already present for ODEs (see Exercise 1.4). For the purposes
of this book, the assumption of Lipschitz coefficients suffices.
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1.1.4 Appendix: Construction of the Itô Integral
To appreciate the construction, it may be helpful to first discuss some technical subtleties.
First, suppose that (𝜂𝑡 )𝑡≥0 is deterministic (non-random). Since (𝐵𝑡 )𝑡≥0 has continuous
paths, one could try to define

∫ 𝑇
0 𝜂𝑡 d𝐵𝑡 as a Riemann–Stieltjes integral, but due to the

irregularity of Brownian motion this only works for integrands (𝜂𝑡 )𝑡≥0 which are “locally
of bounded variation”4; in particular not all continuous integrands are allowed. To get
around this, a standard idea is to approximate a continuous integrand (𝜂𝑡 )𝑡≥0 with a
sequence of integrands {(𝜂 (𝑘)𝑡 )𝑡≥0 : 𝑘 ∈ N} which have bounded variation. For each 𝑘 , it
is no trouble to define

∫ 𝑇
0 𝜂

(𝑘)
𝑡 d𝐵𝑡 , and then we can define

∫ 𝑇
0 𝜂𝑡 d𝐵𝑡 as a suitable limit.

This idea can be carried out, but the notion of limit that is used is 𝐿2. In particular, the
limit may not exist in an almost sure sense.

Now suppose that (𝜂𝑡 )𝑡≥0 is a stochastic process. Then, it becomes technically challeng-
ing to carry out the requisite approximations; another idea is required. The new insight
is that if we consider integrands which are adapted to a filtration, then the stochastic
integrals 𝑡 ↦→

∫ 𝑡
0 𝜂𝑠 d𝐵𝑠 are martingales, and we can leverage their powerful convergence

theory to streamline the construction. We now proceed to implement this plan.
Throughout, we work on a complete, filtered, and right-continuous probability space

(Ω,ℱ, (ℱ𝑡 )𝑡≥0, P). We also recall the various classes of processes that we introduced in
Section 1.1.1.

Definition 1.1.24. Let (𝜂𝑡 )𝑡≥0 be a stochastic process.

1. (𝜂𝑡 )𝑡≥0 is a progressive process if for all 𝑇 ≥ 0, the mapping (𝜔, 𝑡) ↦→ 𝜂𝑡 (𝜔)
is measurable w.r.t. ℱ𝑇 ⊗ℬ[0,𝑇 ] , where ℬ[0,𝑇 ] is the Borel 𝜎-algebra on [0,𝑇 ].

2. (𝜂𝑡 )𝑡≥0 is an elementary process if it is of the form

𝜂𝑡 =

𝑘−1∑︁
𝑖=0

𝐻𝑖 1{𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1]} , (1.1.25)

where 0 ≤ 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 and for each 𝑖 , 𝐻𝑖 is bounded and ℱ𝑡𝑖 -measurable.

3. (𝜂𝑡 )𝑡∈[0,𝑇 ] is a square integrable process if it is a progressive process and
moreover E

∫ 𝑇
0 𝜂2

𝑡 d𝑡 < ∞.

The proof of the following technical result is omitted.
4See Section 3.1 for further discussion.
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Lemma 1.1.26 (approximation via elementary processes). For any square integrable
process (𝜂𝑡 )𝑡∈[0,𝑇 ] , there is a sequence {(𝜂 (𝑘)𝑡 )𝑡≥0 : 𝑘 ∈ N} of elementary processes with

∥𝜂 − 𝜂 (𝑘) ∥2
𝐿2 (P𝑇 ) = E

∫ 𝑇

0
|𝜂𝑡 − 𝜂 (𝑘)𝑡 |2 d𝑡 → 0 as 𝑘 →∞ .

Definition 1.1.27. Let (𝜂𝑡 )𝑡≥0 be a progressive process.

1. If (𝜂𝑡 )𝑡≥0 is an elementary process of the form (1.1.25), we define the Itô integral
of (𝜂𝑡 )𝑡≥0 on [0,𝑇 ] via

I[0,𝑇 ] (𝜂) B
𝑘−1∑︁
𝑖=0

𝐻𝑖 (𝐵𝑡𝑖+1∧𝑇 − 𝐵𝑡𝑖∧𝑇 ) . (1.1.28)

2. If (𝜂𝑡 )𝑡≥0 is a square integrable process, then let {(𝜂 (𝑘)𝑡 )𝑡≥0 : 𝑘 ∈ N} be the
approximating sequence furnished by Lemma 1.1.26. In this case, we define the
Itô integral of (𝜂𝑡 )𝑡≥0 via

I[0,𝑇 ] (𝜂) B lim
𝑘→∞
I[0,𝑇 ] (𝜂 (𝑘))

where the limit is taken in 𝐿2(P).

The second part of the definition requires some justification. We checked in (1.1.5)
and (1.1.6) that the Itô isometry holds for elementary processes: the mapping I[0,𝑇 ] is an
isometry from elementary processes equipped with the 𝐿2(P𝑇 ) norm, to the space 𝐿2(P)
of square integrable random variables. Through this isometry, we deduce from the fact
that {𝜂 (𝑘) : 𝑘 ∈ N} is Cauchy that {I[0,𝑇 ] (𝜂 (𝑘)) : 𝑘 ∈ N} is also Cauchy. Since 𝐿2(P) is a
complete metric space, there exists a limit I[0,𝑇 ] (𝜂) of the latter sequence. We can then
deduce that the Itô isometry (1.1.8) holds for square integrable processes as well.

Upon trying to view 𝑡 ↦→ I[0,𝑡] (𝜂) as a stochastic process, we encounter the usual
measure-theoretic difficulty: for fixed 𝑡 , I[0,𝑡] (𝜂) is well-defined outside of a measure
zero event, but we have to contend with uncountably many values of 𝑡 and the measure
zero events may accumulate. Overcoming this issue requires some principle that holds
uniformly over 𝑡 ∈ [0,𝑇 ]; in our case, this principle is Doob’s maximal inequality from
the theory of martingales.
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To set the stage, we can verify from the explicit formula (1.1.28) that 𝑡 ↦→ I[0,𝑡] (𝜂)
is a continuous martingale when (𝜂𝑡 )𝑡≥0 is an elementary process. Before proceeding
onwards, we need to further develop the theory of martingales.

Definition 1.1.29. A process (𝑀𝑡 )𝑡≥0 is a submartingale w.r.t. the filtration (ℱ𝑡 )𝑡≥0
if for all 𝑡 ≥ 0, 𝑀𝑡 is ℱ𝑡 -measurable and integrable, and

E[𝑀𝑡 | ℱ𝑠] ≥ 𝑀𝑠 , for all 0 ≤ 𝑠 < 𝑡 .

The class of submartingales is far broader and more useful than the class of martingales.
For example, if (𝑀𝑡 )𝑡≥0 is a martingale and 𝜑 : R → R is any convex function with
E|𝜑 (𝑀𝑡 ) | < ∞ for all 𝑡 ≥ 0, then Jensen’s inequality for conditional expectations implies
that (𝜑 (𝑀𝑡 ))𝑡≥0 is a submartingale.

One of the key facts about submartingales is that they easily converge, which is often
deduced from Doob’s maximal inequality.

Theorem 1.1.30 (Doob’s maximal inequality). Let (𝑀𝑡 )𝑡≥0 be a continuous and non-
negative submartingale. Then, for all 𝜆,𝑇 > 0,

P
(

sup
𝑡∈[0,𝑇 ]

𝑀𝑡 ≥ 𝜆
)
≤ E𝑀𝑇

𝜆
.

Proof. We prove the theorem for discrete-time submartingales (𝑀𝑛)𝑛∈N. The result for
continuous-time submartingales can then be obtained via approximation.

Let 𝜏 B min{𝑘 ∈ N : 𝑀𝑘 ≥ 𝜆}. On the event {𝜏 ≤ 𝑁 }, we have 𝑀𝜏 ≥ 𝜆, so

𝜆 P
(

max
𝑘=0,1,...,𝑁

𝑀𝑘 ≥ 𝜆
)
= 𝜆 P(𝜏 ≤ 𝑁 ) ≤ E[𝑀𝜏 1{𝜏 ≤ 𝑁 }] =

𝑁∑︁
𝑘=0
E[𝑀𝑘 1{𝜏 = 𝑘}] .

Next, since {𝜏 = 𝑘} is ℱ𝑘-measurable, the submartingale property yields

E[𝑀𝑘 1{𝜏 = 𝑘}] ≤ E
[
E[𝑀𝑁 | ℱ𝑘] 1{𝜏 = 𝑘}

]
= E[𝑀𝑁 1{𝜏 = 𝑘}] .

Hence,

𝜆 P
(

max
𝑘=0,1,...,𝑁

𝑀𝑘 ≥ 𝜆
)
≤ E

[
𝑀𝑁

𝑁∑︁
𝑘=0

1{𝜏 = 𝑘}
]
= E[𝑀𝑁 1{𝜏 ≤ 𝑁 }] ≤ E𝑀𝑁 ,

where we used the assumption that the submartingale is non-negative. □

It yields the following corollary, which we leave as Exercise 1.1.
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Corollary 1.1.31 (Doob’s 𝐿𝑝 maximal inequality). Let (𝑀𝑡 )𝑡≥0 be a continuous and
non-negative submartingale. Then, for all 𝑝 > 1 and 𝑇 > 0,

 sup

𝑡∈[0,𝑇 ]
𝑀𝑡




𝐿𝑝 (P) ≤

𝑝

𝑝 − 1 ∥𝑀𝑇 ∥𝐿𝑝 (P) .

We are now ready to finish the construction of the Itô integral.

Proof of Theorem 1.1.7. Let (𝜂𝑡 )𝑡≥0 be a square integrable process, with approximating
sequence {(𝜂 (𝑘)𝑡 )𝑡≥0 : 𝑘 ∈ N} obtained from Lemma 1.1.26. We define

𝑋
(𝑘)
𝑡 B I[0,𝑡] (𝜂 (𝑘)) ,

where I[0,𝑡] (𝜂 (𝑘)) is defined by the explicit formula (1.1.28). For any 𝑘, ℓ ∈ N, the process
𝑡 ↦→ |𝑋 (𝑘)𝑡 − 𝑋 (ℓ)𝑡 |2 is a continuous non-negative submartingale, so Doob’s maximal
inequality (Theorem 1.1.30) and the Itô isometry (1.1.8) yield

P
(

sup
𝑡∈[0,𝑇 ]

|𝑋 (𝑘)𝑡 − 𝑋
(ℓ)
𝑡 | ≥ 𝜆

)
= P

(
sup
𝑡∈[0,𝑇 ]

|𝑋 (𝑘)𝑡 − 𝑋
(ℓ)
𝑡 |2 ≥ 𝜆2

)
≤
E[|𝑋 (𝑘)

𝑇
− 𝑋 (ℓ)

𝑇
|2]

𝜆2 =
∥𝜂 (𝑘) − 𝜂 (ℓ) ∥2

𝐿2 (P𝑇 )
𝜆2 .

As (𝜂 (𝑘))𝑘∈N is Cauchy, we can pick a sequence 𝑛0 < 𝑛1 < 𝑛2 < · · · of integers such that
𝑘, ℓ ≥ 𝑛 𝑗 implies ∥𝜂 (𝑘) − 𝜂 (ℓ) ∥2

𝐿2 (P𝑇 )
≤ 2−3 𝑗 . Take 𝜆 = 2− 𝑗 to obtain

P
(

sup
𝑡∈[0,𝑇 ]

|𝑋 (𝑛 𝑗 )𝑡 − 𝑋 (𝑛 𝑗+1)𝑡 | ≥ 2− 𝑗
)
≤ 2− 𝑗 .

These probabilities are summable, so the Borel–Cantelli lemma implies

almost surely, sup
𝑡∈[0,𝑇 ]

|𝑋 (𝑛 𝑗 )𝑡 − 𝑋 (𝑛 𝑗+1)𝑡 | ≤ 2− 𝑗 for all but finitely many 𝑗 .

In particular, the paths {(𝑋 (𝑛 𝑗 )𝑡 )𝑡≥0 : 𝑗 ∈ N} form a Cauchy sequence inC([0,𝑇 ]) (equipped
with the supremum norm). As C([0,𝑇 ]) is complete, there is a limit (𝑋𝑡 )𝑡≥0 which
belongs to C([0,𝑇 ]). A similar argument, this time using Doob’s 𝐿2 maximal inequality
(Corollary 1.1.31), shows that 𝑋 (𝑛 𝑗 )𝑡 → 𝑋𝑡 in 𝐿2(P) as well. Since each 𝑡 ↦→ 𝑋

(𝑛 𝑗 )
𝑡 is a

continuous martingale, so is 𝑡 ↦→ 𝑋𝑡 .
Finally, for any fixed 𝑡 ∈ [0, 1], on one hand we have I[0,𝑡] (𝜂 (𝑛 𝑗 )) = 𝑋

(𝑛 𝑗 )
𝑡 → 𝑋𝑡 in

𝐿2(P) as noted above. On the other hand, the Itô isometry implies I[0,𝑡] (𝜂 (𝑛 𝑗 )) → I[0,𝑡] (𝜂)
in 𝐿2(P). Hence, almost surely, 𝑋𝑡 = I[0,𝑡] (𝜂). □
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1.2 Markov Semigroup Theory
More thorough treatments of Markov semigroup theory can be found in [BGL14; Han16].
We will revisit and expand upon many of the topics introduced here in Chapter 2.

1.2.1 Basic Definitions and Kolmogorov’s Equations
The core idea of Markov semigroup theory is to encode the behavior of a Markov process
(𝑋𝑡 )𝑡≥0 via operators which act on functions. We will then develop calculus rules for
working with these operators, and we can study the operators via functional analysis. This
is analogous to how the linear algebraic study of the transition matrix of a discrete-time
Markov chain reveals properties (e.g., ergodicity, convergence) of the chain.

Definition 1.2.1. For a time-homogeneous Markov process (𝑋𝑡 )𝑡≥0, its associated
Markov semigroup (𝑃𝑡 )𝑡≥0 is the family of operators acting on functions via

𝑃𝑡 𝑓 (𝑥) B E[𝑓 (𝑋𝑡 ) | 𝑋0 = 𝑥] .

The Markov property and iterated conditioning yields the following lemma (exercise).

Lemma 1.2.2. The Markov semigroup (𝑃𝑡 )𝑡≥0 satisfies 𝑃0 = id and 𝑃𝑠𝑃𝑡 = 𝑃𝑡𝑃𝑠 = 𝑃𝑠+𝑡
for all 𝑠, 𝑡 ≥ 0.

In order to do calculus, we want to differentiate the semigroup 𝑡 ↦→ 𝑃𝑡 , which is
accomplished via the following definition.

Definition 1.2.3. The infinitesimal generator ℒ associated with a Markov semi-
group (𝑃𝑡 )𝑡≥0 is the operator defined by

ℒ𝑓 B lim
𝑡↘0

𝑃𝑡 𝑓 − 𝑓
𝑡

,

for all functions 𝑓 for which the above limit exists.

Here we pause to warn the reader of some technical issues. The mathematical diffi-
culties of Markov semigroup theory arise in trying to answer the following questions:
on what space of functions is the generator defined, and in what sense is the above limit
taken? As we shall see, a natural space of functions to consider is 𝐿2(𝜋), with 𝜋 denoting
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the stationary distribution of the diffusion. However, the generator is usually a differential
operator, and not all functions in 𝐿2(𝜋) have enough regularity to lie in the domain of the
generator. The theory of unbounded linear operators on a Hilbert space was developed to
handle this situation, but it is rife with subtle distinctions such as the difference between
symmetric and self-adjoint operators. We will brush over these issues and focus on the
calculation rules.

Example 1.2.4. Let us compute the generator of the Langevin diffusion (1.E.1). In fact,
the following computation is simply a consequence of Itô’s formula (Theorem 1.1.18),
but it does not hurt to derive this result from scratch. We approximate

𝑍𝑡 = 𝑍0 −
∫ 𝑡

0
∇𝑉 (𝑍𝑠) d𝑠 +

√
2𝐵𝑡 = 𝑍0 − 𝑡 ∇𝑉 (𝑍0) +

√
2𝐵𝑡 + 𝑜 (𝑡) .

Assuming that 𝑓 ∈ C2(R𝑑) with bounded derivatives, we perform a Taylor expansion
of 𝑓 to second order.

E 𝑓 (𝑍𝑡 ) = E[𝑓 (𝑍0) + ⟨∇𝑓 (𝑍0),−𝑡 ∇𝑉 (𝑍0) +
√

2𝐵𝑡 ⟩ + ⟨∇2𝑓 (𝑍0) 𝐵𝑡 , 𝐵𝑡 ⟩] + 𝑜 (𝑡) .

Since 𝐵𝑡 is mean zero and independent of 𝑍0, with E[𝐵𝑡𝐵T
𝑡 ] = 𝑡𝐼𝑑 ,

E[𝑓 (𝑍𝑡 ) | 𝑍0 = 𝑧] = 𝑓 (𝑧) − 𝑡 ⟨∇𝑓 (𝑧),∇𝑉 (𝑧)⟩ + 𝑡 tr∇2𝑓 (𝑧) + 𝑜 (𝑡)
= 𝑓 (𝑧) − 𝑡 ⟨∇𝑓 (𝑧),∇𝑉 (𝑧)⟩ + 𝑡 Δ𝑓 (𝑧) + 𝑜 (𝑡) .

Hence,

ℒ𝑓 (𝑧) = lim
𝑡↘0

E[𝑓 (𝑍𝑡 ) | 𝑍0 = 𝑧] − 𝑓 (𝑧)
𝑡

= Δ𝑓 (𝑧) − ⟨∇𝑉 (𝑧),∇𝑓 (𝑧)⟩ .

The Markov semigroup and dynamics. As promised, the Markov semigroup captures
the information that was contained in the original Markov process. One way to demon-
strate this is to prove theorems which show that the Markov process can be completely
recovered from its Markov semigroup. Another approach, which we now take up, is to
show that the dynamics of the Markov process are captured via calculation rules involving
the Markov semigroup.
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Proposition 1.2.5 (Kolmogorov’s backward equation). For all 𝑡 ≥ 0, it holds that

𝜕𝑡𝑃𝑡 𝑓 = ℒ𝑃𝑡 𝑓 = 𝑃𝑡ℒ𝑓 .

In particular, ℒ commutes with the semigroup (𝑃𝑡 )𝑡≥0.

Proof. Observe that

lim
ℎ↘0

𝑃𝑡+ℎ 𝑓 − 𝑃𝑡 𝑓
ℎ

= lim
ℎ↘0

𝑃ℎ − id
ℎ

𝑃𝑡 𝑓 = ℒ𝑃𝑡 𝑓 .

Repeating the computation but factoring out 𝑃𝑡 on the left yields the second equality. □

There is a dual to this equation: let 𝜋0 denote the density of 𝑋0. Formally, we can write
E 𝑓 (𝑋𝑡 ) =

∫
𝑃𝑡 𝑓 d𝜋0 =

∫
𝑓 d𝑃∗𝑡 𝜋0, where 𝑃∗𝑡 is the adjoint of 𝑃𝑡 . This says that the law 𝜋𝑡

of 𝑋𝑡 is formally given by 𝑃∗𝑡 𝜋0. Moreover, by Kolmogorov’s forward equation,

𝜕𝑡

∫
𝑓 d𝑃∗𝑡 𝜋0 = 𝜕𝑡

∫
𝑃𝑡 𝑓 d𝜋0 =

∫
𝑃𝑡ℒ𝑓 d𝜋0 =

∫
ℒ𝑓 d𝑃∗𝑡 𝜋0 =

∫
𝑓 dℒ∗𝑃∗𝑡 𝜋0 .

Since this has to hold for all functions 𝑓 , we conclude the following.

Proposition 1.2.6 (Kolmogorov’s forward equation). For all 𝑡 ≥ 0,

𝜕𝑡𝑃
∗
𝑡 𝜋0 = ℒ

∗𝑃∗𝑡 𝜋0 = 𝑃
∗
𝑡 ℒ
∗𝜋0 .

Here is another illuminating way to express these equations. Let 𝑢𝑡 B 𝑃𝑡 𝑓 , and let
𝜋𝑡 = 𝑃

∗
𝑡 𝜋0. Then:

𝜕𝑡𝑢𝑡 = ℒ𝑢𝑡 , (Kolmogorov’s backward equation)
𝜕𝑡𝜋𝑡 = ℒ

∗𝜋𝑡 . (Kolmogorov’s forward equation)
The terms “backward” and “forward” are rather confusing, so we will not use them. Instead,
we will refer to the evolution equation for the density (Kolmogorov’s forward equation)
as the Fokker–Planck equation.

Consequently, we obtain characterizations of stationarity. Recall that 𝜋 is stationary
for the Markov process if, when 𝑋0 ∼ 𝜋 , then 𝑋𝑡 ∼ 𝜋 for all 𝑡 ≥ 0.

Proposition 1.2.7 (stationarity). The following are equivalent.

1. 𝜋 is a stationary distribution for the Markov process.

2. ℒ
∗𝜋 = 0.
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3. E𝜋 ℒ𝑓 = 0 for all functions 𝑓 .

Proof. The equivalence between the first two statements is the Fokker–Planck equation.
The third statement is the dual of the second statement. □

Example 1.2.8. Consider again the Langevin diffusion. For functions 𝑓 , 𝑔 : R𝑑 → R,∫
ℒ𝑓 𝑔 =

∫
{Δ𝑓 − ⟨∇𝑉 ,∇𝑓 ⟩}𝑔 =

∫
𝑓 {Δ𝑔 + div(𝑔∇𝑉 )}

where the second equality is integration by parts. This shows that

ℒ
∗𝑔 = Δ𝑔 + div(𝑔∇𝑉 ) .

From here, we can solve for the stationary distribution. Write

0 = ℒ
∗𝜋 = Δ𝜋 + div(𝜋 ∇𝑉 ) = div

(
𝜋 (∇ ln𝜋 + ∇𝑉 )

)
.

This can be solved by setting ln𝜋 = −𝑉 + constant, i.e. 𝜋 ∝ exp(−𝑉 ).

Corollary 1.2.9. The stationary distribution of the Langevin diffusion (1.E.1) with
potential 𝑉 is 𝜋 ∝ exp(−𝑉 ).

1.2.2 Reversibility and the Spectrum
Consider a Markov semigroup (𝑃𝑡 )𝑡≥0 with generator ℒ and stationary distribution 𝜋 .
Then, the natural space of functions to study is the Hilbert space 𝐿2(𝜋). The analysis of
the Markov process is particularly simple if the following condition holds.

Definition 1.2.10. The Markov semigroup (𝑃𝑡 )𝑡≥0 is reversible w.r.t. 𝜋 if for all
𝑓 , 𝑔 ∈ 𝐿2(𝜋) and all 𝑡 ≥ 0, ∫

𝑃𝑡 𝑓 𝑔 d𝜋 =

∫
𝑓 𝑃𝑡𝑔 d𝜋 .
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Equivalently, for all 𝑓 and 𝑔 for which ℒ𝑓 and ℒ𝑔 are defined,∫
ℒ𝑓 𝑔 d𝜋 =

∫
𝑓 ℒ𝑔 d𝜋 .

If 𝑋0 ∼ 𝜋 and we take 𝑓 = 1𝐴 and 𝑔 = 1𝐵 for events 𝐴 and 𝐵, then it implies

P{𝑋𝑡 ∈ 𝐴, 𝑋0 ∈ 𝐵} = P{𝑋0 ∈ 𝐴, 𝑋𝑡 ∈ 𝐵} ,

i.e., (𝑋0, 𝑋𝑡 ) has the same distribution as (𝑋𝑡 , 𝑋0). This is the sense in which the associated
Markov process is time-reversible.

The definition says that 𝑃𝑡 and ℒ are symmetric operators on 𝐿2(𝜋), and thus we
expect that 𝑃𝑡 and ℒ have real spectra. Also, since 𝜕𝑡𝑃𝑡 = ℒ𝑃𝑡 , we can formally write 𝑃𝑡 =
exp(𝑡ℒ), and so we expect 𝑃𝑡 to be a positive operator, meaning that

∫
𝑓 𝑃𝑡 𝑓 d𝜋 ≥ 0 for

all 𝑓 ∈ 𝐿2(𝜋), which can be checked from reversibility (write
∫
𝑓 𝑃𝑡 𝑓 d𝜋 =

∫
(𝑃𝑡/2𝑓 )2 d𝜋 ).

Moreover, from the definition of 𝑃𝑡 and Jensen’s inequality,

{𝑃𝑡 𝑓 (𝑥)}2 = E[𝑓 (𝑋𝑡 ) | 𝑋0 = 𝑥]2 ≤ E[𝑓 (𝑋𝑡 )2 | 𝑋0 = 𝑥] = 𝑃𝑡 (𝑓 2) (𝑥) (1.2.11)

and integrating this yields
∫
(𝑃𝑡 𝑓 )2 d𝜋 ≤

∫
𝑃𝑡 (𝑓 2) d𝜋 =

∫
𝑓 2 d𝜋 , where the equality

follows from stationarity of 𝜋 . This shows that 𝑃𝑡 is a contraction on 𝐿2(𝜋) (in fact, on
any 𝐿𝑝 (𝜋), 𝑝 ∈ [1,∞]). Combining this with 𝑃𝑡 = exp(𝑡ℒ) leads us to predict that ℒ is a
negative operator. Below, we will give a direct proof of this fact; unsurprisingly, the proof
of negativity of ℒ still relies on the crucial fact (1.2.11).

Definition 1.2.12. The carré du champ is the bilinear operator Γ defined via

Γ(𝑓 , 𝑔) B 1
2 {ℒ(𝑓 𝑔) − 𝑓 ℒ𝑔 − 𝑔ℒ𝑓 } .

The Dirichlet energy is the functional ℰ(𝑓 , 𝑔) B
∫
Γ(𝑓 , 𝑔) d𝜋 .

Lemma 1.2.13. For any function 𝑓 , Γ(𝑓 , 𝑓 ) ≥ 0.

Proof. Recall from (1.2.11) that 𝑃𝑡 (𝑓 2) ≥ (𝑃𝑡 𝑓 )2 for all 𝑡 > 0. In terms of ℒ,

𝑓 2 + 𝑡ℒ(𝑓 2) + 𝑜 (𝑡) ≥ [𝑓 + 𝑡ℒ𝑓 + 𝑜 (𝑡)]2 = 𝑓 2 + 2𝑡 𝑓 ℒ𝑓 + 𝑜 (𝑡)

and sending 𝑡 ↘ 0 yields ℒ(𝑓 2) ≥ 2𝑓 ℒ𝑓 . (This proof does not require reversibility.) □
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Theorem 1.2.14 (fundamental integration by parts identity). Suppose that the genera-
tor ℒ and carré du champ Γ are associated with a Markov semigroup which is reversible
w.r.t. 𝜋 . Then, for any functions 𝑓 and 𝑔,∫

𝑓 (−ℒ)𝑔 d𝜋 =

∫
(−ℒ) 𝑓 𝑔 d𝜋 =

∫
Γ(𝑓 , 𝑔) d𝜋 =ℰ(𝑓 , 𝑔) .

Since the identity implies that ℒ is symmetric, the integration by parts identity is in
fact equivalent to reversibility. We can reformulate this identity in an illuminating way as

−ℒ = ∇∗,𝜋 ∇ (1.2.15)

where (·)∗,𝜋 denotes the adjoint in 𝐿2(𝜋). This expression brings out the symmetry of ℒ
and also makes the following corollary clear.

Corollary 1.2.16. For a reversible Markov semigroup, −ℒ ≥ 0.

Proof of Theorem 1.2.14. Since
∫
ℒℎ d𝜋 = 0 for all functions ℎ (due to stationarity of 𝜋 ),

the definition of Γ yields∫
Γ(𝑓 , 𝑔) d𝜋 =

1
2

∫
𝑓 (−ℒ)𝑔 d𝜋 + 1

2

∫
𝑔 (−ℒ) 𝑓 d𝜋 .

The two terms are equal due to reversibility. □

It is usually convenient for our operators to be positive, so from now on we will instead
refer to the negative generator −ℒ.

When we introduced Kolmogorov’s equations, we ended up with two PDEs, one
involving the generator ℒ and one involving its 𝐿2(𝔪) adjoint ℒ∗, where 𝔪 is the
Lebesgue measure on R𝑑 . The issue is that we used the “wrong” inner product; ℒ is not
symmetric in 𝐿2(𝔪). If we now switch to 𝐿2(𝜋), then instead of considering the density
𝜋𝑡 with respect to 𝔪 we should consider the density 𝜌𝑡 B 𝜋𝑡/𝜋 with respect to 𝜋 . Then,
the Fokker–Planck equation becomes

𝜕𝑡𝜌𝑡 = ℒ𝜌𝑡 . (1.2.17)

For the rest of the section, the Markov semigroup is assumed reversible.
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Example 1.2.18. Returning to the fundamental example of the Langevin diffusion, a
computation shows that

Γ(𝑓 , 𝑓 ) = 1
2 {Δ(𝑓

2) − ⟨∇𝑉 ,∇(𝑓 2)⟩ − 2𝑓 (Δ𝑓 − ⟨∇𝑉 ,∇𝑓 ⟩)} = ∥∇𝑓 ∥2 .

Incidentally, carré du champ means “square of the field” in French, and it is this
expression which gives it its name. More generally, Γ(𝑓 , 𝑔) = ⟨∇𝑓 ,∇𝑔⟩.

The identity in Theorem 1.2.14 reads∫
𝑓 (−Δ𝑔 + ⟨∇𝑉 ,∇𝑔⟩) d𝜋 =

∫
𝑔 (−Δ𝑓 + ⟨∇𝑉 ,∇𝑓 ⟩) d𝜋 =

∫
⟨∇𝑓 ,∇𝑔⟩ d𝜋

which can be checked (using 𝜋 ∝ exp(−𝑉 )) via integration by parts (naturally!),
showing that the Langevin diffusion is indeed reversible w.r.t. 𝜋 .

Gradient flow of the Dirichlet energy. It turns out that a reversible Markov process
follows the steepest descent of the Dirichlet energy with respect to 𝐿2(𝜋). To justify this,
for a curve 𝑡 ↦→ 𝑢𝑡 in 𝐿2(𝜋), write ¤𝑢𝑡 B 𝜕𝑡𝑢𝑡 for the time derivative. The 𝐿2(𝜋) gradient of
the functional 𝑓 ↦→ℰ(𝑓 ) B ℰ(𝑓 , 𝑓 ) at 𝑓 is defined to be the element ∇𝐿2 (𝜋)ℰ(𝑓 ) ∈ 𝐿2(𝜋)
such that for all curves 𝑡 ↦→ 𝑢𝑡 with 𝑢0 = 𝑓 , it holds that

𝜕𝑡
��
𝑡=0ℰ(𝑢𝑡 , 𝑢𝑡 ) =

∫
¤𝑢0 ∇𝐿2 (𝜋)ℰ(𝑓 ) d𝜋 .

From the integration by parts identity,

𝜕𝑡
��
𝑡=0ℰ(𝑢𝑡 , 𝑢𝑡 ) = 𝜕𝑡

��
𝑡=0

∫
𝑢𝑡 (−ℒ)𝑢𝑡 d𝜋 = 2

∫
¤𝑢0 (−ℒ) 𝑓 d𝜋 .

Therefore, ∇𝐿2 (𝜋)ℰ(𝑓 ) = −2ℒ𝑓 .
The steepest descent of ℰ is the curve 𝑡 ↦→ 𝑢𝑡 such that ¤𝑢𝑡 = −∇𝐿2 (𝜋)ℰ(𝑢𝑡 ) = 2ℒ𝑢𝑡 .

This is, up to a rescaling of time, precisely the equation satisfied by 𝑡 ↦→ 𝑃𝑡 𝑓 .

Spectral gap and convergence. Consider a reversible Markov semigroup (𝑃𝑡 )𝑡≥0 and
recall that 𝑃𝑡 𝑓 (𝑥) = E[𝑓 (𝑋𝑡 ) | 𝑋0 = 𝑥]. We are interested in the long-term behavior of
𝑃𝑡 𝑓 . If the process mixes, then by definition it forgets its initial condition, so that 𝑃𝑡 𝑓
converges to a constant; moreover, this constant should be the average value

∫
𝑓 d𝜋 at

stationarity. How do we establish a rate of convergence for 𝑃𝑡 𝑓 →
∫
𝑓 d𝜋?



26 CHAPTER 1. THE LANGEVIN DIFFUSION IN CONTINUOUS TIME

We may assume that
∫
𝑓 d𝜋 = 0, so we wish to prove 𝑃𝑡 𝑓 → 0. Also recall that,

formally, 𝑃𝑡 = exp(𝑡ℒ) with ℒ ≤ 0. If we have a spectral gap

−ℒ ≥ 𝜆min > 0 ,

then we would expect that

∥𝑃𝑡 𝑓 ∥2𝐿2 (𝜋) ≤ exp(−2𝜆min𝑡) ∥ 𝑓 ∥2𝐿2 (𝜋) .

This is indeed the case. However, observe that since 𝑃𝑡1 = 1 for all 𝑡 ≥ 0 and hence
ℒ1 = 0, the spectral gap condition is only supposed to hold on the subspace of 𝐿2(𝜋)
which is orthogonal to constants.

Definition 1.2.19. The Markov process is said to satisfy a Poincaré inequality (PI)
with constant 𝐶PI if for all functions 𝑓 ∈ 𝐿2(𝜋),∫

𝑓 (−ℒ) 𝑓 d𝜋 =ℰ(𝑓 , 𝑓 ) ≥ 1
𝐶PI
∥ 𝑓 − proj1⊥ 𝑓 ∥2𝐿2 (𝜋) =

1
𝐶PI

var𝜋 𝑓 .

The Poincaré constant 𝐶PI corresponds to the inverse of the spectral gap. Based on
the calculus we have developed so far, it is not too difficult to prove the following result
(differentiate 𝑡 ↦→ ∥𝑃𝑡 𝑓 ∥2𝐿2 (𝜋)), so we leave it as Exercise 1.8.

Theorem 1.2.20. The following are equivalent.

1. The Markov process satisfies a Poincaré inequality with constant 𝐶PI.

2. For all 𝑓 ∈ 𝐿2(𝜋) with
∫
𝑓 d𝜋 = 0 and all 𝑡 ≥ 0,

∥𝑃𝑡 𝑓 ∥2𝐿2 (𝜋) ≤ exp
(
− 2𝑡
𝐶PI

)
∥ 𝑓 ∥2

𝐿2 (𝜋) .

In particular, we can apply this result to the semigroup corresponding to the Langevin
diffusion (1.E.1) to obtain a spectral gap criterion for quantitative convergence. However,
this result is mainly of use when we are interested in a specific test function 𝑓 . More
generally, it is useful to obtain bounds on the rate of convergence of the law 𝜋𝑡 of 𝑋𝑡 to
the stationary distribution 𝜋 . Recall (from (1.2.17)) that the relative density 𝜌𝑡 B 𝜋𝑡/𝜋
solves the equation 𝜕𝑡𝜌𝑡 = ℒ𝜌𝑡 , i.e., 𝜌𝑡 is given by 𝜌𝑡 = 𝑃𝑡𝜌0. We can therefore apply the
preceding result to 𝑓 B 𝜌0 − 1.
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For a probability measure 𝜇, we define the chi-squared divergence

𝜒2(𝜇 ∥ 𝜋) B


d𝜇

d𝜋 − 1


2
𝐿2 (𝜋) = var𝜋

d𝜇
d𝜋 if 𝜇 ≪ 𝜋 ,

with 𝜒2(𝜇 ∥ 𝜋) B ∞ otherwise. The result can be formulated as follows.

Theorem 1.2.21. The following are equivalent.

1. The Markov process satisfies a Poincaré inequality with constant 𝐶PI.

2. For any initial distribution 𝜋0 and all 𝑡 ≥ 0,

𝜒2(𝜋𝑡 ∥ 𝜋) ≤ exp
(
− 2𝑡
𝐶PI

)
𝜒2(𝜋0 ∥ 𝜋) .

Example 1.2.22. For the Langevin diffusion, the Poincaré inequality reads

var𝜋 𝑓 ≤ 𝐶PI E𝜋 [∥∇𝑓 ∥2]

for all functions 𝑓 : R𝑑 → R, where 𝜋 ∝ exp(−𝑉 ).

1.2.3 The Log-Sobolev Inequality and Bakry–Èmery Theory
For sampling applications, the convergence result under a Poincaré inequality is not
fully satisfactory because the chi-squared divergence at initialization is typically large,
scaling exponentially in the dimension. The approach we explore next is to use the
Kullback–Leibler (KL) divergence KL(· ∥ 𝜋) as our objective functional, defined via

KL(𝜇 ∥ 𝜋) B
∫ d𝜇

d𝜋 ln d𝜇
d𝜋 d𝜋 =

∫
ln d𝜇

d𝜋 d𝜇 if 𝜇 ≪ 𝜋 ,

and KL(𝜇 ∥ 𝜋) B ∞ otherwise.
Recall the notation 𝜌𝑡 B 𝜋𝑡/𝜋 for the relative density of the Markov process w.r.t. 𝜋 .

Since 𝜕𝑡𝜌𝑡 = ℒ𝜌𝑡 , we can calculate via the integration by parts identity that

𝜕𝑡 KL(𝜋𝑡 ∥ 𝜋) = 𝜕𝑡
∫

𝜌𝑡 ln 𝜌𝑡 d𝜋 =

∫
(ln 𝜌𝑡 + 1)ℒ𝜌𝑡 d𝜋 = −ℰ(𝜌𝑡 , ln 𝜌𝑡 ) . (1.2.23)

Hence, if ℰ(𝜌𝑡 , ln 𝜌𝑡 ) ≳ KL(𝜋𝑡 ∥ 𝜋), then we obtain convergence to equilibrium for the
diffusion in KL divergence, at an exponential rate.
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Definition 1.2.24. The Markov process is said to satisfy a log-Sobolev inequality
(LSI) with constant 𝐶LSI if for all densities 𝜌 w.r.t. 𝜋 ,

KL(𝜌𝜋 ∥ 𝜋) ≤ 𝐶LSI

2 ℰ(𝜌, ln 𝜌) .

Theorem 1.2.25. The following are equivalent.

1. The Markov process satisfies a log-Sobolev inequality with constant 𝐶LSI.

2. For any initial distribution 𝜋0 and all 𝑡 ≥ 0,

KL(𝜋𝑡 ∥ 𝜋) ≤ exp
(
− 2𝑡
𝐶LSI

)
KL(𝜋0 ∥ 𝜋) .

By linearizing the LSI, i.e., by taking 𝜌 = 1 + 𝜀 𝑓 for small 𝜀 > 0 and expanding both
sides of the LSI in powers of 𝜀, one can prove that the LSI implies a Poincaré inequality
with constant 𝐶PI ≤ 𝐶LSI (Exercise 1.9).

Example 1.2.26. For the Langevin diffusion, the LSI reads

2
𝐶LSI

KL(𝜇 ∥ 𝜋) ≤ E𝜋
〈
∇ 𝜇
𝜋
,∇ ln 𝜇

𝜋

〉
= E𝜇

[

∇ ln 𝜇

𝜋



2]
= 4E𝜋

[

∇√︂ 𝜇

𝜋



2]
.

The right-hand side of the above expression is important; it is known as the (relative)
Fisher information FI(𝜇 ∥ 𝜋) B E𝜇 [∥∇ ln(𝜇/𝜋)∥2]. In particular, the Fisher infor-
mation plays a central role in the study of non-log-concave sampling in Chapter 11.

The LSI often appears in many equivalent forms. For example, another formulation
is that for all functions 𝑓 : R𝑑 → R, it holds that

ent𝜋 (𝑓 2) ≤ 2𝐶LSI E𝜋 [∥∇𝑓 ∥2] ,

where for a function 𝑔 : R𝑑 → R+ we define ent𝜋 (𝑔) B E𝜋 (𝑔 ln𝑔) − E𝜋 𝑔 lnE𝜋 𝑔. To
verify the equivalence, consider 𝑓 =

√︁
𝜇/𝜋 .

Bakry–Émery condition. Although we have derived two criteria for convergence of
the Markov process, namely, the Poincaré inequality and the log-Sobolev inequality, we
have not yet addressed when these criteria hold. Introduce the following definition.
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Definition 1.2.27. The iterated carré du champ is the operator Γ2 defined via

Γ2(𝑓 , 𝑔) B
1
2 {ℒΓ(𝑓 , 𝑔) − Γ(𝑓 ,ℒ𝑔) − Γ(𝑔,ℒ𝑓 )} .

Recalling that Γ(𝑓 , 𝑔) = 1
2 {ℒ(𝑓 𝑔) − 𝑓 ℒ𝑔 − 𝑔ℒ𝑓 }, we see that Γ2 is defined analogously

to Γ, except we replace the bilinear operation of multiplication, (𝑓 , 𝑔) ↦→ 𝑓 𝑔, by the carré
du champ (𝑓 , 𝑔) ↦→ Γ(𝑓 , 𝑔). Also, similarly to how the carré du champ appears when
computing the time derivative of functionals such as the chi-squared divergence and the
KL divergence, the iterated carré du champ appears when computing the second time
derivative. After some calculations, one arrives at the following criterion.

Definition 1.2.28. The Markov semigroup is said to satisfy the Bakry–Émery
criterion with constant 𝛼 > 0 if for all functions 𝑓 ,

Γ2(𝑓 , 𝑓 ) ≥ 𝛼 Γ(𝑓 , 𝑓 ) .

This condition is also known as the curvature-dimension condition CD(𝛼,∞).

We will prove the following theorem in Chapter 2.

Theorem 1.2.29 (Bakry–Émery). Consider a diffusion Markov semigroup. Assume
that the curvature-dimension condition CD(𝛼,∞) holds. Then, a log-Sobolev inequality
holds with constant 𝐶LSI ≤ 1/𝛼 .

We have not explained yet what a diffusion Markov semigroup is, but for now we can
think of the Langevin diffusion as a fundamental example. The key point is that once
the (iterated) carré du champ operators are known, the curvature-dimension condition
amounts to an algebraic condition which can be easily checked, which in turn implies
the log-Sobolev inequality (and hence the Poincaré inequality by Exercise 1.9). For the
Langevin diffusion, this condition amounts to the following theorem.

Theorem 1.2.30. For the Langevin diffusion (1.E.1), the curvature-dimension condition
CD(𝛼,∞) holds if and only if the potential 𝑉 is 𝛼-strongly convex.

Although we have deferred the Markov semigroup proofs of these results to Chapter 2,
we will shortly prove these results using the calculus of optimal transport.
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Another point to address is the origin of the name “curvature-dimension condition”. In
fact this is part of a rich story in which Markov diffusions on Riemannian manifolds capture
the geometric features of the ambient space, such as its curvature. A picture emerges
in which curvature, concentration, and mixing of the diffusion all intertwine, and only
in this context is it appreciated that the curvature-dimension condition is appropriately
named. This is discussed more fully in Chapter 2.

1.3 The Geometry of Optimal Transport

In this section, we explain how the space of probability measures equipped with the
2-Wasserstein distance from optimal transport can be formally viewed as a Rieman-
nian manifold. The textbook [Vil03] is a standard reference for optimal transport; see
also [AGS08; Vil09b; San15] for more detailed treatments of Wasserstein calculus. We
remind readers that the “proofs” in this section are only sketched for intuition.

1.3.1 Introduction and Duality Theory

The optimal transport problem can be defined in great generality. Throughout this section,
P(X) denotes the space of probability measures on a space X.

Definition 1.3.1. Let X and Y be complete separable metric spaces, and consider a
cost functional 𝑐 : X × Y→ [0,∞]. The optimal transport cost from 𝜇 ∈ P(X) to
𝜈 ∈ P(Y) with cost 𝑐 is

T𝑐 (𝜇, 𝜈) B inf
𝛾∈C(𝜇,𝜈)

∫
𝑐 (𝑥,𝑦) 𝛾 (d𝑥, d𝑦) , (1.3.2)

where C(𝜇, 𝜈) is the space of couplings of (𝜇, 𝜈), i.e. the space of probability measures
𝛾 ∈ P(X × Y) whose marginals are 𝜇 and 𝜈 respectively.

A minimizer in this problem is known as an optimal transport plan.

An equivalent probabilistic formulation is that T𝑐 (𝜇, 𝜈) is the infimum of E 𝑐 (𝑋,𝑌 )
over all pairs of jointly defined random variables (𝑋,𝑌 ) such that 𝑋 ∼ 𝜇 and 𝑌 ∼ 𝜈 .

Theorem 1.3.3. If the cost 𝑐 is lower semicontinuous, then an optimal transport plan
always exists.
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Proof. One can show that the functional 𝛾 ↦→
∫
𝑐 d𝛾 is lower semicontinuous and that

C(𝜇, 𝜈) is compact, where we use the weak topology on P(X × Y). It is a general fact that
lower semicontinuous functions attain their minima on compact sets. □

Historically, optimal transport began with Monge who considered the Euclidean cost
𝑐 (𝑥,𝑦) B ∥𝑥 − 𝑦∥ on R𝑑 × R𝑑 . Moreover, he considered a slightly different problem
in which, rather than searching over all couplings in C(𝜇, 𝜈), he restricted attention to
couplings which are induced by a mapping 𝑇 : R𝑑 → R𝑑 satisfying 𝑇#𝜇 = 𝜈 ; this is known
as the Monge problem. In the probabilistic interpretation, this corresponds to a pair of
random variables (𝑋,𝑇 (𝑋 )) with 𝑋 ∼ 𝜇 and 𝑇 (𝑋 ) ∼ 𝜈 . The physical interpretation of this
additional constraint is that no mass from 𝜇 be split up before it is transported, which
may be reasonable from a modelling perspective but leads to an ill-posed mathematical
problem. Indeed, there may not even exist any such mappings 𝑇 , as is the case when
𝜇 = 𝛿𝑥 places all of its mass on a single point and 𝜈 does not. Consequently, the solution
to the Monge problem remained unknown for centuries.

The breakthrough arrived when Kantorovich formulated the relaxation of the Monge
problem introduced in Definition 1.3.1, which is therefore known as the Kantorovich
problem. As the product measure 𝜇 ⊗ 𝜈 always belongs to C(𝜇, 𝜈), we at least know that
the constraint set is non-empty, and Theorem 1.3.3 shows that the Kantorovich problem
is well-behaved. Moreover, the Kantorovich problem is actually a convex problem on
P(X × Y); indeed, the objective is linear and the constraint set C(𝜇, 𝜈) is convex. Hence,
one can bring to bear the power of convex duality to study the Kantorovich problem
(historically, this study was actually the origin of linear programming).

Although a large part of optimal transport theory can be developed in a general
framework as above, for the rest of the section we will focus on the case 𝑐 (𝑥,𝑦) B ∥𝑥−𝑦∥2
on R𝑑 × R𝑑 for the sake of simplicity.

Definition 1.3.4. The 2-Wasserstein distance between 𝜇 and 𝜈 , denoted𝑊2(𝜇, 𝜈),
is defined via

𝑊 2
2 (𝜇, 𝜈) B inf

𝛾∈C(𝜇,𝜈)

∫
∥𝑥 − 𝑦∥2 𝛾 (d𝑥, d𝑦) . (1.3.5)

Write P2(R𝑑) B {𝜇 ∈ P(R𝑑) |
∫
∥·∥2 d𝜇 < ∞} for the space of probability measures

on R𝑑 with finite second moment.

Duality and optimality. For this section, it will actually be convenient to consider the
cost 𝑐 (𝑥,𝑦) B 1

2 ∥𝑥 − 𝑦∥
2 instead, i.e. we consider 1

2𝑊
2

2 (𝜇, 𝜈) instead of𝑊 2
2 (𝜇, 𝜈).
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The key to solving the Kantorovich problem is duality. First observe that the constraint
that the first marginal of 𝛾 is 𝜇 can be written as follows: for every function 𝑓 ∈ 𝐿1(𝜇),
it holds that

∫
𝑓 (𝑥) d𝛾 (𝑥,𝑦) =

∫
𝑓 (𝑥) d𝜇 (𝑥). Doing the same for the constraint on the

second marginal of 𝛾 , we can write the Kantorovich problem as an unconstrained min-max
problem

1
2𝑊

2
2 (𝜇, 𝜈) = inf

𝛾∈M+ (R𝑑×R𝑑 )
sup

𝑓 ∈𝐿1 (𝜇)
𝑔∈𝐿1 (𝜈)

{∫ ∥𝑥 − 𝑦∥2
2 𝛾 (d𝑥, d𝑦) +

∫
𝑓 d𝜇 −

∫
𝑓 (𝑥) 𝛾 (d𝑥, d𝑦)

+
∫

𝑔 d𝜈 −
∫

𝑔(𝑦) 𝛾 (d𝑥, d𝑦)
}
.

Here,M+(R𝑑 × R𝑑) denotes the space of non-negative finite measures on R𝑑 × R𝑑 . Next,
if we switch the order of the infimum and the supremum, we arrive at the dual optimal
transport problem:

sup
𝑓 ∈𝐿1 (𝜇)
𝑔∈𝐿1 (𝜈)

inf
𝛾∈M+ (R𝑑×R𝑑 )

{∫
𝑓 d𝜇 +

∫
𝑔 d𝜈 +

∫ [ ∥𝑥 − 𝑦∥2
2 − 𝑓 (𝑥) − 𝑔(𝑦)

]
𝛾 (d𝑥, d𝑦)

}
= sup
(𝑓 ,𝑔)∈D(𝜇,𝜈)

{∫
𝑓 d𝜇 +

∫
𝑔 d𝜈

}
where D(𝜇, 𝜈) is the set of dual feasible potentials

D(𝜇, 𝜈) B
{
(𝑓 , 𝑔) ∈ 𝐿1(𝜇) × 𝐿1(𝜈)

�� 𝑓 (𝑥) + 𝑔(𝑦) ≤ ∥𝑥 − 𝑦∥22 for all 𝑥,𝑦 ∈ R𝑑
}
.

Definition 1.3.6. Let 𝜇, 𝜈 ∈ P2(R𝑑). The dual optimal transport problem from 𝜇

to 𝜈 is the optimization problem

sup
(𝑓 ,𝑔)∈D(𝜇,𝜈)

{∫
𝑓 d𝜇 +

∫
𝑔 d𝜈

}
. (1.3.7)

Since inf sup ≥ sup inf, the value of the dual problem is always at most 1
2𝑊

2
2 (𝜇, 𝜈).

On the other hand, if we find a transport plan 𝛾★ and feasible dual potentials 𝑓 ★, 𝑔★ such
that

∫
∥𝑥 − 𝑦∥2 d𝛾★(𝑥,𝑦) =

∫
𝑓 ★ d𝜇 +

∫
𝑔★ d𝜈 , it implies that the primal and dual values

coincide and that 𝛾★, 𝑓 ★, and 𝑔★ are all optimal.
By carefully studying the dual problem, we will obtain a wealth of information about

the optimal transport problem. Our main goal now is to sketch the following theorem.
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Theorem 1.3.8 (fundamental theorem of optimal transport). Let 𝜇, 𝜈 ∈ P2(R𝑑). Then,
the following assertions hold.

1. (strong duality) The value of the dual optimal transport problem from 𝜇 to 𝜈 equals
1
2𝑊

2
2 (𝜇, 𝜈).

2. (existence of optimal dual potentials) There exists an optimal pair (𝑓 ★, 𝑔★) for the
dual optimal transport problem.

3. (characterization of optimality) The optimal dual potentials are of the form

𝑓 ★ =
∥·∥2

2 − 𝜑 , 𝑔★ =
∥·∥2

2 − 𝜑∗ , (1.3.9)

where 𝜑 : R𝑑 → R ∪ {∞} is a proper, convex, lower semicontinuous function and
𝜑∗ is its convex conjugate. If 𝛾★ denotes the optimal transport plan, then for 𝛾★-a.e.
(𝑥,𝑦) ∈ R𝑑 × R𝑑 , it holds that 𝜑 (𝑥) + 𝜑∗(𝑦) = ⟨𝑥,𝑦⟩, i.e., 𝛾★ is supported on the
subdifferential of 𝜑 .

4. (Brenier’s theorem) Suppose in addition that 𝜇 is absolutely continuous w.r.t. the
Lebesgue measure on R𝑑 . Then, the optimal transport plan is unique, and moreover
it is induced by an optimal transport map 𝑇 . The mapping 𝑇 is characterized as
the (𝜇-almost surely) unique gradient of a proper convex lower semicontinuous
function 𝜑 which pushes forward 𝜇 to 𝜈 : 𝑇 = ∇𝜑 and (∇𝜑)#𝜇 = 𝜈 .

Various parts of this theorem can be proven separately; for example, strong duality
can be established by rigorously justifying the interchange of infimum and supremum via
a high-powered minimax theorem. Instead, we will outline a proof of the theorem which
simultaneously establishes all of the above facts.

Outline. In the proof, we abbreviate “proper convex lower semicontinuous function” to
simply “closed convex function”.

1. Optimal transport plans are cyclically monotone. Let 𝛾★ be an optimal transport
plan, and suppose that the pairs (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) lie in the support of 𝛾★. Then,
it should be the case that we cannot “rematch” these points to lower the optimal
transport cost, i.e. for every permutation 𝜎 of [𝑛] we should have

𝑛∑︁
𝑖=1
∥𝑥𝑖 − 𝑦𝑖 ∥2 ≤

𝑛∑︁
𝑖=1
∥𝑥𝑖 − 𝑦𝜎 (𝑖) ∥2 .



34 CHAPTER 1. THE LANGEVIN DIFFUSION IN CONTINUOUS TIME

Equivalently,

𝑛∑︁
𝑖=1
⟨𝑥𝑖, 𝑦𝑖⟩ ≥

𝑛∑︁
𝑖=1
⟨𝑥𝑖, 𝑦𝜎 (𝑖)⟩ . (1.3.10)

Indeed, if this condition fails, then it is possible to construct a new transport plan
from 𝛾★ by slightly rearranging the mass which has strictly smaller transport cost,
which is a contradiction; see [GM96, Theorem 2.3].
A subset 𝑆 ⊆ R𝑑 × R𝑑 is said to be cyclically monotone if for all 𝑛 ∈ N+, all
pairs (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), and all permutations 𝜎 of [𝑛], the condition (1.3.10) holds.
Thus, optimal transport plans are supported on cyclically monotone sets.

2. Characterization of cyclically monotone sets. Remarkably, a complete characteriza-
tion of cyclically monotone sets is known. Suppose 𝜑 is convex and differentiable,
let 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 , and let 𝜎 be a permutation of [𝑛]. Then, from convexity,

𝜑 (𝑥𝜎−1 (𝑖)) − 𝜑 (𝑥𝑖) ≥ ⟨∇𝜑 (𝑥𝑖), 𝑥𝜎−1 (𝑖) − 𝑥𝑖⟩ . (1.3.11)

Summing this over 𝑖 ∈ [𝑛], we obtain

𝑛∑︁
𝑖=1
⟨∇𝜑 (𝑥𝑖), 𝑥𝑖⟩ ≥

𝑛∑︁
𝑖=1
⟨∇𝜑 (𝑥𝑖), 𝑥𝜎−1 (𝑖)⟩ =

𝑛∑︁
𝑖=1
⟨∇𝜑 (𝑥𝜎 (𝑖)), 𝑥𝑖⟩ .

More generally, if 𝜑 is not differentiable, then the subdifferential of 𝜑 at 𝑥𝑖 is defined
to be the set of vectors𝑦𝑖 ∈ R𝑑 such that (1.3.11) holds with𝑦𝑖 replacing ∇𝜑 (𝑥𝑖). This
reasoning shows that the set 𝜕𝜑 B {(𝑥,𝑦) ∈ R𝑑 × R𝑑 | 𝑦 ∈ 𝜕𝜑 (𝑥)} is a cyclically
monotone subset of R𝑑 × R𝑑 .
The converse is also true: if 𝑆 ⊆ R𝑑 ×R𝑑 is cyclically monotone, then it is contained
in the subdifferential of a closed convex function 𝜑 . To prove this, one can pick any
(𝑥0, 𝑦0) ∈ 𝑆 and consider

𝜑 (𝑥) B sup
{ 𝑛∑︁
𝑖=0
⟨𝑦𝑖, 𝑥𝑖+1 − 𝑥𝑖⟩

��� 𝑛 ∈ N+, (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) ∈ 𝑆, 𝑥𝑛+1 = 𝑥
}
.

This characterization is due to Rockafellar.

3. Characterization of dual optimality. Now that we see the connection between con-
vexity and the primal problem, it is time to do the same for the dual problem.
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Suppose (𝑓 , 𝑔) is a feasible dual pair; if we hold 𝑓 fixed, can we improve 𝑔? The
constraint on 𝑔 says that for all 𝑥,𝑦 ∈ R𝑑 ,

𝑔(𝑦) ≤ ∥𝑥 − 𝑦∥
2

2 − 𝑓 (𝑥) .

Hence, writing 𝜑 B ∥·∥2/2 − 𝑓 , the optimal choice is

𝑔(𝑦) = inf
𝑥∈R𝑑

{ ∥𝑥 − 𝑦∥2
2 − 𝑓 (𝑥)

}
=
∥𝑦∥2

2 − sup
𝑥∈R𝑑
{⟨𝑥,𝑦⟩ − 𝜑 (𝑥)} .

The function 𝜑∗ defined by 𝜑∗(𝑦) B sup𝑥∈R𝑑 {⟨𝑥,𝑦⟩ − 𝜑 (𝑥)} is known as the convex
conjugate of 𝜑 . To summarize, we have shown that for fixed 𝑓 = ∥·∥2/2 − 𝜑 , the
optimal choice for 𝑔 is ∥·∥2/2 − 𝜑∗. Similarly, if we fix 𝑔 = ∥·∥2/2 − 𝜑∗, the optimal
choice for 𝑓 is ∥·∥2/2 − 𝜑∗∗.
We have not yet established existence, but suppose for the moment that an optimal
dual pair (𝑓 ★, 𝑔★) exists. The preceding reasoning shows that 𝑓 ★ = ∥·∥2/2 − 𝜑 and
𝑔★ = ∥·∥2/2 − 𝜑∗, where 𝜑∗∗ = 𝜑 ; otherwise the dual pair could be improved. Next,
it is known from convex analysis that 𝜑 = 𝜑∗∗ if and only if 𝜑 is a closed convex
function. Thus, optimal dual potentials have the representation (1.3.9).

4. Proof of strong duality. Now consider the optimal transport plan 𝛾★ (which exists;
see Theorem 1.3.3). We know that 𝛾★ is supported on a cyclically monotone set,
which in turn is contained in the subdifferential of a closed convex function 𝜑 .
Define the functions 𝑓 ★ B ∥·∥2/2 − 𝜑 and 𝑔★ B ∥·∥2/2 − 𝜑∗; these are dual feasible
potentials. Also, it is a standard fact of convex analysis that (𝑥,𝑦) ∈ 𝜕𝜑 if and only
if 𝜑 (𝑥) + 𝜑∗(𝑦) = ⟨𝑥,𝑦⟩. Since the support of 𝛾★ is contained in 𝜕𝜑 ,

1
2

∫
∥𝑥 − 𝑦∥2 𝛾★(d𝑥, d𝑦) =

∫ ( ∥𝑥 ∥2
2 + ∥𝑦∥

2

2 − ⟨𝑥,𝑦⟩
)
𝛾★(d𝑥, d𝑦)

=

∫ ( ∥𝑥 ∥2
2 + ∥𝑦∥

2

2 − 𝜑 (𝑥) − 𝜑∗(𝑦)
)
𝛾★(d𝑥, d𝑦)

=

∫ ( ∥·∥2
2 − 𝜑

)
d𝜇 +

∫ ( ∥·∥2
2 − 𝜑∗

)
d𝜈

=

∫
𝑓 ★ d𝜇 +

∫
𝑔★ d𝜈 .

This simultaneously proves that strong duality holds and that (𝑓 ★, 𝑔★) is a pair of
optimal dual potentials.
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5. For regular measures, optimal transport plans are induced by transport maps. An-
other fact from convex analysis is that convex functions enjoy some regularity:
a closed convex function 𝜑 is differentiable at Lebesgue-a.e. points of the interior of
its domain. Consequently, if 𝜇 is absolutely continuous w.r.t. Lebesgue measure,
then 𝜑 is differentiable 𝜇-a.e. This says that for 𝜇-a.e. 𝑥 ∈ R𝑑 , the gradient ∇𝜑 (𝑥)
exists and 𝜕𝜑 (𝑥) = {∇𝜑 (𝑥)}. Therefore, we can write 𝛾★ = (id,∇𝜑)#𝜇. In particular,
(∇𝜑)#𝜇 = 𝜈 , and ∇𝜑 is the optimal transport map from 𝜇 to 𝜈 .
In our entire discussion so far, we started off with an arbitrary optimal transport
plan 𝛾★. Hence, we have shown that every optimal transport plan is of the form
(id,∇𝜑)#𝜇 for some closed convex function 𝜑 .

6. Uniqueness of the optimal transport map. So far, we have not discussed uniqueness
of the solution to the Kantorovich problem, and in general uniqueness does not
hold. However, in the setting we are currently dealing with (the cost is the squared
Euclidean distance and 𝜇 is absolutely continuous), we can use additional arguments
to establish uniqueness. We will show that if 𝛾★ = (id,∇𝜑)#𝜇 is another optimal
transport plan where 𝜑 is a closed convex function, then ∇𝜑 = ∇𝜑 (𝜇-a.e.). Note that
in particular, it implies that there is only one gradient of a closed convex function
which pushes forward 𝜇 to 𝜈 .
From our above arguments, we see that (∥·∥2/2 − 𝜑, ∥·∥2/2 − 𝜑∗) is a dual optimal
pair. Therefore,∫

{𝜑 (𝑥) + 𝜑∗(𝑦)}𝛾★(d𝑥, d𝑦) =
∫

𝜑 d𝜇 +
∫

𝜑∗ d𝜈 =

∫
𝜑 d𝜇 +

∫
𝜑∗ d𝜈

=

∫
{𝜑 (𝑥) + 𝜑∗(𝑦)}𝛾★(d𝑥, d𝑦) =

∫
⟨𝑥,𝑦⟩ 𝛾★(d𝑥, d𝑦) .

Using 𝛾★ = (id,∇𝜑)#𝜇, it yields∫
{𝜑 (𝑥) + 𝜑∗(∇𝜑 (𝑥)) − ⟨𝑥,∇𝜑 (𝑥)⟩} 𝜇 (d𝑥) = 0 .

On the other hand, by the definition of 𝜑∗, we have 𝜑 (𝑥) + 𝜑∗(𝑦) ≥ ⟨𝑥,𝑦⟩ for all
𝑥,𝑦 ∈ R𝑑 , with equality if and only if 𝑦 ∈ 𝜕𝜑 (𝑥). So, the integrand of the above
expression is always non-negative but the integral is zero, which combined with
the previous fact shows that ∇𝜑 (𝑥) ∈ 𝜕𝜑 (𝑥) for 𝜇-a.e. 𝑥 . But for 𝜇-a.e. 𝑥 , we also
know that 𝜕𝜑 (𝑥) = {∇𝜑 (𝑥)}, and we conclude that ∇𝜑 = ∇𝜑 (𝜇-a.e.). □

We refer to 𝜑 as a Brenier potential. From convex duality, ∇𝜑∗ = (∇𝜑)−1. So, if 𝜈 is
also absolutely continuous, then the optimal transport map from 𝜈 to 𝜇 is ∇𝜑∗. We often
write 𝑇𝜇→𝜈 = ∇𝜑 for the optimal transport map from 𝜇 to 𝜈 .
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In light of this discussion, it is natural to focus on the following class of measures.

Definition 1.3.12. The space P2,ac(R𝑑) is the set of measures in P2(R𝑑) which are
absolutely continuous w.r.t. Lebesgue measure.

Remarks on other costs. Many of the arguments can be generalized to other costs
𝑐 . For example, the supports of optimal transport plans can be characterized via 𝑐-
cyclical monotonicity (generalizing cyclical monotonicity) and optimal dual potentials
can be characterized via 𝑐-concavity (generalizing convexity). Arguing that the optimal
transport plan is induced by a transport map requires additional information about the
differentiability of 𝑐 .

1.3.2 Riemannian Structure of the Wasserstein Space

Wasserstein space as a metric space. The following lemma is used to establish that
the triangle inequality holds for𝑊2.

Lemma 1.3.13 (gluing lemma). If 𝛾1,2 ∈ P(X1 × X2) and 𝛾2,3 ∈ P(X2 × X3) have the
same marginal distribution on X2, then there exists 𝛾 ∈ P(X1 × X2 × X3) such that its
first two marginals are 𝛾1,2 and its last two marginals are 𝛾2,3.

Proof. Let 𝜇 denote the common X2-marginal of 𝛾1,2 and 𝛾2,3. The idea is to first draw
𝑋2 ∼ 𝜇. Then, draw 𝑋1 from its conditional distribution given 𝑋2 (according to 𝛾1,2), and
similarly draw 𝑋3 from its conditional distribution given 𝑋2 (according to 𝛾2,3). Then, take
𝛾 to be the law of the triple (𝑋1, 𝑋2, 𝑋3).

The way to formalize this argument is via disintegration of measure. □

Proposition 1.3.14. The space (P2(R𝑑),𝑊2) is a metric space.

Proof. Clearly,𝑊2 is symmetric in its two arguments. It is also clear that 𝜇 = 𝜈 implies
𝑊2(𝜇, 𝜈) = 0. Conversely, if𝑊2(𝜇, 𝜈) = 0, then there exists a coupling (𝑋,𝑌 ) of (𝜇, 𝜈) such
that ∥𝑋 − 𝑌 ∥2 = 0 a.s., or equivalently 𝑋 = 𝑌 a.s., which gives 𝜇 = 𝜈 .

To verify the triangle inequality, we use the gluing lemma. Let 𝜇1, 𝜇2, 𝜇3 ∈ P2(R𝑑), let
𝛾★1,2 be optimal for (𝜇1, 𝜇2), and let 𝛾★2,3 be optimal for (𝜇2, 𝜇3). Let 𝛾 be obtained by gluing
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𝛾★1,2 and 𝛾★2,3, and let 𝛾1,3 ∈ C(𝜇1, 𝜇3) denote the (1, 3)-marginal of 𝛾★. Then,

𝑊2(𝜇1, 𝜇3) ≤

√︄∫
∥𝑥1 − 𝑥3∥2 𝛾1,3(d𝑥1, d𝑥3)

≤

√︄∫
{∥𝑥1 − 𝑥2∥ + ∥𝑥2 − 𝑥3∥}2 𝛾 (d𝑥1, d𝑥2, d𝑥3) .

Let 𝑓 (𝑥1, 𝑥2, 𝑥3) B ∥𝑥1 − 𝑥2∥ and 𝑔(𝑥1, 𝑥2, 𝑥3) B ∥𝑥2 − 𝑥3∥. The above expression can be
written as ∥ 𝑓 + 𝑔∥𝐿2 (𝛾) . By applying the triangle inequality in 𝐿2(𝛾),

𝑊2(𝜇1, 𝜇3) ≤ ∥ 𝑓 ∥𝐿2 (𝛾) + ∥𝑔∥𝐿2 (𝛾)

=

√︄∫
∥𝑥1 − 𝑥2∥2 𝛾 (d𝑥1, d𝑥2, d𝑥3) +

√︄∫
∥𝑥2 − 𝑥3∥2 𝛾 (d𝑥1, d𝑥2, d𝑥3)

=

√︄∫
∥𝑥1 − 𝑥2∥2 𝛾★1,2(d𝑥1, d𝑥2) +

√︄∫
∥𝑥2 − 𝑥3∥2 𝛾★2,3(d𝑥2, d𝑥3)

=𝑊2(𝜇1, 𝜇2) +𝑊2(𝜇2, 𝜇3) . □

Since the next result is technical, we omit the proof.

Proposition 1.3.15. The metric space (P2(R𝑑),𝑊2) is complete and separable. Also,
we have𝑊2(𝜇𝑛, 𝜇) → 0 if and only if 𝜇𝑛 → 𝜇 weakly and

∫
∥·∥2 d𝜇𝑛 →

∫
∥·∥2 d𝜇.

The continuity equation. Next, we are going to consider dynamics in the space of
measures, i.e., curves of measures 𝑡 ↦→ 𝜇𝑡 . Throughout, we assume these curves are
sufficiently nice, in the following sense.

Definition 1.3.16 (informal). We say that a curve 𝑡 ↦→ 𝜇𝑡 ∈ P2,ac(R𝑑) is absolutely
continuous if for all 𝑡 ,

| ¤𝜇 | (𝑡) B lim
𝑠→𝑡

𝑊2(𝜇𝑠, 𝜇𝑡 )
|𝑠 − 𝑡 | < ∞ .

The quantity | ¤𝜇 | is called the metric derivative of the curve.

More generally, the metric derivative can be defined on any metric space and represents
the magnitude of the velocity of the curve, see [AGS08].
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It is helpful to adopt a fluid dynamics analogy in which we think of 𝜇𝑡 as the mass
density of a fluid at time 𝑡 . There are two complementary perspectives on fluid flows:
the Lagrangian perspective which emphasizes particle trajectories, and the Eulerian
perspective which tracks the evolution of the fluid density.

Suppose that𝑋0 ∼ 𝜇0 and that 𝑡 ↦→ 𝑋𝑡 evolves according to the ODE ¤𝑋𝑡 = 𝑣𝑡 (𝑋𝑡 ). Here,
(𝑣𝑡 )𝑡≥0 is a family of vector fields, i.e. mappings R𝑑 → R𝑑 . Since the ODE describes the
evolution of the particle trajectory, it is the Lagrangian description of the dynamics. The
corresponding Eulerian description is the continuity equation.

Theorem 1.3.17. Let 𝑡 ↦→ 𝑣𝑡 be a family of vector fields and suppose that the random
variables 𝑡 ↦→ 𝑋𝑡 evolve according to ¤𝑋𝑡 = 𝑣𝑡 (𝑋𝑡 ). Then, the law 𝜇𝑡 of 𝑋𝑡 evolves
according to the continuity equation

𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 . (1.3.18)

Proof. Given a test function 𝜑 : R𝑑 → R,∫
𝜑 𝜕𝑡𝜇𝑡 = 𝜕𝑡

∫
𝜑𝜇𝑡 = 𝜕𝑡 E𝜑 (𝑋𝑡 ) = E⟨∇𝜑 (𝑋𝑡 ), ¤𝑋𝑡 ⟩ = E⟨∇𝜑 (𝑋𝑡 ), 𝑣𝑡 (𝑋𝑡 )⟩

=

∫
⟨∇𝜑, 𝑣𝑡 ⟩ 𝜇𝑡 = −

∫
𝜑 div(𝜇𝑡𝑣𝑡 ) .

Since this holds for every 𝜑 , we obtain 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0. □

The punchline is that every nice curve of measures 𝑡 ↦→ 𝜇𝑡 can be interpreted as the
fluid flow along a family of vector fields, i.e., we can find vector fields 𝑡 ↦→ 𝑣𝑡 such that
the continuity equation (1.3.18) holds. First, however, note that there is no uniqueness:
if 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 and for each 𝑡 , 𝑤𝑡 is a vector field satisfying div(𝜇𝑡𝑤𝑡 ) = 0, then
the continuity equation also holds with the new vector fields 𝑣̃𝑡 B 𝑣𝑡 +𝑤𝑡 . We will show
how to pick a distinguished choice of vector fields 𝑡 ↦→ 𝑣𝑡 which can be described in
two equivalent ways. First, among all vector fields making the continuity equation hold
true, we can choose 𝑣𝑡 to minimize

∫
∥𝑣𝑡 ∥2 d𝜇𝑡 , which has the physical interpretation of

minimizing kinetic energy. Second, we can choose 𝑣𝑡 to be the gradient of a function; we
will see that this is natural in light of the characterization of optimal transport maps.

Theorem 1.3.19 (curves of measures as fluid flows). Let 𝑡 ↦→ 𝜇𝑡 be an absolutely
continuous curve of measures.

1. For any family of vector fields 𝑡 ↦→ 𝑣𝑡 such that the continuity equation (1.3.18)
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holds, we have | ¤𝜇 | (𝑡) ≤ ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) for all 𝑡 .

2. Conversely, there exists a unique choice of vector fields 𝑡 ↦→ 𝑣𝑡 such that the
continuity equation (1.3.18) holds and ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) ≤ | ¤𝜇 | (𝑡) for all 𝑡 . The choice
of vector fields is also characterized by the following property: the continuity
equation (1.3.18) holds and for each 𝑡 , 𝑣𝑡 = ∇𝜓𝑡 for a function𝜓𝑡 : R𝑑 → R.

Moreover, the distinguished vector field 𝑣𝑡 satisfies

𝑣𝑡 = lim
𝛿↘0

𝑇𝜇𝑡→𝜇𝑡+𝛿 − id
𝛿

(1.3.20)

where 𝑇𝜇𝑡→𝜇𝑡+𝛿 is the optimal transport map from 𝜇𝑡 to 𝜇𝑡+𝛿 .

Proof. 1. Proof of the first statement. Let 𝛿 > 0 and consider the flow map 𝐹𝑡,𝑡+𝛿 de-
fined as follows. Given any initial point 𝑥𝑡 ∈ R𝑑 , consider the ODE ¤𝑥𝑡 = 𝑣𝑡 (𝑥𝑡 )
started at 𝑥𝑡 . Then, 𝐹𝑡,𝑡+𝛿 maps 𝑥𝑡 to the solution 𝑥𝑡+𝛿 of the ODE at time 𝑡 + 𝛿 .
If 𝑋𝑡 ∼ 𝜇𝑡 , then the continuity equation implies 𝐹𝑡,𝑡+𝛿 (𝑋𝑡 ) ∼ 𝜇𝑡+𝛿 , i.e., 𝐹𝑡,𝑡+𝛿 is a valid
transport map from 𝜇𝑡 to 𝜇𝑡+𝛿 . Hence, we can estimate

𝑊2(𝜇𝑡 , 𝜇𝑡+𝛿 )
𝛿

≤

√︄∫ ∥𝐹𝑡,𝑡+𝛿 − id∥2
𝛿2 d𝜇𝑡 .

However, 𝐹𝑡,𝑡+𝛿 − id = 𝛿𝑣𝑡 + 𝑜 (𝛿), so letting 𝛿 ↘ 0 we obtain | ¤𝜇 | (𝑡) ≤ ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) .
(Actually, to prove this statement we should also consider the limit 𝛿 ↗ 0 for
negative 𝛿 , but it is clear that the same argument works.)

2. Uniqueness of the optimal vector field. Suppose we find 𝑡 ↦→ 𝑣𝑡 satisfying the con-
tinuity equation and such that ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) ≤ | ¤𝜇 | (𝑡). In light of the first statement, it
implies that the zero vector field is the minimizer of ∥𝑣𝑡 +𝑤𝑡 ∥𝐿2 (𝜇𝑡 ) among all vector
fields𝑤𝑡 such that div(𝜇𝑡𝑤𝑡 ) = 0. This is a strictly convex problem so the minimizer
is unique, meaning that the family 𝑡 ↦→ 𝑣𝑡 is uniquely determined.

3. Gradient vector fields are optimal. Here, we show that if the continuity equation
holds for the family of vector fields 𝑡 ↦→ 𝑣𝑡 and that 𝑣𝑡 = ∇𝜓𝑡 for all 𝑡 , then the
vector fields are optimal.
There are at least two ways of seeing why gradient vector fields should be optimal.
First, the continuity equation is equivalent to requiring that for all test functions
𝜑 : R𝑑 → R, it holds that 𝜕𝑡

∫
𝜑 d𝜇𝑡 =

∫
⟨∇𝜑, 𝑣𝑡 ⟩ d𝜇𝑡 . In this expression, the vector
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field 𝑣𝑡 only enters through inner products with gradients. To put it another way, if
we consider the space 𝑆 B {∇𝜓 | 𝜓 : R𝑑 → R} of gradients, viewed as a subspace
of 𝐿2(𝜇𝑡 ), then we can write 𝐿2(𝜇𝑡 ) = 𝑆 ⊕ 𝑆⊥ (actually, to make this valid we should
take the closure of 𝑆 , but we will ignore this detail). If we decompose 𝑣𝑡 according
to this direct sum, then 𝑣𝑡 = ∇𝜓𝑡 +𝑤𝑡 for some function 𝜓𝑡 and some 𝑤𝑡 which is
orthogonal (in 𝐿2(𝜇𝑡 )) to 𝑆 . If we replace 𝑣𝑡 by ∇𝜓𝑡 , then the continuity equation
continues to hold, but we have only made the norm ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) smaller, hence the
optimal choice of 𝑣𝑡 should be a gradient.
The second line of reasoning comes from the proof of the first statement: the reason
why the metric derivative | ¤𝜇 | (𝑡) was upper bounded by ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) is because the flow
map corresponding to 𝑡 ↦→ 𝑣𝑡 furnishes a possibly suboptimal transport map. To
fix this, the flow map for the optimal 𝑡 ↦→ 𝑣𝑡 should be approximately equal to the
optimal transport map, i.e. 𝑣𝑡 ≈ (𝑇𝜇𝑡→𝜇𝑡+𝛿 − id)/𝛿 . From the fundamental theorem of
optimal transport, however, 𝑇𝜇𝑡→𝜇𝑡+𝛿 is the gradient of a convex function, so in the
limit 𝑣𝑡 should be as well.
Instead of using these arguments, we will instead provide a proof based on direct
computation. If 𝑣𝑡 = ∇𝜓𝑡 , the continuity equation shows that∫

𝜓𝑡 d𝜇𝑡+𝛿 −
∫
𝜓𝑡 d𝜇𝑡

𝛿
=

∫
𝜓𝑡 𝜕𝑡𝜇𝑡 + 𝑜 (1) = −

∫
𝜓𝑡 div(𝜇𝑡∇𝜓𝑡 ) + 𝑜 (1)

=

∫
∥∇𝜓𝑡 ∥2 d𝜇𝑡 + 𝑜 (1) .

On the other hand,∫
𝜓𝑡 d𝜇𝑡+𝛿 −

∫
𝜓𝑡 d𝜇𝑡

𝛿
=

∫
𝜓𝑡 ◦𝑇𝜇𝑡→𝜇𝑡+𝛿 −𝜓𝑡

𝛿
d𝜇𝑡

=

∫ 〈
∇𝜓𝑡 ,

𝑇𝜇𝑡→𝜇𝑡+𝛿 − id
𝛿

〉
d𝜇𝑡 + 𝑜 (1)

≤

√︄∫
∥∇𝜓𝑡 ∥2 d𝜇𝑡

𝑊2(𝜇𝑡 , 𝜇𝑡+𝛿 )
𝛿

+ 𝑜 (1) .

Taking 𝛿 ↘ 0 yields ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) = ∥∇𝜓𝑡 ∥𝐿2 (𝜇𝑡 ) ≤ | ¤𝜇 | (𝑡).

4. Existence of optimal vector fields. Finally, one can show for instance that vector
fields defined via limits of transport maps as in (1.3.20) indeed satisfy the continuity
equation and are gradient vector fields, and are therefore optimal. However, the
details are omitted. □
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From the theorem, we learn that the optimal vector field 𝑣𝑡 satisfies ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) = | ¤𝜇 | (𝑡).
On the other hand, the metric derivative is supposed to be the “magnitude of the velocity”.
Our next goal is to interpret 𝑣𝑡 as the velocity vector to the curve, and ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) as its
norm, all through the lens of Riemannian geometry.

Background on Riemannian geometry. In the spirit of informality, we give a descrip-
tion of what a Riemannian manifold entails, rather than a precise definition. A manifold
M is a space which is locally homeomorphic to a Euclidean space. At each point 𝑝 ∈ M,
there is an associated vector space 𝑇𝑝M, called the tangent space at 𝑝 , which is the
space of all possible velocities of curves passing through 𝑝 . The whole structure should
be smooth: the tangent spaces should vary smoothly in a suitable sense.

A Riemannian metric is a smoothly varying choice of inner products 𝑝 ↦→ ⟨·, ·⟩𝑝 on
the tangent spaces. The metric allows us to, e.g., locally measure the angles between two
intersecting curves. For our purposes, it is important to note that the metric allows us to
define the steepest descent direction for an objective function, which in turn allows us to
consider gradient flows.

The Riemannian metric induces a distance function (in the sense of metric spaces) via

d(𝑝, 𝑞) B inf
{∫ 1

0
∥ ¤𝛾 (𝑡)∥𝛾 (𝑡) d𝑡

��� 𝛾 : [0, 1] →M, 𝛾 (0) = 𝑝, 𝛾 (1) = 𝑞
}
. (1.3.21)

Here, ¤𝛾 (𝑡) denotes the tangent vector to the curve at time 𝑡 . Note that the norm of the
tangent vector is measured w.r.t. the inner product on the tangent space 𝑇𝛾 (𝑡)M, hence
we write ∥ ¤𝛾 (𝑡)∥𝛾 (𝑡) . If the infimum is achieved by a curve 𝛾 , then 𝛾 is referred to as a
geodesic (a shortest path); if 𝑡 ↦→ ∥ ¤𝛾 (𝑡)∥𝛾 (𝑡) is constant, then it is called a constant-speed
geodesic. From now on, we will only consider constant-speed geodesics, and the words
“constant speed” will be dropped for brevity.

Given a functional F : M → R, the gradient of F at 𝑝 is defined to be the unique
element ∇F(𝑝) ∈ 𝑇𝑝M such that for all curves (𝑝𝑡 )𝑡∈R passing through 𝑝 at time 0 with
velocity 𝑣 ∈ 𝑇𝑝M, it holds that 𝜕𝑡 |𝑡=0F(𝑝𝑡 ) = ⟨∇F(𝑝), 𝑣⟩𝑝 .

Wasserstein space as a Riemannian manifold. Based on our discussion thus far, it
is natural to define the tangent space at 𝜇 ∈ P2,ac(R𝑑) as

𝑇𝜇P2,ac(R𝑑) B {∇𝜓 | 𝜓 ∈ C∞c (R𝑑)}
𝐿2 (𝜇)

,

where the notation denotes taking the 𝐿2(𝜇) closure. Equivalently,

𝑇𝜇P2,ac(R𝑑) = {𝜆 (𝑇 − id) | 𝜆 > 0, 𝑇 is an optimal transport map}𝐿
2 (𝜇)

.
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We equip the tangent space 𝑇𝜇P2,ac(R𝑑) with the 𝐿2(𝜇) norm, which gives a Riemannian
metric. This does not define a genuine Riemannian manifold (e.g., it is not locally homeo-
morphic to a Euclidean space or even a Hilbert space), but we will treat it as one for the
purpose of developing calculation rules.

If the continuity equation 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 holds and 𝑣𝑡 ∈ 𝑇𝜇𝑡P2,ac(R𝑑), then 𝑣𝑡 is
the tangent vector to the curve at time 𝑡 . The condition 𝑣𝑡 ∈ 𝑇𝜇𝑡P2,ac(R𝑑) is equivalent to
saying that 𝑣𝑡 is the optimal vector field considered in Theorem 1.3.19.

There are two questions to address. First, is this Riemannian structure compatible
with the 2-Wasserstein distance? In other words, we know that a Riemannian metric
induces a distance function; is the distance function induced by the Riemannian structure
of P2,ac(R𝑑) equal to𝑊2? Second, what are the geodesics? We answer both questions via
the following theorem.

Theorem 1.3.22 (Wasserstein geodesics). Let 𝜇0, 𝜇1 ∈ P2,ac(R𝑑). Then,

𝑊2(𝜇0, 𝜇1) = inf
{∫ 1

0
∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) d𝑡

��� 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0
}
. (1.3.23)

The infimum is achieved as follows. Let 𝑋0 ∼ 𝜇0 and 𝑋1 ∼ 𝜇1 be optimally coupled
random variables, let 𝑋𝑡 B (1 − 𝑡)𝑋0 + 𝑡 𝑋1, and let 𝜇𝑡 B law(𝑋𝑡 ). Then, 𝑡 ↦→ 𝜇𝑡 is the
unique constant-speed geodesic joining 𝜇0 to 𝜇1.

Proof. Suppose that 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0. Then,
∫ 1

0 ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) d𝑡 ≥
∫ 1

0 | ¤𝜇 | (𝑡) d𝑡 . For a
partition 0 ≤ 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 ≤ 1,

𝑊2(𝜇0, 𝜇1) ≤
𝑘∑︁
𝑖=1
𝑊2(𝑡𝑖−1, 𝑡𝑖) =

𝑘∑︁
𝑖=1

𝑊2(𝑡𝑖−1, 𝑡𝑖)
𝑡𝑖 − 𝑡𝑖−1

(𝑡𝑖 − 𝑡𝑖−1) .

As the size of the partition tends to zero, we obtain𝑊2(𝜇0, 𝜇1) ≤
∫ 1

0 | ¤𝜇 | (𝑡) d𝑡 . This shows
that𝑊2(𝜇0, 𝜇1) is at most the value of the infimum.

To show that equality holds, let𝑋𝑡 be defined as in the theorem statement and note that
E[∥ ¤𝑋𝑡 ∥2] = ∥𝑣𝑡 ∥2𝐿2 (𝜇𝑡 )

by the correspondence of the Lagrangian and Eulerian perspectives.
(This can be verified by writing the vector field explicitly as 𝑣𝑡 = (𝑇1 − id) ◦𝑇 −1

𝑡 , where
𝑇𝑡 B (1 − 𝑡) id + 𝑡 𝑇𝜇0→𝜇1—exercise!) Since E[∥ ¤𝑋𝑡 ∥2] = E[∥𝑋1 − 𝑋0∥2] =𝑊 2

2 (𝜇0, 𝜇1) does
not depend on time, the curve has constant speed, and

∫ 1
0 ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) d𝑡 =𝑊2(𝜇0, 𝜇1).

To show uniqueness, again work in the Lagrangian perspective: suppose we have an
evolution 𝑡 ↦→ 𝑋𝑡 of random variables such that 𝑡 ↦→ E[∥ ¤𝑋𝑡 ∥2] is constant, and 𝑋0 ∼ 𝜇0,
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𝑋1 ∼ 𝜇1. Then, we have

𝑊 2
2 (𝜇0, 𝜇1) ≤ E[∥𝑋1 − 𝑋0∥2] = E

[


∫ 1

0
¤𝑋𝑡 d𝑡




2]
≤ E

∫ 1

0
∥ ¤𝑋𝑡 ∥2 d𝑡 =

(∫ 1

0
∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) d𝑡

)2

where the last equality follow from the constant-speed assumption. In order for the first
inequality to be equality, (𝑋0, 𝑋1) is an optimal coupling. In order for the second inequality
to be equality, strict convexity of ∥·∥2 implies that ¤𝑋𝑡 is constant in time and equal to its
average

∫ 1
0
¤𝑋𝑡 d𝑡 = 𝑋1 − 𝑋0. □

Definition 1.3.24. Let 𝜇0, 𝜇1 ∈ P2,ac(R𝑑), and let 𝑋0 ∼ 𝜇0, 𝑋1 ∼ 𝜇1 be optimally
coupled. Let 𝑋𝑡 B (1 − 𝑡)𝑋0 + 𝑡 𝑋1, and let 𝜇𝑡 B law(𝑋𝑡 ). Then, the curve 𝑡 ↦→ 𝜇𝑡 is
called the Wasserstein geodesic joining 𝜇0 to 𝜇1. It is also called the displacement
interpolation or McCann’s interpolation.

Exponential map and logarithmic map. On a Riemannian manifold M, the Rie-
mannian exponential map exp𝑝 : 𝑇𝜇M → M takes a tangent vector 𝑣 ∈ 𝑇𝜇M to the
endpoint at time 1 of the constant-speed geodesic emanating from 𝑝 with velocity 𝑣 . The
logarithmic map is then defined to be the inverse mapping log𝑝 : M→ 𝑇𝜇M. Actually,
in general, the exponential map is only defined on a subset of the tangent space, because in
many manifolds (e.g., the sphere), geodesics cannot continue indefinitely while remaining
shortest paths between their endpoints. On Euclidean space R𝑑 , we have exp𝑝 (𝑣) = 𝑝 + 𝑣
and log𝑝 (𝑞) = 𝑞 − 𝑝 .

We can identify these maps for (P2,ac(R𝑑),𝑊2). If (𝜇𝑡 )𝑡∈[0,1] is a Wasserstein geodesic
and ∇𝜑𝜇0→𝜇1 is the optimal transport map from 𝜇0 to 𝜇1, then the tangent vector to the
geodesic at time 0 is ∇𝜑𝜇0→𝜇1 − id. This implies that log𝜇0

(𝜇1) = ∇𝜑𝜇0→𝜇1 − id. The inverse
mapping is then given as follows: if ∇𝜓 ∈ 𝑇𝜇0P2,ac(R𝑑) is such that id + ∇𝜓 is the gradient
of a convex function, then exp𝜇0 (∇𝜓 ) = (id + ∇𝜓 )#𝜇0.

Geodesically convex functionals. Over a Riemannian manifold M, the correct way
to define convexity is as follows.

Definition 1.3.25. Let M be a Riemannian manifold and let F : M→ R ∪ {∞} be
smooth. For 𝛼 ∈ R, we say that F is 𝛼-geodesically convex if one of the following
equivalent conditions hold:
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1. For all geodesics (𝑝𝑡 )𝑡∈[0,1] and 𝑡 ∈ [0, 1],

F(𝑝𝑡 ) ≤ (1 − 𝑡) F(𝑝0) + 𝑡 F(𝑝1) −
𝛼 𝑡 (1 − 𝑡)

2 d(𝑝0, 𝑝1)2 ,

where d is the induced Riemannian distance (1.3.21).

2. For all 𝑝, 𝑞 ∈ M,

F(𝑞) ≥ F(𝑝) + ⟨∇F(𝑝), log𝑝 (𝑞)⟩𝑝 +
𝛼

2 d(𝑝, 𝑞)2 .

Here, ∇ denotes the Riemannian gradient.

3. For all constant-speed geodesics (𝑝𝑡 )𝑡∈[0,1] with tangent vector 𝑣0 ∈ 𝑇𝑝0M at
time 0, it holds that

𝜕2
𝑡

��
𝑡=0F(𝑝𝑡 ) ≥ 𝛼 ∥𝑣0∥2𝑝0 .

1.4 The Langevin SDE as a Wasserstein Gradient Flow
We are now ready to interpret the Langevin diffusion (1.E.1) as a gradient flow in the
Wasserstein space (P2,ac(R𝑑),𝑊2). Once we have done so, we will quickly deduce conver-
gence results for the Langevin diffusion based on gradient flow computations.

1.4.1 Derivation of the Gradient Flow
Let F : P2,ac(R𝑑) → R∪{∞} be a functional over the Wasserstein space. We now compute
the Wasserstein gradient of F at 𝜇, i.e., the element ∇𝑊2F(𝜇) ∈ 𝑇𝜇P2,ac(R𝑑) such that for
every curve 𝑡 ↦→ 𝜇𝑡 with 𝜇0 = 𝜇, if 𝑣0 is the tangent vector to the curve at time 0, then
𝜕𝑡 |𝑡=0F(𝜇𝑡 ) = ⟨∇𝑊2F(𝜇), 𝑣0⟩𝜇 , where ⟨·, ·⟩𝜇 is the inner product on 𝑇𝜇P2,ac(R𝑑).

We will give a formula in terms of the first variation of F at 𝜇, denoted 𝛿F(𝜇). The
first variation is a function R𝑑 → R which satisfies 𝜕𝑡 |𝑡=0F(𝜇𝑡 ) =

∫
𝛿F(𝜇) 𝜕𝑡 |𝑡=0𝜇𝑡 . This

is almost the same as the 𝐿2(𝔪) gradient of F, where 𝔪 is the Lebesgue measure on R𝑑 ,
except for a few differences: (1) there is no guarantee that 𝛿F(𝜇) ∈ 𝐿2(𝔪); (2) in order
to consider the 𝐿2(𝔪) gradient, we would want F to be a functional defined over all of
𝐿2(𝔪), not just probability densities, and similarly we would have to consider all curves
in 𝐿2(𝔪) rather than curves of probability densities.

As a consequence of looking only at probability densities, the first variation is only
defined up to an additive constant. Indeed, 𝜕𝑡 |𝑡=0𝜇𝑡 always integrates to 0, so we can add
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any constant to the first variation. This does not cause any ambiguity, as we now see.
Recall that 𝑣𝑡 is the tangent vector to the curve of measures at time 𝑡 if the continuity

equation 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 holds and 𝑣𝑡 ∈ 𝑇𝜇𝑡P2,ac(R𝑑). Using the continuity equation
with a curve such that 𝜇0 = 𝜇,

𝜕𝑡
��
𝑡=0 F(𝜇𝑡 ) =

∫
𝛿F(𝜇) 𝜕𝑡

��
𝑡=0 𝜇𝑡 = −

∫
𝛿F(𝜇) div(𝑣0𝜇) =

∫
⟨∇𝛿F(𝜇), 𝑣0⟩ d𝜇 .

(Here, the ∇ is the Euclidean gradient.) Since ∇𝛿F(𝜇) is the gradient of a function, from
our characterization of the tangent space we know that ∇𝛿F(𝜇) ∈ 𝑇𝜇P2,ac(R𝑑). Therefore,
the equation above says that the Wasserstein gradient of F at 𝜇 is ∇𝛿F(𝜇).

Theorem 1.4.1. Let F : P2,ac(R𝑑) → R ∪ {∞} be a functional. Then, its Wasserstein
gradient at 𝜇 is

∇𝑊2F(𝜇) = ∇𝛿F(𝜇) ,

where 𝛿F(𝜇) is a first variation of F at 𝜇.

Since we take the Euclidean gradient of the first variation, the fact that the first variation
is only defined up to additive constant does not bother us.

The Wasserstein gradient flow of F is by definition a curve of measures 𝑡 ↦→ 𝜇𝑡 such
that its tangent vector 𝑣𝑡 at time 𝑡 is 𝑣𝑡 = −∇𝑊2F(𝜇𝑡 ). Substituting this into the continuity
equation (1.3.18), we obtain the gradient flow equation

𝜕𝑡𝜇𝑡 = div
(
𝜇𝑡∇𝑊2F(𝜇𝑡 )

)
= div

(
𝜇𝑡∇𝛿F(𝜇𝑡 )

)
.

Example 1.4.2. Consider F = KL(· ∥ 𝜋) where 𝜋 = exp(−𝑉 ). This functional can
also be written as

F(𝜇) =
∫

𝜇 ln 𝜇

𝜋
=

∫
𝑉 d𝜇 +

∫
𝜇 ln 𝜇 .

These two terms have the interpretation of energy and (negative) entropy. From this,
we can compute that

𝛿F(𝜇) = 𝑉 + ln 𝜇 + constant
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and therefore

∇𝑊2F(𝜇) = ∇𝑉 + ∇ ln 𝜇 = ∇ ln 𝜇

𝜋
.

The Wasserstein gradient flow of F satisfies

𝜕𝑡𝜇𝑡 = div
(
𝜇𝑡∇ ln 𝜇𝑡

𝜋

)
.

Comparing with the Fokker–Planck equation 𝜕𝑡𝜋𝑡 = ℒ
∗𝜋𝑡 and the form of the

adjoint generator ℒ
∗ for the Langevin diffusion (see Example 1.2.8), we obtain a

truly remarkable fact: the law 𝑡 ↦→ 𝜋𝑡 of the Langevin diffusion with potential 𝑉 is the
Wasserstein gradient flow of KL(· ∥ 𝜋).

The calculus of optimal transport was introduced by Otto in [Ott01], and it is often
known as Otto calculus; the interpretation of the Langevin diffusion in this context
was put forth in the seminal work [JKO98]. The paper [Ott01] also raises and answers a
salient question: given that we can view dynamics as gradient flows in different ways (e.g.
the Langevin diffusion can be either viewed as the gradient flow of the Dirichlet energy
in 𝐿2(𝜋), or the gradient flow of the KL divergence in P2,ac(R𝑑)), what makes us prefer
one gradient flow structure over another? Otto argues that the Wasserstein geometry
is particularly natural because it cleanly separates out two aspects of the problem: the
geometry of the ambient space, which is reflected in the metric on P2,ac(R𝑑), and the
objective functional. Moreover, the objective functional in the Wasserstein perspective is
physically intuitive because it has an interpretation in thermodynamics. From a sampling
standpoint, the Wasserstein geometry is undoubtedly more compelling and useful.

In our exposition, we focused on the calculation rules for Wasserstein gradient flows,
but this is not how they are normally defined. Instead, one usually considers a sequence
of discrete approximations to the gradient flow and proves that there is a limiting curve;
this is called the minimizing movements scheme and it is developed in detail in [AGS08].

1.4.2 Convexity of the KL Divergence

The key to studying gradient flows is to understand the convexity properties of the
objective functional. For the specific functional F B KL(· ∥ 𝜋) with target 𝜋 = exp(−𝑉 ),
our next goal is therefore to compute the Wasserstein Hessian of F. When we computed
Wasserstein gradients, we were free to differentiate F along any curve 𝑡 ↦→ 𝜇𝑡 of measures,
but we have to be more careful when computing the Hessian. If we take a function
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𝑓 : R𝑑 → R on Euclidean space and a curve 𝑡 ↦→ 𝑥𝑡 , then 𝜕𝑡 𝑓 (𝑥𝑡 ) = ⟨∇𝑓 (𝑥𝑡 ), ¤𝑥𝑡 ⟩ and

𝜕2
𝑡 𝑓 (𝑥𝑡 ) = ⟨∇2𝑓 (𝑥𝑡 ) ¤𝑥𝑡 , ¤𝑥𝑡 ⟩ + ⟨∇𝑓 (𝑥𝑡 ), ¥𝑥𝑡 ⟩ .

Here, instead of just obtaining the Hessian, we have an additional term. However, if
𝑡 ↦→ 𝑥𝑡 is a constant-speed geodesic, then it has no acceleration ( ¥𝑥𝑡 = 0), and the extra
term vanishes.

In the same way, let (𝜇𝑡 )𝑡∈[0,1] denote a Wasserstein geodesic. Explicitly, if 𝑇 denotes
the optimal transport map from 𝜇0 to 𝜇1, then 𝜇𝑡 = [(1 − 𝑡) id + 𝑡 𝑇 ]#𝜇0. We will calculate
𝜕2
𝑡 |𝑡=0F(𝜇𝑡 ), as a function of the tangent vector 𝑇 − id ∈ 𝑇𝜇0P2,ac(R𝑑); this is interpreted

as ⟨∇2
𝑊2
F(𝜇0) (𝑇 − id),𝑇 − id⟩𝜇0 . If we can lower bound this by 𝛼 ∥𝑇 − id∥2𝜇0 , for all 𝜇0 and

all optimal transport maps 𝑇 , it means that F is 𝛼-strongly convex.
Write E(𝜇) B

∫
𝑉 d𝜇 for the energy and H(𝜇) B

∫
𝜇 ln 𝜇 for the entropy. We deal

with the two terms separately. First, for 𝑋𝑡 = (1 − 𝑡)𝑋0 + 𝑡 𝑇 (𝑋0) and 𝑋0 ∼ 𝜇0,

𝜕𝑡E(𝜇𝑡 ) = 𝜕𝑡 E𝑉 (𝑋𝑡 ) = E⟨∇𝑉 (𝑋𝑡 ), ¤𝑋𝑡 ⟩ = E⟨∇𝑉 (𝑋𝑡 ),𝑇 (𝑋0) − 𝑋0⟩ ,
𝜕2
𝑡

��
𝑡=0E(𝜇𝑡 ) = E⟨∇

2𝑉 (𝑋0) (𝑇 (𝑋0) − 𝑋0),𝑇 (𝑋0) − 𝑋0⟩ .

If𝑉 is 𝛼-strongly convex, then this is lower bounded by 𝛼 ∥𝑇 − id∥2𝜇0 , which means that E
is 𝛼-strongly convex.

The entropy is slightly trickier. Write 𝑇𝑡 B (1 − 𝑡) id + 𝑡 𝑇 . Since (𝑇𝑡 )#𝜇0 = 𝜇𝑡 , the
change of variables formula shows that

𝜇0
𝜇𝑡 ◦𝑇𝑡

= det∇𝑇𝑡 .

Therefore,

H(𝜇𝑡 ) =
∫

𝜇𝑡 ln 𝜇𝑡 =
∫

𝜇0 ln(𝜇𝑡 ◦𝑇𝑡 ) =
∫

𝜇0 ln 𝜇0
det∇𝑇𝑡

= H(𝜇0) −
∫

𝜇0 ln det
(
(1 − 𝑡) 𝐼𝑑 + 𝑡 ∇𝑇

)
.

Already from the fact that − ln det is convex on the space of positive semidefinite matrices,
we can see that 𝜕2

𝑡H(𝜇𝑡 ) ≥ 0. A more careful computation (Exercise 1.19) based on the
derivatives of − ln det shows that

𝜕2
𝑡

��
𝑡=0H(𝜇𝑡 ) =

∫
∥∇𝑇 − 𝐼𝑑 ∥2HS d𝜇0 ≥ 0 . (1.4.3)

We have obtained the following result.
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Theorem 1.4.4. If 𝜋 ∝ exp(−𝑉 ), where 𝑉 is 𝛼-strongly convex, then KL(· ∥ 𝜋) is also
𝛼-strongly convex along Wasserstein geodesics.

Consequences of strong convexity. The strong convexity of the KL divergence implies
the following statement (c.f. Definition 1.3.25).

Theorem 1.4.5. If 𝜋 ∝ exp(−𝑉 ), where 𝑉 is 𝛼-strongly convex, then

KL(𝜈 ∥ 𝜋) ≥ KL(𝜇 ∥ 𝜋) +
〈
∇ ln 𝜇

𝜋
,𝑇𝜇→𝜈 − id

〉
𝜇
+ 𝛼2 𝑊

2
2 (𝜇, 𝜈)

for all 𝜇, 𝜈 ∈ P2,ac(R𝑑).

We now explore the implications of this fact for the gradient flow. If 𝑡 ↦→ 𝜇𝑡 is the gradient
flow for a functional F with inf F = 0, then

𝜕𝑡F(𝜇𝑡 ) = ⟨∇𝑊2F(𝜇𝑡 ), −∇𝑊2F(𝜇𝑡 )︸       ︷︷       ︸
tangent vector of the curve

⟩𝜇𝑡 = −∥∇𝑊2F(𝜇𝑡 )∥2𝜇𝑡 .

So, 𝑡 ↦→ F(𝜇𝑡 ) is always decreasing, and if the condition

∥∇𝑊2F(𝜇)∥2𝜇 ≥ 2𝛼 F(𝜇) for all 𝜇 ∈ P2,ac(R𝑑)

holds, then the gradient flow converges exponentially fast, F(𝜇𝑡 ) ≤ exp(−2𝛼𝑡) F(𝜇0), as a
consequence of Grönwall’s lemma (Lemma 1.1.21). This condition is known as a gradient
domination condition, or a Polyak–Łojasiewicz (PL) inequality. It is implied by strong
convexity: starting from

F(𝜈) ≥ F(𝜇) + ⟨∇𝑊2F(𝜇),𝑇𝜇→𝜈 − id⟩𝜇 +
𝛼

2 𝑊
2

2 (𝜇, 𝜈) , (1.4.6)

we take 𝜈 = 𝜇★ B arg minF so that F(𝜈) = 0, yielding

F(𝜇) ≤ −⟨∇𝑊2F(𝜇),𝑇𝜇→𝜇★ − id⟩𝜇 −
𝛼

2 𝑊
2

2 (𝜇, 𝜇★) ≤
1

2𝛼 ∥∇𝑊2F(𝜇)∥2𝜇 ,

where the last line uses Young’s inequality and ∥𝑇𝜇→𝜇★ − id∥𝜇 = 𝑊2(𝜇, 𝜇★). Therefore,
strong convexity implies exponentially fast convergence of the gradient flow. If we apply
this to the Langevin diffusion, we deduce that 𝛼-strong convexity of 𝑉 implies

KL(𝜇 ∥ 𝜋) ≤ 1
2𝛼



∇ ln 𝜇

𝜋



2
𝜇
=

1
2𝛼 FI(𝜇 ∥ 𝜋) for all 𝜇 ∈ P2,ac(R𝑑) . (1.4.7)
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This is precisely the log-Sobolev inequality (see Example 1.2.26); we have recovered the
Bakry–Émery theorem (Theorem 1.2.29) that CD(𝛼,∞) implies an LSI, as well as Theo-
rem 1.2.25 which asserted that an LSI yields exponentially fast decay in the KL divergence.

Next, starting from the strong convexity inequality (1.4.6), we take 𝜇 = 𝜇★ so that
∇𝑊2F(𝜇★) = 0, and hence

F(𝜈) ≥ 𝛼2 𝑊
2

2 (𝜈, 𝜇★) for all 𝜈 ∈ P2,ac(R𝑑) .

This is a quadratic growth inequality; as the name suggests, it asserts that F must grow
quadratically away from its minimizer. For the Langevin diffusion, it says

KL(𝜇 ∥ 𝜋) ≥ 𝛼2 𝑊
2

2 (𝜇, 𝜋) for all 𝜇 ∈ P2,ac(R𝑑) . (1.4.8)

This is known as Talagrand’s T2 inequality and it is an example of a transportation
inequality. Such inequalities have been closely studied in relation to the concentration of
measure phenomenon (see [Han16, Chapter 4]).

It is a general fact that the PL inequality implies the quadratic growth inequality.
When applied to the Langevin diffusion, it says that the LSI implies the T2 inequality,
which is known as the Otto–Villani theorem [OV00]. See Exercise 1.17 for a proof.

Strong convexity also implies another fact: the gradient flow contracts exponentially
fast. Namely, if we have two gradient flows 𝑡 ↦→ 𝜇𝑡 and 𝑡 ↦→ 𝜈𝑡 for a strongly convex
functional F, then

𝑊 2
2 (𝜇𝑡 , 𝜈𝑡 ) ≤ exp(−2𝛼𝑡)𝑊 2

2 (𝜇0, 𝜈0) . (1.4.9)

In particular, if we take 𝜈𝑡 = 𝜇★ for all 𝑡 , then we obtain exponentially fast convergence to
the minimizer in Wasserstein distance. For the Langevin diffusion, inequality (1.4.9) is
implied by the following theorem (see Exercise 1.18).

Theorem 1.4.10. Suppose that ∇2𝑉 ⪰ 𝛼𝐼𝑑 for some 𝛼 ∈ R. If (𝑍𝑡 )𝑡≥0 and (𝑍 ′𝑡 )𝑡≥0
denote two copies of the Langevin diffusion (1.E.1) with potential 𝑉 and driven by the
same Brownian motion, then

E[∥𝑍𝑡 − 𝑍 ′𝑡 ∥2] ≤ exp(−2𝛼𝑡) E[∥𝑍0 − 𝑍 ′0∥2] .

Finally, in the case 𝛼 = 0, so that F is weakly convex, we can also obtain a convergence
result by considering the Lyapunov functional L𝑡 B 𝑡 F(𝜇𝑡 ) + 1

2𝑊
2

2 (𝜇𝑡 , 𝜇★). In order to
differentiate this Lyapunov functional, we need the following theorem.
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Theorem 1.4.11. For 𝜈 ∈ P2,ac(R𝑑), the Wasserstein gradient of 𝜇 ↦→𝑊 2
2 (𝜇, 𝜈) at 𝜇 is

given by −2 (𝑇𝜇→𝜈 − id).

Proof. See [Vil09b, Theorem 23.9]. □

In general, on a Riemannian manifold, the gradient of d(·, 𝑞)2 at 𝑝 is −2 log𝑝 (𝑞). Check
that this formula makes sense on Euclidean space R𝑑 .

Differentiating in time and applying (1.4.6) and the lemma,

𝜕𝑡L𝑡 = F(𝜇𝑡 ) − 𝑡 ∥∇𝑊2F(𝜇𝑡 )∥2𝜇𝑡 + ⟨∇𝑊2F(𝜇𝑡 ),𝑇𝜇𝑡→𝜇★ − id⟩𝜇𝑡︸                           ︷︷                           ︸
≤−F(𝜇𝑡 )

≤ 0 .

Hence, L𝑡 ≤ L0, which implies

F(𝜇𝑡 ) ≤
1
2𝑡 𝑊

2
2 (𝜇0, 𝜇

★) . (1.4.12)

1.5 Overview of the Convergence Results

1.5.1 Convergence Results
The main convergence results we have developed can be summarized as follows.

• KL(· ∥𝜋) is 𝛼-strongly convex along𝑊2 geodesics if and only if𝑉 is strongly convex,
if and only if: for all 𝜇0, 𝜈0 ∈ P2(R𝑑), if (𝜇𝑡 )𝑡≥0, (𝜈𝑡 )𝑡≥0 are Langevin diffusions
started at 𝜇0 and 𝜈0 respectively, then𝑊 2

2 (𝜇𝑡 , 𝜈𝑡 ) ≤ exp(−2𝛼𝑡)𝑊 2
2 (𝜇0, 𝜈0).

• The target 𝜋 satisfies the log-Sobolev inequality (LSI) with constant 1/𝛼 if and only
if for all 𝜋0 ∈ P2,ac(R𝑑), along the Langevin dynamics 𝑡 ↦→ 𝜋𝑡 started at 𝜋0 it holds
that KL(𝜋𝑡 ∥ 𝜋) ≤ exp(−2𝛼𝑡) KL(𝜋0 ∥ 𝜋). The LSI is a gradient domination condition
in Wasserstein space.

• The target 𝜋 satisfies the Poincaré inequality (PI) with constant 1/𝛼 if and only if
for all 𝜋0 ∈ P2,ac(R𝑑), along the Langevin dynamics 𝑡 ↦→ 𝜋𝑡 started at 𝜋0 it holds
that 𝜒2(𝜋𝑡 ∥ 𝜋) ≤ exp(−2𝛼𝑡) 𝜒2(𝜋0 ∥ 𝜋). The Poincaré inequality is a spectral gap
condition for the generator of the Langevin diffusion.

The conditions are listed from strongest to weakest: 𝛼-strong log-concavity implies
𝛼−1-LSI, which implies 𝛼−1-Poincaré. In addition:
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• If the target 𝜋 is log-concave, then along the Langevin dynamics 𝑡 ↦→ 𝜋𝑡 it holds
that KL(𝜋𝑡 ∥ 𝜋) ≤ 1

2𝑡𝑊
2

2 (𝜋0, 𝜋).

When we turn towards discretization analysis, there are two main ways in which the
continuous-time result affects the analysis: the strength of the continuous-time result,
and the metric in which we must perform the analysis.

Regarding the first point, the first two results are generally more useful because at
initialization, we typically have𝑊 2

2 (𝜋0, 𝜋), KL(𝜋0 ∥ 𝜋) = 𝑂 (𝑑) (at least when 𝜋 is strongly
log-concave). Hence, exponential convergence in𝑊 2

2 and KL both imply that the amount
of time it takes for the Langevin diffusion to reach 𝜀 error is 𝑂 (log(𝑑/𝜀)). In contrast, the
chi-squared divergence is typically much larger at initialization: 𝜒2(𝜋0 ∥ 𝜋) = exp(𝑂 (𝑑)).
Therefore, the chi-squared result implies that the Langevin diffusion takes𝑂 (𝑑 ∨ log(1/𝜀))
time to reach 𝜀 error.

Regarding the second point, the𝑊2 contraction under strong log-concavity is the
easiest to turn into a sampling guarantee for the discretized algorithm. This is because
to bound the𝑊2 distance, we can use straightforward coupling techniques. On the other
hand, a continuous-time result in KL or 𝜒2 often requires the discretization analysis to
also be carried out in KL or 𝜒2, which is substantially trickier.

1.5.2 Appendix: Divergences between Probability Measures
As we have already seen, the analysis of Langevin introduces many different notions of
divergences between probability measures. Therefore, it is important to develop a healthy
understanding of the relationships between these divergences.

First of all, there is a distinction between the Wasserstein metric, which is a transport
distance (measuring how far we must move the mass of one measure to the other), and
information divergences which are defined directly in terms of the densities such as the
KL divergence and the chi-squared divergence. Note that the latter two divergences are
infinite unless the first argument is absolutely continuous w.r.t. the second, which is
certainly not the case for the Wasserstein metric.

We introduce another important metric.

Definition 1.5.1. The total variation (TV) distance between probability measures
𝜇, 𝜈 ∈ P(X) is defined via

∥𝜇 − 𝜈 ∥TV B sup
𝐴⊆X
|𝜇 (𝐴) − 𝜈 (𝐴) | = sup

𝑓 :X→[0,1]

���∫ 𝑓 d𝜇 −
∫

𝑓 d𝜈
���
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= inf
𝛾∈C(𝜇,𝜈)

∫
1{𝑥 ≠ 𝑦}𝛾 (d𝑥, d𝑦) = 1

2

∫ ��d𝜇
d𝜆 −

d𝜈
d𝜆

�� d𝜆 ,
where 𝜆 is a common dominating measure for 𝜇 and 𝜈 .

The TV metric is indeed a metric on the space P(X) (in fact, it can be extended to a
norm on the spaceM(X) of signed measures). The TV distance can be thought of as both
a transport metric (with cost (𝑥,𝑦) ↦→ 1{𝑥 ≠ 𝑦}; in fact, the TV distance is a special case
of the𝑊1 metric introduced in Exercise 1.12) and an information divergence.

The family of information divergences can be further expanded by introducing the
following definition.

Definition 1.5.2. Let 𝜇, 𝜈 ∈ P(X), and let 𝑓 : R+ → R be a convex function with
𝑓 (1) = 0. Then, the 𝑓 -divergence of 𝜇 from 𝜈 is

D𝑓 (𝜇 ∥ 𝜈) B
∫

𝑓
(d𝜇
d𝜈

)
d𝜈 , if 𝜇 ≪ 𝜈 .

In general, if 𝜇 3 𝜈 , we let 𝑝𝜇 , 𝑝𝜈 denote the respective densities of 𝜇 and 𝜈 w.r.t. a
common dominating measure. Then,

D𝑓 (𝜇 ∥ 𝜈) B
∫
𝑝𝜈>0

𝑓
(𝑝𝜇
𝑝𝜈

)
d𝜈 + 𝑓 ′(∞) 𝜇{𝑝𝜈 = 0} .

For example, the TV distance corresponds to 𝑓 (𝑥) = 1
2 |𝑥 − 1|, the KL divergence corre-

sponds to 𝑓 (𝑥) = 𝑥 ln𝑥 , and the 𝜒2 divergence corresponds to 𝑓 (𝑥) = (𝑥 − 1)2. When 𝑓
has superlinear growth, then 𝑓 ′(∞) = ∞ and hence D𝑓 (𝜇 ∥ 𝜈) = ∞ unless 𝜇 ≪ 𝜈 , but the
second more general definition given above is necessary to recover the TV distance.

We always have 𝜒2 ≥ ln(1 + 𝜒2) ≥ KL ≥ 2 ∥·∥2TV (the last inequality is Pinsker’s
inequality, see Exercise 2.13), and under a T2 transport inequality with constant 𝛼−1

(which is implied by 𝛼−1-LSI) we have KL ≥ 𝛼
2 𝑊

2
2 . This chain of inequalities helps to

explain why, if the KL divergence is of order 𝑑 , then the 𝜒2 divergence is of order exp𝑑 .
In Section 2.2.4, we will also introduce the closely related family of divergences known

as Rényi divergences.
We conclude by stating a few key facts (without complete proofs) about 𝑓 -divergences.

The first is the data-processing inequality. Below, given a Markov kernel 𝑃 and a mixing
measure 𝜇, we write 𝜇𝑃 B

∫
𝑃 (𝑥, ·) 𝜇 (d𝑥) for the mixture distribution.
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Theorem 1.5.3 (data-processing inequality). Suppose that 𝜇, 𝜈 ∈ P(X) and that 𝑃 is
any Markov kernel. Then, for any 𝑓 -divergence, it holds that

D𝑓 (𝜇𝑃 ∥ 𝜈𝑃) ≤ D𝑓 (𝜇 ∥ 𝜈) .

Equivalently, D𝑓 (· ∥ ·) is jointly convex in its two arguments.

Proof sketch. To simplify, we will abuse notation and identify all probability measures
with densities. Then, by Jensen’s inequality,

D𝑓 (𝜇 ∥ 𝜈) =
∫

𝑓
(𝜇 (𝑥) 𝑃 (𝑥,𝑦)
𝜈 (𝑥) 𝑃 (𝑥,𝑦)

)
𝜈 (d𝑥) 𝑃 (𝑥, d𝑦)

=

∫
𝑓
(𝜇 (𝑥) 𝑃 (𝑥,𝑦)
𝜈 (𝑥) 𝑃 (𝑥,𝑦)

) 𝜈 (d𝑥) 𝑃 (𝑥,𝑦)
𝜈𝑃 (𝑦) 𝜈𝑃 (d𝑦)

≥
∫

𝑓

(∫ 𝜇 (𝑥) 𝑃 (𝑥,𝑦)
𝜈 (𝑥) 𝑃 (𝑥,𝑦)

𝜈 (d𝑥) 𝑃 (𝑥,𝑦)
𝜈𝑃 (𝑦)

)
𝜈𝑃 (d𝑦) =

∫
𝑓
(𝜇𝑃 (𝑦)
𝜈𝑃 (𝑦)

)
𝜈𝑃 (d𝑦) . □

The remaining facts are specific to the KL divergence. The Donsker–Varadhan theorem
expresses the KL divergence via a variational principle.

Theorem 1.5.4 (Donsker–Varadhan variational principle). Suppose that 𝜇, 𝜈 ∈ P(X),
where X is a Polish space. Then,

KL(𝜇 ∥ 𝜈) = sup
{
E𝜇 𝑔 − lnE𝜈 exp𝑔

�� 𝑔 : X→ R is bounded and measurable
}
.

The theorem asserts that the functionals 𝜇 ↦→ KL(𝜇 ∥𝜈) and𝑔 ↦→ lnE𝜈 exp𝑔 are convex
conjugates of each other. See [DZ10, Lemma 6.2.13] or [RS15, Theorem 5.4] for careful
proofs, or see the remark after Lemma 2.3.4.

Lastly, we have the chain rule for the KL divergence.

Lemma 1.5.5 (chain rule for KL divergence). Let X1, X2 be Polish spaces and suppose
we are given two probability measures 𝜇, 𝜈 ∈ P(X1 × X2) with 𝜇 ≪ 𝜈 . Let 𝜇1 be the X1
marginal of 𝜇, and let 𝜇2|1(· | ·) be the conditional distribution for 𝜇 on X2 conditioned
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on X1; likewise define 𝜈1 and 𝜈2|1. Then, it holds that

KL(𝜇 ∥ 𝜈) = KL(𝜇1 ∥ 𝜈1) +
∫

KL
(
𝜇2|1(· | 𝑥1)



 𝜈2|1(· | 𝑥1)
)
𝜇1(d𝑥1) .

We invite the reader to prove the chain rule in the discrete case (X1 and X2 are finite
sets), free of measure-theoretic guilt.

Bibliographical Notes
Much of the material in this chapter is foundational, with entire textbooks giving com-
prehensive treatments of the topics. For stochastic calculus, there is of course a long list
of textbooks, but as a starting place we suggest [Ste01; Le 16]. For Markov semigroup
theory, see [BGL14; Han16]. For optimal transport, the core theory is developed in [Vil03;
San15], and for a rigorous development of Otto calculus see [AGS08; Vil09b].

The notion of solution used in Section 1.1.3 is more typically called a strong solution to
the SDE, because given any Brownian motion 𝐵 we can find a process 𝑋 which is driven
by 𝐵 and which satisfies the SDE. There is also a notion of weak solution, in which we are
allowed to construct the probability space (Ω,ℱ, (ℱ𝑡 )𝑡≥0, P) and the Brownian motion 𝐵
together with the solution 𝑋 . We will not worry about the distinction in this book, since
strong solutions suffice for our purposes.

See [San15, §1.6.3] for an elegant proof of strong duality for the optimal transport
problem via convex duality.

The perspective of the Langevin diffusion as a Wasserstein gradient flow was intro-
duced in [JKO98]; the application of Otto calculus to functional inequalities was given
in [OV00]; and the calculation rules for Otto calculus were set out in [Ott01]. These three
papers are seminal and are worth reading carefully. An alternative (but related) approach
to functional inequalities via optimal transport is given in [Cor02]. The formal proof of
the Otto–Villani theorem in Exercise 1.17 was made rigorous via entropic interpolations
in [Gen+20]; see [BB18] for a generalization.

The Efron–Stein inequality in Exercise 1.2 is just one example of the use of martingales
to derive concentration inequalities; see [BLM13; Han16] for more on this topic. We will
also revisit the martingale method in the next chapter; see Exercise 2.15.

The upper bound (1.E.2) in Exercise 1.11 is surprisingly sharp: it holds that

1
2 ∥Σ

1/2
0 − Σ

1/2
1 ∥

2
HS ≤𝑊 2

2 (𝜇0, 𝜇1) − ∥𝑚0 −𝑚1∥2 ≤ ∥Σ1/2
0 − Σ

1/2
1 ∥

2
HS ,

see [CV21, Lemma 3.5].
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The proof of the dynamical formulation of dual optimal transport in Exercise 1.13 is
carried out rigorously in [Vil03, §8.1]. We mention that the Hamilton–Jacobi equation
has a close connection with classical mechanics; in particular, the characteristics of the
Hamilton–Jacobi equation are precisely Hamilton’s equations of motion [Eva10, §3.3].
In the context of optimal transport, the Hamiltonian consists only of kinetic energy (no
potential energy) and hence the characteristics are straight lines traversed at constant
speed; this is of course consistent with the description of Wasserstein geodesics. The
Hamilton–Jacobi equation, the Hopf–Lax semigroup, and their connection with optimal
transport can also be generalized to other costs; see [Vil03, §5.4].

Exercises
A Primer on Stochastic Calculus

⊵ Exercise 1.1 (Doob’s 𝐿𝑝 maximal inequality)
Prove Doob’s 𝐿𝑝 maximal inequality (Corollary 1.1.31) for discrete-time submartingales.

Hint: Start with the inequality 𝜆 P(𝑀∗
𝑁
≥ 𝜆) ≤ E[𝑀𝑁 1{𝑀∗𝑁 ≥ 𝜆}] from the proof

of Theorem 1.1.30, where 𝑀∗
𝑁
B max𝑘=0,1,...,𝑁 𝑀𝑘 . Compute the 𝐿𝑝 (P) norm of 𝑀∗

𝑁
by

integrating the tails, and apply the above inequality together with Hölder’s inequality.

⊵ Exercise 1.2 (orthogonality of martingale increments)
Let (𝑀𝑛)𝑛∈N be a discrete-time martingale which is adapted to a filtration (ℱ𝑛)𝑛∈N and
satisfies E[𝑀2

𝑛 ] < ∞ for all 𝑛 ∈ N. Let Δ𝑛 B 𝑀𝑛+1 −𝑀𝑛 denote the martingale increment.
1. Prove that for𝑚,𝑛 ∈ N with𝑚 ≠ 𝑛, E[Δ𝑚Δ𝑛] = 0: the martingale increments are

orthogonal. In particular, if 𝑀0 = 0, then E[𝑀2
𝑛 ] =

∑𝑛−1
𝑘=0 E[Δ2

𝑘
].

2. Let (𝑋𝑖)𝑛𝑖=1 be independent random variables taking values in some space X, and
suppose that the function 𝑓 : X𝑛 → R is bounded and measurable. Check that if
𝑀𝑘 B E[𝑓 (𝑋1, . . . , 𝑋𝑛) | 𝑋1, . . . , 𝑋𝑘], then the Doob martingale (𝑀𝑘)𝑛𝑘=1 is indeed
a martingale. Then, using the previous part, prove the following tensorization
property of the variance:

var 𝑓 (𝑋1, . . . , 𝑋𝑛) ≤ E
𝑛∑︁
𝑘=1

var
(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑘 ) ,
where 𝑋−𝑘 B (𝑋1, . . . , 𝑋𝑘−1, 𝑋𝑘+1, . . . , 𝑋𝑛).

3. Define the discrete derivative
𝐷𝑘 𝑓 (𝑥) B sup

𝑥 ′
𝑘
∈X
𝑓 (𝑥1, . . . , 𝑥𝑘−1, 𝑥

′
𝑘
, 𝑥𝑘+1, . . . , 𝑥𝑛)
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− inf
𝑥 ′
𝑘
∈X
𝑓 (𝑥1, . . . , 𝑥𝑘−1, 𝑥

′
𝑘
, 𝑥𝑘+1, . . . , 𝑥𝑛) .

Prove the inequality

var 𝑓 (𝑋1, . . . , 𝑋𝑛) ≤
1
4 E

𝑛∑︁
𝑘=1
{𝐷𝑘 𝑓 (𝑋1, . . . , 𝑋𝑛)}2 .

This inequality, known as the Efron–Stein inequality, expresses the fact that
a function 𝑓 of independent random variables which is not too sensitive to any
individual coordinate has controlled variance. This is a concentration inequality
which has useful consequences in many probabilistic settings, see, e.g., [BLM13].
Hint: First prove that a random variable which takes values in [𝑎, 𝑏] has variance
bounded by 1

4 (𝑏 − 𝑎)
2.

⊵ Exercise 1.3 (𝐿2 bounded martingale convergence theorem)
Let (𝑀𝑛)𝑛∈N be a discrete-time martingale which is adapted to a filtration (ℱ𝑛)𝑛∈N. Assume
that the martingale is bounded in 𝐿2(P): sup𝑛∈N E[𝑀2

𝑛 ] ≤ 𝐵2 < ∞. Prove that the
martingale converges a.s. and in 𝐿2(P) to a limit 𝑀∞ with E[𝑀2

∞] ≤ 𝐵2.
Hint: For the a.s. convergence, it suffices to show that for all 𝜀 > 0, the event{

lim
𝑚→∞

sup
𝑛∈N, 𝑛≥𝑚

|𝑀𝑚 −𝑀𝑛 | ≥ 𝜀
}

has probability zero. To do so, use Doob’s maximal inequality (Theorem 1.1.30) and
orthogonality of martingale increments (Exercise 1.2).

⊵ Exercise 1.4 (explosion of ODEs)
Solve the following ODE on R: ¤𝑥𝑡 = 𝑏 (𝑥𝑡 ) with initial condition 𝑥0 ∈ R, where 𝑏 (𝑥) = |𝑥 |𝛼 ,
𝛼 > 0. Show that

1. when 0 < 𝛼 < 1, there are multiple solutions to the ODE (with initial condition
𝑥0 = 0) so that uniqueness fails;

2. when 𝛼 = 1 (and hence 𝑏 is globally Lipschitz), there is a unique solution to the
ODE which is finite for all time;

3. when 𝛼 > 1, then the solution to the ODE blows up in finite time.

⊵ Exercise 1.5 (Ornstein–Uhlenbeck process)
One of the most important diffusions that we will encounter is the Ornstein–Uhlenbeck
(OU) process, which solves the SDE

d𝑋𝑡 = −𝑋𝑡 d𝑡 +
√

2 d𝐵𝑡 .
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Give an explicit expression for 𝑋𝑡 in terms of 𝑋0 and an Itô integral involving (𝐵𝑡 )𝑡≥0.
From this expression, can you read off the stationary distribution of this process?

Hint: Apply Itô’s formula to 𝑓 (𝑡, 𝑋𝑡 ) = 𝑋𝑡 exp 𝑡 . To find the stationary distribution,
justify the following fact: if (𝜂𝑡 )𝑡≥0 is a deterministic function, then

∫ 𝑇
0 𝜂𝑡 d𝐵𝑡 is a Gaussian

with mean zero and variance
∫ 𝑇

0 𝜂2
𝑡 d𝑡 .

Markov Semigroup Theory

⊵ Exercise 1.6 (generator for general SDEs)
Compute the generator for a general time-homogeneous SDE d𝑋𝑡 = 𝑏 (𝑋𝑡 ) d𝑡 + 𝜎 (𝑋𝑡 ) d𝐵𝑡 .

⊵ Exercise 1.7 (basic properties of the Markov semigroup)
Let (𝑃𝑡 )𝑡≥0 be a Markov semigroup with carré du champ Γ.

1. Prove that if 𝜙 : R→ R is convex, then 𝑃𝑡𝜙 (𝑓 ) ≥ 𝜙 (𝑃𝑡 𝑓 ) and ℒ𝜙 (𝑓 ) ≥ 𝜙′(𝑓 )ℒ𝑓

whenever the expressions are well-defined.

2. If (𝑋𝑡 )𝑡≥0 denotes the Markov process associated with the semigroup and 𝑓 is smooth,
then the process 𝑡 ↦→ 𝑓 (𝑋𝑡 ) −

∫ 𝑡
0 ℒ𝑓 (𝑋𝑠) d𝑠 is a continuous local martingale. In

particular, (𝑓 (𝑋𝑡 ))𝑡≥0 is a continuous local martingale if and only if ℒ𝑓 = 0.

3. Prove that for 𝑓 , 𝑔 ∈ 𝐿2(𝜋) in the domain of the carré du champ, we have the
Cauchy–Schwarz inequality Γ(𝑓 , 𝑔) ≤

√︁
Γ(𝑓 , 𝑓 ) Γ(𝑔,𝑔).

Hint: For 𝜆 ∈ R, consider 0 ≤ Γ(𝑓 + 𝜆𝑔, 𝑓 + 𝜆𝑔) and use bilinearity.

⊵ Exercise 1.8 (functional inequalities and exponential decay)
Prove the equivalence between the Poincaré inequality and exponential decay of variance
(Theorem 1.2.20), and the equivalence between the log-Sobolev inequality and exponential
decay of entropy (Theorem 1.2.21).

⊵ Exercise 1.9 (log-Sobolev implies Poincaré)
Linearize the log-Sobolev inequality to obtain the Poincaré inequality.

Hint: Argue that if 𝑓 ∈ C∞c (R𝑑) satisfies
∫
𝑓 d𝜋 = 0, then

KL
(
(1 + 𝜀 𝑓 ) 𝜋



 𝜋 ) = 𝜀2

2

∫
𝑓 2 d𝜋 + 𝑜 (𝜀2) . (1.E.1)

⊵ Exercise 1.10 (mixing of the Ornstein–Uhlenbeck process)
Consider the Ornstein–Uhlenbeck process (𝑋𝑡 )𝑡≥0 introduced in Exercise 1.5. Note that
this is just an instance of the Langevin diffusion with potential 𝑉 (𝑥) = ∥𝑥 ∥

2

2 .
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1. Using the explicit solution of the OU process, show that the semigroup has the
explicit expression

𝑃𝑡 𝑓 (𝑥) = E 𝑓
(
exp(−𝑡) 𝑥 +

√︁
1 − exp(−2𝑡) 𝜉

)
, 𝜉 ∼ normal(0, 1) .

Using this expression for the semigroup, compute the generator by hand and check
that it agrees with the general formula obtained in Example 1.2.4.

2. Show that for the OU process, ∇𝑃𝑡 𝑓 = exp(−𝑡) 𝑃𝑡∇𝑓 . Next, by differentiating the
Dirichlet energy 𝑡 ↦→ ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ), show that ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ≤ exp(−2𝑡)ℰ(𝑓 , 𝑓 ). Ex-
plain why this implies a Poincaré inequality for the standard Gaussian distribution.
Hint: For a general Markov semigroup, show that var𝜋 𝑓 = 2

∫ ∞
0 ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝑡 by

differentiating 𝑡 ↦→ var𝜋 (𝑃𝑡 𝑓 ).

In Chapter 2, we will generalize these calculations to prove Theorem 1.2.29.

The Geometry of Optimal Transport

⊵ Exercise 1.11 (optimal transport between Gaussians)
Let 𝜇0 B normal(𝑚0, Σ0) and 𝜇1 B normal(𝑚1, Σ1); assume that Σ0 ≻ 0. Compute the
optimal transport map from 𝜇0 to 𝜇1, as well as the cost𝑊2(𝜇0, 𝜇1). [By Brenier’s theorem,
it suffices to find the gradient of a convex function which pushes forward 𝜇0 to 𝜇1.]

Also, exhibit a coupling to prove the upper bound

𝑊 2
2 (𝜇0, 𝜇1) ≤ ∥𝑚0 −𝑚1∥2 + ∥Σ1/2

0 − Σ
1/2
1 ∥

2
HS . (1.E.2)

Finally, suppose that 𝜈0, 𝜈1 are probability measures, and suppose that 𝜇0, 𝜇1 are
Gaussians whose means and covariances match those of 𝜈0 and 𝜈1 respectively. Then,
prove that𝑊2(𝜈0, 𝜈1) ≥𝑊2(𝜇0, 𝜇1).

Hint: For the last statement, use the fact that the dual potentials for optimal transport
between Gaussians are quadratic functions.

⊵ Exercise 1.12 (optimal transport with other costs)
In this exercise, we consider optimal transport with a general cost function 𝑐 as in (1.3.2).

1. By following the proof of Theorem 1.3.8, argue that the optimal dual potentials
(𝑓 , 𝑔) are 𝑐-conjugates, i.e., 𝑓 = 𝑔𝑐 and 𝑔 = 𝑓 𝑐 where

𝑔𝑐 (𝑥) B inf
𝑦∈Y
{𝑐 (𝑥,𝑦) − 𝑔(𝑦)} , 𝑓 𝑐 (𝑦) B sup

𝑥∈X
{𝑐 (𝑥,𝑦) − 𝑓 (𝑥)} , (1.E.3)
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and that

T𝑐 (𝜇, 𝜈) ≥ sup
𝑓 ∈𝐿1 (𝜇)

{∫
𝑓 d𝜇 +

∫
𝑓 𝑐 d𝜈

}
.

Under general conditions, equality holds; see [Vil09b, Theorem 5.10].
Functions of the form (1.E.3) are called 𝑐-concave.

2. Let X = Y be a metric space with metric d. For all 𝑝 ≥ 1, we can define the
𝑝-Wasserstein distance

𝑊
𝑝
𝑝 (𝜇, 𝜈) = inf

𝛾∈C(𝜇,𝜈)

∫
d(𝑥,𝑦)𝑝 𝛾 (d𝑥, d𝑦) .

Let P𝑝 (X) denote the space of probability measures 𝜇 over X such that for some
𝑥0 ∈ X,

∫
d(𝑥0, ·)𝑝 d𝜇 < ∞. Show that (P𝑝 (X),𝑊𝑝) is a metric space.

3. In the case 𝑝 = 1, show that if (𝑓 , 𝑔) are d-conjugates, then 𝑓 = −𝑔 and 𝑓 is
1-Lipschitz. Deduce the duality formula

𝑊1(𝜇, 𝜈) = sup
{∫

𝑓 d𝜇 −
∫

𝑓 d𝜈
��� 𝑓 : X→ R is 1-Lipschitz

}
. (1.E.4)

⊵ Exercise 1.13 (dynamical formulations of optimal transport)
The formula (1.3.23) shows that the𝑊2 distance between 𝜇0 and 𝜇1 equals the smallest
arc length of any curve joining 𝜇0 and 𝜇1. It is also true that the squared𝑊2 distance
minimizes the energy or action of any curve joining 𝜇0 and 𝜇1, in the following sense:

𝑊 2
2 (𝜇0, 𝜇1) = inf

{∫ 1

0
∥𝑣𝑡 ∥2𝐿2 (𝜇𝑡 ) d𝑡

��� 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0
}
. (1.E.5)

Although the problems (1.3.23) and (1.E.5) both identify geodesics in the Wasserstein space,
the latter problem has more favorable properties. Namely, the minimizing curves in (1.3.23)
are geodesics, but they may not have constant speed (indeed, the arc length functional
is invariant under time reparameterization of the curve); in contrast, minimizing curves
in (1.E.5) necessarily have constant speed. Also, we can reparameterize problem (1.E.5)
by introducing the momentum density 𝑝𝑡 B 𝜇𝑡𝑣𝑡 and write

𝑊 2
2 (𝜇0, 𝜇1) = inf

{∫ 1

0

(∫ ∥𝑝𝑡 ∥2
𝜇𝑡

)
d𝑡

��� 𝜕𝑡𝜇𝑡 + div 𝑝𝑡 = 0
}
, (1.E.6)



1.5. OVERVIEW OF THE CONVERGENCE RESULTS 61

which is now a strictly convex problem in the variables (𝜇, 𝑝). This convenient reformula-
tion is known as the Benamou–Brenier formula [BB99].

Just as (1.E.5) describes the dynamical version of the static optimal transport prob-
lem (1.3.5), there is a dynamical formulation of the dual optimal transport problem (1.3.7),
in which the dual potential evolves according to the Hamilton–Jacobi equation

𝜕𝑡𝑢𝑡 +
1
2 ∥∇𝑢𝑡 ∥

2 = 0 . (1.E.7)

Then, it holds that

1
2𝑊

2
2 (𝜇0, 𝜇1) = sup

{∫
𝑢1 d𝜇1 −

∫
𝑢0 d𝜇0

��� 𝜕𝑡𝑢𝑡 + 1
2 ∥∇𝑢𝑡 ∥

2 = 0
}
. (1.E.8)

The goal of this exercise is to justify and understand these facts.

1. Show that the mapping R>0 × R𝑑 → R, (𝜇, 𝑝) ↦→ ∥𝑝 ∥2/𝜇 is strictly convex. Also,
compute the convex conjugate of this mapping. Deduce that the Benamou–Brenier
reformulation (1.E.6) is a strictly convex problem.

2. Ignoring issues of regularity, show that the solution 𝑢𝑡 of the Hamilton–Jacobi
equation with initial condition 𝑢0 = 𝑓 is described by the Hopf–Lax semigroup

𝑢𝑡 (𝑥) = 𝑄𝑡 𝑓 (𝑥) B inf
𝑦∈R𝑑

{
𝑓 (𝑦) + 1

2𝑡 ∥𝑦 − 𝑥 ∥
2} .

3. Following the proof of Theorem 1.3.8, show that the dual optimal transport prob-
lem (1.3.7) can be written

1
2𝑊

2
2 (𝜇0, 𝜇1) = sup

𝑓 ∈𝐿1 (𝜇0)

{∫
𝑄1𝑓 d𝜇1 −

∫
𝑓 d𝜇0

}
,

where 𝑄1 denotes the Hopf–Lax semigroup at time 1. From this, deduce that the
formula (1.E.8) holds.

4. Although the previous part gives a proof of the dynamical formulation (1.E.8), it
is unsatisfactory because it only involves an analysis of the static primal and dual
problems. Here, we present a purely dynamical proof. The continuity constraint
𝜕𝑡𝜇𝑡 + div𝑝𝑡 = 0 in (1.E.6) can be reformulated as follows: for any curve of functions
[0, 1] × R𝑑 → R, (𝑡, 𝑥) ↦→ 𝑢𝑡 (𝑥),∫

𝑢1 d𝜇1 −
∫

𝑢0 d𝜇0 =

∫ 1

0

(
𝜕𝑡

∫
𝑢𝑡 d𝜇𝑡

)
d𝑡 =

∫ 1

0

(∫
(𝜕𝑡𝑢𝑡 𝜇𝑡 + 𝑢𝑡 𝜕𝑡𝜇𝑡 )

)
d𝑡
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=

∫ 1

0

(∫ (
𝜕𝑡𝑢𝑡 +

〈
∇𝑢𝑡 ,

𝑝𝑡

𝜇𝑡

〉)
d𝜇𝑡

)
d𝑡 .

This can be incorporated as a Lagrange multiplier in (1.E.6):

1
2𝑊

2
2 (𝜇0, 𝜇1) = inf

𝜇:[0,1]×R𝑑→R+
𝑝:[0,1]×R𝑑→R𝑑

sup
𝑢:[0,1]×R𝑑→R

{∫ 1

0

∫ ∥𝑝𝑡 ∥2
2𝜇𝑡

d𝑡 +
∫

𝑢1 d𝜇1 −
∫

𝑢0 d𝜇0

−
∫ 1

0

(∫ (
𝜕𝑡𝑢𝑡 +

〈
∇𝑢𝑡 ,

𝑝𝑡

𝜇𝑡

〉)
d𝜇𝑡

)
d𝑡
}

Assume that the infimum and supremum can be interchanged (here, we are invoking
an abstract minimax theorem, which crucially relies on the convexity of the problem
established in the first part). Use this to prove that

1
2𝑊

2
2 (𝜇0, 𝜇1) = sup

{∫
𝑢1 d𝜇1 −

∫
𝑢0 d𝜇0

��� 𝜕𝑡𝑢𝑡 + 1
2 ∥∇𝑢𝑡 ∥

2 ≤ 0
}

and that equality holds only if the Hamilton–Jacobi equation (1.E.7) holds, and
if ∇𝑢𝑡 = 𝑣𝑡 = 𝑝𝑡/𝜇𝑡 . Note that this also establishes that the optimal vector fields
(𝑣𝑡 )𝑡∈[0,1] are gradients of functions.

5. Let 𝑡 ↦→ 𝜇𝑡 be a Wasserstein geodesic and let 𝑡 ↦→ 𝑣𝑡 be its associated curve of
tangent vectors. Prove that 𝜕𝑡𝑣𝑡 + ∇𝑣𝑡 𝑣𝑡 = 0. (This statement follows from the
previous part by differentiating the Hamilton–Jacobi equation in space. Try to also
give a more direct proof of this equation.)
Hint: If ¤𝑥𝑡 = 𝑣𝑡 (𝑥𝑡 ), then because particles travel with constant velocity along
Wasserstein geodesics, 𝑡 ↦→ ¤𝑥𝑡 is constant.

⊵ Exercise 1.14 (Wasserstein space has non-negative curvature)
Let 𝑡 ↦→ 𝜇𝑡 denote a Wasserstein geodesic. By finding an appropriate coupling, prove that
for all 𝑡 ∈ [0, 1] and all 𝜈 ∈ P2(R𝑑),

𝑊 2
2 (𝜇𝑡 , 𝜈) ≥ (1 − 𝑡)𝑊 2

2 (𝜇0, 𝜈) + 𝑡𝑊 2
2 (𝜇1, 𝜈) − 𝑡 (1 − 𝑡)𝑊 2

2 (𝜇0, 𝜇1) . (1.E.9)

Compare this to the following equality on R𝑑 : if 𝑥𝑡 = (1 − 𝑡) 𝑥0 + 𝑡 𝑥1, then

∥𝑥𝑡 − 𝑦∥2 = (1 − 𝑡) ∥𝑥0 − 𝑦∥2 + 𝑡 ∥𝑥1 − 𝑦∥2 − 𝑡 (1 − 𝑡) ∥𝑥0 − 𝑥1∥2 . (1.E.10)

The equality (1.E.10) expresses the fact that R𝑑 is flat, whereas the inequality (1.E.9)
expresses the fact that P2(R𝑑) (equipped with the𝑊2 metric) is non-negatively curved,
like a sphere. See Section 2.6.2.
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The Langevin SDE as a Wasserstein Gradient Flow

⊵ Exercise 1.15 (reconciling the SDE and Wasserstein perspectives)
Let 𝜑 : R𝑑 → R be a smooth test function and let 𝛿 > 0. First, consider the Langevin
diffusion d𝑍𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡 +

√
2 d𝐵𝑡 started at 𝑍0 ∼ 𝜇0, and compute E𝜑 (𝑍𝛿 ) up to first

order in 𝛿 .
Next, if 𝜕𝑡𝜇𝑡 = div(𝜇𝑡∇ ln(𝜇𝑡/𝜋)), with 𝜋 ∝ exp(−𝑉 ), then we can interpret this as a

fluid flow: let 𝑋0 ∼ 𝜇0, and ¤𝑋𝑡 = −∇ ln(𝜇𝑡/𝜋) (𝑋𝑡 ), so that 𝑋𝑡 ∼ 𝜇𝑡 . Compute the quantity
E𝜑 (𝑋𝛿 ) up to first order in 𝛿 .

Check that the two expressions you computed match (up to first order in 𝛿). Note that
these calculations are implicit in §1.2 and §1.4, but it is illuminating to directly connect
the Langevin diffusion to the Wasserstein gradient flow.

⊵ Exercise 1.16 (Wasserstein calculus for 𝑓 -divergences)
Compute the Wasserstein gradient of the functional 𝜒2(· ∥ 𝜋). Use the rules of Wasserstein
calculus to compute 𝜕𝑡 𝜒2(𝜋𝑡 ∥ 𝜋), where 𝑡 ↦→ 𝜋𝑡 is the law of the Langevin diffusion with
stationary distribution 𝜋 . Check that the result agrees with a calculation based on Markov
semigroup theory.

More generally, let 𝑓 : R→ R+ and consider the 𝑓 -divergence

𝐷 𝑓 (𝜇 ∥ 𝜋) B
∫

𝑓
( 𝜇
𝜋

)
d𝜋 .

Compute the Wasserstein gradient of𝐷 𝑓 (· ∥𝜋). For bonus points, calculate the Wasserstein
Hessian as well.

⊵ Exercise 1.17 (Otto–Villani theorem)
Consider the gradient flow 𝑡 ↦→ 𝜇𝑡 of a functional F with inf F = 0. Assume that the
PL inequality ∥∇𝑊2F(𝜇)∥2𝜇 ≥ 2𝛼 F(𝜇) holds, and that the gradient flow converges to the
minimizer of F. Argue that 𝜕𝑡𝑊2(𝜇𝑡 , 𝜇0) ≤ ∥∇𝑊2F(𝜇𝑡 )∥𝜇𝑡 , and then show that

𝜕𝑡

(√︂𝛼

2 𝑊2(𝜇𝑡 , 𝜇0) +
√︁
F(𝜇𝑡 )

)
≤ 0 .

Conclude that a quadratic growth inequality holds.

⊵ Exercise 1.18 (contraction of the Langevin diffusion)
In this exercise, we explore different proofs of contraction.

1. Suppose that 𝑉 : R𝑑 → R is 𝛼-strongly convex. Let 𝑡 ↦→ 𝑥𝑡 , 𝑡 ↦→ 𝑦𝑡 be two gradient
flows for 𝑉 . Show that ∥𝑥𝑡 − 𝑦𝑡 ∥2 ≤ exp(−2𝛼𝑡) ∥𝑥0 − 𝑦0∥2.
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2. Next, prove Theorem 1.4.10. In fact, show that we have the almost sure contraction
∥𝑍𝑡 − 𝑍 ′𝑡 ∥ ≤ exp(−𝛼𝑡) ∥𝑍0 − 𝑍 ′0∥.
Hint: Apply Itô’s formula (Theorem 1.1.18) to 𝑓 (𝑧, 𝑧′) B ∥𝑧 − 𝑧′∥2.

3. Let F : P2,ac(R𝑑) → R be an 𝛼-convex functional, and let (𝜇𝑡 )𝑡≥0, (𝜈𝑡 )𝑡≥0 be gradient
flows for F. Prove that

𝑊 2
2 (𝜇𝑡 , 𝜈𝑡 ) ≤ exp(−2𝛼𝑡)𝑊 2

2 (𝜇0, 𝜈0)

using the following steps. First, compute the derivative of 𝑡 ↦→ 𝑊 2
2 (𝜇𝑡 , 𝜈𝑡 ) us-

ing Theorem 1.4.11. Next, apply the strong convexity inequality (1.4.6) to obtain
two inequalities F(𝜇𝑡 ) ≥ F(𝜈𝑡 ) + · · · and F(𝜈𝑡 ) ≥ F(𝜇𝑡 ) + · · · . Adding these two
inequalities, deduce that 𝜕𝑡𝑊 2

2 (𝜇𝑡 , 𝜈𝑡 ) ≤ −2𝛼𝑊 2
2 (𝜇𝑡 , 𝜈𝑡 ).

⊵ Exercise 1.19 (smoothness along Wasserstein geodesics)
For a functional F over the Wasserstein space, let us say that it is 𝛽-smooth if, for all
constant-speed geodesics (𝜇𝑡 )𝑡∈[0,1] with initial tangent vector 𝑣0 = 𝑇 − id, it holds that
𝜕2
𝑡 |𝑡=0F(𝜇𝑡 ) ≤ 𝛽 ∥𝑇 − id∥2𝜇0 .

1. Show that the potential energy functional E corresponding to a potential 𝑉 with
∇2𝑉 ⪯ 𝛽𝐼𝑑 is 𝛽-smooth.

2. Establish the expression (1.4.3) for the entropy H and argue that H is non-smooth.

Overview of the Convergence Results

⊵ Exercise 1.20 (divergences at initialization)
Let 𝜋 ∝ exp(−𝑉 ) where 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Assume in addition that 𝑉 is minimized at
0. Let 𝜅 B 𝛽/𝛼 denote the condition number. Show that if we initialize at the measure
𝜇0 = normal(0, 𝛽−1𝐼𝑑), then ln sup(𝜇0/𝜋) ≤ 𝑑

2 ln𝜅 . What does this imply about the size of
KL(𝜇0 ∥ 𝜋) and 𝜒2(𝜇0 ∥ 𝜋) at initialization?

What can you say about𝑊 2
2 (𝜇0, 𝜋)?



CHAPTER 2

Functional Inequalities

In this chapter, we explore the connection between functional inequalities, such as the
Poincaré and log-Sobolev inequalities, and the concentration of measure phenomenon.

2.1 Overview of the Inequalities

2.1.1 Relationships between the Inequalities
The main inequalities that we study in this chapter are the following:

• the Poincaré inequality (PI), as specialized to the Langevin diffusion (see Exam-
ple 1.2.22):

var𝜋 (𝑓 ) ≤ 𝐶PI E𝜋 [∥∇𝑓 ∥2] , for all smooth 𝑓 : R𝑑 → R ,

• the log-Sobolev inequality (LSI), as specialized to the Langevin diffusion (see Ex-
ample 1.2.26):

ent𝜋 (𝑓 2) ≤ 2𝐶LSI E𝜋 [∥∇𝑓 ∥2] , for all smooth 𝑓 : R𝑑 → R ,

• and Talagrand’s T2 inequality

KL(𝜇 ∥ 𝜋) ≥ 1
2𝐶T2

𝑊 2
2 (𝜇, 𝜋) , for all 𝜇 ∈ P2(R𝑑) .

65
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In addition, using the𝑊1 metric introduced in Exercise 1.12, we consider

• Talagrand’s T1 inequality

KL(𝜇 ∥ 𝜋) ≥ 1
2𝐶T1

𝑊 2
1 (𝜇, 𝜋) , for all 𝜇 ∈ P1(R𝑑) .

In many cases, arguments involving Poincaré and log-Sobolev inequalities hold more
generally in the context of reversible Markov processes, and when this is case we will try
to use notation from Markov semigroup theory (e.g., writing E𝜋 Γ(𝑓 , 𝑓 ) orℰ(𝑓 , 𝑓 ) instead
of E𝜋 [∥∇𝑓 ∥2]) to indicate that this is the case. However, for clarity of exposition, we do
not dwell on this point, and we urge readers to focus on the case in which the Markov
process is the Langevin diffusion.

Although the Poincaré and log-Sobolev inequalities are stated above for smooth func-
tions 𝑓 : R𝑑 → R, once established they can be extended to a wider class of functions (e.g.,
locally Lipschitz functions) by arguing that smooth functions are dense w.r.t. appropriate
norms. Throughout the chapter, we omit mention of such approximation arguments.

Write PI(𝐶) to denote that the Poincaré inequality holds with constant𝐶 , and similarly
for the other inequalities. We have the following relationships.

• The Bakry–Émery theorem (Theorem 1.2.29) shows that 𝛼-strong log-concavity of
𝜋 implies that 𝜋 satisfies LSI(𝛼−1).

• The Otto–Villani theorem (Exercise 1.17) shows that LSI(𝐶) implies T2(𝐶).

• Since𝑊1 ≤ 𝑊2, then T2(𝐶) obviously implies T1(𝐶). On the other hand, we will
show below that T2(𝐶) implies PI(𝐶) as well. Combined with the previous point,
this shows that LSI(𝐶) implies PI(𝐶), which was shown directly in Exercise 1.9.

• In general, PI and T1 are incomparable (Exercise 2.14).

2.1.2 Linearization of Transport Inequalities
To prove that T2(𝐶) implies PI(𝐶), we linearize the transport cost. It will be convenient
for future purposes to prove a more general version of the linearization principle.

Proposition 2.1.1 (linearization of transport cost). Let 𝑐 : R𝑑 × R𝑑 → R+ be a lower
semicontinuous cost function. Assume that 𝑐 (𝑥, 𝑥) = 0 for all 𝑥 ∈ R𝑑 , that there exists
𝛿 > 0 for which 𝑐 (𝑥,𝑦) ≥ 𝛿 ∥𝑥 − 𝑦∥2 for all 𝑥,𝑦 ∈ R𝑑 , and that there is a measurable
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mapping 𝑥 ↦→ 𝐻𝑥 ≻ 0 such that for each compact 𝐾 ⊆ R𝑑 ,

sup
𝑥∈𝐾

��𝑐 (𝑥 + ℎ, 𝑥) − 1
2 ⟨ℎ, 𝐻𝑥ℎ⟩

�� = 𝑜 (∥ℎ∥2) as ℎ → 0 .

Then, for any 𝜇 ∈ P(R𝑑) and 𝑓 ∈ C∞c (R𝑑) with
∫
𝑓 d𝜇 = 0, it holds that

lim inf
𝜀↘0

1
𝜀2 T𝑐

(
𝜇, (1 + 𝜀 𝑓 ) 𝜇

)
≥

(
∫
𝑓 2 d𝜇)2

2
∫
⟨∇𝑓 (𝑥), 𝐻−1

𝑥 ∇𝑓 (𝑥)⟩ 𝜇 (d𝑥)
.

Proof sketch. Fix 𝜆 ∈ R. Using the dual formulation given in Exercise 1.12,

T𝑐 (𝜇, 𝜈) ≥
∫

𝜆𝜀 𝑓 d𝜇 +
∫
(𝜆𝜀 𝑓 )𝑐 d𝜈 =

∫
(𝜆𝜀 𝑓 )𝑐 d𝜈 .

Here, (𝜆𝜀 𝑓 )𝑐 (𝑥) = infℎ∈R𝑑 {𝑐 (𝑥+ℎ, 𝑥)−𝜆𝜀 𝑓 (𝑥+ℎ)}, and using the assumption on 𝑐 together
with the compact support of 𝑓 , one can justify that the infimum is attained at a point ℎ
with ∥ℎ∥ = 𝑂 (𝜀). Then,

(𝜆𝜀 𝑓 )𝑐 (𝑥) = inf
ℎ∈R𝑑

{1
2 ⟨ℎ, 𝐻𝑥ℎ⟩ − 𝜆𝜀 𝑓 (𝑥) − 𝜆𝜀 ⟨∇𝑓 (𝑥), ℎ⟩

}
+ 𝑜 (𝜀2)

≥ −𝜆𝜀 𝑓 (𝑥) − 𝜆
2𝜀2

2 ⟨∇𝑓 (𝑥), 𝐻−1
𝑥 ∇𝑓 (𝑥)⟩ + 𝑜 (𝜀2) .

Hence,

T𝑐
(
𝜇, (1 + 𝜀 𝑓 ) 𝜇

)
≥ −𝜆𝜀2

∫
𝑓 2 d𝜇 − 𝜆

2𝜀2

2

∫
⟨∇𝑓 (𝑥), 𝐻−1

𝑥 ∇𝑓 (𝑥)⟩ 𝜇 (d𝑥)

and the result follows by optimizing over 𝜆. □

Corollary 2.1.2 (T2 implies PI). If 𝜋 satisfies T2(𝐶), then it satisfies PI(𝐶).

Proof. Let 𝑓 ∈ C∞c (R𝑑) and apply the linearization in the preceding proposition to the
quadratic cost 𝑐 (𝑥,𝑦) = 1

2 ∥𝑥 − 𝑦∥
2 with 𝐻𝑥 = 𝐼𝑑 for all 𝑥 ∈ R𝑑 . Then, T2(𝐶) yields

2𝐶 KL
(
(1 + 𝜀 𝑓 ) 𝜋



 𝜋 ) ≥𝑊 2
2
(
𝜋, (1 + 𝜀 𝑓 ) 𝜋

)
≥
𝜀2 (

∫
𝑓 2 d𝜋)2∫

∥∇𝑓 ∥2 d𝜋
+ 𝑜 (𝜀2) .
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On the other hand, the linearization (1.E.1) of the KL divergence in Exercise 1.9 yields

KL
(
(1 + 𝜀 𝑓 ) 𝜋



 𝜋 ) = 𝜀2

2

∫
𝑓 2 d𝜋 + 𝑜 (𝜀2) .

Comparing terms proves the result. □

In Exercise 2.1, we explore a perhaps more intuitive approach to linearizing the 2-
Wasserstein distance via the Monge–Ampère equation.

2.2 Proofs via Markov Semigroup Theory

2.2.1 Commutation and Curvature
In Section 1.2.3, we introduced the iterated carré du champ operator Γ2, as well as the
curvature-dimension condition Γ2(𝑓 , 𝑓 ) ≥ 𝛼 Γ(𝑓 , 𝑓 ) (denoted CD(𝛼,∞)). Since this con-
dition plays a key role in the subsequent calculations, our goal is to demystify this idea.

By definition, the iterated carré du champ is

Γ2(𝑓 , 𝑓 ) =
1
2 {ℒΓ(𝑓 , 𝑓 ) − 2 Γ(𝑓 ,ℒ𝑓 )} .

For the case of the Langevin diffusion with carré du champ Γ(𝑓 , 𝑓 ) = ∥∇𝑓 ∥2,

Γ2(𝑓 , 𝑓 ) =
1
2 {ℒ(∥∇𝑓 ∥

2) − 2 ⟨∇𝑓 ,∇ℒ𝑓 ⟩} . (2.2.1)

Recall that ℒ𝑓 = Δ𝑓 − ⟨∇𝑉 ,∇𝑓 ⟩, where 𝑉 is the potential. Let us begin with the simple
case in which 𝑉 = 0, so ℒ is the Laplacian Δ (the generator of

√
2𝐵, where 𝐵 is standard

Brownian motion). In this case, the iterated carré du champ turns out to simply be the
operator Γ2(𝑓 , 𝑓 ) = ∥∇2𝑓 ∥2HS, which is known as the Bochner identity:

1
2 Δ(∥∇𝑓 ∥2) = ⟨∇Δ𝑓 ,∇𝑓 ⟩ + ∥∇2𝑓 ∥2HS . (2.2.2)

Consequently, Δ satisfies CD(0,∞).
It may seem strange at first sight to give such a fancy name to the seemingly innocuous

identity (2.2.2), which is a simple exercise in calculus. However, the importance of the
Bochner identity begins to reveal itself through the following fact: the identity continues
to make sense on a Riemannian manifold, except that there is an extra term involving the
Ricci curvature of the manifold.

1
2 Δ(∥∇𝑓 ∥2) = ⟨∇Δ𝑓 ,∇𝑓 ⟩ + ∥∇2𝑓 ∥2HS + Ric(∇𝑓 ,∇𝑓 ) .
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We will defer a fuller discussion of Riemannian geometry for later, but for now we can
get a hint at the role of the curvature by observing that the Bochner identity (2.2.2) on R𝑑
follows from the equation1

∇Δ𝑓 − Δ∇𝑓 = 0 (2.2.3)

by taking the inner product with ∇𝑓 and applying the identity

1
2 Δ(∥∇𝑓 ∥2) = div(∇2𝑓 ∇𝑓 ) = ⟨Δ∇𝑓 ,∇𝑓 ⟩ + ∥∇2𝑓 ∥2HS .

In turn, the equation (2.2.3) shows that the Laplacian commutes with the gradient operator,
which is true because partial derivatives commute on R𝑑 ; this is a manifestation of the
fact that R𝑑 is flat. In contrast, the very definition of curvature on a Riemannian manifold
is usually based upon the lack of commutativity of differential operators.2

Turning now to the Langevin generator ℒ, the identity (2.2.3) is replaced by

∇ℒ𝑓 −ℒ∇𝑓 = −∇2𝑉 ∇𝑓 . (2.2.4)

Hence, the commutator of ∇ and ℒ brings out the curvature of the measure 𝜋 ∝ exp(−𝑉 ),
and the plan is to exploit this in order to prove functional inequalities. The identity (2.2.4)
then yields the following formula for the iterated carré du champ:

Γ2(𝑓 , 𝑓 ) = ∥∇2𝑓 ∥2HS + ⟨∇𝑓 ,∇2𝑉 ∇𝑓 ⟩ . (2.2.5)

In particular, if ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0, then the curvature-dimension condition CD(𝛼,∞) holds,
which was asserted as Theorem 1.2.30.

2.2.2 The Brascamp–Lieb Inequality
As a first illustration of the use of curvature, we prove the Brascamp–Lieb inequality,
which is a strong form of the Poincaré inequality. This inequality will also gain a natural
interpretation via a diffusion process in Section 10.2.

The proof method in this section is known as Hörmander’s 𝐿2 method. The starting
point is to write down a dual form of the Poincaré inequality.3

1Here, Δ acts on ∇𝑢 component by component.
2Loosely speaking, the idea of curvature is that travelling in direction 𝑢 and then direction 𝑣 is not

exactly the same as travelling in direction 𝑣 and direction 𝑢. Algebraically, this is captured by studying the
difference between differentiating along vector field 𝑋 and then vector field 𝑌 , or vice versa.

3The idea of dualizing the Poincaré inequality also appears in Exercise 2.1, in which the Poincaré
inequality is deduced from an inequality on (−ℒ)−1.
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Lemma 2.2.6. Let 𝜋 ∝ exp(−𝑉 ) be a probability measure on R𝑑 , where 𝑉 is contin-
uously differentiable; let ℒ be the corresponding Langevin generator. Suppose that
𝐴 : R𝑑 → PD(𝑑) is a matrix-valued function mapping into the space of symmetric
positive definite matrices such that for all smooth 𝑢 : R𝑑 → R,

E𝜋 [(ℒ𝑢)2] ≥ E𝜋 ⟨∇𝑢,𝐴∇𝑢⟩ . (2.2.7)

Then, for all smooth 𝑓 : R𝑑 → R it holds that

var𝜋 𝑓 ≤ E𝜋 ⟨∇𝑓 , 𝐴−1 ∇𝑓 ⟩ .

Proof. Assume that E𝜋 𝑓 = 0. Recall that E𝜋 ℒ𝑢 = 0 for any 𝑢, so that E𝜋 𝑓 = 0 is a
necessary condition for the solvability of the Poisson equation −ℒ𝑢 = 𝑓 . For simplicity,
we will assume that this condition is also sufficient.

If we express E𝜋 [𝑓 2] terms of 𝑢 and apply integration by parts (Theorem 1.2.14) and
Cauchy–Schwarz, we obtain

E𝜋 [𝑓 2] = 2E𝜋 [𝑓 (−ℒ) 𝑢] − E𝜋 [(ℒ𝑢)2]
≤ 2E𝜋 ⟨∇𝑓 ,∇𝑢⟩ − E⟨∇𝑢,𝐴∇𝑢⟩
≤ 2

√︁
E𝜋 ⟨∇𝑓 , 𝐴−1 ∇𝑓 ⟩ E𝜋 ⟨∇𝑢,𝐴∇𝑢⟩ − E⟨∇𝑢,𝐴∇𝑢⟩ ≤ E𝜋 ⟨∇𝑓 , 𝐴−1 ∇𝑓 ⟩ . □

The point is that the condition (2.2.7) can now be checked with the help of curvature.
Suppose that 𝜋 ∝ exp(−𝑉 ) where 𝑉 is twice continuously differentiable and strictly
convex. Then, using integration by parts (Theorem 1.2.14),

E𝜋 [(ℒ𝑢)2] = −E𝜋 ⟨∇𝑢,∇ℒ𝑢⟩ = E𝜋
[
Γ2(𝑢,𝑢) −

1
2 ℒ(∥∇𝑢∥2)

]︸                               ︷︷                               ︸
by (2.2.1)

= E𝜋 Γ2(𝑢,𝑢)︸      ︷︷      ︸
because E𝜋 ℒ=0

= E𝜋 [∥∇2𝑢∥2HS + ⟨∇𝑢,∇2𝑉 ∇𝑢⟩]︸                                 ︷︷                                 ︸
by (2.2.5)

.

Applying the lemma, we obtain the following result.

Theorem 2.2.8 (Brascamp–Lieb inequality). Let 𝜋 ∝ exp(−𝑉 ), where 𝑉 is strictly
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convex on R𝑑 and twice continuously differentiable. Then, for all 𝑓 : R𝑑 → R,

var𝜋 𝑓 ≤ E𝜋 ⟨∇𝑓 , (∇2𝑉 )−1 ∇𝑓 ⟩ .

When ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0, then this implies that a Poincaré inequality holds for 𝜋 with
constant𝐶PI ≤ 1/𝛼 . However, the Brascamp–Lieb inequality is much stronger, as it allows
us to take advantage of non-uniform convexity.

In Exercise 2.3, we give another proof of Theorem 2.2.8 by linearizing a transport
inequality. First, we introduce the transport cost.

Definition 2.2.9. The Bregman transport cost for the potential 𝑉 , denoted D𝑉 , is
the transport cost associated with the Bregman divergence

𝐷𝑉 (𝑥,𝑦) B 𝑉 (𝑥) −𝑉 (𝑦) − ⟨∇𝑉 (𝑦), 𝑥 − 𝑦⟩ ,

i.e., we set

D𝑉 (𝜇, 𝜈) B inf
𝛾∈C(𝜇,𝜈)

∫
𝐷𝑉 (𝑥,𝑦) 𝛾 (d𝑥, d𝑦) .

The Bregman transport cost will also play a key role in Section 10.2, in which we will
prove the following transport inequality.

Theorem 2.2.10 (Bregman transport inequality). Suppose that 𝑉 : R𝑑 → R is contin-
uously differentiable. Then, for 𝜋 ∝ exp(−𝑉 ) and all 𝜇 ∈ P(R𝑑),

D𝑉 (𝜇, 𝜋) ≤ KL(𝜇 ∥ 𝜋) .

Actually, convexity of𝑉 is not necessary for the theorem to hold, although the Bregman
transport cost D𝑉 is only guaranteed to be non-negative when 𝑉 is convex. Notice that
when 𝑉 is strongly convex, ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0, then 𝐷𝑉 (𝑥,𝑦) ≥ 𝛼

2 ∥𝑥 − 𝑦∥
2, so the Bregman

transport inequality implies T2(𝛼−1).

2.2.3 Proof of the Bakry–Émery Theorem
In this section, we generalize the calculation in Exercise 1.10 from the Ornstein–Uhlenbeck
diffusion to the Langevin diffusion, and thereby prove the Bakry–Émery theorem (Theo-
rem 1.2.29). Recall from that exercise that the Ornstein–Uhlenbeck semigroup satisfies the
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identity ∇𝑃𝑡 𝑓 = exp(−𝑡) 𝑃𝑡∇𝑓 . In the next result, we show that more generally, CD(𝛼,∞)
implies Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ≤ exp(−2𝛼𝑡) 𝑃𝑡Γ(𝑓 , 𝑓 ).

Theorem 2.2.11 (local Poincaré inequality). Assume the Markov semigroup (𝑃𝑡 )𝑡≥0 is
reversible and let 𝛼 ∈ R. Then, the following are equivalent.

1. The curvature-dimension condition CD(𝛼,∞) holds.

2. For all 𝑓 and 𝑡 ≥ 0,

Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ≤ exp(−2𝛼𝑡) 𝑃𝑡Γ(𝑓 , 𝑓 ) .

3. For all 𝑓 and 𝑡 ≥ 0,

𝑃𝑡 (𝑓 2) − (𝑃𝑡 𝑓 )2 ≤
1 − exp(−2𝛼𝑡)

𝛼
𝑃𝑡Γ(𝑓 , 𝑓 ) .

Proof. (2) =⇒ (3): Markov semigroup calculus yields

𝜕𝑠 [𝑃𝑠 ((𝑃𝑡−𝑠 𝑓 )2)] = 𝑃𝑠
(
ℒ((𝑃𝑡−𝑠 𝑓 )2) − 2𝑃𝑡−𝑠 𝑓 ℒ𝑃𝑡−𝑠 𝑓

)
.

On the other hand, recall the definition of the carré du champ: ℒ(𝑓 2) −2𝑓 ℒ𝑓 = 2Γ(𝑓 , 𝑓 ).
Using this along with (2),

𝜕𝑠 [𝑃𝑠 ((𝑃𝑡−𝑠 𝑓 )2)] = 2𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) ≤ 2 exp
(
−2𝛼 (𝑡 − 𝑠)

)
𝑃𝑡Γ(𝑓 , 𝑓 ) .

Integrating this from 𝑠 = 0 to 𝑠 = 𝑡 yields (3).
(1) =⇒ (2): Similarly, differentiating

𝜕𝑠 [𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 )] = 𝑃𝑠
(
ℒΓ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) − 2Γ(𝑃𝑡−𝑠 𝑓 ,ℒ𝑃𝑡−𝑠 𝑓 )

)
and applying the definition of the iterated carré du champ yields

𝜕𝑠 [𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 )] = 2𝑃𝑠Γ2(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) ≥ 2𝛼 𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) .

Integrating this from 𝑠 = 0 to 𝑠 = 𝑡 yields 𝑃𝑡Γ(𝑓 , 𝑓 ) ≥ exp(2𝛼𝑡) Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ).
(3) =⇒ (1): We leave this as Exercise 2.6. □

Observe that if we take expectations of both sides of the third statement above w.r.t.
𝜋 and send 𝑡 →∞, then we see that CD(𝛼,∞) for 𝛼 > 0 implies PI(𝛼−1). However, the
local decay asserted above is much stronger than PI(𝛼−1).

To proceed further, we introduce the notion of a diffusion semigroup.
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Definition 2.2.12. The Markov semigroup (𝑃𝑡 )𝑡≥0 is a diffusion semigroup if for
all functions 𝑓 , 𝑔 ∈ 𝐿2(𝜋) in the domain of the carré du champ Γ and all 𝜙 : R→ R,
the chain rule holds:

Γ(𝜙 ◦ 𝑓 , 𝑔) = 𝜙′(𝑓 ) Γ(𝑓 , 𝑔) .

More generally, for functions 𝑓1, . . . , 𝑓𝑘 and Ψ : R𝑘 → R,

Γ
(
Ψ(𝑓1, . . . , 𝑓𝑘), 𝑔

)
=

𝑘∑︁
𝑖=1
(𝜕𝑖Ψ) (𝑓1, . . . , 𝑓𝑘) Γ(𝑓𝑖, 𝑔) .

The chain rule is satisfied for the Langevin diffusion whose carré du champ is given by
Γ(𝑓 , 𝑔) = ⟨∇𝑓 ,∇𝑔⟩, and more generally this assumption encodes the fact that the Markov
process is a diffusion. Since we are mainly interested in diffusion processes, this is not
a restrictive assumption, but it indicates that the following proof will fail for Markov
processes on discrete state spaces.

Proof of the Bakry–Émery theorem (Theorem 1.2.29). Given a smooth positive function 𝑓
and a function 𝜙 : R+ → R, we differentiate 𝑡 ↦→

∫
𝜙 (𝑃𝑡 𝑓 ) d𝜋 . We are primarily interested

in the case 𝜙 (𝑥) B 𝑥 ln𝑥 , but carrying out the calculation for a general 𝜙 clarifies the
structure of the argument. Using the Markov semigroup calculus,

𝜕𝑡

∫
𝜙 (𝑃𝑡 𝑓 ) d𝜋 =

∫
𝜙′(𝑃𝑡 𝑓 )ℒ𝑃𝑡 𝑓 d𝜋 = −ℰ(𝜙′ ◦ 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) .

This yields the representation

ent𝜙𝜋 𝑓 B
∫

𝜙 (𝑓 ) d𝜋 − 𝜙
(∫

𝑓 d𝜋
)
= −

∫ ∞

0

(
𝜕𝑡

∫
𝜙 (𝑃𝑡 𝑓 ) d𝜋

)
d𝑡

=

∫ ∞

0
ℰ(𝜙′ ◦ 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝑡 .

We now specialize our calculations to the entropy function 𝜙 (𝑥) = 𝑥 ln𝑥 and use
reversibility of the semigroup.

ℰ(𝜙′ ◦ 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) =
∫
(ln 𝑃𝑡 𝑓 ) (−ℒ)𝑃𝑡 𝑓 d𝜋 =

∫
(ln 𝑃𝑡 𝑓 ) 𝑃𝑡 (−ℒ𝑓 ) d𝜋

=

∫
𝑃𝑡 ln 𝑃𝑡 𝑓 (−ℒ) 𝑓 d𝜋 =

∫
Γ(𝑃𝑡 ln 𝑃𝑡 𝑓 , 𝑓 ) d𝜋
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≤

√︄∫
Γ(𝑓 , 𝑓 )
𝑓

d𝜋
∫

𝑓 Γ(𝑃𝑡 ln 𝑃𝑡 𝑓 , 𝑃𝑡 ln 𝑃𝑡 𝑓 ) d𝜋

where the last line uses the Cauchy–Schwarz inequality (Exercise 1.7). By the chain rule
for the carré du champ, we have

Γ(ln 𝑓 , 𝑓 ) = Γ(𝑓 , 𝑓 )
𝑓

.

By applying the local Poincaré inequality (Theorem 2.2.11) and the chain rule,

ℰ(ln 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ≤ exp(−𝛼𝑡)

√︄∫
Γ(ln 𝑓 , 𝑓 ) d𝜋

∫
𝑓 𝑃𝑡Γ(ln 𝑃𝑡 𝑓 , ln 𝑃𝑡 𝑓 ) d𝜋

= exp(−𝛼𝑡)

√︄∫
Γ(ln 𝑓 , 𝑓 ) d𝜋

∫
𝑃𝑡 𝑓 Γ(ln 𝑃𝑡 𝑓 , ln 𝑃𝑡 𝑓 ) d𝜋

= exp(−𝛼𝑡)

√︄∫
Γ(ln 𝑓 , 𝑓 ) d𝜋

∫
Γ(ln 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝜋

which is rearranged to yield

ℰ(ln 𝑃𝑡 𝑓 , 𝑓 ) ≤ exp(−2𝛼𝑡)ℰ(ln 𝑓 , 𝑓 ) .

This shows that under CD(𝛼,∞), the Fisher information (introduced in Example 1.2.26)
decays exponentially fast.

Substituting this into the representation above,

ent𝜋 𝑓 =

∫ ∞

0
ℰ(ln 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝑡 ≤ ℰ(ln 𝑓 , 𝑓 )

∫ ∞

0
exp(−2𝛼𝑡) d𝑡 ≤ 1

2𝛼 ℰ(ln 𝑓 , 𝑓 ) ,

which is the log-Sobolev inequality. □

2.2.4 Convergence in Rényi Divergence
One curiosity is that the log-Sobolev inequality directly implies a Poincaré inequality
(Exercise 1.9), and yet the convergence guarantees implied by these inequalities for the
Langevin diffusion are incomparable, because they apply to different metrics (𝜒2 vs. KL).
It turns out that these convergence guarantees can be placed in the same framework
by introducing the family of Rényi divergences. Rényi divergences have also gained
importance in recent research due to applications to differential privacy [Mir17].
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Definition 2.2.13. For 𝑞 > 1, the Rényi divergence of order 𝑞 between 𝜇 and 𝜋 is
defined by

R𝑞 (𝜇 ∥ 𝜋) B
1

𝑞 − 1 ln
∫ ( d𝜇

d𝜋
)𝑞 d𝜋 (2.2.14)

if 𝜇 ≪ 𝜋 , and R𝑞 (𝜇 ∥ 𝜋) B +∞ otherwise.

Rényi divergences are monotonic in the order: if 1 < 𝑞 ≤ 𝑞′ < ∞, then R𝑞 ≤ R𝑞′ (this
follows from Jensen’s inequality). Some notable special cases include:

1. For 𝑞 ↘ 1, we have R𝑞 → KL.

2. For 𝑞 = 2, we have R𝑞 = ln(1 + 𝜒2).

3. For 𝑞 ↗∞, we have R𝑞 ↗ R∞, where R∞(𝜇 ∥ 𝜋) B ln ∥ d𝜇
d𝜋 ∥𝐿∞ (𝜋) .

Remarkably, Vempala and Wibisono [VW19] show that a Poincaré inequality or a log-
Sobolev inequality imply convergence of the Langevin diffusion in every Rényi divergence.
We will prove the following theorem.

Theorem 2.2.15 ([VW19]). Let (𝑃𝑡 )𝑡≥0 be a reversible diffusion Markov semigroup, and
let (𝜋𝑡 )𝑡≥0 denote the law of the Markov process associated with the semigroup.

1. Suppose that a log-Sobolev inequality holds with constant𝐶LSI. Then, for all 𝑞 ≥ 1,

R𝑞 (𝜋𝑡 ∥ 𝜋) ≤ exp
(
− 2𝑡
𝑞𝐶LSI

)
R𝑞 (𝜋0 ∥ 𝜋) .

2. Suppose that a Poincaré inequality holds with constant 𝐶PI. Then, for all 𝑞 ≥ 2,

R𝑞 (𝜋𝑡 ∥ 𝜋) ≤


R𝑞 (𝜋0 ∥ 𝜋) −

2𝑡
𝑞𝐶PI

, if R𝑞 (𝜋𝑡 ∥ 𝜋) ≥ 1 ,

exp
(
− 2𝑡
𝑞𝐶PI

)
R𝑞 (𝜋0 ∥ 𝜋) , if R𝑞 (𝜋0 ∥ 𝜋) ≤ 1 .

Proof. We begin by differentiating the Rényi divergence in time. Let 𝜌𝑡 B d𝜋𝑡
d𝜋 = 𝑃𝑡𝜌0.

Applying the chain rule for the carré du champ,

𝜕𝑡R𝑞 (𝜋𝑡 ∥ 𝜋) =
1

𝑞 − 1
𝜕𝑡
∫
𝜌
𝑞

𝑡 d𝜋∫
𝜌
𝑞

𝑡 d𝜋
=

𝑞

𝑞 − 1

∫
𝜌
𝑞−1
𝑡 ℒ𝜌𝑡 d𝜋∫
𝜌
𝑞

𝑡 d𝜋
= − 𝑞

𝑞 − 1

∫
Γ(𝜌𝑞−1

𝑡 , 𝜌𝑡 ) d𝜋∫
𝜌
𝑞

𝑡 d𝜋
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= −4
𝑞

ℰ(𝜌𝑞/2𝑡 , 𝜌
𝑞/2
𝑡 )∫

𝜌
𝑞

𝑡 d𝜋
.

Log-Sobolev case. The log-Sobolev inequality reads (due to the chain rule) as

2𝐶LSIℰ(𝑓 , 𝑓 ) ≥ ent𝜋 (𝑓 2) .

Applying this to 𝑓 = 𝜌𝑞/2, we obtain

2𝐶LSIℰ(𝜌𝑞/2, 𝜌𝑞/2) ≥ 𝑞
∫

𝜌𝑞 ln 𝜌 d𝜋 −
(∫

𝜌𝑞 d𝜋
)

ln
(∫

𝜌𝑞 d𝜋
)

= 𝑞 𝜕𝑞

∫
𝜌𝑞 d𝜋 −

(∫
𝜌𝑞 d𝜋

)
ln
(∫

𝜌𝑞 d𝜋
)

and hence

4
𝑞

ℰ(𝜌𝑞/2, 𝜌𝑞/2)∫
𝜌𝑞 d𝜋

≥ 2
𝐶LSI

𝜕𝑞 ln
∫

𝜌𝑞 d𝜋 − 2
𝑞𝐶LSI

ln
∫

𝜌𝑞 d𝜋

=
2
𝐶LSI

𝜕𝑞 [(𝑞 − 1)R𝑞 (𝜌𝜋 ∥ 𝜋)] −
2 (𝑞 − 1)
𝑞𝐶LSI

R𝑞 (𝜌𝜋 ∥ 𝜋)

=
2
𝐶LSI

R𝑞 (𝜌𝜋 ∥ 𝜋) +
2 (𝑞 − 1)
𝐶LSI

𝜕𝑞R𝑞 (𝜌𝜋 ∥ 𝜋)︸           ︷︷           ︸
≥0

− 2 (𝑞 − 1)
𝑞𝐶LSI

R𝑞 (𝜌𝜋 ∥ 𝜋)

≥ 2
𝑞𝐶LSI

R𝑞 (𝜌𝜋 ∥ 𝜋)

where we used the fact that the Rényi divergence is monotonic in the order.
Poincaré case. Next, applying a Poincaré inequality to 𝑓 = 𝜌𝑞/2,

𝐶PIℰ(𝜌𝑞/2, 𝜌𝑞/2) ≥ var𝜋 (𝜌𝑞/2) =
∫

𝜌𝑞 d𝜋 −
(∫

𝜌𝑞/2 d𝜋
)2

=

(∫
𝜌𝑞 d𝜋

) [
1 −

exp((𝑞 − 2)R𝑞/2(𝜌𝜋 ∥ 𝜋))
exp((𝑞 − 1)R𝑞 (𝜌𝜋 ∥ 𝜋))

]
≥

(∫
𝜌𝑞 d𝜋

) {
1 − exp

(
−R𝑞 (𝜌𝜋 ∥ 𝜋)

)}
where we used the monotonicity of the Rényi divergence in the order. Hence,

4
𝑞

ℰ(𝜌𝑞/2, 𝜌𝑞/2)∫
𝜌𝑞 d𝜋

≥ 4
𝑞𝐶PI

{
1 − exp

(
−R𝑞 (𝜌𝜋 ∥ 𝜋)

)}
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≥ 2
𝑞𝐶PI

{
1 , if R𝑞 (𝜌𝜋 ∥ 𝜋) ≥ 1 ,
R𝑞 (𝜌𝜋 ∥ 𝜋) , if R𝑞 (𝜌𝜋 ∥ 𝜋) ≤ 1 .

□

To interpret this theorem, the Poincaré result states that after an initial waiting period
of time 𝑂 (𝑞𝐶PI R𝑞 (𝜋0 ∥ 𝜋)), the Rényi divergence starts decaying exponentially fast. On
the other hand, the log-Sobolev inequality implies exponentially fast convergence from
the outset. In particular, for 𝑞 = 2, we see that whereas a Poincaré inequality implies
exponential decay of 𝜒2, a log-Sobolev inequality implies exponential decay of ln(1 + 𝜒2),
which is substantially stronger.

2.3 Operations Preserving Functional Inequalities
To further expand the class of distributions known to satisfy functional inequalities, we
will show in this section that functional inequalities are stable under various common
operations on probability measures.

We let 𝐶PI(𝜋) denote the Poincaré constant of a probability measure 𝜋 , and similarly
write 𝐶LSI(𝜋), 𝐶T2 (𝜋), etc.

2.3.1 Bounded Perturbation
Suppose that 𝜋 satisfies a functional inequality, and that 𝜇 is another probability measure
satisfying 0 < 𝑐 ≤ d𝜇

d𝜋 ≤ 𝐶 < ∞. Then, it often follows that 𝜇 also satisfies the same
functional inequality, with a worse constant. This furnishes a large class of examples of
non-log-concave measures satisfying functional inequalities.

Proposition 2.3.1 (Holley–Stroock perturbation). Suppose that 𝜋 satisfies either a
Poincaré or log-Sobolev inequality. Then, if 𝜇 satisfies 0 < 𝑐 ≤ d𝜇

d𝜋 ≤ 𝐶 < ∞, then 𝜇 also
satisfies the corresponding functional inequality with constant

𝐶PI(𝜇) ≤
𝐶

𝑐
𝐶PI(𝜋) or 𝐶LSI(𝜇) ≤

𝐶

𝑐
𝐶LSI(𝜋)

respectively.

Proof. The key is to find a variational principle for the variance or for the entropy. For
the variance, for any 𝜈 ∈ P(R𝑑) and 𝑓 : R𝑑 → R,

var𝜈 𝑓 = inf
𝑚∈R
E𝜈 [|𝑓 −𝑚 |2] .
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From this,

var𝜇 𝑓 = inf
𝑚∈R
E𝜇 [|𝑓 −𝑚 |2] ≤ 𝐶 inf

𝑚∈R
E𝜋 [|𝑓 −𝑚 |2] = 𝐶 var𝜋 𝑓

≤ 𝐶𝐶PI(𝜋) E𝜋 Γ(𝑓 , 𝑓 ) ≤
𝐶

𝑐
𝐶PI(𝜋) E𝜇 Γ(𝑓 , 𝑓 ) .

The proof for the log-Sobolev inequality is similar once we have the variational principle

ent𝜈 𝑓 = inf
𝑡>0
E𝜈

[
𝑓 ln 𝑓

𝑡
− 𝑓 + 𝑡︸           ︷︷           ︸
≥0

]
for any 𝑓 : R𝑑 → R+, which we leave as Exercise 2.9. □

One can also state a perturbation principle for the T2 inequality, but it is more involved
and the constants are less precise, see [BGL14, Proposition 9.6.3].

Proposition 2.3.2. Suppose that 𝜋 satisfies a T2 inequality. If 𝜇 ∈ P2(R𝑑) satisfies
0 < 𝐶−1 ≤ d𝜇

d𝜋 ≤ 𝐶 < ∞, then 𝜇 also satisfies a T2 inequality, where 𝐶T2 (𝜇) is bounded
in terms of 𝐶 and 𝐶T2 (𝜋) only.

2.3.2 Contractive Mapping
Another simple but useful condition which enables us to transfer functional inequalities
from 𝜋 to 𝜇 is the existence of a Lipschitz mapping which pushes forward 𝜋 to 𝜇.

Proposition 2.3.3. Suppose that 𝜋 ∈ P(R𝑑) satisfies either a Poincaré or a log-Sobolev
inequality, and that there exists an 𝐿-Lipschitz map 𝑇 : R𝑑 → R𝑑 such that 𝜇 = 𝑇#𝜋 .
Then, 𝜇 also satisfies the corresponding functional inequality with constant

𝐶PI(𝜇) ≤ 𝐿2𝐶PI(𝜋) or 𝐶LSI(𝜇) ≤ 𝐿2𝐶LSI(𝜋)

respectively.

Proof. Assume for simplicity that 𝑇 is continuously differentiable, so that ∥∇𝑇 ∥op ≤ 𝐿.
Then, for 𝑓 : R𝑑 → R, by applying the Poincaré inequality for 𝜋 ,

var𝜇 𝑓 = var𝜋 (𝑓 ◦𝑇 ) ≤ 𝐶PI(𝜋) E𝜋 [∥∇(𝑓 ◦𝑇 )∥2] ≤ 𝐶PI(𝜋) E𝜋 [∥∇𝑇 ∥2op ∥∇𝑓 ◦𝑇 ∥2]
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≤ 𝐶PI(𝜋) 𝐿2 E𝜋 [∥∇𝑓 ◦𝑇 ∥2] = 𝐶PI(𝜋) 𝐿2 E𝜇 [∥∇𝑓 ∥2] .

The proof for the log-Sobolev inequality is similar. □

This result becomes particularly powerful when combined with Caffarelli’s contrac-
tion theorem, which states that the optimal transport map from the standard Gaussian
to an 𝛼-strongly log-concave measure is 𝛼−1/2-Lipschitz. As it is often easier to prove
functional inequalities for the standard Gaussian, this principle then quickly implies
Poincaré and log-Sobolev inequalities (as well as many other functional inequalities) for
strongly log-concave measures. We will return to this in Section 3.5.

2.3.3 Convolution
Next, we show that if 𝜋 = 𝜋1 ∗ 𝜋2 is a convolution of two measures, where both 𝜋1 and 𝜋2
satisfy a functional inequality, then so does 𝜋 . This is a consequence of the subadditivity
of variance and entropy. We begin with a variational principle for the entropy.

Lemma 2.3.4 (variational principle for entropy). For 𝑓 : R𝑑 → R>0,

ent𝜋 𝑓 = sup{E𝜋 [𝑓 𝑔] | 𝑔 : R𝑑 → R such that E𝜋 exp𝑔 ≤ 1} .

Proof. We may assume that E𝜋 exp𝑔 = 1, and define 𝜇 via d𝜇
d𝜋 B exp𝑔. Then,

ent𝜋 𝑓 = E𝜋
[
𝑓 ln 𝑓

E𝜋 𝑓

]
= E𝜇

[
𝑓 exp(−𝑔) ln 𝑓 exp(−𝑔)

E𝜇 [𝑓 exp(−𝑔)]

]
︸                                      ︷︷                                      ︸

=ent𝜇 (𝑓 exp(−𝑔))≥0

+E𝜋 [𝑓 𝑔] .

Equality holds if 𝑔 = ln(𝑓 /E𝜋 𝑓 ). □

Remark 2.3.5. The variational principle above is essentially a reformulation of the
Donsker–Varadhan variational principle (Theorem 1.5.4).

Lemma 2.3.6 (subadditivity of variance and entropy). If 𝑋1, . . . , 𝑋𝑛 are independent
random variables, then

var 𝑓 (𝑋1, . . . , 𝑋𝑛) ≤ E
𝑛∑︁
𝑖=1

var
(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑖 ) ,
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ent 𝑓 (𝑋1, . . . , 𝑋𝑛) ≤ E
𝑛∑︁
𝑖=1

ent
(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑖 ) .
Here, var(· | 𝑋−𝑖) and ent(· | 𝑋−𝑖) denote the conditional variance and entropy respec-
tively when all variables except 𝑋𝑖 are held fixed, i.e.,

var
(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑖 = 𝑥−𝑖 ) = var 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑋𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) ,
ent

(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑖 = 𝑥−𝑖 ) = ent 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑋𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) .

Proof. The subadditivity of the variance was established in Exercise 1.2, so we turn towards
the entropy. Let 𝑍 B 𝑓 (𝑋1, . . . , 𝑋𝑛) and

Δ𝑖 = lnE[𝑍 | 𝑋1, . . . , 𝑋𝑖] − lnE[𝑍 | 𝑋1, . . . , 𝑋𝑖−1] ,
so that

ent𝑍 = E[𝑍 (ln𝑍 − lnE𝑍 )] = E
[
𝑍

𝑛∑︁
𝑖=1

Δ𝑖
]
.

Since

E[expΔ𝑖 | 𝑋−𝑖] =
E[E[𝑍 | 𝑋1, . . . , 𝑋𝑖] | 𝑋−𝑖]
E[𝑍 | 𝑋1, . . . , 𝑋𝑖−1]

= 1 ,

the variational principle yields

E[𝑍Δ𝑖] = EE[𝑍Δ𝑖 | 𝑋−𝑖] ≤ E ent(𝑍 | 𝑋−𝑖) . □

Proposition 2.3.7. Suppose that 𝜋 = 𝜋1 ∗ 𝜋2 ∈ P(R𝑑), where 𝜋1 and 𝜋2 both satisfy
either a Poincaré or a log-Sobolev inequality. Then, 𝜋 also satisfies the corresponding
functional inequality with constant

𝐶PI(𝜋) ≤ 𝐶PI(𝜋1) +𝐶PI(𝜋2) or 𝐶LSI(𝜋) ≤ 𝐶LSI(𝜋1) +𝐶LSI(𝜋2)

respectively.

Proof. Let𝑋 ∼ 𝜋1 and 𝑌 ∼ 𝜋2 be independent, and let 𝑓 : R𝑑 → R. Using the subadditivity
of the variance,

var𝜋 𝑓 = var 𝑓 (𝑋 + 𝑌 ) ≤ E var
(
𝑓 (𝑋 + 𝑌 )

�� 𝑌 ) + E var
(
𝑓 (𝑋 + 𝑌 )

�� 𝑋 )
≤ {𝐶PI(𝜋1) +𝐶PI(𝜋2)} E[∥∇𝑓 (𝑋 + 𝑌 )∥2] ,

and a similar argument holds for the entropy. □



2.3. OPERATIONS PRESERVING FUNCTIONAL INEQUALITIES 81

2.3.4 Mixtures
Suppose that 𝜋 is a mixture, 𝜋 = 𝜇𝑃 B

∫
𝑃𝑥 𝜇 (d𝑥), where 𝜇 ∈ P(X) is the mixing measure

and (𝑃𝑥 )𝑥∈X is a family of probability measures on R𝑑 indexed by X (in other words, a
Markov kernel). For example, when X = [𝑘], then 𝜇𝑃 is a mixture of 𝑘 distributions
𝑃1, . . . , 𝑃𝑘 with mixing weights given by 𝜇. When X = R𝑑 and 𝑃𝑥 is the translation of a
fixed probability measure 𝜈 ∈ P(R𝑑) by 𝑥 , then 𝜇𝑃 = 𝜇 ∗ 𝜈 is the convolution of 𝜇 and 𝜈 .

Under general conditions on the mixture, it turns out that if each 𝑃𝑥 satisfies a func-
tional inequality, then so does the mixture 𝜇𝑃 . The simplest demonstration of this idea is
for the Poincaré inequality. Although the arguments in this section apply more generally
to mixtures 𝜇𝑃 on arbitrary state spaces, we focus on the R𝑑 case for simplicity.

Proposition 2.3.8 (PI for mixtures, [Bar+18]). Let 𝜇𝑃 be a mixture and assume that
each 𝑃𝑥 satisfies a Poincaré inequality with constant 𝐶PI(𝑃). Also, assume that

𝐶𝜒2 B sup
𝑥,𝑥 ′∈supp(𝜇)

𝜒2(𝑃𝑥 ∥ 𝑃𝑥 ′) < ∞ . (2.3.9)

Then, 𝜇𝑃 satisfies a Poincaré inequality with constant

𝐶PI(𝜇𝑃) ≤
(
1 +

𝐶𝜒2

2
)
𝐶PI(𝑃) .

Proof. Let 𝑓 : R𝑑 → R, and let 𝑋,𝑋 ′ i.i.d.∼ 𝜇. By the total law of variance,

var𝜇𝑃 𝑓 = E var𝑃𝑋 𝑓 + varE𝑃𝑋 𝑓 .

The first term is easy to control, because we can apply the Poincaré inequality for 𝑃𝑋
inside the expectation, so the main difficulty lies in the second term. Here,

varE𝑃𝑋 𝑓 =
1
2 E[|E𝑃𝑋 𝑓 − E𝑃𝑋 ′ 𝑓 |

2] = 1
2 E

[���∫ 𝑓
( d𝑃𝑋
d𝑃𝑋 ′

− 1
)

d𝑃𝑋 ′
���2]

≤ 1
2 E[(var𝑃𝑋 ′ 𝑓 ) 𝜒

2(𝑃𝑋 ∥ 𝑃𝑋 ′)] ≤
𝐶𝜒2

2 E var𝑃𝑋 𝑓 .

Hence,

var𝜇𝑃 𝑓 ≤
(
1 +

𝐶𝜒2

2
)
E var𝑃𝑋 𝑓 ≤

(
1 +

𝐶𝜒2

2
)
𝐶PI(𝑃) EE𝑃𝑋 Γ(𝑓 , 𝑓 )︸          ︷︷          ︸

=E𝜇𝑃 Γ(𝑓 ,𝑓 )

. □
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Our aim is to extend this idea to the log-Sobolev inequality, which will require a few
preliminaries. Rather than aiming to directly prove a log-Sobolev inequality, we will
instead prove a defective log-Sobolev inequality: for all 𝑓 : R𝑑 → R,

ent𝜋 (𝑓 2) ≤ 2𝐶 E𝜋 Γ(𝑓 , 𝑓 ) + 𝐷 E𝜋 [𝑓 2] . (2.3.10)

Although the defective LSI involves an extra term on the right-hand side of the inequality,
the extra term can be removed via a Poincaré inequality. The following two results show
how this is achieved.

Lemma 2.3.11 (Rothaus lemma). Let 𝑓 : R𝑑 → R. For all 𝑐 ∈ R,

ent𝜋
(
(𝑓 + 𝑐)2

)
≤ ent𝜋 (𝑓 2) + 2E𝜋 [𝑓 2] .

Proof. Omitted; see [BGL14, Lemma 5.1.4]. □

Lemma 2.3.12 (tightening a defective LSI). Suppose that 𝜋 satisfies the defective
log-Sobolev inequality (2.3.10), together with a Poincaré inequality. Then, 𝜋 satisfies an
log-Sobolev inequality with constant

𝐶LSI ≤ 𝐶 +𝐶PI
(
1 + 𝐷2

)
.

Proof. Using the Rothaus lemma, the defective log-Sobolev inequality, and the Poincaré
inequality, we obtain

ent𝜋 (𝑓 2) ≤ ent𝜋
(
(𝑓 − E𝜋 𝑓 )2

)
+ 2 var𝜋 (𝑓 ) ≤ 2𝐶 E𝜋 Γ(𝑓 , 𝑓 ) + (2 + 𝐷) var𝜋 (𝑓 )

≤
(
2𝐶 +𝐶PI (2 + 𝐷)

)
E𝜋 Γ(𝑓 , 𝑓 ) . □

We also need one change of measure lemma.

Lemma 2.3.13 ([CCN21]). Suppose that 𝜇, 𝜈 are probability measures and 𝑓 is a positive
function. Then,

E𝜇 (𝑓 ) ln
E𝜇 (𝑓 )
E𝜈 (𝑓 )

≤ ent𝜇 (𝑓 ) + E𝜇 (𝑓 ) ln
(
1 + 𝜒2(𝜇 ∥ 𝜈)

)
.
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Proof. By rescaling, we may assume E𝜇 𝑓 = 1. Recall the Donsker–Varadhan variational
principle (Theorem 1.5.4), which states

KL(𝜂 ∥ 𝜂′) = sup
{
E𝜂 𝑔 − lnE𝜂′ exp𝑔

�� 𝑔 : X→ R is bounded and measurable
}
.

If we take 𝜂 = 𝑓 𝜇, 𝜂′ = 𝜈 , and 𝑔 = ln(𝑓 /E𝜈 𝑓 ), then

E𝜇
[
𝑓 ln 𝑓

E𝜈 𝑓

]
= E𝜂 ln 𝑓

E𝜈 𝑓
≤ KL(𝜂 ∥ 𝜈) + lnE𝜈

𝑓

E𝜈 𝑓︸      ︷︷      ︸
=0

= E𝜇
[
𝑓 ln

(
𝑓

d𝜇
d𝜈

) ]
.

By subtracting E𝜇 (𝑓 ln 𝑓 ) from both sides, we obtain

ln 1
E𝜈 𝑓

= E𝜇
[
𝑓 ln 1
E𝜈 𝑓

]
≤ E𝜇

[
𝑓 ln d𝜇

d𝜈
]
.

Next, applying the Donsker–Varadhan principle a second time with 𝜂 = 𝑓 𝜇, 𝜂′ = 𝜇,
and 𝑔 = ln d𝜇

d𝜈 yields

E𝜇
[
𝑓 ln d𝜇

d𝜈
]
= E𝜂 ln d𝜇

d𝜈 ≤ KL(𝜂 ∥ 𝜇) + lnE𝜇
d𝜇
d𝜈 = ent𝜇 𝑓 + ln

(
1 + 𝜒2(𝜇 ∥ 𝜈)

)
,

which is what we wanted to show. □

We can now prove the log-Sobolev inequality for mixtures.

Proposition 2.3.14 (LSI for mixtures, [CCN21]). Let 𝜇𝑃 be a mixture and assume that
each 𝑃𝑥 satisfies a log-Sobolev inequality with constant 𝐶LSI(𝑃). Also, assume that

𝐶𝜒2 B sup
𝑥,𝑥 ′∈supp(𝜇)

𝜒2(𝑃𝑥 ∥ 𝑃𝑥 ′) < ∞ .

Then, 𝜇𝑃 satisfies a log-Sobolev inequality with constant

𝐶LSI(𝜇𝑃) ≤ 𝐶LSI(𝑃)
{
2 +

(
1 +

𝐶𝜒2

2
) (

1 +
ln(1 +𝐶𝜒2)

2
)}

≤ 6𝐶LSI(𝑃)
(
1 ∨𝐶𝜒2 ln(1 +𝐶𝜒2)

)
.

Proof. We begin, as in the proof of Proposition 2.3.8, with a decomposition of the entropy:

ent𝜇𝑃 (𝑓 2) = E ent𝑃𝑋 (𝑓 2) + entE𝑃𝑋 (𝑓 2) .
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As before, it is the second term that is difficult to control.
Applying Lemma 2.3.13,

entE𝑃𝑋 (𝑓 2) = E
[
E𝑃𝑋 (𝑓 2) ln

E𝑃𝑋 (𝑓 2)
E𝜇𝑃 (𝑓 2)

]
≤ E

[
ent𝑃𝑋 (𝑓 2) + E𝑃𝑋 (𝑓 2) ln

(
1 + 𝜒2(𝑃𝑋 ∥ 𝜇𝑃)

) ]
≤ E ent𝑃𝑋 (𝑓 2) + ln(1 +𝐶𝜒2) E𝜇𝑃 (𝑓 2) .

Hence,

ent𝜇𝑃 (𝑓 2) ≤ 2E ent𝑃𝑋 (𝑓 2) + ln(1 +𝐶𝜒2) E𝜇𝑃 (𝑓 2)
≤ 4𝐶LSI(𝑃) E𝜇𝑃 Γ(𝑓 , 𝑓 ) + ln(1 +𝐶𝜒2) E𝜇𝑃 (𝑓 2) ,

where we have applied the log-Sobolev inequality for 𝑃𝑋 . This is a defective log-Sobolev in-
equality for 𝜇𝑃 ; by applying the Poincaré inequality from Proposition 2.3.8 and tightening
the inequality via Lemma 2.3.12, we conclude the proof. □

Example 2.3.15 (LSI for Gaussian mixtures). Suppose that 𝜇 is supported on a ball
B(0, 𝑅), and that for each 𝑥 ∈ R𝑑 , 𝑃𝑥 = normal(𝑥, 𝜎2𝐼𝑑). Then, 𝜇𝑃 is the convolution
𝜇 ∗ normal(0, 𝜎2𝐼𝑑). Since 𝐶LSI(𝑃) = 𝜎2 and

𝜒2(𝑃𝑥 ∥ 𝑃𝑥 ′) = exp ∥𝑥 − 𝑥
′∥2

𝜎2 − 1 ≤ exp 4𝑅2

𝜎2 − 1

for 𝑥, 𝑥′ ∈ B(0, 𝑅), we deduce that 𝜇𝑃 satisfies a log-Sobolev inequality with constant

𝐶LSI(𝜇𝑃) ≲ 𝜎2 ∨
(
𝑅2 exp 4𝑅2

𝜎2
)
.

Hence, Gaussian convolutions of measures with bounded support satisfy a log-Sobolev
inequality. The exponential dependence on 𝑅2/𝜎2 is unavoidable in general.

We extend the results of this section in Exercise 2.11.

2.3.5 Tensorization
A key feature of these functional inequalities which makes them crucial for the study of
high-dimensional (or even infinite-dimensional phenomena) is that they often hold with
dimension-free constants, as demonstrated in the next result.
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Theorem 2.3.16 (tensorization). Suppose that 𝜋1, . . . , 𝜋𝑁 ∈ P(R𝑑) satisfy either a
Poincaré inequality or a log-Sobolev inequality. Then, for any 𝑁 ∈ N+, the product mea-
sure 𝜋 B

⊗𝑁

𝑖=1 𝜋𝑖 also satisfies the corresponding functional inequality with constant

𝐶PI(𝜋) = max
𝑖∈[𝑁 ]

𝐶PI(𝜋𝑖) or 𝐶LSI(𝜋) = max
𝑖∈[𝑁 ]

𝐶LSI(𝜋𝑖)

respectively.

Proof. The proof is a straightforward consequence of subadditivity (Lemma 2.3.6). Indeed,
if 𝑓 : R𝑁𝑑 → R and if 𝑋𝑖 ∼ 𝜋𝑖 are independent for 𝑖 ∈ [𝑁 ],

var𝜋 𝑓 = var 𝑓 (𝑋1, . . . , 𝑋𝑁 ) ≤ E
𝑁∑︁
𝑖=1

var
(
𝑓 (𝑋1, . . . , 𝑋𝑁 )

�� 𝑋−𝑖 )
≤ max
𝑖∈[𝑁 ]

𝐶PI(𝜋𝑖) E
𝑁∑︁
𝑖=1
E[∥∇𝑖 𝑓 (𝑋1, . . . , 𝑋𝑁 )∥2 | 𝑋−𝑖]

= max
𝑖∈[𝑁 ]

𝐶PI(𝜋𝑖) E𝜋 [∥∇𝑓 ∥2] .

The proof is the same for the log-Sobolev inequality. □

There is also a tensorization principle for transport inequalities, which however re-
quires some additional work to prove. We formulate a general result which applies to
many different transport inequalities (not just the T1 and T2 inequalities).

Theorem 2.3.17 (Marton’s tensorization). Let X1, . . . ,X𝑁 be Polish spaces equipped
with probability measures 𝜋1, . . . , 𝜋𝑁 respectively. Let X B X1 × · · · × X𝑁 be equipped
with the product measure 𝜋 B 𝜋1 ⊗ · · · ⊗ 𝜋𝑁 .

Let 𝜑 : [0,∞) → [0,∞) be convex and for 𝑖 ∈ [𝑁 ], let 𝑐𝑖 : X𝑖 × X𝑖 → [0,∞) be a
lower semicontinuous cost function. Suppose that

inf
𝛾𝑖∈C(𝜋𝑖 ,𝜈𝑖 )

𝜑

(∫
𝑐𝑖 d𝛾𝑖

)
≤ 2𝜎2 KL(𝜈𝑖 ∥ 𝜋𝑖) , ∀𝜈𝑖 ∈ P(X𝑖) , ∀𝑖 ∈ [𝑁 ] .
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Then, it holds that

inf
𝛾∈C(𝜋,𝜈)

𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)
≤ 2𝜎2 KL(𝜈 ∥ 𝜋) , ∀𝜈 ∈ P(X) .

Proof. The proof goes by induction on 𝑁 , with 𝑁 = 1 being trivial. So, assume that the
result is true in dimension 𝑁 , and let us prove it for dimension 𝑁 + 1.

Let 𝜈 ∈ P(X) = P(X1 × · · · × X𝑁+1), let 𝜈1:𝑁 denote its X1 × · · · × X𝑁 marginal,
and let 𝜈𝑁+1|1:𝑁 denote the corresponding conditional kernel (and similarly for 𝜋 ). Let
K denote the set of conditional kernels 𝑦1:𝑁 ↦→ 𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 ) such that for 𝜈1:𝑁 -a.e.
𝑦1:𝑁 ∈ X1 × · · · × X𝑁 , it holds that 𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 ) ∈ C(𝜋𝑁+1, 𝜈𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )). Instead
of minimizing over all 𝛾 ∈ C(𝜋, 𝜈), we can minimize over couplings 𝛾 such that for all
bounded 𝑓 ∈ C(X × X),∫

𝑓 d𝛾 =

∫ (∫
𝑓 (𝑥1:𝑁+1, 𝑦1:𝑁+1) 𝛾𝑁+1|1:𝑁 (d𝑥𝑁+1, d𝑦𝑁+1 | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 ) ,

for some 𝛾1:𝑁 ∈ C(𝜋1:𝑁 , 𝜈1:𝑁 ) and 𝛾𝑁+1|1:𝑁 ∈ K.4 Thus,

inf
𝛾∈C(𝜋,𝜈)

𝑁+1∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁+1, d𝑦1:𝑁+1)

)
≤ inf
𝛾1:𝑁 ∈C(𝜋1:𝑁 ,𝜈1:𝑁 )

{ 𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)
+ inf
𝛾𝑁+1 |1:𝑁 ∈K

𝜑

(∫ (∫
𝑐𝑁+1 d𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)}
≤ inf
𝛾1:𝑁 ∈C(𝜋1:𝑁 ,𝜈1:𝑁 )

{ 𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)
+ inf
𝛾𝑁+1 |1:𝑁 ∈K

∫
𝜑

(∫
𝑐𝑁+1 d𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

}
.

Then, after checking that the integrands are indeed measurable,

inf
𝛾𝑁+1 |1:𝑁 ∈K

∫
𝜑

(∫
𝑐𝑁+1 d𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

4Suppose 𝑁 = 2 and (𝑋1, 𝑋2) ∼ 𝜋 and (𝑌1, 𝑌2) ∼ 𝜈 . Observe that a general coupling 𝑝 ∈ C(𝜋, 𝜈) factorizes
as 𝑝 (𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑝𝑋1 (𝑥1) 𝑝𝑋2 (𝑥2) 𝑝𝑌1,𝑌2 |𝑋1,𝑋2 (𝑦1, 𝑦2 | 𝑥1, 𝑥2). In contrast, we are restricting to couplings
of the form 𝑝 (𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑝𝑋1 (𝑥1) 𝑝𝑌1 |𝑋1 (𝑦1 | 𝑥1) 𝑝𝑋2 (𝑥2) 𝑝𝑌2 |𝑋2,𝑌1 (𝑦2 | 𝑥2, 𝑦1).
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=

∫
inf

𝛾𝑁+1 |1:𝑁 ∈C(𝜋𝑁+1,𝜈𝑁+1 |1:𝑁 (·|𝑦1:𝑁 ))
𝜑

(∫
𝑐𝑁+1 d𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

≤ 2𝜎2
∫

KL
(
𝜈𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )



 𝜋𝑁+1) 𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

= 2𝜎2
∫

KL
(
𝜈𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )



 𝜋𝑁+1) 𝜈1:𝑁 (d𝑦1:𝑁 ) ,

where we used the assumption. On the other hand, the inductive hypothesis is

inf
𝛾1:𝑁 ∈C(𝜋1:𝑁 ,𝜈1:𝑁 )

𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)
≤ 2𝜎2 KL(𝜈1:𝑁 ∥ 𝜋1:𝑁 ) .

The chain rule for the KL divergence (Lemma 1.5.5) yields

KL(𝜈 ∥ 𝜋) = KL(𝜈1:𝑁 ∥ 𝜋1:𝑁 ) +
∫

KL
(
𝜈𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )



 𝜋𝑁+1) 𝜈1:𝑁 (d𝑦1:𝑁 ) .

Therefore, we have proven

inf
𝛾∈C(𝜋,𝜈)

𝑁+1∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁+1, d𝑦1:𝑁+1)

)
≤ 2𝜎2 KL(𝜈 ∥ 𝜋) . □

The preceding proof is supposed to be a straightforward proof by induction, but it is
rather cumbersome to write out precisely.

As our first application of the tensorization principle, we will examine the tensorization
properties of the T1 inequality. Recall that on a general metric space, the Wasserstein
distances are defined as in Exercise 1.12.

Example 2.3.18 (tensorization of T1). We will use the cost 𝑐𝑖 = d𝑖 , where d𝑖 is a lower
semicontinuous metric on X𝑖 , and we take the convex function 𝜑 (𝑥) B 𝑥2. Suppose
that for each 𝑖 ∈ [𝑁 ], the measure 𝜋𝑖 ∈ P(X) satisfies the T1 inequality

𝑊 2
1 (𝜈𝑖, 𝜋𝑖) ≤ 2𝜎2 KL(𝜈𝑖 ∥ 𝜋𝑖), ∀𝜈𝑖 ∈ P(X𝑖) .

Let 𝜋 B 𝜋1 ⊗ · · · ⊗ 𝜋𝑁 be the product measure and let 𝜈 ∈ P(X1 × · · · ×X𝑁 ). Suppose
also that 𝛼1, . . . , 𝛼𝑁 > 0 are numbers with

∑𝑁
𝑖=1 𝛼

2
𝑖 = 1. Then, Marton’s tensorization

(Theorem 2.3.17) yields

2𝜎2 KL(𝜈 ∥ 𝜋) ≥
( 𝑁∑︁
𝑖=1

𝛼2
𝑖

)
inf

𝛾∈C(𝜋,𝜈)

𝑁∑︁
𝑖=1

(∫
d𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)2



88 CHAPTER 2. FUNCTIONAL INEQUALITIES

≥ inf
𝛾∈C(𝜋,𝜈)

(∫ 𝑁∑︁
𝑖=1

𝛼𝑖d𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁 , d𝑦1:𝑁 )
)2
,

where we used the Cauchy–Schwarz inequality. This is a T1 inequality for the weighted
distance d𝛼 (𝑥1:𝑁 , 𝑦1:𝑁 ) B

∑𝑁
𝑖=1 𝛼𝑖d𝑖 (𝑥𝑖, 𝑦𝑖).

Together with results from the next section, this tensorization result is already powerful
enough to recover the bounded differences concentration inequality (see Exercise 2.15),
but it is not fully satisfactory as it yields a transport inequality for a weighted metric.

A more satisfactory result is obtained by applying Marton’s tensorization (Theo-
rem 2.3.17) with the convex function 𝜑 (𝑥) B 𝑥 and cost functions 𝑐𝑖 B d2

𝑖 , with d𝑖 a lower
semicontinuous metric on X𝑖 . This immediately yields the following corollary.

Corollary 2.3.19 (tensorization of T2). Suppose that for each 𝑖 ∈ [𝑁 ], 𝜋𝑖 ∈ P(X𝑖)
satisfies a T2 inequality with parameter 𝜎2 with respect to the metric d𝑖 . Then, the
product measure 𝜋1 ⊗ · · · ⊗ 𝜋𝑁 satisfies a T2 inequality with the same parameter 𝜎2

with respect to the metric d(𝑥1:𝑁 , 𝑦1:𝑁 )2 B
∑𝑁
𝑖=1 d(𝑥𝑖, 𝑦𝑖)2 on X1 × · · · × X𝑁 .

2.4 Concentration of Measure
We now turn towards the close relationship between functional inequalities and the
concentration of measure phenomenon, the latter of which is an indispensable tool in
high-dimensional probability and statistics. Since many of the arguments hold on a general
Polish space (that is, a complete separable metric space) (X, d) equipped with a probability
measure 𝜋 , we will work in this setting unless explicitly stated otherwise.

2.4.1 Blow-Up of Sets and Concentration of Lipschitz Functions
Loosely speaking, the concentration of measure phenomenon holds when a huge fraction
of the mass of 𝜋 is concentrated on a relatively small set. Another way of capturing
this idea is to assert that whenever a set has a non-trivial amount of mass under 𝜋 , then
expanding the set slightly causes it to capture almost all of the mass of 𝜋 . The following
definitions formalize this idea.

Definition 2.4.1. For a Borel subset𝐴 ⊆ X and 𝜀 > 0, we let𝐴𝜀 denote the 𝜀-blow-up
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of 𝐴, defined by

𝐴𝜀 B {𝑥 ∈ X | d(𝑥,𝐴) < 𝜀} .

The concentration function 𝛼𝜋 : R+ → [0, 1] is defined via

𝛼𝜋 (𝜀) = sup
{
𝜋
(
(𝐴𝜀)c

) �� 𝐴 ⊆ X is a Borel subset with 𝜋 (𝐴) ≥ 1
2
}
.

Typically, we have 𝛼𝜋 (𝜀) ≤ 𝐶0 exp(−𝜀/𝐶1) or 𝛼𝜋 (𝜀) ≤ 𝐶0 exp(−𝜀2/𝐶1) for some con-
stants 𝐶0,𝐶1 > 0; hence, as we increase 𝜀, the blow-up 𝐴𝜀 captures a (often substantially)
larger fraction of the mass of 𝜋 . In the next sections, we will develop tools to upper bound
concentration functions. For now, however, we wish to develop an equivalence between
the formulation of concentration of measure via blow-up of sets, and with another in-
volving concentration of Lipschitz functions. Although the former has a more striking
geometric interpretation, the latter is often how concentration is used in applications.

Given a real-valued random variable 𝑋 , we abuse notation and let med𝑋 denote any
median of 𝑋 , that is, any number𝑚 such that P{𝑋 ≤ 𝑚} ∧ P{𝑋 ≥ 𝑚} ≥ 1

2 .

Theorem 2.4.2 (blow-up and Lipschitz functions). Suppose that (X, d, 𝜋) has concen-
tration function 𝛼𝜋 . Then, for any 1-Lipschitz function 𝑓 : X→ R and 𝜀 ≥ 0,

𝜋{𝑓 ≥ med 𝑓 + 𝜀} ≤ 𝛼𝜋 (𝜀) .

Conversely, suppose that for all 1-Lipschitz functions 𝑓 : X→ R, it holds that

𝜋{𝑓 ≥ med 𝑓 + 𝜀} ≤ 𝛽 (𝜀) .

Then, the concentration function 𝛼𝜋 of (X, d, 𝜋) satisfies 𝛼𝜋 ≤ 𝛽 .

Proof. ( =⇒ ) Consider the set 𝐴 B {𝑓 ≤ med 𝑓 }. We claim that 𝐴𝜀 ⊆ {𝑓 −med 𝑓 < 𝜀}.
To prove this, let 𝑥 ∈ 𝐴𝜀 . By definition, there exists 𝑦 ∈ 𝐴 such that d(𝑥,𝑦) < 𝜀, so
𝑓 (𝑥) −med 𝑓 = 𝑓 (𝑦) −med 𝑓 + 𝑓 (𝑥) − 𝑓 (𝑦) ≤ d(𝑥,𝑦) < 𝜀. Hence,

𝜋{𝑓 −med 𝑓 < 𝜀} ≥ 𝜋 (𝐴𝜀) ≥ 1 − 𝛼 (𝜀) .

(⇐= ) The function 𝑓 B d(·, 𝐴) is 1-Lipschitz, and if 𝜋 (𝐴) ≥ 1
2 then 0 is a median of

𝑓 . Thus, it holds that

𝜋 (𝐴𝜀) = 𝜋{𝑓 −med 𝑓 < 𝜀} ≥ 1 − 𝛽 (𝜀) . □
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More broadly, it is a general principle that many statements about sets have an
equivalent reformulation in terms of functions. We will see more instances of this idea
throughout the book.

Some statements regarding concentration, such as the theorem above, are more easily
phrased in terms of concentration around the median rather than around the mean. The
following result shows that, up to numerical constants, the mean and the median are
equivalent. To state the result in generality, we introduce the idea of an Orlicz norm.

Definition 2.4.3 (Orlicz norm). If𝜓 : [0,∞) → [0,∞) is a convex strictly increasing
function with𝜓 (0) = 0 and𝜓 (𝑥) → ∞ as 𝑥 →∞, then it is an Orlicz function.

For a real-valued random variable 𝑋 , its Orlicz norm is defined to be

∥𝑋 ∥𝜓 B inf
{
𝑡 > 0

�� E𝜓 ( |𝑋 |
𝑡

)
≤ 1

}
.

Examples of Orlicz functions include𝜓 (𝑥) = 𝑥𝑝 for 𝑝 ≥ 1, for which the corresponding
Orlicz norm is the 𝐿𝑝 (P) norm, and𝜓2(𝑥) B exp(𝑥2) − 1 for which the Orlicz norm ∥𝑋 ∥𝜓2
captures the sub-Gaussianity of 𝑋 .

Lemma 2.4.4 (mean and median). Let𝜓 be an Orlicz function and let𝑋 be a real-valued
random variable. Then,

1
2 ∥𝑋 − E𝑋 ∥𝜓 ≤ ∥𝑋 −med𝑋 ∥𝜓 ≤ 3 ∥𝑋 − E𝑋 ∥𝜓 .

Proof. We can assume that 𝑋 is not constant; from the properties of Orlicz functions,
𝜓−1(𝑡) is well-defined for any 𝑡 > 0. Then,

∥𝑋 − E𝑋 ∥𝜓 ≤ ∥𝑋 −med𝑋 ∥𝜓 + ∥med𝑋 − E𝑋 ∥𝜓
= ∥𝑋 −med𝑋 ∥𝜓 + |med𝑋 − E𝑋 | ∥1∥𝜓
≤ ∥𝑋 −med𝑋 ∥𝜓 + E|𝑋 −med𝑋 | ∥1∥𝜓 .

Since

E𝜓
( |𝑋 −med𝑋 |
E|𝑋 −med𝑋 | ∥1∥𝜓

)
≥ 𝜓

( E|𝑋 −med𝑋 |
E|𝑋 −med𝑋 | ∥1∥𝜓

)
= 𝜓

( 1
∥1∥𝜓

)
= 1 ,

it implies E|𝑋 −med𝑋 | ∥1∥𝜓 ≤ ∥𝑋 −med𝑋 ∥𝜓 .
Next, assume that med𝑋 ≥ E𝑋 (or else replace 𝑋 by −𝑋 ). Then,

1
2 ≤ P{𝑋 ≥ med𝑋 } ≤ P{|𝑋 − E𝑋 | ≥ med𝑋 − E𝑋 }
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≤ 1
𝜓 ((med𝑋 − E𝑋 )/∥𝑋 − E𝑋 ∥𝜓 )

,

so that

|med𝑋 − E𝑋 | ≤ 𝜓−1(2) ∥𝑋 − E𝑋 ∥𝜓 .

Therefore,

∥𝑋 −med𝑋 ∥𝜓 ≤ ∥𝑋 − E𝑋 ∥𝜓 + ∥E𝑋 −med𝑋 ∥𝜓 ≤
(
1 + ∥1∥𝜓 𝜓−1(2)

)
∥𝑋 − E𝑋 ∥𝜓 .

Note, however, that ∥1∥𝜓 = 1/𝜓−1(1). Since 𝜓 (𝜓−1(2)/2) ≤ 1 by convexity (and the
property𝜓 (0) = 0), it implies𝜓−1(2) ≤ 2𝜓−1(1), and we obtain the result. □

2.4.2 The Herbst Argument
In this section, we specialize to the case where (X, d) is the Euclidean space R𝑑 .

To put it succinctly, the idea of the Herbst argument is to apply functional inequalities,
such as the Poincaré inequality or the log-Sobolev inequality, to the moment-generating
function of a 1-Lipschitz function 𝑓 : R𝑑 → R in order to deduce a concentration inequality
for 𝑓 . We illustrate this with the log-Sobolev inequality, which implies, for any 𝜆 ∈ R,

ent𝜋 exp(𝜆𝑓 ) ≤ 2𝐶LSI E𝜋
[

𝜆 exp(𝜆𝑓 /2)

2 ∇𝑓


2]

=
𝐶LSI 𝜆

2

2 E𝜋 [exp(𝜆𝑓 ) ∥∇𝑓 ∥2]

≤ 𝐶LSI 𝜆
2

2 E𝜋 exp(𝜆𝑓 ) .
(2.4.5)

The next lemma shows how to apply this inequality.

Lemma 2.4.6 (Herbst argument). Suppose that a random variable 𝑋 satisfies

ent exp(𝜆𝑋 ) ≤ 𝜆
2𝜎2

2 E exp(𝜆𝑋 ) for all 𝜆 ≥ 0 .

Then, it holds that

E exp{𝜆 (𝑋 − E𝑋 )} ≤ exp 𝜆
2𝜎2

2 for all 𝜆 ≥ 0 .
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In particular, via a standard Chernoff inequality,

P{𝑋 ≥ E𝑋 + 𝑡} ≤ exp
(
− 𝑡

2

2𝜎2
)

for all 𝑡 ≥ 0 .

Proof. Let 𝜏 (𝜆) B 𝜆−1 lnE exp{𝜆 (𝑋 − E𝑋 )}. We leave it to the reader to check the
calculus identity

𝜏′(𝜆) = 1
𝜆2

ent exp(𝜆𝑋 )
E exp(𝜆𝑋 ) . (2.4.7)

Since 𝜏 (𝜆) → 0 as 𝜆 ↘ 0, the assumption of the lemma yields 𝜏 (𝜆) ≤ 𝜆𝜎2/2. □

The calculation in (2.4.5) shows that the assumption of the Herbst argument is satisfied
for all 1-Lipschitz functions 𝑓 , with𝜎2 = 𝐶LSI. Hence, we deduce a concentration inequality
for Lipschitz functions, which we formally state in the next theorem together with the
corresponding result under a Poincaré inequality. The Poincaré case is left as Exercise 2.12.

Theorem 2.4.8. Let 𝜋 ∈ P(R𝑑), and let 𝑓 : R𝑑 → R be a 1-Lipschitz function.

1. If 𝜋 satisfies a Poincaré inequality with constant 𝐶PI, then for all 𝑡 ≥ 0,

𝜋{𝑓 − E𝜋 𝑓 ≥ 𝑡} ≤ 3 exp
(
− 𝑡
√
𝐶PI

)
.

2. If 𝜋 satisfies a log-Sobolev inequality with constant 𝐶LSI, then for all 𝑡 ≥ 0,

𝜋{𝑓 − E𝜋 𝑓 ≥ 𝑡} ≤ exp
(
− 𝑡2

2𝐶LSI

)
.

Example 2.4.9. Suppose that 𝛾 is the standard Gaussian measure on R𝑑 . From the
Bakry–Émery theorem (Theorem 1.2.29), 𝛾 satisfies the log-Sobolev inequality with
𝐶LSI = 1. For 𝑍 ∼ 𝛾 , since E[∥𝑍 ∥2] = 𝑑 , the Poincaré inequality applied to the norm
∥·∥ shows that var ∥𝑍 ∥ ≤ 1, i.e.,

√
𝑑 − 1 ≤ E∥𝑍 ∥ ≤

√
𝑑 .

The concentration result above now shows that the standard Gaussian “lives” on
a thin spherical shell of radius

√
𝑑 and width 𝑂 (1).
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2.4.3 Transport Inequalities and Concentration
Next, we will show that a T1 transport inequality is equivalent to sub-Gaussian concen-
tration of Lipschitz functions, which was proven by Bobkov and Götze. The proof shows
that in a sense, the two statements are dual to each other.

Theorem 2.4.10 (Bobkov–Götze). Let 𝜋 ∈ P1(X). The following are equivalent.

1. The function 𝑓 is 𝜎2-sub-Gaussian with respect to 𝜋 , in the sense that

E𝜋 exp{𝜆 (𝑓 − E𝜋 𝑓 )} ≤ exp 𝜆
2𝜎2

2 for all 𝜆 ∈ R ,

for every 1-Lipschitz function 𝑓 : X→ R.

2. The measure 𝜋 satisfies T1(𝜎2).

Proof. Let Lip1(X) denote the space of 1-Lipschitz and mean-zero functions onX. Lipschitz
concentration can be stated as

sup
𝜆∈R

sup
𝑓 ∈Lip1 (X)

{
ln
∫

exp(𝜆𝑓 ) d𝜋 − 𝜆
2𝜎2

2

}
≤ 0 .

By Donsker–Varadhan duality (Theorem 1.5.4), this is equivalent to

sup
𝜆∈R

sup
𝑓 ∈Lip1 (X)

sup
𝜈∈P(X)

{
𝜆

(∫
𝑓 d𝜈 −

∫
𝑓 d𝜋

)
− KL(𝜈 ∥ 𝜋) − 𝜆

2𝜎2

2

}
≤ 0 ,

where we recall that
∫
𝑓 d𝜋 = 0 for 𝑓 ∈ Lip1(X). If we first evaluate the supremum over

𝜆 ∈ R, then we obtain the statement

sup
𝑓 ∈Lip1 (X)

sup
𝜈∈P(X)

{ 1
2𝜎2

(∫
𝑓 d𝜈 −

∫
𝑓 d𝜋

)2
− KL(𝜈 ∥ 𝜋)

}
≤ 0 ,

If we next evaluate the supremum over functions 𝑓 ∈ Lip1(X) using the Kantorovich
duality formula (1.E.4) for𝑊1 from Exercise 1.12, we obtain

sup
𝜈∈P(X)

{𝑊 2
1 (𝜈, 𝜋)
2𝜎2 − KL(𝜈 ∥ 𝜋)

}
≤ 0 ,

which is the T1 inequality. □

Using the fact that the𝑊1 distance for the trivial metric d(𝑥,𝑦) = 1{𝑥 ≠ 𝑦} coincides
with the TV distance5, the Bobkov–Götze theorem implies that two classical inequalities in

5One has to be slightly careful since for the trivial metric, (X, d) is usually not separable.
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probability theory, Hoeffding’s inequality and Pinsker’s inequality, are in fact equivalent
to each other (see Exercise 2.13).

Although the T1 inequality implies sub-Gaussian concentration for all Lipschitz func-
tions, it is in fact equivalent to sub-Gaussian concentration of a single function, the
distance function d(·, 𝑥0) for some 𝑥0 ∈ X. The next theorem is not used often because
the quantitative dependence of the equivalence can be crude, but it is worth knowing.

Theorem 2.4.11. Let 𝜋 ∈ P1(X) and 𝑥0 ∈ X. The following are equivalent:

1. 𝜋 satisfies a T1 inequality.

2. There exists 𝑐 > 0 such that E𝜋 exp(𝑐 d(·, 𝑥0)2) < ∞.

Transport inequalities offer a flexible and powerful method for characterizing and
proving concentration inequalities, as we will see in the next section. Before doing so,
however, we wish to also demonstrate how concentration of measure, formulated via
blow-up of sets, can be deduced directly from a T1 inequality.

Suppose that T1(𝜎2) holds, i.e.,

𝑊 2
1 (𝜇, 𝜋) ≤ 2𝜎2 KL(𝜇 ∥ 𝜋) for all 𝜇 ∈ P1(X), 𝜇 ≪ 𝜋 .

For any disjoint sets 𝐴, 𝐵, with 𝜋 (𝐴) 𝜋 (𝐵) > 0, if we let 𝜋 (· | 𝐴) (resp. 𝜋 (· | 𝐵)) denote
the distribution 𝜋 conditioned on 𝐴 (resp. 𝐵), then

d(𝐴, 𝐵) ≤𝑊1
(
𝜋 (· | 𝐴), 𝜋 (· | 𝐵)

)
≤𝑊1

(
𝜋 (· | 𝐴), 𝜋

)
+𝑊1

(
𝜋 (· | 𝐵), 𝜋

)
≤
√︃

2𝜎2 KL
(
𝜋 (· | 𝐴)



 𝜋 ) +√︃2𝜎2 KL
(
𝜋 (· | 𝐵)



 𝜋 ) .
However,

KL
(
𝜋 (· | 𝐴)



 𝜋 ) = ∫
𝐴

𝜋 (d𝑥)
𝜋 (𝐴) ln 1

𝜋 (𝐴) = ln 1
𝜋 (𝐴) ,

so that

d(𝐴, 𝐵) ≤
√︂

2𝜎2 ln 1
𝜋 (𝐴) +

√︂
2𝜎2 ln 1

𝜋 (𝐵) .

In particular, if we take 𝐵 = (𝐴𝜀)c where 𝜋 (𝐴) ≥ 1
2 , then d(𝐴, 𝐵) ≥ 𝜀. Hence, for all

𝜀 ≥ 2
√

2𝜎2 ln 2, it holds that 𝜀
2 ≤

√︃
2𝜎2 ln 1

𝜋 (𝐵) , or

𝜋
(
(𝐴𝜀)c

)
≤ exp

(
− 𝜀

2

8𝜎2
)

for all 𝜀 ≥
√

8 ln 2𝜎 . (2.4.12)
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2.4.4 Tensorization and Gozlan’s Theorem
Our goal is now to investigate the relationship between concentration and tensoriza-
tion. Although results like the Bobkov–Götze theorem (Theorem 2.4.10) provide us with
powerful tools to establish concentration results, so far there is nothing inherently high-
dimensional about these phenomena.

Indeed, to discuss dimensionality, we should move to the product space X𝑁 and ask
when concentration results can hold independently of 𝑁 . If such a statement holds, then
the concentration inequality typically becomes stronger6 as 𝑁 becomes larger.

For instance, when X = R, then we know from Theorem 2.3.16 that the Poincaré and
log-Sobolev inequalities both tensorize: if they hold for 𝜋 ∈ P(R) with a constant 𝐶 ,
then they also hold for 𝜋⊗𝑁 ∈ P(R𝑁 ) with the same constant 𝐶 . Since these inequalities
imply powerful concentration results (Theorem 2.4.8), they yield examples of genuinely
high-dimensional concentration.

For transport inequalities, the tensorization for the T1 inequality is unsatisfactory in
the sense that once we equip X𝑁 with the product metric d(𝑥1:𝑁 , 𝑥

′
1:𝑁 )

2 B
∑𝑁
𝑖=1 d(𝑥𝑖, 𝑥′𝑖 )

2,
the validity of T1(𝐶) for 𝜋 ∈ P(X) does not imply the validity of T1(𝐶) for 𝜋⊗𝑁 ∈ P(X𝑁 )
with the same constant 𝐶 . In fact, from Example 2.3.18, we expect that the T1 constant
for 𝜋⊗𝑁 can grow as

√
𝑁 . On the other hand, from Corollary 2.3.19, we know that the

T2 inequality tensorizes. Since the T2 inequality on X𝑁 implies the T1 inequality on
X𝑁 (trivially), it in turn implies high-dimensional concentration via the Bobkov–Götze
equivalence (Theorem 2.4.10).

In this section, we will prove the surprising fact that high-dimensional concentration
is actually equivalent to the T2 inequality, in a sense that we shall make precise shortly.

First, we need a few preliminary results, which we shall not prove. The first one is a
straightforward technical lemma (see Exercise 2.16).

Lemma 2.4.13. Let 𝜋 ∈ P2(X).

1. The mapping (𝑥1, . . . , 𝑥𝑁 ) ↦→𝑊2(𝑁 −1 ∑𝑁
𝑖=1 𝛿𝑥𝑖 , 𝜋) is 𝑁 −1/2-Lipschitz.

2. (Wasserstein law of large numbers) Suppose that (𝑋𝑖)∞𝑖=1
i.i.d.∼ 𝜋 , and that for some

6Here, the word “stronger” is not precisely defined but it means something akin to “more useful” or
“produces more surprising consequences”.
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𝑥0 ∈ X and some 𝜀 > 0, it holds that E[d(𝑥0, 𝑋1)2+𝜀] < ∞. Then,

E𝑊2
( 1
𝑁

𝑁∑︁
𝑖=1

𝛿𝑋𝑖
, 𝜋

)
→ 0 as 𝑁 →∞ .

The second result, Sanov’s theorem, is a foundational theorem from large deviations.
Although Sanov’s theorem is of fundamental importance in its own right, it would take
us too far afield to develop large deviations theory here, so we invoke it as a black box.

Theorem 2.4.14 (Sanov’s theorem). Let (𝑋𝑖)∞𝑖=1
i.i.d.∼ 𝜋 and let 𝜋𝑁 B 𝑁 −1 ∑𝑁

𝑖=1 𝛿𝑋𝑖

denote the empirical measure. Then, for any Borel set 𝐴 ⊆ P(X), it holds that

− inf
int𝐴

KL(· ∥ 𝜋) ≤ lim inf
𝑁→∞

1
𝑁

lnP{𝜋𝑁 ∈ 𝐴}

≤ lim sup
𝑁→∞

1
𝑁

lnP{𝜋𝑁 ∈ 𝐴} ≤ − inf
𝐴

KL(· ∥ 𝜋) .

We are now ready to establish the equivalence.

Theorem 2.4.15 (Gozlan). The measure 𝜋 ∈ P2(X) satisfies T2(𝜎2) if and only if
for all 𝑁 ∈ N+ and all 1-Lipschitz 𝑓 : X𝑁 → R, the centered function 𝑓 − E𝜋⊗𝑁 𝑓 is
𝜎2-sub-Gaussian under 𝜋⊗𝑁 .

Proof. It remains to prove the converse implication. Fix 𝑡 > 0 and apply the assumption
statement to the 𝑁 −1/2-Lipschitz function (𝑥1, . . . , 𝑥𝑁 ) ↦→𝑊2(𝑁 −1 ∑𝑁

𝑖=1 𝛿𝑥𝑖 , 𝜋). It implies

P{𝑊2(𝜋𝑁 , 𝜋) > 𝑡} ≤ exp
(
−𝑁 {𝑡 − E𝑊2(𝜋𝑁 , 𝜋)}2

2𝜎2

)
,

where 𝜋𝑁 B 𝑁 −1 ∑𝑁
𝑖=1 𝛿𝑋𝑖

, with (𝑋𝑖)𝑖∈N+
i.i.d.∼ 𝜋 . On the other hand, the lower semicon-

tinuity of 𝑊2 implies that {𝜈 ∈ P(X) | 𝑊2(𝜇, 𝜈) > 𝑡} is open. By Sanov’s theorem
(Theorem 2.4.14), we obtain

− inf{KL(𝜈 ∥ 𝜋) |𝑊2(𝜈, 𝜋) > 𝑡} ≤ lim inf
𝑁→∞

1
𝑁

lnP{𝑊2(𝜋𝑁 , 𝜋) > 𝑡}

≤ − lim sup
𝑁→∞

{𝑡 − E𝑊2(𝜋𝑁 , 𝜋)}2

2𝜎2 = − 𝑡
2

2𝜎2 ,
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where the last inequality comes from the Wasserstein law of large numbers (our assump-
tion implies that 𝜋 has sub-Gaussian tails, which in particular means E[d(𝑥,𝑋1)𝑝] < ∞
for any 𝑥 ∈ X and any 𝑝 ≥ 1).

We have proven that𝑊2(𝜈, 𝜋) > 𝑡 implies KL(𝜈 ∥ 𝜋) ≥ 𝑡2/(2𝜎2), which is seen to be
equivalent to the T2 inequality. □

Observe in particular that this theorem implies the Otto–Villani theorem (Exercise 1.17):
due to tensorization (Theorem 2.3.16) and the Herbst argument (Lemma 2.4.6), a log-
Sobolev inequality implies high-dimensional sub-Gaussian concentration of Lipschitz
functions, which by Gözlan’s theorem is equivalent to a T2 inequality.

2.5 Isoperimetric Inequalities
In Section 2.4.1, we introduced the concentration function 𝛼𝜋 of a measure 𝜋 . Thus far, we
have provided tools to upper bound the concentration function; for example, in (2.4.12),
we showed that if 𝜋 satisfies T1(𝜎2), then

𝛼𝜋 (𝜀) ≤ exp
(
− 𝜀

2

8𝜎2
)

for all 𝜀 ≥
√

8 ln 2𝜎 .

Observe that this provides no information when 𝜀 is small, whereas by definition we know
that 𝛼𝜋 (0) = 1

2 . In this section, we will study finer questions about the concentration
function. More generally, for 𝑝 ∈ (0, 1) and 𝜀 > 0, we introduce the quantity

𝜔𝜋 (𝑝, 𝜀) B inf{𝜋 (𝐴𝜀) | 𝐴 is a Borel set with 𝜋 (𝐴) = 𝑝} ,

and we can ask about the deviation of 𝜔𝜋 (𝑝, 𝜀) from 𝑝 when 𝜀 is small. In some special
cases, we can even determine the function𝜔𝜋 exactly. The study of this question will bring
us to the classical geometric problem of isoperimetry. In its simplest guise, it asks: among
all plane curves which enclose an area of a prescribed area, which ones have the least
perimeter? Unsurprisingly, among regular curves, it is well-known that circles provide
the answer to this question. As we shall see, the isoperimetric question, once generalized
to abstract spaces, contains a wealth of information about concentration phenomena.

2.5.1 Classical Isoperimetry Results
The connection between concentration and isoperimetry began with the work of Lévy,
who found the isoperimetric inequality on the sphere.
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Theorem 2.5.1 (spherical isoperimetry). Let 𝜎𝑑 denote the uniform measure on the
𝑑-dimensional unit sphere S𝑑 , and let 𝐴 ⊆ S𝑑 be a Borel subset with 𝜎𝑑 (𝐴) ∉ {0, 1}. Let
𝐶 be a spherical cap with the same measure as 𝐴. Then, for all 𝜀 > 0,

𝜎𝑑 (𝐴𝜀) ≥ 𝜎𝑑 (𝐶𝜀) .

We give a few reminders about spherical geometry. We equip S𝑑 with its geodesic
metric d, so that the distance between two points 𝑥,𝑦 ∈ S𝑑 is equal to the angle between
𝑥 and 𝑦. A spherical cap is a geodesic ball, that is, it is a set of the form B(𝑥0, 𝑟 ) for some
𝑥0 ∈ S𝑑 and 𝑟 > 0, where the balls are defined w.r.t. d.

Note that Theorem 2.5.1 identifies the exact function 𝜔𝜎𝑑 .
To see how an isoperimetric result naturally leads to a concentration result, suppose

that 𝐴 has measure 1
2 . Then, the corresponding spherical cap 𝐶 can be taken to be half of

the sphere, 𝐶 = B(𝑥0,
π

2 ), and so

𝜎𝑑 (𝐴𝜀) ≥ 𝜎𝑑 (𝐶𝜀) = 𝜎𝑑
(
B
(
𝑥0,

π

2 + 𝜀
) )
.

To obtain an upper bound on the concentration function 𝛼𝜎𝑑 , it therefore suffices to lower
bound the volume of the spherical cap. It leads to the following result, which we leave as
an exercise (Exercise 2.17).

Theorem 2.5.2 (concentration on the sphere). Let 𝜎𝑑 be the uniform measure on the
unit sphere S𝑑 in dimension 𝑑 ≥ 2, equipped with the geodesic distance d. Then,

𝛼𝜎𝑑 (𝜀) ≤ exp
(
− (𝑑 − 1) 𝜀2

2
)
, for all 𝜀 > 0 .

There is also an isoperimetric result for the standard Gaussian measure 𝛾𝑑 on R𝑑 . In
this case, the optimal sets are given by half-spaces, i.e., sets of the form

𝐻𝑥0,𝑡 B {𝑥 ∈ R𝑑 | ⟨𝑥, 𝑥0⟩ ≤ 𝑡} .

Theorem 2.5.3 (Gaussian isoperimetry). Let 𝛾𝑑 denote the standard Gaussian measure
on R𝑑 , and let 𝐴 ⊆ R𝑑 be a Borel subset with 𝛾𝑑 (𝐴) ≠ {0, 1}. Let 𝐻𝑥0,𝑡 be a half-space
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with the same measure as 𝐴. Then, for all 𝜀 > 0,

𝛾𝑑 (𝐴𝜀) ≥ 𝛾𝑑 (𝐻 𝜀
𝑥0,𝑡 ) .

We can write this result more explicitly as follows. By rotational invariance of the
Gaussian, we can take 𝑥0 to be any unit vector 𝑒 , in which case the measure of 𝐻𝑒,𝑡 is
𝛾𝑑 (𝐻𝑒,𝑡 ) = Φ(𝑡), where Φ is the Gaussian CDF. Since 𝐻 𝜀

𝑒,𝑡 = 𝐻𝑒,𝑡+𝜀 , then

𝛾𝑑 (𝐴𝜀) ≥ Φ
(
Φ−1 (𝛾𝑑 (𝐴)) + 𝜀) . (2.5.4)

In particular, if 𝛾𝑑 (𝐴) = 1
2 , then Φ−1( 12 ) = 0, so

𝛼𝛾𝑑 (𝜀) ≤ Φ(−𝜀) ≤ 1
2 exp

(
−𝜀

2

2
)
.

We now pause to give a remark on proofs. Since these isoperimetric inequalities require
a detailed understanding of the measure (including the optimal sets in the inequality), they
are considerably more difficult to prove than the other results we have seen so far (e.g.,
a log-Sobolev inequality). In particular, usually they can only established for measures
which are simple in some regard, e.g., they enjoy many symmetries. Hence, we will not
prove them here.

It is often convenient to pass to a differential form of the isoperimetric inequality,
which is obtained by sending 𝜀 ↘ 0. This is formalized as follows.

Definition 2.5.5 (Minkowski content). Given a non-empty Borel set𝐴 and a measure
𝜋 on a Polish space (X, d), the Minkowski content of 𝐴 under 𝜋 is

𝜋+(𝐴) B lim inf
𝜀↘0

𝜋 (𝐴𝜀) − 𝜋 (𝐴)
𝜀

.

Definition 2.5.6 (isoperimetric profile). For a measure 𝜋 on a Polish space (X, d),
the isoperimetric profile of 𝜋 , denoted I𝜋 : [0, 1] → R+, is the function

I𝜋 (𝑝) B inf{𝜋+(𝐴) | 𝐴 is measurable with 𝜋 (𝐴) = 𝑝} .

For the standard Gaussian, a Taylor expansion of (2.5.4) yields

𝛾𝑑 (𝐴𝜀) ≥ 𝛾𝑑 (𝐴) + 𝜙
(
Φ−1 (𝛾𝑑 (𝐴)) ) 𝜀 + 𝑜 (𝜀) ,
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where 𝜙 = Φ′ is the Gaussian density. Hence, we can identify the isoperimetric profile of
the standard Gaussian as

I𝛾𝑑 (𝑝) = 𝜙
(
Φ−1(𝑝)

)
. (2.5.7)

Actually, the result (2.5.7) is equivalent to the Gaussian isoperimetric inequality (2.5.4).
Here, (2.5.4) is called the integral form of the inequality, whereas (2.5.7) is called the
differential form. The following theorem shows how to convert between the two forms.

Theorem 2.5.8 ([BH97]). Let I : (0, 1) → R>0. Define the increasing function
𝐹 such that 𝐹 (0) = 1

2 and 𝑓 ◦ 𝐹−1 = I, where 𝑓 = 𝐹 ′; equivalently, we can take
𝐹−1(𝑝) =

∫ 𝑝

1/2 I(𝑡)
−1 d𝑡 . Then, the following statements are equivalent.

1. For all 𝜀 > 0 and all Borel 𝐴 with 𝜋 (𝐴) ∉ {0, 1},

𝜋 (𝐴𝜀) ≥ 𝐹
(
𝐹−1 (𝜋 (𝐴)) + 𝜀) .

2. For all Borel 𝐴 with 𝜋 (𝐴) ∉ {0, 1},

𝜋+(𝐴) ≥ I
(
𝜋 (𝐴)

)
.

Proof sketch. Let 𝜔̄ (𝑝, 𝜀) B 𝐹 (𝐹−1(𝑝) + 𝜀). Then, 𝜔̄ satisfies the semigroup property
𝜔̄ (𝜔̄ (𝑝, 𝜀), 𝜀′) = 𝜔̄ (𝑝, 𝜀 + 𝜀′), and using this one can show that to prove 𝜋 (𝐴𝜀) ≥ 𝜔 (𝜋 (𝐴))
it suffices to consider 𝜀 ↘ 0. A Taylor expansion yields

𝜋 (𝐴𝜀) ≥ 𝜋 (𝐴) + 𝜋+(𝐴) 𝜀 + 𝑜 (𝜀) ,
𝜔̄ (𝜋 (𝐴), 𝜀) = 𝜋 (𝐴) + I(𝜋 (𝐴)) 𝜀 + 𝑜 (𝜀) ,

from which we deduce that 𝜋+(𝐴) ≥ I(𝜋 (𝐴)) for all 𝐴 if and only if 𝜋 (𝐴𝜀) ≥ 𝜔̄ (𝜋 (𝐴), 𝜀)
for all 𝐴 and all 𝜀 > 0. □

2.5.2 Cheeger Isoperimetry
We now consider a class of probability measures which is characterized by a lower bound
on the isoperimetric profile.

Definition 2.5.9. A probability measure 𝜋 satisfies a Cheeger isoperimetric in-
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equality with constant Ch > 0 if for all Borel sets 𝐴 ⊆ X,

𝜋+(𝐴) ≥ 1
Ch

𝜋 (𝐴) 𝜋 (𝐴c) . (2.5.10)

For the two-sided exponential density 𝑥 ↦→ 𝜇 (𝑥) B 1
2 exp(−|𝑥 |), the isoperimetric

profile is known to be I𝜇 (𝑝) = min(𝑝, 1 − 𝑝). Hence, the Cheeger isoperimetric inequality
roughly asserts that the isoperimetric properties of 𝜋 are at least as good as those of 𝜇.

The inequality in (2.5.10) is the differential form of the inequality. By applying Theo-
rem 2.5.8, one shows that the inequality (2.5.10) implies, for any 𝜀 ∈ [0,Ch],

𝜋 (𝐴𝜀) − 𝜋 (𝐴) ≥ 𝜀

2 Ch
𝜋 (𝐴) 𝜋 (𝐴c) . (2.5.11)

For all 𝜀 > 0, Theorem 2.5.8 also implies that

𝛼𝜋 (𝜀) ≤ exp
(
− 𝜀

Ch
)
,

so 𝜋 enjoys at least subexponential concentration.
Such isoperimetric inequalities will play a key role when we study Metropolis-adjusted

sampling algorithms in Chapter 7. For now, however, our goal is to establish an equivalence
between the Cheeger isoperimetric inequality and a functional version of it.

To pass from a functional inequality to an inequality involving sets, we can usually
apply the functional inequality to the indicator of a set. To go the other way around, we
need to represent a function via its level sets, which is achieved via the coarea inequality.

Theorem 2.5.12 (coarea inequality). Let 𝑓 : X→ R be Lipschitz. Then,∫
∥∇𝑓 ∥ d𝜋 ≥

∫ ∞

−∞
𝜋+{𝑓 > 𝑡} d𝑡 .

Remark 2.5.13. On a general metric space (X, d), we define

∥∇𝑓 ∥(𝑥) B lim sup
𝑦∈X, d(𝑥,𝑦)↘0

|𝑓 (𝑥) − 𝑓 (𝑦) |
d(𝑥,𝑦) .

In “nice” spaces, the coarea inequality is actually an equality, but we will not need this.

Proof. By an approximation argument we may assume that 𝑓 is bounded, and by adding
a constant to 𝑓 we may suppose 𝑓 ≥ 0. Let 𝑓𝜀 (𝑥) B supd(𝑥,·)<𝜀 𝑓 and 𝐴𝑡 B {𝑓 > 𝑡}. We
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can check that 𝐴𝜀𝑡 = {𝑓𝜀 > 𝑡}, and for 𝑔 ≥ 0 we have the formula
∫
𝑔 d𝜋 =

∫ ∞
0 𝜋{𝑔 > 𝑡} d𝑡 .

By applying this to 𝑔 = 𝑓 and 𝑔 = 𝑓𝜀 ,∫
𝑓𝜀 − 𝑓
𝜀

d𝜋 =

∫ ∞

0

𝜋 (𝐴𝜀𝑡 ) − 𝜋 (𝐴𝑡 )
𝜀

d𝑡 .

Now let 𝜀 ↘ 0 using Fatou’s lemma and dominated convergence. □

Theorem 2.5.14. Let 𝜋 ∈ P1(X) and let Ch > 0. The following are equivalent.

1. 𝜋 satisfies a Cheeger isoperimetric inequality with constant Ch.

2. For all Lipschitz 𝑓 : X→ R, it holds that

E𝜋 |𝑓 − E𝜋 𝑓 | ≤ 2 ChE𝜋 ∥∇𝑓 ∥ . (2.5.15)

Proof sketch. (2) =⇒ (1): Apply (2.5.15) to an approximation 𝑓 of the indicator function
1𝐴, so that E𝜋 |𝑓 − E𝜋 𝑓 | ≈ 2𝜋 (𝐴) (1 − 𝜋 (𝐴)) and E𝜋 ∥∇𝑓 ∥ ≈ 𝜋+(𝐴).

(1) =⇒ (2): Let 𝐴𝑡 B {𝑓 > 𝑡}. Applying the coarea inequality and the Cheeger
isoperimetric inequality,

2 ChE𝜋 ∥∇𝑓 ∥ ≥ 2 Ch
∫ ∞

−∞
𝜋+{𝑓 > 𝑡} d𝑡

≥ 2
∫ ∞

−∞
𝜋 (𝐴𝑡 ) 𝜋 (𝐴c

𝑡 ) d𝑡 =
∫ ∞

−∞
E𝜋 |1𝐴𝑡

− 𝜋 (𝐴𝑡 ) | d𝑡

≥ sup
∥𝑔∥𝐿∞(𝜋 )≤1

∫ ∞

−∞

(∫
𝑔 {1𝐴𝑡

− 𝜋 (𝐴𝑡 )} d𝜋
)

d𝑡

= sup
∥𝑔∥𝐿∞(𝜋 )≤1

∫ ∞

−∞

(∫
{𝑔 − E𝜋 𝑔} 1𝐴𝑡

d𝜋
)

d𝑡 = sup
∥𝑔∥𝐿∞(𝜋 )≤1

∫
{𝑔 − E𝜋 𝑔} 𝑓 d𝜋

= E𝜋 |𝑓 − E𝜋 𝑓 | . □

2.5.3 𝐿𝑝–𝐿𝑞 Poincaré Inequalities
In this section, we work on Euclidean space for simplicity.

The inequality (2.5.15) can be considered an “𝐿1 variant” of the Poincaré inequality.
More generally, we can define the following family of inequalities.
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Definition 2.5.16 (𝐿𝑝–𝐿𝑞 Poincaré inequality). For 𝑝, 𝑞 ∈ [1,∞] with 𝑞 ≥ 𝑝 , the
𝐿𝑝–𝐿𝑞 Poincaré inequality asserts that for all smooth 𝑓 : R𝑑 → R,

∥ 𝑓 − E𝜋 𝑓 ∥𝐿𝑝 (𝜋) ≤ 𝐶𝑝,𝑞


 ∥∇𝑓 ∥ 



𝐿𝑞 (𝜋) .

In this new notation, the usual Poincaré inequality is an 𝐿2–𝐿2 Poincaré inequality
with 𝐶2,2 =

√
𝐶PI, whereas the inequality (2.5.15) is an 𝐿1–𝐿1 Poincaré inequality.

These inequalities form a hierarchy via Hölder’s inequality.

Proposition 2.5.17 ([Mil09]). Suppose 𝑝, 𝑞, 𝑝, 𝑞 ∈ [1,∞] are such that 𝑝 ≤ 𝑝 and
𝑞 ≤ 𝑞, and 𝑝−1 − 𝑞−1 = 𝑝−1 − 𝑞−1. Then,

𝐶𝑝,𝑞 ≲
𝑝

𝑝
𝐶𝑝,𝑞 .

Proof. Let 𝑓 satisfy med𝜋 𝑓 = 0, which we can arrange by adding a constant. Define the
function 𝑔 B (sgn 𝑓 ) |𝑓 |𝑝/𝑝 , which still satisfies med𝜋 𝑔 = 0. By using the equivalence be-
tween the mean and the median (Lemma 2.4.4) and applying the 𝐿𝑝–𝐿𝑞 Poincaré inequality
to 𝑔 together with Hölder’s inequality,

∥ 𝑓 −med𝜋 𝑓 ∥𝑝/𝑝
𝐿𝑝 (𝜋) = ∥𝑔 −med𝜋 𝑔∥𝐿𝑝 (𝜋) ≲ ∥𝑔 − E𝜋 𝑔∥𝐿𝑝 (𝜋) ≤ 𝐶𝑝,𝑞



 ∥∇𝑔∥ 


𝐿𝑞 (𝜋)

=
𝑝

𝑝
𝐶𝑝,𝑞



 |𝑓 |𝑝/𝑝−1 ∥∇𝑓 ∥



𝐿𝑞 (𝜋)

=
𝑝

𝑝
𝐶𝑝,𝑞 ∥ 𝑓 −med𝜋 𝑓 ∥𝑝/𝑝−1

𝐿𝑝 (𝜋)



 ∥∇𝑓 ∥ 


𝐿𝑞 (𝜋) ,

where we leave it to the reader to check that the exponents work out correctly. If we
rearrange this inequality and apply Lemma 2.4.4 again, then

∥ 𝑓 − E𝜋 𝑓 ∥𝐿𝑝 (𝜋) ≲ ∥ 𝑓 −med𝜋 𝑓 ∥𝐿𝑝 (𝜋) ≲
𝑝

𝑝
𝐶𝑝,𝑞



 ∥∇𝑓 ∥ 


𝐿𝑞 (𝜋) . □

Thus, we have the following implications: for any 𝑝 ∈ (2,∞),

(𝐿1–𝐿1) =⇒ (𝐿2–𝐿2) =⇒ · · · =⇒ (𝐿𝑝–𝐿𝑝) .

In particular, the first implication together with the equivalence in Theorem 2.5.14 shows
that the Cheeger isoperimetric inequality implies the Poincaré inequality.
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Also, given any 𝐿𝑝–𝐿𝑞 Poincaré inequality, by Jensen’s inequality we can trivially
make it weaker by decreasing 𝑝 or increasing 𝑞; hence, every 𝐿𝑝–𝐿𝑞 Poincaré inequality
implies an 𝐿1–𝐿∞ Poincaré inequality. On the other hand, for any 1 ≤ 𝑝 ≤ 𝑞 < ∞, an
𝐿1–𝐿1 Poincaré implies an 𝐿𝑝–𝐿𝑝 Poincaré, which trivially implies an 𝐿𝑝–𝐿𝑞 Poincaré
inequality. We conclude that among these inequalities, the 𝐿1–𝐿1 inequality is the strongest
and the 𝐿1–𝐿∞ inequality is the weakest.

We now wish to sketch the proof of a deep result by E. Milman, which states that for
log-concave measures, the hierarchy can be reversed. The formal statement is as follows.

Theorem 2.5.18 (reversing the hierarchy). Let 𝜋 ∈ P(R𝑑) be log-concave. Then,

𝐶1,1 ≲ 𝐶1,∞ .

As a consequence, suppose that 𝜋 is 𝛼-strongly log-concave. By the Bakry–Émery
theorem (Theorem 1.2.29), 𝜋 satisfies a Poincaré inequality with 𝐶2

2,2 = 𝐶PI ≤ 1/𝛼 . By
reversing the hierarchy, we see that this implies a Cheeger isoperimetric inequality.

Corollary 2.5.19. If 𝜋 ∈ P(R𝑑) is 𝛼-strongly log-concave, then 𝜋 satisfies a Cheeger
isoperimetric inequality with constant Ch ≲ 1/

√
𝛼 .

The proof of Milman’s theorem will require some preparations. The first fact that
we need is a deep result in its own right. Typically it is proven with geometric measure
theory by studying the isoperimetric problem, and we omit the proof.

Theorem 2.5.20. If 𝜋 is log-concave, then its isoperimetric profile I𝜋 is concave.

The isoperimetric profile satisfies I𝜋 (0) = 0, and it is symmetric around 1
2 , so it suffices

to consider 𝑝 ∈ [0, 1
2 ]. By concavity,

I𝜋 (𝑝) ≥ I𝜋
(1
2
)
𝑝 . (2.5.21)

Hence, in order to prove Cheeger’s isoperimetric inequality, we need only find a suitable
lower bound for I𝜋 ( 12 ).

The next idea is that instead of applying the 𝐿1–𝐿∞ directly to an indicator function
1𝐴, we will first regularize 1𝐴 using the Langevin semigroup (𝑃𝑡 )𝑡≥0 with stationary
distribution 𝜋 . We start with a semigroup calculation.
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Proposition 2.5.22. Assume that the Markov semigroup (𝑃𝑡 )𝑡≥0 is reversible and
satisfies the curvature-dimension condition CD(𝛼,∞) for some 𝛼 ∈ R.

1. For all 𝑓 and 𝑡 ≥ 0,

𝑃𝑡 (𝑓 2) − (𝑃𝑡 𝑓 )2 ≥
exp(2𝛼𝑡) − 1

𝛼
Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) , (2.5.23)

where we interpret exp(2𝛼𝑡)−1
𝛼

= 2𝑡 when 𝛼 = 0.

2. If 𝛼 = 0, then for all 𝑡 > 0 and 𝑝 ∈ [2,∞],

√︁Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 )



𝐿𝑝 (𝜋) ≤

1
√

2𝑡
∥ 𝑓 ∥𝐿𝑝 (𝜋) (2.5.24)

and

∥ 𝑓 − 𝑃𝑡 𝑓 ∥𝐿1 (𝜋) ≤
√

2𝑡


√︁Γ(𝑓 , 𝑓 )




𝐿1 (𝜋) . (2.5.25)

Proof. We recall the calculation that we performed for the local Poincaré inequality
(Theorem 2.2.11):

𝜕𝑠 [𝑃𝑠 ((𝑃𝑡−𝑠 𝑓 )2)] = 2𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) .

From the second statement of Theorem 2.2.11, we have

Γ(𝑃𝑠𝑔, 𝑃𝑠𝑔) ≤ exp(−2𝛼𝑠) 𝑃𝑠Γ(𝑔,𝑔) .

Taking 𝑔 = 𝑃𝑡−𝑠 𝑓 , we deduce that

𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) ≥ exp(2𝛼𝑠) Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) .

Integrating this from 𝑠 = 0 to 𝑠 = 𝑡 ,

𝑃𝑡 (𝑓 2) − (𝑃𝑡 𝑓 )2 ≥ 2Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 )
∫ 𝑡

0
exp(2𝛼𝑠) d𝑠 = exp(2𝛼𝑡) − 1

𝛼
Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) .

This establishes the first inequality. In particular, for 𝛼 = 0,√︁
Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ≤

1
√

2𝑡

√︁
𝑃𝑡 (𝑓 2)
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so that 

√︁Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 )



𝐿𝑝 (𝜋) ≤

1
√

2𝑡
{E𝜋 𝑃𝑡 ( |𝑓 |𝑝)}1/𝑝 ≤

1
√

2𝑡
∥ 𝑓 ∥𝐿𝑝 (𝜋) .

The last inequality is the dual of the 𝑝 = ∞ case. Indeed, for 𝑔 with ∥𝑔∥𝐿∞ (𝜋) ≤ 1,

𝜕𝑡

∫
(𝑓 − 𝑃𝑡 𝑓 ) 𝑔 d𝜋 = −

∫
𝑃𝑡ℒ𝑓 𝑔 d𝜋 =

∫
Γ(𝑓 , 𝑃𝑡𝑔) d𝜋

and hence, by the Cauchy–Schwarz inequality for the carré du champ (Exercise 1.7),∫
(𝑓 − 𝑃𝑡 𝑓 ) 𝑔 d𝜋 =

∫ 𝑡

0

(∫
Γ(𝑓 , 𝑃𝑠𝑔) d𝜋

)
d𝑠 ≤

∫ 𝑡

0

(∫ √︁
Γ(𝑓 , 𝑓 ) Γ(𝑃𝑠𝑔, 𝑃𝑠𝑔) d𝜋

)
d𝑠

≤


√︁Γ(𝑓 , 𝑓 )




𝐿1 (𝜋)

∫ 𝑡

0



√︁Γ(𝑃𝑠𝑔, 𝑃𝑠𝑔)



𝐿∞ (𝜋) d𝑠

≤


√︁Γ(𝑓 , 𝑓 )




𝐿1 (𝜋) ∥𝑔∥𝐿∞ (𝜋)

∫ 𝑡

0

1
√

2𝑠
d𝑠 ≤

√
2𝑡


√︁Γ(𝑓 , 𝑓 )




𝐿1 (𝜋) . □

Remark 2.5.26. The inequality (2.5.23) can be regarded as a “reverse Poincaré” inequality
because it upper bounds the size of the gradient via a variance term. Similarly to Theo-
rem 2.2.11, the inequality (2.5.23) can also be shown to be equivalent to CD(𝛼,∞).

We are now ready to prove Milman’s theorem.

Proof of Milman’s theorem, Theorem 2.5.18. By approximating the indicator function 1𝐴

with a smooth function and applying the inequality (2.5.25), we can justify the bound
√

2𝑡 𝜋+(𝐴) ≥ ∥1𝐴 − 𝑃𝑡1𝐴∥𝐿1 (𝜋) .

Next, a calculation shows that

E𝜋 |1𝐴 − 𝑃𝑡1𝐴 | = 2
{
𝜋 (𝐴) 𝜋 (𝐴c) − E

[ (
1𝐴 − 𝜋 (𝐴)

) (
𝑃𝑡1𝐴 − 𝜋 (𝐴)

) ]}
≥ 2 {𝜋 (𝐴) 𝜋 (𝐴c) − ∥1𝐴 − 𝜋 (𝐴)∥𝐿∞ (𝜋)︸                 ︷︷                 ︸

≤1

∥𝑃𝑡1𝐴 − 𝜋 (𝐴)∥𝐿1 (𝜋)} .

From the 𝐿1–𝐿∞ Poincaré inequality and (2.5.24),

∥𝑃𝑡1𝐴 − 𝜋 (𝐴)∥𝐿1 (𝜋) ≤ 𝐶1,∞


 ∥∇𝑃𝑡1𝐴∥ 

𝐿∞ (𝜋) ≤ 𝐶1,∞√

2𝑡
∥1𝐴∥𝐿∞ (𝜋) ≤

𝐶1,∞√
2𝑡
.
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Hence, we have

√
2𝑡 𝜋+(𝐴) ≥ 2

{
𝜋 (𝐴) 𝜋 (𝐴c) − 𝐶1,∞√

2𝑡
}
.

Now choose
√

2𝑡 = 2𝐶1,∞/(𝜋 (𝐴) 𝜋 (𝐴c)) to obtain

𝜋+(𝐴) ≥ 1
2𝐶1,∞

𝜋 (𝐴)2 𝜋 (𝐴c)2 .

This inequality is not fully satisfactory, but if we take 𝜋 (𝐴) = 1
2 then we deduce from this

that I𝜋 ( 12 ) ≥ 1/(32𝐶1,∞), and from (2.5.21) we conclude. □

2.5.4 Gaussian Isoperimetry

The Cheeger isoperimetric inequality asserts that for small 𝑝 , I𝜋 (𝑝) ≳ 𝑝 . On the other
hand, one can check that the Gaussian isoperimetric profile I𝛾𝑑 (𝑝) = 𝜙 (Φ−1(𝑝)) has the
asymptotics I𝛾𝑑 (𝑝) ∼ 𝑝

√︁
2 ln(1/𝑝) as 𝑝 ↘ 0.

As with the Cheeger isoperimetric inequality, isoperimetry of Gaussian type can also
be captured via a functional inequality. The following result is due to Bobkov.

Theorem 2.5.27 (Gaussian isoperimetry, functional form). Suppose that 𝜋 ∈ P(R𝑑)
is 𝛼-strongly log-concave for some 𝛼 > 0. Then, for all 𝑓 : R𝑑 → [0, 1],

√
𝛼 I𝛾𝑑 (E𝜋 𝑓 ) ≤ E𝜋

√︃
𝛼 I𝛾𝑑 (𝑓 )2 + Γ(𝑓 , 𝑓 ) . (2.5.28)

As this formulation suggests, Theorem 2.5.27 has a proof via Markov semigroup theory,
for which we refer readers to [BGL14, §8.5.2]. By converting the functional inequality
back into an isoperimetric statement, one can deduce the following comparison theorem.

Theorem 2.5.29 (Gaussian isoperimetry comparison theorem). Suppose that the
measure 𝜋 ∈ P(R𝑑) is 𝛼-strongly log-concave for some 𝛼 > 0. Then,

I𝜋 ≥
√
𝛼 I𝛾𝑑 .

We explore these results further in the exercises.
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2.6 Metric Measure Spaces
In this section, we revisit the curvature-dimension condition. As we hinted at in Sec-
tion 2.2.1, the commutation relation which underlies the curvature-dimension condition
captures the underlying curvature of both the ambient space and the measure. This
observation leads not only to an extension of the ideas we have been considering thus far
to weighted Riemannian manifolds, but in fact provides an avenue towards developing
geometric analysis on non-smooth spaces which a priori have no differential structure.
The key to this program is that, whereas the Ricci curvature tensor cannot be defined on
such spaces, the convexity of the KL divergence w.r.t. an appropriate Wasserstein space
continues to make sense as a “synthetic” notion of a Ricci curvature lower bound.

To aid the reader who is unfamiliar with Riemannian geometry, we will provide a
brief review of the main concepts. In this section, we shall omit many of the proofs, as
the goal is simply to acquaint the reader with the general picture in a geometric context
without delving into the details.

2.6.1 Riemannian Geometry
Basic concepts. We recall some of the definitions from Section 1.3.2. A Riemannian
manifold M is a space which is locally homeomorphic to a Euclidean space, such that
at every point 𝑝 ∈ M there is an associated vector space 𝑇𝑝M, called the tangent space
to M at 𝑝 , equipped with an inner product ⟨·, ·⟩𝑝 . The tangent space 𝑇𝑝M represents the
velocities of all curves passing through 𝑝 . We can collect together the different tangent
spaces into a single object called the tangent bundle,

𝑇M B
⋃
𝑝∈M
({𝑝} ×𝑇𝑝M) .

The Riemannian metric 𝑝 ↦→ ⟨·, ·⟩𝑝 is required to be smooth in a suitable sense.
A smooth function 𝑓 : M→ R has a differential 𝑑 𝑓 : 𝑇M→ R, defined as follows.

Given a point 𝑝 ∈ M and a tangent vector 𝑣 ∈ 𝑇𝑝M, let (𝑝𝑡 )𝑡∈R be a curve on M with
𝑝0 = 𝑝 and with velocity 𝑣 at time 0. Then, (𝑑 𝑓 )𝑝𝑣 B 𝜕𝑡 |𝑡=0𝑓 (𝑝𝑡 ). One can check that
this definition does not depend on the choice of curve (𝑝𝑡 )𝑡∈R and that (𝑑 𝑓 )𝑝 is a linear
function on𝑇𝑝M. Note that the differential can be defined on any manifold, even if it does
not have a Riemannian structure, but (𝑑 𝑓 )𝑝 is not an element of 𝑇𝑝M; it is an element
of the dual space 𝑇 ∗𝑝M, called the cotangent space. The Riemannian metric allows us
to identify (𝑑 𝑓 )𝑝 with an element of 𝑇𝑝M: there is a unique vector ∇𝑓 (𝑝) ∈ 𝑇𝑝M such
that for all 𝑣 ∈ 𝑇𝑝M, it holds that (𝑑 𝑓 )𝑝𝑣 = ⟨∇𝑓 (𝑝), 𝑣⟩𝑝 . The vector ∇𝑓 (𝑝) is called the
gradient of 𝑓 at 𝑝 . The gradient depends on the choice of the metric, and we can then
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define the gradient flow of 𝑓 to be a curve (𝑝𝑡 )𝑡≥0 such that the velocity ¤𝑝𝑡 of the curve
equals −∇𝑓 (𝑝𝑡 ) for all 𝑡 ≥ 0.

We pause to give a simple example. Suppose that M = R𝑑 , and we pick a smooth
mapping 𝑝 ↦→ 𝐴𝑝 where 𝐴𝑝 is a positive definite 𝑑 × 𝑑 matrix for each 𝑝 ∈ R𝑑 . This
induces a Riemannian metric via ⟨𝑢, 𝑣⟩𝑝 B ⟨𝑢,𝐴𝑝 𝑣⟩, where ⟨·, ·⟩ (without a subscript)
denotes the usual Euclidean inner product. If (𝑝𝑡 )𝑡∈R is a smooth curve in R𝑑 and its usual
time derivative is ( ¤𝑝𝑡 )𝑡∈R, then we know that 𝜕𝑡 𝑓 (𝑝𝑡 ) = ⟨∇𝑓 (𝑝𝑡 ), ¤𝑝𝑡 ⟩ = ⟨𝐴−1

𝑝𝑡
∇𝑓 (𝑝𝑡 ), ¤𝑝𝑡 ⟩𝑝𝑡 .

Hence, the manifold gradient ∇M𝑓 is given by ∇M𝑓 (𝑝) = 𝐴−1
𝑝 ∇𝑓 , where ∇𝑓 is the

Euclidean gradient. When 𝐴𝑝 = ∇2𝜙 (𝑝) is obtained as the Hessian of a mapping 𝜙 , then
M is called a Hessian manifold.

A vector field on M is a mapping𝑋 : M→ 𝑇M such that𝑋 (𝑝) ∈ 𝑇𝑝M for all 𝑝 ∈ M.7
A single vector 𝑣 ∈ 𝑇𝑝M can be thought of as a differential operator; for 𝑓 ∈ C∞(M), we
can define the action of 𝑣 on 𝑓 via 𝑣 (𝑓 ) B (𝑑 𝑓 )𝑝𝑣 . Similarly, a vector field 𝑋 acts on 𝑓 and
produces a function 𝑋 𝑓 : M→ R, defined by 𝑋 𝑓 (𝑝) = 𝑋 (𝑝) 𝑓 for all 𝑝 ∈ M. For example,
on R𝑑 , a vector field can be identified with a mapping R𝑑 → R𝑑 , and it differentiates
functions via 𝑋 𝑓 (𝑝) = ⟨∇𝑓 (𝑝), 𝑋 (𝑝)⟩.

We would also like to differentiate vector fields along other vector fields, and there are
two main ways of doing so. The first is called the Lie derivative, and it can be defined on
any smooth manifold without the need for a Riemannian metric, and is consequently less
important for our discussion. The second is the Levi–Civita connection, which given
vector fields 𝑋 and 𝑌 , outputs another vector field ∇𝑋𝑌 . This connection is characterized
by various properties, including compatibility with the Riemannian metric: for all vector
fields 𝑋 , 𝑌 , and 𝑍 , we have the chain rule

𝑍 ⟨𝑋,𝑌 ⟩ = ⟨∇𝑍𝑋,𝑌 ⟩ + ⟨𝑋,∇𝑍𝑌 ⟩ . (2.6.1)

Here, the vector field 𝑍 is differentiating the scalar function 𝑝 ↦→ ⟨𝑋 (𝑝), 𝑌 (𝑝)⟩𝑝 . Since we
do not aim to perform many Riemannian calculations here, we omit most of the other
properties for simplicity. However, we mention one key fact, which is that for any smooth
function 𝑓 , it holds that∇𝑓 𝑋𝑌 = 𝑓 ∇𝑋𝑌 , where 𝑓 𝑋 is the vector field (𝑓 𝑋 ) (𝑝) = 𝑓 (𝑝)𝑋 (𝑝).
This property implies that the mapping (𝑋,𝑌 ) ↦→ ∇𝑋𝑌 is tensorial in its first argument,
that is, (∇𝑋𝑌 ) (𝑝) only depends on the value 𝑋 (𝑝) of 𝑋 at 𝑝 .

The tensorial property of the Levi–Civita connection allows us to compute the deriva-
tive of a vector field 𝑌 along a curve 𝑐 : R → M. Namely, for 𝑡 ∈ R, we can define
𝐷𝑐𝑌 (𝑡) B (∇¤𝑐 (𝑡)𝑌 ) (𝑐 (𝑡)), which makes sense because we can extend ¤𝑐 to a vector field
𝑋 on M and deduce that (∇𝑋𝑌 ) (𝑐 (𝑡)) only depends on 𝑋 (𝑐 (𝑡)) = ¤𝑐 (𝑡) (and not on the
choice of extension 𝑋 ). Then, 𝐷𝑐𝑌 is called the covariant derivative of 𝑌 along the curve

7Geometers would say that 𝑋 is a section of the tangent bundle.
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𝑐 . From there, we can define the parallel transport of a vector 𝑣0 ∈ 𝑇𝑐 (0)M along the
curve 𝑐 to be the unique vector field (𝑣 (𝑡))𝑡∈R defined along the curve 𝑐 with 𝑣 (0) = 𝑣0
such that the covariant derivative vanishes: 𝐷𝑐𝑣 = 0. The parallel transport is a canonical
way of identifying two different tangent spaces on M. Due to compatibility with the
metric, it has the property that if 𝑐 (0) = 𝑝 , 𝑐 (1) = 𝑞, and 𝑃𝑐𝑣 ∈ 𝑇𝑞M denotes the parallel
transport of 𝑣 ∈ 𝑇𝑝M along 𝑐 for time 1, then 𝑃𝑐 : 𝑇𝑝M→ 𝑇𝑞M is an isometry.

We already have seen the idea of a length-minimizing curve, or a geodesic. Recall
that the Riemannian metric induces a distance on M via

d(𝑝, 𝑞) = inf
{∫ 1

0
∥ ¤𝛾 (𝑡)∥𝛾 (𝑡) d𝑡

��� 𝛾 (0) = 𝑝, 𝛾 (1) = 𝑞} .
If there is a minimizing constant-speed curve 𝛾 in this variational problem, we say that 𝛾
is a geodesic joining 𝑝 and 𝑞. By taking the first variation of this problem, one shows that
a necessary condition for 𝛾 to be a geodesic is for the covariant derivative of its velocity to
vanish: 𝐷𝛾 ¤𝛾 = 0. We will write this, however, with the more familiar notation ¥𝛾 = 0, which
in Euclidean space means that there is zero acceleration (and hence Euclidean geodesics
are straight lines). The converse is not true; if ¥𝛾 = 0, it does not imply that 𝛾 must be a
shortest path between its endpoints (but it means that 𝛾 is locally a shortest path).

If 𝑝 ∈ M and 𝑣 ∈ 𝑇𝑝M, then exp𝑝 (𝑣) is defined to be the endpoint (at time 1) of a
constant-speed geodesic emanating from 𝑝 with velocity 𝑣 , if such a geodesic exists. In
general, the exponential map may only be defined in a neighborhood of 0 on 𝑇𝑝M. The
logarithmic map is the inverse of the exponential map: given 𝑞 ∈ M, log𝑝 (𝑞) is the unique
vector 𝑣 ∈ 𝑇𝑝M, if this is well-defined, such that exp𝑝 (𝑣) = 𝑞.

Given a vector field 𝑋 on M, the divergence of 𝑋 is the function div𝑋 : M → R
defined as follows: (div𝑋 ) (𝑝) is the trace8 of the linear mapping 𝑣 ↦→ (∇𝑣𝑋 ) (𝑝) on
𝑇𝑝M. Also, 𝑓 ∈ C∞(M), we define the Hessian of 𝑓 at 𝑝 to be the bilinear mapping
∇2𝑓 (𝑝) : 𝑇𝑝M ×𝑇𝑝M→ R given by

∇2𝑓 (𝑝) [𝑣,𝑤] = ⟨∇𝑣∇𝑓 (𝑝),𝑤⟩𝑝 .

Even though we have not given all of the definitions precisely, we will now work through
one example to give the reader the flavor of the computations. Suppose that (𝑝𝑡 )𝑡∈R is a
curve on M; then we know that 𝜕𝑡 𝑓 (𝑝𝑡 ) = ⟨∇𝑓 (𝑝𝑡 ), ¤𝑝𝑡 ⟩𝑝𝑡 . If 𝑔(𝑝) B ⟨∇𝑓 (𝑝), ¤𝑝⟩𝑝 , then by
definition we have 𝜕2

𝑡 𝑓 (𝑝𝑡 ) = ¤𝑝𝑡 (𝑔) (𝑝𝑡 ). By compatibility of the Levi–Civita connection
with the metric (2.6.1), this equals ⟨∇ ¤𝑝𝑡∇𝑓 (𝑝𝑡 ), ¤𝑝𝑡 ⟩𝑝𝑡 + ⟨∇𝑓 (𝑝𝑡 ),∇ ¤𝑝𝑡 ¤𝑝𝑡 ⟩𝑝𝑡 . The first term is

8The trace is defined as usual, namely if 𝐴 is a linear mapping on 𝑇𝑝M, then after choosing an arbitrary
orthonormal basis 𝑒1, . . . , 𝑒𝑑 of 𝑇𝑝M (w.r.t. the Riemannian metric), we have tr𝐴 =

∑𝑑
𝑖=1⟨𝑒𝑖 , 𝐴 𝑒𝑖⟩𝑝 .
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∇2𝑓 (𝑝𝑡 ) [ ¤𝑝𝑡 , ¤𝑝𝑡 ]. For the second term, if 𝑝 is a geodesic, then the term ∇ ¤𝑝𝑡 ¤𝑝𝑡 vanishes. This
shows that it is convenient to pick geodesic curves when computing Hessians.9

For 𝑓 ∈ C∞(M), the Laplacian of 𝑓 is the function Δ𝑓 : M → R defined by
Δ𝑓 B tr∇2𝑓 . In the Riemannian setting, Δ is usually called the Laplace–Beltrami
operator. The Riemannian metric induces a volume measure, which we always denote
via 𝔪. Throughout, when we abuse notation to refer to the density of an absolutely
continuous measure 𝜇 ∈ P(M), we always refer to the density w.r.t. the volume measure,
i.e., d𝜇

d𝔪 . We have the integration by parts formula∫
Δ𝑓 𝑔 d𝔪 =

∫
𝑓 Δ𝑔 d𝔪 = −

∫
⟨∇𝑓 ,∇𝑔⟩ d𝔪 ,

provided that there are no boundary terms.

Curvature. For a two-dimensional surface, it is easier to define the notion of curva-
ture: one has the Gaussian curvature, which associates to each point 𝑝 ∈ M a single
number 𝐾 (𝑝) ∈ R. It is the product of the two principal curvatures at 𝑝 . The celebrated
Theorema Egregium (“remarkable theorem”) of Gauss asserts that the Gaussian curvature
is unchanged under local isometries, i.e., the Gaussian curvature is intrinsic to the surface.
(In contrast, there are other extrinsic notions of curvature, such as the mean curvature,
which rely on the embedding of the manifold in Euclidean space.)

In higher dimensions, we are not so fortunate and it requires much more geometric
information to fully capture the idea of curvature. In fact, at each point 𝑝 ∈ M, we
associate to it a 4-tensor, called the Riemann curvature tensor. It is defined as follows:
given vector fields𝑊 , 𝑋 , 𝑌 , and 𝑍 ,

Riem(𝑊,𝑋,𝑌, 𝑍 ) B ⟨∇𝑋∇𝑊𝑌 − ∇𝑊∇𝑋𝑌 + ∇[𝑊,𝑋 ]𝑌, 𝑍 ⟩ .

Here, [𝑊,𝑋 ] is the Lie bracket of𝑊 and 𝑋 , which is the vector field 𝑈 defined as the
commutator: 𝑈 𝑓 B𝑊𝑋 𝑓 − 𝑋𝑊 𝑓 . This tensor is obviously an unwieldy object, and it is
unclear whether anyone fully understands its complexities. Nevertheless, we may begin
to get a handle on it by observing that at its core, it measures the lack of commutativity of
certain differential operators, which we stated was the basis for curvature in Section 2.2.1.

9When computing first-order derivatives, it is only important that the first-order behavior of the curve is
correct (i.e., the curve has the correct tangent vector). When computing second-order derivatives, it should
come at no surprise that the second-order behavior of the curve begins to matter.

Incidentally, if ∇𝑓 (𝑝𝑡 ) = 0, i.e., we are at a stationary point, then the second term vanishes regardless
of the curve 𝑝 . Hence, the Hessian of 𝑓 can be defined on any smooth manifold without the need for a
Riemannian metric, provided that we restrict ourselves to stationary points of 𝑓 . This observation is used
heavily in Morse theory.
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On Euclidean space, it vanishes: Riem = 0. Also, the Riemann curvature tensor is fully
determined by the sectional curvatures of M: given a two-dimensional subspace 𝑆 of
𝑇𝑝M, the sectional curvature of 𝑆 can be defined as the Gaussian curvature of the two-
dimensional surface obtained by following geodesics with directions in 𝑆 . Thus, we can
view the Riemann curvature tensor as collecting together all of the curvature information
from two-dimensional slices.

Luckily, the Riemann curvature tensor contains information that is too detailed for our
purposes. With an eye towards probabilistic applications, we focus mainly on properties
such as the distortion of volumes of balls along geodesics, which only requires looking at
certain averages of the Riemann curvature. More specifically, for 𝑢, 𝑣 ∈ 𝑇𝑝M, let

Ric𝑝 (𝑢, 𝑣) B tr Riem(𝑢, ·, 𝑣, ·) .

The tensor Ric is called the Ricci curvature tensor. It is a powerful fact that many
useful geometric and probabilistic consequences, such as diameter bounds and functional
inequalities, are consequences of lower bounds on the Ricci curvature.

We also mention that one can further take the trace of the Ricci curvature tensor to
arrive at a single scalar function, known as the scalar curvature, but we shall not use it
in this book.

Diffusions on manifolds. Recall that on R𝑑 , the generator of the standard Brownian
motion is 1

2 Δ, where Δ is the Laplacian operator. On a manifold M, we define standard
Brownian motion (𝐵𝑡 )𝑡≥0 to be the unique M-valued stochastic process with generator 1

2 Δ,
where Δ is now the Laplace–Beltrami operator. This means that for all smooth functions
𝑓 : M→ R, we require 𝑡 ↦→ 𝑓 (𝐵𝑡 ) − 𝑓 (𝐵0) −

∫ 𝑡
0

1
2 Δ𝑓 (𝐵𝑠) d𝑠 to be a local martingale.

More generally, a stochastic process (𝑍𝑡 )𝑡≥0 has generatorℒ if for all smooth functions
𝑓 : M→ R, the process 𝑡 ↦→ 𝑓 (𝑍𝑡 ) − 𝑓 (𝑍0) −

∫ 𝑡
0 ℒ𝑓 (𝑍𝑠) d𝑠 is a local martingale. When

the generator is ℒ𝑓 = Δ𝑓 − ⟨∇𝑉 ,∇𝑓 ⟩ for a smooth function𝑉 : M→ R, this corresponds
to a Langevin diffusion on the manifold. We informally write d𝑍𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡 +

√
2 d𝐵𝑡 ,

although the “+” symbol has to be interpreted carefully. Under some assumptions, the
stationary distribution 𝜋 of the Langevin diffusion has density 𝜋 ∝ exp(−𝑉 ) w.r.t. the
volume measure 𝔪.

Under appropriate assumptions on ∇𝑉 , the existence and uniqueness of the diffusion
process on the manifold can be proven, e.g., via embedding the manifold in Euclidean
space and using similar arguments as in Section 1.1.3.

Optimal transport on Riemannian manifolds. We conclude this section by dis-
cussing how the optimal transport problem can be generalized to Riemannian manifolds.
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Recall from Exercise 1.12 that the optimal transport problem can be posed with other costs;
in particular, we take the cost to be 𝑐 (𝑥,𝑦) = d(𝑥,𝑦)2, where d is the distance induced by
the Riemannian metric. Suppose, for simplicity, that M is compact and that 𝜇 is absolutely
continuous (w.r.t. the volume measure). Then, there is a unique optimal transport map 𝑇
from 𝜇 to 𝜈 , which is of the form 𝑇 (𝑥) = exp𝑥 (∇𝜓 (𝑥)), where −𝜓 is d2/2-concave.

Moreover, there is a formal Riemannian structure on P2,ac(M). We can formally define
the tangent space at 𝜇 to be

𝑇𝜇P2,ac(M) B {∇𝜓 | 𝜓 ∈ C∞(M)}
𝐿2 (𝜇)

,

equipped with the norm ∥∇𝜓 ∥𝜇 B
√︃∫
∥∇𝜓 ∥2 d𝜇. Also, curves of measures are again

characterized by the continuity equation

𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 ,

where the equation is to be interpreted in a weak sense: for any test function 𝜑 ∈ C∞(M),
for a.e. 𝑡 , it holds that

𝜕𝑡

∫
𝜑 d𝜇𝑡 =

∫
⟨∇𝜑, 𝑣𝑡 ⟩ d𝜇𝑡 .

In short, aside from new technicalities introduced in the Riemannian setting (such as
the presence of a cut locus10), most of the facts familiar to us from the Euclidean setting
continue to hold when generalized appropriately. We refer to [Vil09b] for more details.

2.6.2 Metric Geometry
We now depart from the setting of smooth manifolds and consider metric spaces (X, d).

Definition 2.6.2 (length). Given a continuous curve 𝛾 : [0, 1] → X, we define the
length of 𝛾 to be

len𝛾 B sup
{ 𝑛∑︁
𝑖=1

d
(
𝛾 (𝑡𝑖), 𝛾 (𝑡𝑖−1)

) ��� 0 ≤ 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 ≤ 1
}
.

We can check that this definition agrees with the usual notion of length on R𝑑 . By the
triangle inequality, if 𝛾 (0) = 𝑝 and 𝛾 (1) = 𝑞, then d(𝑝, 𝑞) ≤ len𝛾 .

10Loosely speaking, the presence of a cut locus means that there are multiple minimizing geodesics
connecting two points. Think for instance of the two poles of a sphere.
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Definition 2.6.3. We say that (X, d) is a geodesic space if for all 𝑝, 𝑞 ∈ X, there is a
constant-speed curve 𝛾 : [0, 1] → X such that 𝛾 (0) = 𝑝 , 𝛾 (1) = 𝑞, and d(𝑝, 𝑞) = len𝛾 .
Here, “constant speed” implies that for all 𝑠, 𝑡 ∈ [0, 1],

d(𝛾 (𝑠), 𝛾 (𝑡)) = |𝑠 − 𝑡 | d(𝑝, 𝑞) .

The curve 𝛾 is called the geodesic joining 𝑝 to 𝑞.

Geodesic spaces are a broader class of spaces than Riemannian manifolds. In particular,
they do not have to have a smooth structure, and they can have “kinks”. For example,
the Wasserstein space (P2,ac(R𝑑),𝑊2) is not truly a Riemannian manifold, as it is infinite-
dimensional (along with other issues, e.g., it is not locally homeomorphic to a Hilbert
space), but from the considerations in Section 1.3.2 it follows that the Wasserstein space
is a geodesic space. The study of geodesic spaces is called metric geometry, and a
comprehensive treatment of this subject can be found in [BBI01].

There is a way to generalize the idea of a uniform bound on the sectional curvature to
the setting of geodesic spaces. It is based on comparing the sizes of triangles in X with
the corresponding sizes in a model space.

Definition 2.6.4 (model space). Let 𝜅 ∈ R. The model spaceM2
𝜅 of curvature 𝜅 is the

standard two-dimensional Riemannian manifold with constant sectional curvature
equal to 𝜅, that is:

1. the hyperbolic plane H2 of curvature 𝜅 (that is, the usual hyperbolic plane but
with metric rescaled by 1/

√
−𝜅) if 𝜅 < 0;

2. the Euclidean plane R2 if 𝜅 = 0;

3. the rescaled sphere S2/
√
𝜅 if 𝜅 > 0.

Definition 2.6.5 (Alexandrov curvature). Let (X, d) be a geodesic space and let 𝜅 ∈ R.
We say that (X, d) has Alexandrov curvature bounded from below by 𝜅 (resp.
from above by 𝜅) if the following holds. For any triple of points 𝑎, 𝑏, 𝑐 ∈ X, and any
corresponding triple of points 𝑎,𝑏, 𝑐 in the model spaceM2

𝜅 such that

d(𝑎, 𝑏) = d(𝑎,𝑏) , d(𝑎, 𝑐) = d(𝑎, 𝑐) , d(𝑏, 𝑐) = d(𝑏, 𝑐) ,
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for any 𝑝 ∈ X in the geodesic joining 𝑎 to 𝑐 , and any 𝑝 ∈ M2
𝜅 in the geodesic joining

𝑎 to 𝑐 with d(𝑎, 𝑝) = d(𝑎, 𝑝), it holds that d(𝑏, 𝑝) ≥ d(𝑏, 𝑝) (resp. d(𝑏, 𝑝) ≤ d(𝑏, 𝑝)).
If such a curvature bound holds, then (X, d) is called an Alexandrov space.

Thus, triangles in X are thicker (resp. thinner) than their counterparts in M2
𝜅 . The

advantage of this definition is that it can be stated using only the metric (and geodesic)
structure of X. For the case when 𝜅 = 0, there is another useful reformulation.

Proposition 2.6.6. Let (X, d) be a geodesic space. Then, (X, d) has Alexandrov curva-
ture bounded below by 0 (resp. bounded above by 0) if and only if the following holds.
For any constant-speed geodesic (𝑝𝑡 )𝑡∈[0,1] in X, any 𝑞 ∈ X, and any 𝑡 ∈ [0, 1],

d(𝑝𝑡 , 𝑞)2 ≥ (resp. ≤) (1 − 𝑡) d(𝑝0, 𝑞)2 + 𝑡 d(𝑝1, 𝑞)2 − 𝑡 (1 − 𝑡) d(𝑝0, 𝑝1)2 .

We saw in Exercise 1.14 that (P2,ac(R𝑑),𝑊2) has non-negative Alexandrov curvature.
One can show that a Riemannian manifold has section curvature bounded by 𝜅 if and
only if the corresponding Alexandrov curvature bound holds.

Alexandrov curvature bounds enforce enough regularity that a satisfactory infinites-
imal theory can be developed for Alexandrov spaces. For instance, one can define the
notion of a tangent cone11, and in the case of the Wasserstein space, its tangent cone
coincides with the definition of the tangent space that we gave in Section 1.3.2; see [AGS08,
§12.4] for details.

2.6.3 Geometry of Markov Semigroups
We now indicate how Markov semigroup proofs can be extended to the setting of a
weighted Riemannian manifold M with a reference measure 𝜋 which admits a density
𝜋 ∝ exp(−𝑉 ) w.r.t. the volume measure 𝔪.

Consider the Langevin diffusion on M with generator ℒ given by

ℒ𝑓 B Δ𝑓 − ⟨∇𝑉 ,∇𝑓 ⟩ .

As before, we can compute the carré du champ to be

Γ(𝑓 , 𝑓 ) = ∥∇𝑓 ∥2 .

For the iterated carré du champ,

Γ2(𝑓 , 𝑓 ) =
1
2 {ℒ(∥∇𝑓 ∥

2) − 2 ⟨∇𝑓 ,∇ℒ𝑓 ⟩}

11In general, this is only a cone and not a vector space, because of the possibility of kinks.
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=
1
2 {Δ(∥ 𝑓 ∥

2) − 2 ⟨∇𝑓 ,∇Δ𝑓 ⟩} + ⟨∇𝑓 ,∇2𝑉 ∇𝑓 ⟩ .

Unlike in Section 2.2.1, however, we now have to apply the Bochner identity

1
2 Δ(∥∇𝑓 ∥2) = ⟨∇𝑓 ,∇Δ𝑓 ⟩ + ∥∇2𝑓 ∥2HS + Ric(∇𝑓 ,∇𝑓 ) (2.6.7)

which shows that

Γ2(𝑓 , 𝑓 ) = ∥∇2𝑓 ∥2HS + ⟨∇𝑓 , (Ric + ∇2𝑉 ) ∇𝑓 ⟩ .

Observe that in this formula, the curvature of the ambient space and the curvature of the
measure are placed on an equal footing through the tensor Ric + ∇2𝑉 . If Ric + ∇2𝑉 ⪰ 𝛼 ,
in the sense that Ric(𝑋,𝑋 ) + ⟨𝑋,∇2𝑉 𝑋 ⟩ ≥ 𝛼 ∥𝑋 ∥2 for any vector field 𝑋 on M, then
the curvature-dimension condition Γ2 ≥ 𝛼Γ holds. Since the proof of the Bakry–Émery
theorem (Theorem 1.2.29) only relied on the CD(𝛼,∞) condition (together with calculus
rules for the Markov semigroup, such as the chain rule), the theorem continues to hold in
the setting of weighted Riemannian manifolds.

Actually, we can refine the condition further as follows. If dimM = 𝑑 , then

∥∇2𝑓 ∥2HS ≥
1
𝑑
(tr∇2𝑓 )2 = 1

𝑑
(Δ𝑓 )2 .

This observation motivates the following definition.

Definition 2.6.8. A Markov semigroup is said to satisfy the curvature-dimension
condition with curvature lower bound 𝛼 and dimension bound 𝑑 , denoted CD(𝛼,𝑑),
if for all functions 𝑓 ,

Γ2(𝑓 , 𝑓 ) ≥ 𝛼 Γ(𝑓 , 𝑓 ) + 1
𝑑
(ℒ𝑓 )2 . (2.6.9)

As the name suggests, the following theorem holds.

Theorem 2.6.10. Let M be a complete Riemannian manifold with volume measure
𝔪, and let 𝛼 > 0, 𝑑 ≥ 1. Consider the Markov semigroup associated with standard
Brownian motion on M. Then, the following two statements are equivalent.

1. CD(𝛼,𝑑) holds.

2. Ric ⪰ 𝛼 and dimM ≤ 𝑑 .
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As an example, one can show that the unit sphere S𝑑 satisfies Ric = 𝑑 − 1, so that the
CD(𝑑 − 1, 𝑑) condition holds. Then, using the Bakry–Émery theorem (Theorem 1.2.29), or
by using Markov semigroup calculus to prove that the curvature-dimension condition
implies Bobkov’s functional form of the Gaussian isoperimetric inequality (Theorem 2.5.27;
see [BGL14, Corollary 8.5.4]), one can now deduce results such as concentration on the
sphere (Theorem 2.5.2).

Besides providing an abstract framework for deriving functional inequalities, it is
worth noting that the condition (2.6.9) no longer makes any mention of the ambient space
except through the Markov semigroup (𝑃𝑡 )𝑡≥0 and its associated operators ℒ, Γ, and Γ2.
This has led to a line of research investigating to what extent we can study the intrinsic
geometry intrinsic associated with a Markov semigroup. Although we do not intend
to survey the literature here, we show one illustrative example to give the flavor of the
results. First, one shows that the CD(𝛼,𝑑) condition implies a Sobolev inequality.

Theorem 2.6.11. Consider a diffusion Markov semigroup satisfying the CD(𝛼,𝑑) con-
dition for some 𝛼 > 0 and 𝑑 > 2. Then, for all 𝑝 ∈ [1, 2𝑑

𝑑−2 ] and all functions 𝑓 ,

1
𝑝 − 2

{(∫
|𝑓 |𝑝 d𝜋

)2/𝑝
−
∫

𝑓 2 d𝜋
}
≤ 𝑑 − 1

𝛼𝑑

∫
Γ(𝑓 , 𝑓 ) d𝜋 . (2.6.12)

From this Sobolev inequality, one can then deduce a diameter bound for the Markov
semigroup. Here, the diameter is defined as follows:

diam
(
(𝑃𝑡 )𝑡≥0

)
B sup

{
𝜋-ess sup

𝑥,𝑦∈X
|𝑓 (𝑥) − 𝑓 (𝑦) |

�� ∥Γ(𝑓 , 𝑓 )∥𝐿∞ (𝜋) ≤ 1
}
.

Theorem 2.6.13. Suppose that the Markov semigroup (𝑃𝑡 )𝑡≥0 satisfies the Sobolev
inequality (2.6.12). Then,

diam
(
(𝑃𝑡 )𝑡≥0

)
≤ π

√︂
𝑑 − 1
𝛼

.

The diameter bound is sharp, as it is attained by the sphere, and together with Theo-
rem 2.6.11 it recovers the classical Bonnet–Myers diameter bound from Riemannian
geometry. Other geometric results obtained in this fashion include volume growth com-
parison results and heat kernel bounds.
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2.6.4 The Lott–Sturm–Villani Theory of Synthetic Ricci Curvature
The other perspective with which we can encode geometry is the optimal transport
perspective. Namely, in Section 1.4, we informally argued that in the Euclidean context,
the 𝛼-strong convexity of the KL divergence KL(· ∥ 𝜋) on (P2(R𝑑),𝑊2) is equivalent to
the 𝛼-strong convexity of the potential𝑉 . At this stage, it is a perhaps expected, although
still remarkable, fact that on a general weighted Riemannian manifold M, the 𝛼-strong
convexity of KL(· ∥ 𝜋) on (P2(M),𝑊2) is equivalent to the CD(𝛼,∞) condition, which in
turn is equivalent to Ric + ∇2𝑉 ⪰ 𝛼 .

There are also ways to formulate the general CD(𝛼,𝑑) condition via displacement
convexity, but they are considerably more complicated, and we omit them for simplicity.

If (X, d) is a geodesic space, then (P2(X),𝑊2) is also a geodesic space, which is suffi-
cient to define displacement convexity. Hence, we can work in the setting of Section 2.6.2,
together with the additional data of a reference measure 𝜋 ∈ P(X). In general, technical
issues arise when geodesics on X can “branch” off into multiple geodesics, and so we ought
to impose a mild non-branching assumption; however, we will ignore this technicality.
We can then formulate the following definition.

Definition 2.6.14. Let (X, d, 𝜋) be a metric measure space, where (X, d) is a geodesic
space. Then, we say that (X, d, 𝜋) satisfies the CD(𝛼,∞) condition if for all measures
𝜇0, 𝜇1 ∈ P2(X), there exists a constant-speed geodesic (𝜇𝑡 )𝑡∈[0,1] joining 𝜇0 to 𝜇1 with

KL(𝜇𝑡 ∥ 𝜋) ≤ (1 − 𝑡) KL(𝜇0 ∥ 𝜋) + 𝑡 KL(𝜇1 ∥ 𝜋) −
𝛼 𝑡 (1 − 𝑡)

2 𝑊 2
2 (𝜇0, 𝜇1) ,

for all 𝑡 ∈ [0, 1].

We now pause to discuss the motivation behind the introduction of this definition.
Unlike the statement Ric ⪰ 𝛼 , which only makes sense on Riemannian manifolds (and
hence requires a smooth structure), the above definition makes sense on a wider class
of spaces, including non-smooth spaces. The question of to what extent the concept of
curvature makes sense on non-smooth spaces is perhaps an interesting question in its
own right, but it also arises even when one is solely interested in smooth Riemannian
manifolds. Suppose, for instance, that we have a sequence of Riemannian manifolds
(M𝑘)𝑘∈N that is converging in some sense to a limit space M; what properties of the
sequence are preserved in the limit?

If we want to pass to the limit in the condition RicM𝑘 ⪰ 𝛼 , then typically we would
need the Ricci curvature tensors RicM𝑘 to be converging in the limit. Since curvature
involves two derivatives of the metric, this holds if the sequence converges in a C2 sense.
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However, for some applications, this notion of convergence is too strong. Instead, it is
common to work with Gromov–Hausdorff convergence, which is based on a notion
of distance between metric spaces. More specifically, it metrizes the space12 of compact
metric spaces. Moreover, this notion of convergence is weak enough that it admits a
useful compactness theorems.

As a consequence of the compactness theorem, a sequence of Riemannian manifolds
(M𝑘)𝑘∈N with a uniform upper bound on the diameter and a uniform lower bound on
the Ricci curvature converges to a limit space M in the Gromov–Hausdorff topology.
However, in this topology, the space of Riemannian manifolds with diameter ≤ 𝐷 and
with Ric ⪰ 𝛼 is not closed; the limit space M is not necessarily a Riemannian manifold.
So what then is M? It is a geodesic space, but understanding whether it can be said to
satisfy “RicM ⪰ 𝛼” requires developing a theory of Ricci curvature lower bounds that
makes sense on such spaces.

An analogy is in order. For a function 𝑓 : R𝑑 → R, convexity can be described via the
Hessian, ∇2𝑓 ⪰ 0, or via the property

𝑓
(
(1 − 𝑡) 𝑥 + 𝑡 𝑦

)
≤ (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦) , for all 𝑥,𝑦 ∈ R𝑑 , 𝑡 ∈ [0, 1] .

The former definition only makes sense for C2 functions, whereas the latter definition
makes sense for any function. The former is called the analytic definition, whereas the
definition is called synthetic definition. Although the analytic definition is often more
intuitive, the synthetic definition is more general and more useful for technical arguments.
For example, from the synthetic definition is apparent that convexity is preserved under
pointwise convergence, whereas from the analytic definition one needs the stronger
notion of C2 convergence.

From this perspective, the definition of Alexandrov curvature bounds in Section 2.6.2
is the synthetic counterpart to sectional curvature bounds from Riemannian geometry.
However, as we have already seen, sectional curvature bounds are often too strong for
geometric purposes, as we can obtain a wide array of geometric consequences (spectral
gap estimates, log-Sobolev and Sobolev inequalities, diameter bounds, volume growth
estimates, heat kernel bounds, etc.) from Ricci curvature lower bounds. Here, the curvature-
dimension condition provides us with synthetic Ricci curvature lower bounds.

By deducing geometric facts from the CD(𝛼,∞) condition, one shows that spaces
satisfying the CD(𝛼,∞) condition, despite the lack of smoothness, enjoy many of the
good properties shared by Riemannian manifolds satisfying Ric ⪰ 𝛼 . To complete the
program described in this section, we should ask whether synthetic Ricci curvature lower
bounds are preserved under a weak notion of convergence. The correct notion to consider

12The space of all compact metric spaces is too large to be a set (it is a proper class). However, if we
choose one representative from each isometry class of metric spaces, then this is a bona fide set.
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is an extension of Gromov–Hausdorff convergence to take into account the reference
measure, called measured Gromov–Hausdorff convergence.

Definition 2.6.15. Let (X𝑘 , d𝑘 , 𝜋𝑘)𝑘∈N be a sequence of compact metric measure
spaces. We say that the sequence converges to (X, d, 𝜋) in the measured Gromov–
Hausdorff topology if there is a sequence (𝑓𝑘)𝑘∈N of maps 𝑓𝑘 : X𝑘 → X with:

1. sup𝑥𝑘 ,𝑥 ′𝑘∈X𝑘
|d(𝑓𝑘 (𝑥𝑘), 𝑓𝑘 (𝑥′𝑘)) − d𝑘 (𝑥𝑘 , 𝑥′𝑘) | = 𝑜 (1);

2. sup𝑥∈X inf𝑥𝑘∈X𝑘
|d(𝑓𝑘 (𝑥𝑘), 𝑥) | = 𝑜 (1);

3. (𝑓𝑘)#𝜋𝑘 → 𝜋 weakly.

The following stability result is a key achievement of the theory of synthetic Ricci
curvature, arrived at simultaneously by Lott and Villani [LV09] and Sturm [Stu06a; Stu06b].

Theorem 2.6.16 (stability of synthetic Ricci curvature bounds). Let (X𝑘 , d𝑘 , 𝜋𝑘)𝑘∈N →
(X, d, 𝜋) in the measured Gromov–Hausdorff topology. Let 𝛼 ∈ R and 𝑑 ≥ 1. If each
(X𝑘 , d𝑘 , 𝜋𝑘) satisfies CD(𝛼,𝑑), then so does (X, d, 𝜋).

Note that we have not defined the CD(𝛼,𝑑) condition for 𝑑 < ∞ in this context; we
refer readers to the original sources for the full treatment.

2.6.5 Discussion
A remark on the settings of the results. Throughout this chapter, we have not been
careful to state in what generality the various results hold. Certainly the results hold
on the Euclidean space R𝑑 , and with appropriate modifications they continue to hold on
weighted Riemannian manifolds.

The results based on optimal transport (e.g., results on transport inequalities) typically
hold on general Polish spaces. The theory of synthetic Ricci curvature makes sense on
geodesic spaces (with mild regularity conditions).

The results based on Markov semigroup theory only require an abstract space X on
which there is a Markov semigroup (𝑃𝑡 )𝑡≥0 satisfying various properties (e.g., a chain rule
for the carré du champ). Although this usually arises from a diffusion on a Riemannian
manifold, one can also start with a Dirichlet energy functional on a metric space and
develop a theory of non-smooth analysis. See [AGS15] for further discussion on how the
two approaches may be reconciled in a quite general setting.
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Comparison between the two approaches. The discussion thus far has been rather
abstract, and it may be difficult to grasp how the two main approaches (Bakry–Émery
theory and optimal transport) can capture geometric information such as the curvature.
Here, we will briefly provide some intuition for this connection following [Vil09b, §14].

Starting with the optimal transport perspective, fix 𝑥0 ∈ M and a mapping ∇𝜓 . For
𝑡 ≥ 0, let 𝑥𝑡 B exp(𝑡 ∇𝜓 (𝑥0)), and let 𝛿 > 0. If 𝑒1, . . . , 𝑒𝑑 be an orthonormal basis of 𝑇𝑥0M,
in an abuse of notation let 𝑥0 + 𝛿𝑒𝑖 denote a point obtained by travelling along a curve
emanating from 𝑥0 with velocity 𝑒𝑖 for time 𝛿 . The points (𝑥0 + 𝛿𝑒𝑖)𝑑𝑖=1 form the vertices
of a parallelepiped 𝐴𝛿0. On the other hand, for 𝑡 > 0, we can consider pushing the point
𝑥0 + 𝛿𝑒𝑖 along the exponential map to obtain a new point exp𝑥0+𝛿𝑒𝑖 (𝑡 ∇𝜓 (𝑥0 + 𝛿𝑒𝑖)). These
points form the vertices of a new parallelepiped 𝐴𝛿𝑡 .

In terms of measures, let 𝜇𝛿0 denote the uniform measure on𝐴𝛿0 , and 𝜇𝛿𝑡 = exp(𝑡 ∇𝜓 )#𝜇𝛿0 ,
so that 𝜇𝛿𝑡 is approximately the uniform measure on 𝐴𝛿𝑡 . Then, the displacement convexity
of entropy states that

ln 1
𝔪(𝐴𝛿𝑡 )

≤ (1 − 𝑡) ln 1
𝔪(𝐴𝛿0)

+ 𝑡 ln 1
𝔪(𝐴𝛿1)

+ 𝑜 (1)

as 𝛿 ↘ 0. On the other hand, the infinitesimal change in volume is governed by the
Jacobian determinant

𝔪(𝐴𝛿𝑡 )
𝔪(𝐴𝛿0)

→ J (𝑡, 𝑥) B det 𝐽 (𝑡, 𝑥) ,

where 𝐽𝑖 (𝑡, 𝑥) B 𝜕𝛿 |𝛿=0 exp𝑥0+𝛿𝑒𝑖 (𝑡 ∇𝜓 (𝑥0+𝛿𝑒𝑖)). Hence, the displacement convexity yields

lnJ (𝑡, 𝑥) ≥ (1 − 𝑡) lnJ (0, 𝑥) + 𝑡 lnJ (1, 𝑥) . (2.6.17)

In Euclidean space, we have the formula J (𝑡, 𝑥) = |det(𝐼𝑑 + 𝑡 ∇2𝜓 (𝑥)) |, but the situation
is more complicated on a Riemannian manifold because there is also a change of volume
due to curvature. To account for this, one can derive an equation for 𝐽 , known as the
Jacobi equation:

¥𝐽 (𝑡, 𝑥) + 𝑅(𝑡, 𝑥) 𝐽 (𝑡, 𝑥) = 0 ,

where𝑅(𝑡, 𝑥) B Riem𝑥𝑡 ( ¤𝑥𝑡 , ·, ¤𝑥𝑡 , ·). By taking the trace and performing some computations,
we arrive at

𝜕2
𝑡 J (𝑡, 𝑥) = −∥ 𝐽−1(𝑡, 𝑥) ¤𝐽 (𝑡, 𝑥)∥2HS − Ric𝑥𝑡 ( ¤𝑥𝑡 , ¤𝑥𝑡 ) . (2.6.18)
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By comparing (2.6.17) and (2.6.18), we now obtain a hint as to how optimal transport
captures curvature: displacement convexity of the entropy is related to concavity of the
Jacobian determinant, which in turn is tied to Ricci curvature lower bounds.

The calculations above are performed with the Lagrangian description of fluid flows,
as they follow a single trajectory 𝑡 ↦→ 𝑥𝑡 . If we switch to the Eulerian perspective, then
we are led to define the vector field ∇𝜓𝑡 as follows: ∇𝜓𝑡 (𝑥) is the velocity ¤𝑥𝑡 of the
curve 𝑡 ↦→ exp𝑥 (𝑡 ∇𝜓 (𝑥)) at time 𝑡 . By reformulating the Jacobi equation in the Eulerian
perspective, we arrive precisely at the Bochner identity (2.6.7) for 𝜓 which, as we saw
in Section 2.6.3, underlies the curvature-dimension condition from the Bakry–Émery
perspective. In this sense, the two approaches to curvature are dual.

2.7 Discrete Space and Time
Up until this point, we have been focusing on continuous-time Markov processes on a
continuous state space. In this section, we give a few pointers on what may break down
in discrete space or discrete time. Our treatment here is far from comprehensive.

Discrete space. For Markov processes on a discrete space space, we can still define the
Markov semigroup, generator, carré du champ, and Dirichlet form. The main difference
is that the carré du champ is now a finite difference operator, rather than a differential
operator, and consequently it fails to satisfy a chain rule.

Crucially, this difference manifests itself for the log-Sobolev inequality, which we have
written in this chapter as

ent𝜋 (𝑓 2) ≤ 2𝐶ℰ(𝑓 , 𝑓 ) for all 𝑓 . (2.7.1)

On the other hand, recall from Theorem 1.2.21 (which still holds for discrete state spaces)
that the exponential decay of the KL divergence is equivalent to the inequality

ent𝜋 (𝑓 ) ≤
𝐶

2 ℰ(𝑓 , ln 𝑓 ) for all 𝑓 ≥ 0 . (2.7.2)

When the carré du champ satisfies a chain rule, then (2.7.1) and (2.7.2) are equivalent, but
in general the first inequality (2.7.1) is strictly stronger.

Lemma 2.7.3. The inequality (2.7.1) implies inequality (2.7.2).

See Exercise 2.20. The first inequality (2.7.1) is often simply called the log Sobolev
inequality, whereas the second inequality (2.7.2) is called a modified log-Sobolev in-
equality (MLSI). In many cases, the log-Sobolev inequality is too strong in that it does
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not hold with a good constant 𝐶; hence, the modified log-Sobolev inequality is often the
more appropriate inequality for the discrete setting.

We have already seen a concentration inequality for discrete spaces in Exercise 2.15.
In general, concentration of measure on discrete spaces is a rich subject, with many
applications to computer science and probability, and at the same time subtle, involving
new ideas such as asymmetric transport inequalities or careful use of hypercontractivity.
See, e.g., [BLM13; Han16] for more detailed treatments.

Discrete time. Similarly, for discrete-time Markov chains we can no longer use semi-
group calculus, although the basic principles of Poincaré inequalities (spectral gap inequal-
ities) and modified log-Sobolev inequalities can be adapted to this setting. In addition,
there are new techniques based on the notion of conductance. As we shall need to study
discrete-time Markov chains in detail for sampling algorithms, we defer a fuller discussion
of this theory to Chapter 7.

Discrete curvature. Inspired by the geometric connections in Section 2.6, many re-
searchers have attempted to define notions of curvature on discrete spaces. We do not
attempt to survey this literature here, but we give a few pointers to the literature.

Ollivier [Oll07; Oll09] introduced the following notion of curvature.

Definition 2.7.4. A metric space (X, d) equipped with a Markov kernel 𝑃 is said to
have coarse Ricci curvature bounded below by 𝜅 ∈ [0, 1] if for all 𝑥,𝑦 ∈ X,

𝑊1
(
𝑃 (𝑥, ·), 𝑃 (𝑦, ·)

)
≤ (1 − 𝜅) d(𝑥,𝑦) .

In other words, the Markov chain with kernel 𝑃 is a𝑊1 contraction. The definition is
motivated by the following observation: on a 𝑑-dimensional Riemannian manifold with
Ric ⪰ 𝛼 , let 𝑃 (𝑥, ·) be the uniform measure on B(𝑥, 𝜀). Then, provided that d(𝑥,𝑦) = 𝑂 (𝜀),
it holds that

𝑊1
(
𝑃 (𝑥, ·), 𝑃 (𝑦, ·)

)
≤

(
1 − 𝛼𝜀2

2 (𝑑 + 2) +𝑂 (𝜀
3)
)

d(𝑥,𝑦) .

A lower bound on the coarse Ricci curvature is often too strong of an assumption for
the purpose of studying mixing times of Markov chains, although there are refinements
in [Oll07; Oll09]. However, when a lower bound on the coarse Ricci curvature holds,
then it implies a number of useful consequences, such as concentration estimates and
functional inequalities. We mention the following result in particular.
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Theorem 2.7.5 ([Oll09]). Suppose that 𝑃 is a Markov kernel on a metric space (X, d),
and that 𝑃 has coarse Ricci curvature bounded below by 𝜅. Then, 𝑃 satisfies a Poincaré
inequality with constant at most 1/𝜅.

Refer to Chapter 7 for a precise definition of the Poincaré inequality used here.
Other approaches for studying the curvature of discrete Markov processes include:

studying the displacement convexity of entropy (using different interpolating curves rather
than𝑊2 geodesics) [OV12; Goz+14; Léo17]; using ideas from Bakry–Émery theory [Kla+16;
FS18]; and defining a modified 𝑊2 distance for which the Markov process becomes a
gradient flow of the KL divergence [Maa11; EM12; Mie13].

We emphasize that although we only described the coarse Ricci curvature approach
in any detail, there is not a single approach which supersedes the others in the discrete
setting. Each approach has its own merits and shortcomings.

Bibliographical Notes

The monographs [BGL14; Han16] are excellent sources to learn more about Markov
semigroup theory.

The Monge–Ampère equation introduced in Exercise 2.1, being a fully non-linear
PDE, is fairly difficult to study. See [Vil03, §4] for an overview of rigorous results on the
Monge–Ampère equation, including the celebrated regularity theory of Caffarelli. The
proofs of Proposition 2.1.1 and Exercise 2.3 are taken from [Cor17]. One might wonder
whether a “log-Sobolev” version of the Brascamp–Lieb inequality holds, but the answer is
unfortunately negative [BL00].

In the proof of Lemma 2.2.6, we assumed the solvability of the Poisson equation; this
can be avoided via a density argument, see [CFM04; BC13]. The proof of the dimensional
Brascamp–Lieb inequality in Exercise 2.4 is taken from the paper [BGG18], and Exercise 2.5
is from [HS94]. The bound on var𝜋 𝑉 obtained in the exercise was used in [Che21b] to
show that the entropic barrier is an optimal self-concordant barrier. Finally, we caution the
reader that the Brascamp–Lieb inequality in Theorem 2.2.8 should not be confused with
another family of inequalities, which are unfortunately also known as Brascamp–Lieb
inequalities, described in, e.g., [Vil03, §6.3].

Although the device in the proof of Theorem 2.2.11 of differentiating 𝑠 ↦→ 𝑃𝑠 ((𝑃𝑡−𝑠 𝑓 )2)
may seem mysterious at first glance, it forms the basis for a great number of useful
inequalities. The key is that the chain rule for the carré du champ also implies a chain rule
for the generator: ℒ(𝜙 ◦ 𝑓 ) = 𝜙′(𝑓 )ℒ𝑓 +𝜙′′(𝑓 ) Γ(𝑓 , 𝑓 ). Using this, one can differentiate
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𝑠 ↦→ 𝑃𝑠𝜙 (𝑃𝑡−𝑠 𝑓 ) for a general function 𝜙 : R→ R, and obtain the nice identity

𝜕𝑠 [𝑃𝑠𝜙 (𝑃𝑡−𝑠 𝑓 )] = 𝑃𝑠
(
ℒ𝜙 (𝑃𝑡−𝑠 𝑓 ) − 𝜙′(𝑃𝑡−𝑠 𝑓 )ℒ𝑃𝑡−𝑠 𝑓

)
= 𝑃𝑠

(
𝜙′′(𝑃𝑡−𝑠 𝑓 ) Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 )

)
.

The book [BGL14] is a treasure trove of applications of this principle.
The convergence in Rényi divergence of the Langevin diffusion was obtained earlier,

under stronger assumptions in [CLL19]. A natural question to ask is whether there are
functional inequalities that interpolate between the Poincaré and log-Sobolev inequalities,
which imply intermediate rates of convergence for the Langevin diffusion. One answer is
given by the family of Latała–Oleszkiewicz inequalities (LOI) [LO00]. The convergence
of the Langevin diffusion under an LO inequality is given in [Che+21a]. One can also
consider variants of Sobolev inequalities [Cha04].

In [KLS95], Kannan, Lovász, and Simonovits conjectured that any log-concave measure
𝜋 onR𝑑 which is isotropic (i.e., if𝑋 ∼ 𝜋 then cov𝑋 = 𝐼𝑑 ) satisfies a Poincaré inequality with
a dimension-free constant 𝐶PI ≲ 1. This is known as the Kannan–Lovász–Simonovits
(KLS) conjecture. By considering linear test functions of the form 𝑥 ↦→ ⟨𝑎, 𝑥⟩, one has
𝐶PI ≥ 1, so the conjecture asserts that linear functions nearly saturate the spectral gap
inequality for log-concave measures. The KLS conjecture has inspired a considerable
amount of research (including Theorem 2.5.18), see [GM11; Eld13; LV17; Che21a; KL22],
culminating in the current state-of-the-art result of [Kla23] which asserts that𝐶PI ≲ log𝑑 .

The Prékopa–Leindler inequality given in Exercise 2.8 can be used to deduce other
functional inequalities, such as the log-Sobolev inequality and the Bregman transport
inequality; see [BL00; Gen08]. It was generalized to Riemannian manifolds in [CMS01].

Exercise 2.11 essentially contains the main results of [CCN21] (actually the paper
assumes a slightly weaker condition than (2.E.3), namely that the 𝑝-th moment of the
chi-squared divergence is bounded for some 𝑝 > 1, but this is handled with the same
arguments as in Exercise 2.11).

There are many treatments on concentration of measure, e.g., [Led01; BLM13; BGL14;
Han16; Ver18]. The proof of Lemma 2.4.4 is from [Mil09]. A proof of the characterization
of the T1 inequality in Theorem 2.4.11 can be found in, e.g., [BV05].

The proof of Sanov’s theorem can be found in many textbooks on large deviations,
e.g., [DZ10; RS15].

The monographs [BH97; Led01; BGL14] are excellent sources to learn about isoperime-
try. The exposition of the functional form of Cheeger’s inequality (Theorem 2.5.14) as well
as Milman’s theorem (Theorem 2.5.18) were inspired by the treatment in [AB15]. It would
be hard to survey the various developments on this subject here, but we would like to
mention a few nice additions to the story. First, as we saw in Theorem 2.5.14 and Proposi-
tion 2.5.17, isoperimetric inequalities are typically stronger than their functional inequality
counterparts, and often strictly so. In order to obtain inequalities involving sets which
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are equivalent to, say, the Poincaré and log-Sobolev inequalities, one should turn towards
measure capacity inequalities, for which we refer the reader to [BGL14, §8]. Also, more
refined “two-level” isoperimetric inequalities have been pioneered by Talagrand in [Tal91],
which has applications in its own right.

The Gaussian isoperimetric inequality is due to Sudakov and Tsirelson [SC74] and
Borell [Bor75]. It has since been extended and refined in various ways, e.g., in the context
of noise stability [Bor85; IM12; Eld15; MN15; KKO18].

Section 2.6 draws upon many resources on geometry, which we list here: [Car92]
for Riemannian geometry; [Hsu02] for diffusions on manifolds; [Vil09b] for optimal
transport on manifolds, including synthetic Ricci curvature bounds and the discussion in
Section 2.6.5; [BBI01; Gro07] for metric geometry; and [Led00; BGL14] for the geometry
of Markov semigroups. The curvature-dimension condition and its equivalences have
been explored in a vast number of works, e.g., [Stu06a; Stu06b; LV09; Wan11].

Although the bounded differences inequality from Exercise 2.15 is already quite pow-
erful, there are situations in which it does not give the correct answer, in which case we
must turn towards more powerful tools. Among these, we mention Talagrand’s convex
distance inequality [Tal96], which can be established via the tensorization argument
of Theorem 2.3.17 (see [Mar96]).

Exercises
Overview of the Inequalities

⊵ Exercise 2.1 (linearization of the Monge–Ampère equation)
In general, when 𝜇, 𝜈 ∈ P2,ac(R𝑑) have smooth densities and ∇𝜑 denotes the optimal
transport map from 𝜇 to 𝜈 , then from the change of variables formula we expect

𝜇

𝜈 ◦ ∇𝜑 = det∇2𝜑 .

This is known as the Monge–Ampère equation. It is a non-linear PDE in the variable 𝜑 ,
which is a convex function (by Brenier’s theorem, see Theorem 1.3.8). In this exercise, we
linearize the Monge–Ampère equation to gain insight into the infinitesimal behavior of
the optimal transport problem.

Let 𝜇 be a probability measure on R𝑑 with a smooth density, and let 𝑓 ∈ C∞c (R𝑑)
satisfy

∫
𝑓 d𝜇 = 0. Let 𝜇𝜀 B (1 + 𝜀 𝑓 ) 𝜇, and let ∇𝜑𝜀 denote the optimal transport map

from 𝜇 to 𝜇𝜀 . Assuming that 𝜑𝜀 (𝑥) = ∥𝑥 ∥
2

2 + 𝜀𝑢 (𝑥) + 𝑜 (𝜀) for some function 𝑢 : R𝑑 → R,
perform an expansion of the Monge–Ampère equation in 𝜀 and argue that 𝑢 satisfies the
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following linear PDE, known as the Poisson equation:

−ℒ𝑢 = 𝑓 , where ℒ𝑢 B Δ𝑢 −
〈
∇ ln 1

𝜇
,∇𝑢

〉
.

Note that ℒ is the generator of the Langevin diffusion with stationary distribution 𝜇

(see Example 1.2.4). Use this to formally argue that

lim
𝜀↘0

1
𝜀2 𝑊

2
2
(
𝜇, (1 + 𝜀 𝑓 ) 𝜇

)
=

∫
∥∇𝑢∥2 d𝜇 =

∫
𝑢 (−ℒ) 𝑢 d𝜇 =

∫
𝑓 (−ℒ)−1 𝑓 d𝜇 .

Here,
∫
∥∇𝑢∥2 d𝜇 =

∫
𝑢 (−ℒ) 𝑢 d𝜇 is the squared Sobolev norm ∥𝑢∥2¤𝐻 1 (𝜇) , where the dot

is used to distinguish this from the usual Sobolev norm ∥𝑢∥2
𝐻 1 (𝜇) = ∥𝑢∥

2
𝐿2 (𝜇) + ∥𝑢∥

2
¤𝐻 1 (𝜇) .

Similarly,
∫
𝑓 (−ℒ)−1 𝑓 d𝜇 is the squared inverse Sobolev norm ∥ 𝑓 ∥2¤𝐻−1 (𝜇) . Therefore,

the linearization result shows that𝑊 2
2 (𝜇, 𝜈) ∼ ∥𝜇 − 𝜈 ∥2¤𝐻−1 (𝜇) as 𝜈 → 𝜇.

Using the linearization (1.E.1) of the KL divergence from Exercise 1.9, deduce that the
T2(𝐶) inequality implies

𝐶

∫
𝑓 2 d𝜇 ≥

∫
𝑓 (−ℒ)−1𝑓 d𝜇 .

In light of the spectral gap interpretation of the Poincaré inequality, why does the above
inequality suggest that T2(𝐶) implies PI(𝐶)?

The astute reader should also work out how the Poisson equation can be obtained
starting with the continuity equation (1.3.18).

Proofs via Markov Semigroup Theory

⊵ Exercise 2.2 (curvature-dimension condition)
Verify the commutation identity (2.2.4) and deduce the formula (2.2.5) for the iterated
carré du champ operator.

⊵ Exercise 2.3 (Bregman transport inequality)
Let ∇𝜑 denote the optimal transport map from 𝜋 to 𝜇, so that the Monge–Ampère equation
holds (see Exercise 2.1):

𝜋

𝜇 ◦ ∇𝜑 = det∇2𝜑 .

Take logarithms of both sides of this equation and integrate w.r.t. 𝜋 to prove the Bregman
transport inequality (Theorem 2.2.10). Then, by applying Proposition 2.1.1, give another
proof of the Brascamp–Lieb inequality (Theorem 2.2.8).
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⊵ Exercise 2.4 (dimensional improvement of the Brascamp–Lieb inequality)
In finite-dimensional space, one can improve upon the Brascamp–Lieb inequality (Theo-
rem 2.2.8) by subtracting a non-negative term from the right-hand side. There are different
ways to do this, but in this exercise we explore an approach which utilizes the extra term
∥∇2𝑢∥2HS in the iterated carré du champ operator.

1. Let 𝜋 ∝ exp(−𝑉 ), where as before we assume that 𝑉 is twice continuously differen-
tiable and strictly convex. Let 𝑓 satisfy E𝜋 𝑓 = 0, and consider another function 𝑢
(not necessarily the solution to −ℒ𝑢 = 𝑓 ). Show that

E𝜋 [𝑓 2] ≤ E𝜋 [(𝑓 +ℒ𝑢)2] + E𝜋 ⟨∇𝑓 , (∇2𝑉 )−1 ∇𝑓 ⟩ − E𝜋 [∥∇2𝑢∥2HS] .

2. Prove that E𝜋 [∥∇2𝑢∥2HS] ≥ 𝑑−1 (E𝜋 Δ𝑢)2, and that

E𝜋 Δ𝑢 = cov𝜋 (𝑓 ,𝑉 ) − E𝜋 [(𝑓 +ℒ𝑢)𝑉 ] .

3. Choose 𝑢 to solve −ℒ𝑢 = 𝑓 + 𝜆 (𝑉 − E𝜋 𝑉 ) for some 𝜆 ≥ 0 and substitute this into
the previous parts. Optimize over 𝜆 and prove that

var𝜋 𝑓 ≤ E𝜋 ⟨∇𝑓 , (∇2𝑉 )−1 ∇𝑓 ⟩ − cov𝜋 (𝑓 ,𝑉 )2

𝑑 − var𝜋 𝑉
.

4. In particular, deduce that

var𝜋 𝑉 ≤
𝑑 E𝜋 ⟨∇𝑉 , (∇2𝑉 )−1 ∇𝑉 ⟩
𝑑 + E𝜋 ⟨∇𝑉 , (∇2𝑉 )−1 ∇𝑉 ⟩ ≤ 𝑑 .

⊵ Exercise 2.5 (Helffer–Sjöstrand identity)
Let ℒ denote the generator corresponding to 𝜋 ∝ exp(−𝑉 ), ∇2𝑉 ≻ 0. Heuristically derive
the following identity: for all 𝑓 , 𝑔 : R𝑑 → R,

cov𝜋 (𝑓 , 𝑔) = E𝜋 ⟨∇𝑓 , (−ℒ + ∇2𝑉 )−1 ∇𝑔⟩ .

Note that since −ℒ ≥ 0, this implies the Brascamp–Lieb inequality (Theorem 2.2.8)!
Hint: Let (·)∗ denote the adjoint in 𝐿2(𝜋). It suffices to prove that ∇∗ (−ℒ + ∇2𝑉 )−1 ∇

is the orthogonal projection onto 1⊥. Suppose that 𝐿2(𝜋) admits a basis of eigenfunctions
for −ℒ, and let 𝑢 : R𝑑 → R be such an eigenfunction with −ℒ𝑢 = 𝜆𝑢, 𝜆 > 0. Study the
effect of the operator on 𝑢, recalling (1.2.15) and (2.2.4).
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⊵ Exercise 2.6 (local Poincaré inequality)
Prove the implication (3) =⇒ (1) in Theorem 2.2.11.

Hint: Perform a Taylor expansion of both sides of (3) up to order 𝑜 (𝑡2).

⊵ Exercise 2.7 (hypercontractivity)
Let (𝑃𝑡 )𝑡≥0 be a reversible Markov semigroup with stationary distribution 𝜋 , and let 𝛼 ≥ 0.
Show that the log-Sobolev inequality in the form

ent𝜋 (𝑓 2) ≤ 2𝐶LSIℰ(𝑓 , 𝑓 )

for all 𝑓 is equivalent to the following hypercontractivity statement: for all functions 𝑓 ,
𝑡 ≥ 0, and 𝑝 ≥ 1, if we set 𝑝 (𝑡) B 1 + (𝑝 − 1) exp(2𝑡/𝐶LSI), then

∥𝑃𝑡 𝑓 ∥𝐿𝑝 (𝑡 ) (𝜋) ≤ ∥ 𝑓 ∥𝐿𝑝 (𝜋) .

This is a strengthening of the fact that the semigroup is a contraction on any 𝐿𝑝 (𝜋) space
and shows that in fact the semigroup maps 𝐿𝑝 (𝜋) into 𝐿𝑝′ (𝜋) for some 𝑝′ > 𝑝 .

Hint: Differentiate 𝑡 ↦→ ln ∥𝑃𝑡 𝑓 ∥𝐿𝑝 (𝑡 ) (𝜋) .

⊵ Exercise 2.8 (Prékopa–Leindler inequality)
In this exercise, we introduce another important functional inequality, known as the
Prékopa–Leindler inequality.

1. Let 𝜋 be 𝛼-strongly log-concave, let 𝑡 ∈ [0, 1], and let 𝑓 , 𝑔, ℎ : R𝑑 → R>0 be three
functions such that for all 𝑥,𝑦 ∈ R𝑑 ,

lnℎ
(
(1 − 𝑡) 𝑥 + 𝑡 𝑦

)
≥ (1 − 𝑡) ln 𝑓 (𝑥) + 𝑡 ln𝑔(𝑦) − 𝛼2 𝑡 (1 − 𝑡) ∥𝑥 − 𝑦∥

2 .

Prove that

ln
∫

ℎ d𝜋 ≥ (1 − 𝑡) ln
∫

𝑓 d𝜋 + 𝑡 ln
∫

𝑔 d𝜋 . (2.E.1)

Hint: Let 𝜇0, 𝜇1 achieve equality in the Donsker–Varadhan variational principle
(Theorem 1.5.4), so that

lnE𝜋 𝑓 = E𝜇0 ln 𝑓 − KL(𝜇0 ∥ 𝜋) ,
lnE𝜋 𝑔 = E𝜇1 ln𝑔 − KL(𝜇1 ∥ 𝜋) .

Let 𝜇𝑡 be along the Wasserstein geodesic from 𝜇0 to 𝜇1. Apply the Donsker–Varadhan
principle again, together with the assumption on 𝑓 , 𝑔, ℎ as well as strong convexity
of the KL divergence, in order to lower bound lnE𝜋 ℎ.
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2. The inequality (2.E.1) continues to hold when 𝜋 is replaced by Lebesgue measure,
if we set 𝛼 = 0 in the assumption.13 Use this to prove that if 𝜋 is a log-concave
measure over R𝑑1+𝑑2 , then the marginal 𝜋1 of 𝜋 on R𝑑1 is also log-concave.
Hint: Partition elements of R𝑑1+𝑑2 as (𝑥,𝑦). Apply the Prékopa–Leindler inequality
on R𝑑2 with 𝑓 B ln𝜋 (𝑥0, ·), 𝑔 B ln𝜋 (𝑥1, ·), and ℎ B ln𝜋 ((1 − 𝑡) 𝑥0 + 𝑡 𝑥1, ·).

3. We now aim to generalize the fact in the previous part. Suppose that 𝜋 is a density
on R𝑑1+𝑑2 such that (𝑥,𝑦) ↦→ ln𝜋 (𝑥,𝑦) + 1

2 ⟨(𝑥,𝑦), Σ
−1 (𝑥,𝑦)⟩ is concave, where

Σ =

[
Σ1,1 Σ1,2
Σ2,1 Σ2,2

]
.

Prove that for the marginal 𝜋1 of 𝜋 on R𝑑1+𝑑2 , 𝑥 ↦→ ln𝜋1(𝑥) + 1
2 ⟨𝑥, (Σ1,1)−1 𝑥⟩ is

concave. (Use the result in the previous part.)

4. Show that if 𝜋 is 𝛼-strongly log-concave, then the convolution 𝜋 ∗ normal(0, 𝑡𝐼𝑑) is
𝛼/(1 + 𝛼𝑡)-strongly log-concave.

5. Show that the Prékopa–Leindler inequality for the Lebesgue measure is equivalent
to the Brunn–Minkowski inequality: for compact sets 𝐴, 𝐵 ⊆ R𝑑 ,

vol
(
(1 − 𝑡)𝐴 + 𝑡 𝐵

)
≥ vol(𝐴)1−𝑡 vol(𝐵)𝑡 . (2.E.2)

By scaling 𝐴 and 𝐵 and choosing 𝑡 , show that (2.E.2) can be upgraded to

vol(𝐴 + 𝐵)1/𝑑 ≥ vol(𝐴)1/𝑑 + vol(𝐵)1/𝑑 .

Operations Preserving Functional Inequalities

⊵ Exercise 2.9 (variational principle for entropies)
Let 𝜙 : R>0 → R be a convex function and let 𝐷𝜙 denote the associated Bregman
divergence (c.f. Definition 2.2.9). For any positive random variable 𝑋 with E|𝜙 (𝑋 ) | < ∞
and any 𝑡 > 0, prove that that E𝐷𝜙 (𝑋, 𝑡) − E𝐷𝜙 (𝑋,E𝑋 ) = 𝐷𝜙 (E𝑋, 𝑡), and deduce that
E𝜙 (𝑋 ) − 𝜙 (E𝑋 ) = inf𝑡>0 E𝐷𝜙 (𝑋, 𝑡). Use this to prove the variational principle for the
entropy used in the proof of Holley–Stroock perturbation (Proposition 2.3.1).

⊵ Exercise 2.10 (transport inequality in one dimension)
Let 𝜋 be the standard Gaussian on R, and let 𝜇 ≪ 𝜋 . In one dimension, the optimal
transport map𝑇 from 𝜋 to 𝜇 is the monotone rearrangement that satisfies, for each 𝑥 ∈ R,
𝜇 ((−∞,𝑇 (𝑥)]) = 𝜋 ((−∞, 𝑥]).

13For example, one could first consider the case when 𝑓 , 𝑔, ℎ are compactly supported, take 𝜋 to be the
uniform distribution over a ball B(0, 𝑅), and take 𝑅 →∞.
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1. Differentiate this relation to obtain a formula for d𝜇
d𝜋 (𝑇 (𝑥)).

2. Substitute this into the KL divergence KL(𝜇 ∥ 𝜋) =
∫

ln d𝜇
d𝜋 (𝑇 (𝑥)) d𝜋 (𝑥) and use the

inequality 𝑡 − 1 − ln 𝑡 ≥ 0 for all 𝑡 > 0 in order to prove the Gaussian T2 inequality
in one dimension. Deduce the Gaussian T2 inequality in general dimension via a
tensorization argument.

3. Can you generalize this calculation to a density 𝜋 ∝ exp(−𝑉 ) on R𝑑 , where 𝑉 is
smooth and 𝛼-strongly convex for some 𝛼 > 0?

⊵ Exercise 2.11 (generalizing the LSI for mixtures)
In this exercise, we generalize the log-Sobolev inequality for mixtures (Proposition 2.3.14).

1. First, show that Example 2.3.15 is sharp up to universal constants as follows. Con-
sider the case when 𝜇 = 1

2 (𝛿−𝑅 +𝛿+𝑅) on R, so that 𝜇𝑃 is a mixture of two Gaussians.
Construct a test function 𝑓 : R→ R for the Poincaré inequality which shows that
𝐶PI(𝜇𝑃) ≳ 𝑅2 exp(Ω(𝑅2/𝜎2)) if 𝑅/𝜎 ≳ 1.

2. Next, consider the setting of Proposition 2.3.8 except that we replace the assump-
tion (2.3.9) with the weaker condition

𝐶𝜒2,2 B

√︃
E[𝜒2(𝑃𝑋 ∥ 𝑃𝑋 ′)2] < ∞ , (2.E.3)

where 𝑋,𝑋 ′ i.i.d.∼ 𝜇. Now, rather than writing varE𝑃𝑋 𝑓 = 1
2 E[|E𝑃𝑋 𝑓 − E𝑃𝑋 ′ 𝑓 |

2],
instead write varE𝑃𝑋 𝑓 = E[|E𝑃𝑋 𝑓 − E𝜇𝑃 𝑓 |2]. By bounding this quantity in two
different ways deduce that

varE𝑃𝑋 𝑓 ≤ Emin{(var𝑃𝑋 𝑓 ) 𝜒2(𝜇𝑃 ∥ 𝑃𝑋 ), (var𝜇𝑃 𝑓 ) 𝜒2(𝑃𝑋 ∥ 𝜇𝑃)}

≤ E
√︃
(var𝑃𝑋 𝑓 ) 𝜒2(𝜇𝑃 ∥ 𝑃𝑋 ) (var𝜇𝑃 𝑓 ) 𝜒2(𝑃𝑋 ∥ 𝜇𝑃) .

Use this to prove that a Poincaré inequality holds for 𝜇𝑃 , and give an upper bound
on 𝐶PI(𝜇𝑃).

3. Now consider the setting of Proposition 2.3.14 except that we again assume the
weaker condition (2.E.3). Previously, we bounded

E
[
E𝑃𝑋 (𝑓 2) ln

(
1 + 𝜒2(𝑃𝑋 ∥ 𝑃𝑋 ′)

) ]
≤ E𝜇𝑃 (𝑓 2) ln(1 +𝐶𝜒2) ,
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which relies on 𝐿1–𝐿∞ duality. This time, we want to use duality between “𝐿 log𝐿”
and “exp𝐿”. Namely, use the variational principle for the entropy (Lemma 2.3.4) to
prove that for a suitable constant 𝐶 > 0 (depending on 𝐶𝜒2,2),

2E
[
E𝑃𝑋 (𝑓 2)

{
ln
(
1 + 𝜒2(𝑃𝑋 ∥ 𝑃𝑋 ′)

)
−𝐶

}]
≤ entE𝑃𝑋 (𝑓 2) .

Use this to prove that a log-Sobolev inequality holds for 𝜇𝑃 , and give an upper
bound on 𝐶LSI(𝜇𝑃).

4. Consider Example 2.3.15 again, except instead of assuming that 𝜇 is supported on
B(0, 𝑅), we assume that 𝜇 has sub-Gaussian tails:∬

exp ∥𝑥 − 𝑥
′∥2

𝜎2
sG

𝜇 (d𝑥) 𝜇 (d𝑥′) ≤ 𝐶sG .

Prove that if 𝜎 ≳ 𝜎sG for a sufficiently large implied constant, then the Gaussian
mixture 𝜇𝑃 satisfies a log-Sobolev inequality, and give an upper bound on 𝐶LSI(𝜇𝑃).
Also, show how this can recover the result of Example 2.3.15.

Concentration of Measure

⊵ Exercise 2.12 (Herbst argument)
Consider the Herbst argument from Section 2.4.2.

1. Verify the calculus identity (2.4.7) in the Herbst argument.

2. Suppose that 𝑋 is a real-valued random variable satisfying the following condition:
for all 𝜆 ≥ 0, it holds that

var exp 𝜆𝑋2 ≤
𝜆2𝜎2

4 E exp(𝜆𝑋 ) .

Let 𝜂 (𝜆) B E exp(𝜆𝑋 ) and deduce an inequality for 𝜂 (𝜆) in terms of 𝜂 (𝜆/2). Solve
this recursion to prove that for 𝜆 < 2/𝜎 ,

E exp{𝜆 (𝑋 − E𝑋 )} ≤ 2 + 𝜆𝜎
2 − 𝜆𝜎 .

3. Prove the Poincaré case of Theorem 2.4.8.

⊵ Exercise 2.13 (Hoeffding’s lemma and Pinsker’s inequality)
This exercise establishes the equivalence of Pinsker’s inequality with a statement about
sub-Gaussian concentration.
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1. Hoeffding’s lemma states that for any mean-zero random variable 𝑋 with values
in [𝑎, 𝑏] a.s., it holds that 𝑋 is (𝑏 − 𝑎)2/4-sub-Gaussian. Prove this lemma as follows.
For 𝜆 ∈ R, let𝜓 (𝜆) B lnE exp(𝜆𝑋 ). Differentiate𝜓 twice and show that𝜓 ′′(𝜆) can
be interpreted as the variance of a random variable under a change of measure and
hence𝜓 ′′(𝜆) ≤ (𝑏 − 𝑎)2/4.

2. Pinsker’s inequality states that for any two probability measures 𝜇 and 𝜈 on the
same space, ∥𝜇 − 𝜈 ∥2TV ≤

1
2 KL(𝜇 ∥ 𝜈). Prove this inequality as follows. First, by the

data-processing inequality (Theorem 1.5.3), for any event 𝐴,

KL(𝜇 ∥ 𝜈) ≥ KL
(
(1𝐴)#𝜇



 (1𝐴)#𝜈 ) = KL
(
Bernoulli(𝜇 (𝐴))



 Bernoulli(𝜈 (𝐴))
)
.

Next, for any 𝑞 ∈ (0, 1), differentiate 𝑝 ↦→ 𝑘𝑞 (𝑝) B KL(Bernoulli(𝑝) ∥ Bernoulli(𝑞))
twice to show that 𝑘𝑞 is 4-strongly convex, and deduce that 𝑘𝑞 (𝑝) ≥ 2 |𝑝 − 𝑞 |2.
Finally, take the supremum over events 𝐴.

3. Apply the Bobkov–Götze theorem (Theorem 2.4.10) to show that Hoeffding’s lemma
and Pinsker’s inequality are equivalent to each other.

⊵ Exercise 2.14 (inequivalence between PI and T1)
In this exercise, we show that the Poincaré inequality and the T1 inequality are incompa-
rable, i.e., one does not necessarily imply the other.

1. Use Theorem 2.4.11 to provide an example of a measure 𝜋 ∈ P1(R𝑑) which satisfies
a T1 inequality but which does not satisfy a Poincaré inequality.
Hint: Explain why a Poincaré inequality necessarily requires the support of the
measure to be connected.

2. For the converse direction, let 𝜇 be the exponential distribution on R, so that the
density is 𝜇 (𝑥) = exp(−𝑥) 1{𝑥 > 0}. Let 𝑓 : R+ → R; we may assume that 𝑓 (0) = 0.
Now apply the identity 𝑓 (𝑥)2 = 2

∫ 𝑥
0 𝑓 (𝑠) 𝑓 ′(𝑠) d𝑠 to the integral

∫
𝑓 2 d𝜇 and prove

that 𝜇 satisfies PI(4). Explain why 𝜇 cannot satisfy a T1 inequality.

⊵ Exercise 2.15 (bounded differences inequality)
This exercise establishes a broadly useful concentration inequality.

1. Prove the Azuma–Hoeffding inequality: let (ℱ𝑖)𝑛𝑖=0 be a filtration, let (Δ𝑖)𝑛𝑖=1 be
a martingale difference sequence (that is, Δ𝑖 is ℱ𝑖-measurable and E[Δ𝑖 | ℱ𝑖−1] = 0),
and assume that for each 𝑖 there exist ℱ𝑖−1-measurable random variables 𝐴𝑖 and 𝐵𝑖
such that 𝐴𝑖 ≤ Δ𝑖 ≤ 𝐵𝑖 a.s. Then,

∑𝑛
𝑖=1 Δ𝑖 is

∑𝑛
𝑖=1∥𝐵𝑖 −𝐴𝑖 ∥2𝐿∞ (P)/4-sub-Gaussian.

Hint: Apply Hoeffding’s lemma from Exercise 2.13 conditionally.
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2. Use this to prove the bounded differences inequality: if 𝑋1, . . . , 𝑋𝑛 are indepen-
dent, then 𝑓 (𝑋1, . . . , 𝑋𝑛) − E 𝑓 (𝑋1, . . . , 𝑋𝑛) is

∑𝑛
𝑖=1 ∥𝐷𝑖 𝑓 ∥2sup/4-sub-Gaussian.

Hint: Recall the proof of the Efron–Stein inequality from Exercise 1.2.

3. Next, apply Marton’s tensorization (Theorem 2.3.17) to Pinsker’s inequality from Ex-
ercise 2.13 (see Example 2.3.18) to obtain a transport inequality for the product
space X𝑁 . Using the Bobkov–Götze equivalence (Theorem 2.4.10), give a second
proof of the bounded differences inequality.

⊵ Exercise 2.16 (a loose end in Gozlan’s theorem)
Prove the first statement of Lemma 2.4.13.

Isoperimetric Inequalities

⊵ Exercise 2.17 (isoperimetry on the sphere)
Prove Theorem 2.5.2 from the spherical isoperimetric inequality (Theorem 2.5.1). To do so,
use the fact that the measure of B(𝑥0, 𝑟 ) is

𝜎𝑑
(
B(𝑥0, 𝑟 )

)
=

∫ 𝑟
0 (sin𝜃 )𝑑−1 d𝜃∫
π

0 (sin𝜃 )𝑑−1 d𝜃
,

or prove this fact yourself. It is also acceptable to establish a weaker bound of the form
𝛼𝜎𝑑 (𝜀) ≤ 𝐶 exp(−𝑐𝑑𝜀2) for universal constants 𝑐,𝐶 > 0.

⊵ Exercise 2.18 (Gaussian isoperimetry)
Consider the Gaussian isoperimetric inequality in Theorem 2.5.3.

1. In the spirit of Theorem 2.5.14, show that the functional inequality (2.5.28) is equiv-
alent to an isoperimetric statement. Consequently, deduce the comparison theorem
(Theorem 2.5.29) from Theorem 2.5.27.

2. Show that the functional form of the Gaussian isoperimetric inequality in (2.5.28) is
preserved (up to constants) under Lipschitz mappings (in other words, prove the
analogue of Proposition 2.3.3 for (2.5.28)).

Metric Measure Spaces

⊵ Exercise 2.19 (Lichnerowicz inequality)
Under the CD(𝛼,𝑑) condition (2.6.9), the spectral gap estimate for −ℒ can be sharpened
to 𝜆min(−ℒ) ≥ 𝛼𝑑/(𝑑 − 1), an estimate that is attributed to Lichnerowicz. Prove this as
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follows: assume that 𝑓 is such that −ℒ𝑓 = 𝜆𝑓 . Show that 𝜆
∫
Γ(𝑓 , 𝑓 ) d𝜋 =

∫
Γ2(𝑓 , 𝑓 ) d𝜋 .

Apply CD(𝛼,𝑑) and deduce that 𝜆 ≥ 𝛼𝑑/(𝑑 − 1).

Discrete Space and Time

⊵ Exercise 2.20 (LSI implies MLSI)
Prove Lemma 2.7.3.

Hint: Prove that 4 (
√
𝑎 −
√
𝑏)2 = (

∫ 𝑏
𝑎
𝑡−1/2 d𝑡)2 ≤ (ln𝑎 − ln𝑏) (𝑎 − 𝑏) for all 𝑎, 𝑏 > 0.
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CHAPTER 3

Additional Topics in Stochastic Analysis

In this chapter, we further expand our toolbox of stochastic analysis. Namely, we introduce
Girsanov’s theorem, which furnishes a formula for the Radon–Nikodym derivative of
the laws of two SDEs w.r.t. to each other, and we discuss the time reversal of an SDE. In
order to highlight the flexibility and power of these ideas, we then study some interesting
applications, not all of which are directly relevant to log-concave sampling but nevertheless
fit within the broader themes of this book.

3.1 Quadratic Variation
We now take a more general view of the ideas that led to the construction of the Itô
integral as well as Itô’s formula (Theorem 1.1.18).

Finite variation vs. quadratic variation. As a first step towards understanding
the difficulties we faced when constructing the Itô integral, we recall that the classi-
cal condition under which it is possible to integrate a continuous process (𝜂𝑡 )𝑡∈[0,𝑇 ]
against another continuous process (𝐴𝑡 )𝑡∈[0,𝑇 ] , i.e., when we can consider the integral∫
[0,𝑇 ] 𝜂𝑡 d𝐴𝑡 , is when the process𝐴 is of finite variation. This means that for any partition

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑇 of [0,𝑇 ], if we define the mesh of the partition to be

mesh(𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛) B max
𝑖∈[𝑛]
|𝑡𝑖 − 𝑡𝑖−1 | ,

137
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then it holds that

lim
mesh(𝑡𝑖 :𝑖=0,1,...,𝑛)↘0

𝑛∑︁
𝑖=1
|𝐴𝑡𝑖 −𝐴𝑡𝑖−1 | < ∞ .

The above limit is called the total variation of 𝐴 on [0,𝑇 ]. Under this condition, there is
a signed measure 𝜇𝐴 such that for all 𝑡 ∈ [0,𝑇 ], we have 𝜇𝐴 ( [0, 𝑡]) = 𝐴𝑡 −𝐴0. Moreover,
we can define a norm ∥·∥TV on the space of signed measures, called the total variation
norm, for which ∥𝜇𝐴∥TV equals the total variation of 𝐴 as defined above.1 In this case,
we can simply define the integral

∫
[0,𝑇 ] 𝜂𝑡 d𝐴𝑡 B

∫
[0,𝑇 ] 𝜂𝑡 d𝜇𝐴 (𝑡).

Note that if 𝑡 ↦→ 𝐴𝑡 is differentiable, then the total variation of 𝐴 equals
∫
[0,𝑇 ] | ¤𝐴𝑡 | d𝑡 ,

and the integral becomes
∫
[0,𝑇 ] 𝜂𝑡 d𝐴𝑡 =

∫
[0,𝑇 ] 𝜂𝑡

¤𝐴𝑡 d𝑡 .
Hence, the condition that 𝐴 is of finite variation is enough to develop a satisfactory

theory of integration. The drawback, however, is that Brownian motion is not of finite
variation. To see this, take 𝑡𝑖 B 𝑖𝑇 /𝑛 for 𝑖 = 0, 1, . . . , 𝑛, so that the mesh of the partition is
𝑇 /𝑛. Since 𝐵𝑡𝑖 − 𝐵𝑡𝑖−1 ∼ normal(0,𝑇 /𝑛), we expect (heuristically) that

lim
𝑛→∞

𝑛∑︁
𝑖=1
|𝐵𝑡𝑖 − 𝐵𝑡𝑖−1 |︸       ︷︷       ︸
≍
√
𝑇 /𝑛

≳ lim
𝑛→∞

𝑛 ·
√︂
𝑇

𝑛
= ∞ .

On the other hand, if we change the definition slightly, then we expect (heuristically) that

lim
𝑛→∞

𝑛∑︁
𝑖=1
|𝐵𝑡𝑖 − 𝐵𝑡𝑖−1 |2︸        ︷︷        ︸

≍𝑇 /𝑛

≲ lim
𝑛→∞

𝑛 · 𝑇
𝑛
< ∞ .

We say that Brownian motion has finite quadratic variation. We will show in fact that
the above limit is well-defined in the sense of convergence in probability.

More generally, for a process of the form

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏𝑡 d𝑡 +

∫ 𝑡

0
𝜎𝑡 d𝐵𝑡 , 𝑡 ∈ [0,𝑇 ] ,

the second term is a process of finite variation (provided that
∫
[0,𝑇 ] |𝑏𝑡 | d𝑡 < ∞ almost

surely), whereas the third term requires consideration of quadratic variation.
1Indeed, the notation ∥𝜇 − 𝜈 ∥TV for the total variation distance between 𝜇 and 𝜈 is in accordance with

this more general notion of a norm on the space of signed measures, up to a factor of 2 in the conventions.
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Definition of the quadratic variation. More formally, we have the following theorem.

Theorem 3.1.1 (quadratic variation). Let (𝑀𝑡 )𝑡∈[0,𝑇 ] be a continuous local martingale;
then, there is an a.s. unique increasing process 𝑡 ↦→ [𝑀,𝑀]𝑡 such that 𝑡 ↦→ 𝑀2

𝑡 − [𝑀,𝑀]𝑡
is a continuous local martingale. Also, suppose that for each 𝑛 ∈ N+, (𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛)
is a partition of [0, 𝑡], with mesh tending to zero as 𝑛 →∞. Then,

[𝑀,𝑀]𝑡 = lim
𝑛→∞

𝑛∑︁
𝑖=1
(𝑀𝑡𝑖 −𝑀𝑡𝑖−1)2 in probability .

Definition 3.1.2 (quadratic variation). The process [𝑀,𝑀] of Theorem 3.1.1 is called
the quadratic variation of 𝑀 .

We will not prove Theorem 3.1.1 in full generality. However, we will verify that the
quadratic variation of one-dimensional Brownian motion (𝐵𝑡 )𝑡∈[0,𝑇 ] is [𝐵, 𝐵]𝑇 = 𝑇 , which
gives an idea of the general result. By independence of the Brownian increments,

E
[��� 𝑛∑︁
𝑖=1
{(𝐵𝑡𝑖 − 𝐵𝑡𝑖−1)2 − (𝑡𝑖 − 𝑡𝑖−1)}

���2] = 𝑛∑︁
𝑖=1
E[| (𝐵𝑡𝑖 − 𝐵𝑡𝑖−1)2 − (𝑡𝑖 − 𝑡𝑖−1) |2]

≤
𝑛∑︁
𝑖=1
E[(𝐵𝑡𝑖 − 𝐵𝑡𝑖−1)4] = 3

𝑛∑︁
𝑖=1
(𝑡𝑖 − 𝑡𝑖−1)2

≤ 3 mesh(𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛)
𝑛∑︁
𝑖=1
(𝑡𝑖 − 𝑡𝑖−1)︸          ︷︷          ︸

=𝑇

→ 0 .

Hence,
∑𝑛
𝑖=1 (𝐵𝑡𝑖 − 𝐵𝑡𝑖−1)2

P−→ 𝑇 as 𝑛 →∞. We also know that 𝑡 ↦→ 𝐵2
𝑡 − 𝑡 is a martingale

(see, e.g., Exercise 1.7).

Semimartingales. We often consider solutions to SDEs with a non-zero drift coeffi-
cient, which means that the resulting process are not continuous local martingales. To
accommodate this addition, we consider the following definition.

Definition 3.1.3 (semimartingale). A process (𝑋𝑡 )𝑡∈[0,𝑇 ] is a continuous semi-
martingale if we can write 𝑋 = 𝐴 +𝑀 , where 𝐴 is a process of finite variation with
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𝐴0 = 0 and 𝑀 is a continuous local martingale.

The decomposition 𝑋 = 𝐴 +𝑀 is then unique. Indeed, suppose that 𝑋 = 𝐴 +𝑀 for
another finite variation process 𝐴 (with 𝐴0 = 0) and a continuous local martingale 𝑀 .
Then, from Δ B 𝑀 −𝑀 = 𝐴 −𝐴, we deduce that Δ is both a continuous local martingale
and a process of finite variation. Since Δ is of finite variation,

𝑛∑︁
𝑖=1
(Δ𝑡𝑖 − Δ𝑡𝑖−1)2 ≤ mesh(𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛)

𝑛∑︁
𝑖=1
|Δ𝑡𝑖 − Δ𝑡𝑖−1 |︸             ︷︷             ︸

bounded as 𝑛→∞

→ 0

as the mesh size tends to zero. This shows that [Δ,Δ] = 0, and thus Δ2 is a continuous
local martingale. If we knew that Δ2 were a genuine martingale, then together with Δ0 = 0
it would imply that Δ = 0, establishing uniqueness of the semimartingale decomposition.
We omit the localization argument required to finish the proof.

We can also define the quadratic variation of the semimartingale𝑋 as [𝑋,𝑋 ] B [𝑀,𝑀].
To see why this makes sense, observe that��� 𝑛∑︁

𝑖=1
(𝑋𝑡𝑖 − 𝑋𝑡𝑖−1)2 −

𝑛∑︁
𝑖=1
(𝑀𝑡𝑖 −𝑀𝑡𝑖−1)2

���
=

��� 𝑛∑︁
𝑖=1
(𝐴𝑡𝑖 −𝐴𝑡𝑖−1)2 + 2

𝑛∑︁
𝑖=1
(𝐴𝑡𝑖 −𝐴𝑡𝑖−1) (𝑀𝑡𝑖 −𝑀𝑡𝑖−1)

���
≤

𝑛∑︁
𝑖=1
(𝐴𝑡𝑖 −𝐴𝑡𝑖−1)2 + 2

√√( 𝑛∑︁
𝑖=1
(𝐴𝑡𝑖 −𝐴𝑡𝑖−1)2

) ( 𝑛∑︁
𝑖=1
(𝑀𝑡𝑖 −𝑀𝑡𝑖−1)2

)
,

which tends to zero using the same argument as in the uniqueness of the semimartingale
decomposition: finite variation processes have zero quadratic variation.

The bracket of two semimartingales. Given two semimartingales 𝑋 and 𝑌 , we define
their bracket via polarization:

[𝑋,𝑌 ] B 1
2 ( [𝑋 + 𝑌,𝑋 + 𝑌 ] − [𝑋,𝑋 ] − [𝑌,𝑌 ]) .

Equivalently, if 𝑋 = 𝐴𝑋 +𝑀𝑋 and 𝑌 = 𝐴𝑌 +𝑀𝑌 are the respective decompositions, then
[𝑋,𝑌 ] = [𝑀𝑋 , 𝑀𝑌 ]. The following theorem gives a concrete way of computing the bracket
for processes driven by Brownian motion.
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Theorem 3.1.4 (bracket of processes driven by Brownian motion). Suppose that 𝑋
and 𝑌 are R𝑑-valued processes with

d𝑋𝑡 = 𝑏𝑋𝑡 d𝑡 + 𝜎𝑋𝑡 d𝐵𝑡 ,
d𝑌𝑡 = 𝑏𝑌𝑡 d𝑡 + 𝜎𝑌𝑡 d𝐵𝑡 ,

where we assume
∫
[0,𝑇 ] ∥𝑏

𝑋
𝑡 ∥ d𝑡 ,

∫
[0,𝑇 ] ∥𝑏

𝑌
𝑡 ∥ d𝑡 ,

∫
[0,𝑇 ] ∥𝜎

𝑋
𝑡 ∥2HS d𝑡 , and

∫
[0,𝑇 ] ∥𝜎

𝑌
𝑡 ∥2HS d𝑡 are

all finite almost surely. Then, 𝑋 and 𝑌 are continuous semimartingales, and

[𝑋,𝑌 ]𝑡 =
∫ 𝑡

0
⟨𝜎𝑋𝑠 , 𝜎𝑌𝑠 ⟩ d𝑠 , for 𝑡 ∈ [0,𝑇 ] .

Itô’s formula revisited. Finally, we conclude this section by revisiting Itô’s formula
(Theorem 1.1.18) using our new calculus.

Theorem 3.1.5 (Itô’s formula revisited). Let 𝑋 be an R𝑑-valued semimartingale, and
write 𝑋 = (𝑋 1, . . . , 𝑋𝑑). Let 𝑓 ∈ C2(R𝑑). Then, 𝑓 (𝑋 ) is also a semimartingale, and

𝑓 (𝑋𝑡 ) = 𝑓 (𝑋0) +
𝑑∑︁
𝑖=1

∫ 𝑡

0
𝜕𝑖 𝑓 (𝑋𝑠) d𝑋 𝑖𝑠 +

1
2

𝑑∑︁
𝑖, 𝑗=1

∫ 𝑡

0
𝜕𝑖, 𝑗 𝑓 (𝑋𝑠) d[𝑋 𝑖, 𝑋 𝑗 ]𝑠 .

If we interpret [𝑋,𝑋 ] as the matrix whose (𝑖, 𝑗)-entry is [𝑋 𝑖, 𝑋 𝑗 ], then this can be
written in matrix notation as

𝑓 (𝑋𝑡 ) = 𝑓 (𝑋0) +
∫ 𝑡

0
⟨∇𝑓 (𝑋𝑠), d𝑋𝑠⟩ +

1
2

∫ 𝑡

0

〈
∇2𝑓 (𝑋𝑠), d[𝑋,𝑋 ]𝑠

〉
. (3.1.6)

For 𝑑-dimensional standard Brownian motion (𝐵𝑡 )𝑡∈[0,𝑇 ] , we have [𝐵, 𝐵]𝑡 = 𝑡𝐼𝑑 , so that
d[𝐵, 𝐵]𝑡 = 𝐼𝑑 d𝑡 and we recover the original statement of Itô’s formula in Theorem 1.1.18.
The point is that the quadratic variation is a convenient way of streamlining Itô calculations,
as it formalizes the idea that only the Brownian motion part of a process contributes in
the second-order term in Itô’s formula.

3.2 Change of Measure in Path Space
In this section, we begin to investigate measures on path space, for which it is convenient
to adopt the following canonical setup. Let (𝐵𝑡 )𝑡∈[0,𝑇 ] be standard Brownian motion, and
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let W denote its law, the Wiener measure. Recall that in probability theory, all of our
random variables are defined on an underlying probability space (Ω,ℱ, P). Since we
can take this probability space to be whatever we wish, as long as it is sufficiently rich,
we may as well take Ω = C([0,𝑇 ]) to be the space of continuous paths with ℱ being
the Borel 𝜎-algebra, equipped with the Wiener measure P = W. Then, for 𝜔 ∈ Ω, the
Brownian motion at time 𝑡 simply becomes the evaluation functional, 𝐵𝑡 (𝜔) = 𝜔𝑡 .

3.2.1 The Cameron–Martin Theorem
Our goal now is to understand when two measures P, Q on the path space C([0,𝑇 ])
are absolutely continuous w.r.t. each other, and if so, to write down a formula for the
Radon–Nikodym derivative dP

dQ . The final result, known as Girsanov’s theorem, will be
used for the analysis of sampling algorithms later in this book, and more broadly it is an
indispensable tool for stochastic analysis.

Before reaching this goal, however, it may be helpful to provide some mathematical
context. We begin with the following question. For a curve ℎ ∈ C([0,𝑇 ]), the translation
operator 𝑇ℎ : C([0,𝑇 ]) → C([0,𝑇 ]) is defined simply by the mapping 𝜔 ↦→ 𝜔 + ℎ. What
happens to the Wiener measure under translations?

More generally, we can define the translation operator 𝑇ℎ on any Banach space B,
with ℎ ∈ B. If B = R𝑑 and 𝜇 is the Lebesgue measure, then we know that 𝜇 is invariant
under translations, in the sense that (𝑇ℎ)#𝜇 = 𝜇 for all ℎ ∈ R𝑑 , and that the Lebesgue
measure is the unique measure with this property up to rescaling. However, as soon
as we move to infinite dimensions, a classical result of analysis states that there is no
non-trivial measure 𝜇 which is invariant under translations, i.e., infinite-dimensional
Lebesgue measure does not exist. This makes it difficult to decide upon a “canonical”
reference measure for infinite-dimensional analysis.

Although invariance is impossible, we can at least ask for quasi-invariance: does there
exist 𝜇 such that (𝑇ℎ)#𝜇 ≪ 𝜇 for all ℎ ∈ B? For example, the standard Gaussian measure
is quasi-invariant on R𝑑 . In infinite dimensions, the answer is still no; in particular, there
is no infinite-dimensional standard Gaussian. To understand this point more concretely,
suppose that B = H is actually a Hilbert space, and let (𝑒𝑘)𝑘∈N be an orthonormal basis.
An obvious attempt to build “the standard Gaussian measure on H” is to take an i.i.d.
sequence (𝜉𝑘)𝑘∈N of standard Gaussians on R, and to take 𝜇 to be the law of

∑
𝑘∈N 𝜉𝑘𝑒𝑘 .

However, since ∥∑𝑁
𝑘=0 𝜉𝑘𝑒𝑘 ∥2 =

∑𝑁
𝑘=0 𝜉

2
𝑘
, standard probability theory tells us that almost

surely, this is not a convergent sum inH .
Despite this obstruction, we will now see that the Wiener measure behaves in some

sense like a standard Gaussian measure on a Hilbert space! The theorem below begins by
precisely characterize the set of ℎ for which (𝑇ℎ)#W ≪W.
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Theorem 3.2.1 (Cameron–Martin). Let W be the Wiener measure on C([0,𝑇 ]). Then,
(𝑇ℎ)#W ≪W if and only if

ℎ ∈ H B
{
ℎ ∈ C([0,𝑇 ])

��� ℎ(0) = 0,
∫ 𝑇

0
∥ ¤ℎ(𝑡)∥2 d𝑡 < ∞

}
.

If this holds, then

d(𝑇ℎ)#W
dW (𝜔) = exp

(∫ 𝑇

0
⟨ ¤ℎ(𝑡), d𝜔𝑡 ⟩ −

1
2

∫ 𝑇

0
∥ ¤ℎ(𝑡)∥2 d𝑡

)
. (3.2.2)

Here,H is called the Cameron–Martin space associated with Brownian motion.

The Cameron–Martin theorem will be subsumed by Girsanov’s theorem, so we will
not prove it here. Instead, we will focus on its interpretation.

Interpretation of the Cameron–Martin theorem. To interpret (3.2.2), let 𝛾 denote
the standard Gaussian measure on R𝑑 and let ℎ ∈ R𝑑 . Then, on R𝑑 , we have the formula

d(𝑇ℎ)#𝛾
d𝛾 (𝑥) = exp

(
⟨ℎ, 𝑥⟩ − 1

2 ∥ℎ∥
2
)
.

This bears a striking resemblance to (3.2.2). Namely, for ℎ0, ℎ1 ∈ H , let us define the
inner product ⟨ℎ0, ℎ1⟩H B

∫ 𝑇
0 ⟨ ¤ℎ0(𝑡), ¤ℎ1(𝑡)⟩ d𝑡 . If we interpret the stochastic integral∫ 𝑇

0 ⟨ ¤ℎ(𝑡), d𝜔𝑡 ⟩ as ⟨ℎ,𝜔⟩H , then the density ratio in (3.2.2) behaves as if

dW(𝜔) “∝” exp
(
−1

2 ∥𝜔 ∥
2
H

)
d𝜔 . (3.2.3)

The charming part about (3.2.3) is that not a single aspect of it makes any sense. We know
that W-a.s.𝜔 ∈ Ω does not even belong toH , since Brownian paths are non-differentiable
(in fact, they are Hölder continuous of any exponent less than 1/2, but no better, whereas
we would require Lipschitz continuity to have a.e. differentiability). Also, (3.2.3) tries to
express the density of W, but with respect to what measure? We have just stated that
there is no “Lebesgue measure” onH .

Despite these objections, Theorem 3.2.1 is a perfectly rigorous manifestation of the
intuition that W is a standard Gaussian measure onH . To reconcile this, it will turn out
that a “standardH -Gaussian measure” can exist, but the catch is that it no longer “fits” in
H (indeed, W is supported on C([0,𝑇 ]) ⊋ H ). Indeed, the fact that W is usually defined
on C([0,𝑇 ]) is somewhat of a red herring, and many of the deeper properties of Brownian
motion (e.g., Schilder’s theorem in large deviations) are best understood viaH .
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Abstract Wiener space. More generally, letH be an infinite-dimensional Hilbert space
and let us try to construct the standard Gaussian measure onH . We tried earlier to use
the sum

∑
𝑘∈N 𝜉𝑘𝑒𝑘 , but this does not converge in the norm ofH . To proceed forward, the

idea is rather simple: we can just use another norm. Namely, if we can find a Banach space
B ⊇ H with corresponding norm ∥·∥B , such that the sum

∑
𝑘∈N 𝜉𝑘𝑒𝑘 converges in ∥·∥B ,

then
∑
𝑘∈N 𝜉𝑘𝑒𝑘 makes sense as a random element of B, and we can take 𝜇 to be its law.

Note that 𝜇 is supported on B rather than onH . It turns out that a suitable orthonormal
basis (𝑒𝑘)𝑘∈N and a norm ∥·∥B can always be found to make this procedure work.

For Brownian motion, we take ∥·∥B to be the supremum norm (i.e., the norm of
C([0,𝑇 ])) and the orthonormal basis can be chosen as a certain (integrated) wavelet basis.
In fact, the abstract construction described above is implicit in Lévy’s usual construction
of Brownian motion.

It is also possible to flip this process around. Namely, suppose that 𝜇 is a Gaussian
measure on a Banach space B, which means that for any linear functionals ℓ1, . . . , ℓ𝑛 ∈
B∗ and 𝑋 ∼ 𝜇, the vector (ℓ1(𝑋 ), . . . , ℓ𝑛 (𝑋 )) is jointly Gaussian. Then, one can find a
Hilbert spaceH associated to (B, 𝜇), which is called the Cameron–Martin space, and an
appropriate analogue of the Cameron–Martin theorem (Theorem 3.2.1) holds. In fact, one
has ∥𝑥 ∥H B sup{|ℓ (𝜔) | | ℓ ∈ B∗, ∥ℓ ∥𝐿2 (𝜇) ≤ 1} and H B {𝑥 ∈ B | ∥𝑥 ∥H < ∞}. The
triple (B,H , 𝜇) is known as an abstract Wiener space.

3.2.2 Girsanov’s Theorem
The Cameron–Martin theorem (Theorem 3.2.1) provides a formula for the density ratio
of the laws of two diffusions that differ by a deterministic drift. Girsanov’s theorem
generalizes this to diffusions which differ by a random drift.

Why do we only consider a change of drift? The answer is that two diffusions

d𝑋𝑡 = 𝑏𝑋𝑡 d𝑡 + 𝜎𝑋𝑡 d𝐵𝑡 ,
d𝑌𝑡 = 𝑏𝑌𝑡 d𝑡 + 𝜎𝑌𝑡 d𝐵𝑡 ,

with 𝜎𝑋 (𝜎𝑋 )T ≠ 𝜎𝑌 (𝜎𝑌 )T, have mutually singular laws, as a consequence of the existence
of the quadratic variation (Theorem 3.1.1). Indeed, the laws of 𝑋 and 𝑌 are concentrated
on the disjoint events that the quadratic variation equals

∫ ·
0 𝜎

𝑋 (𝜎𝑋 )T or
∫ ·

0 𝜎
𝑌 (𝜎𝑌 )T

respectively. Nevertheless, Girsanov’s theorem will show that a change of drift is enough
to obtain any other path measure which is absolutely continuous w.r.t. the original one.

To understand the intuition behind Girsanov’s theorem, consider the diffusion

d𝑋𝑡 = 𝑏𝑡 d𝑡 + d𝐵𝑡 ⇐⇒ 𝑋𝑡 =

∫ 𝑡

0
𝑏𝑠 d𝑠 + 𝐵𝑡 , (3.2.4)



3.2. CHANGE OF MEASURE IN PATH SPACE 145

where (𝑏𝑡 )𝑡≥0 is an adapted process. If (𝑏𝑡 )𝑡≥0 is in fact deterministic, then recall that the
law of 𝑋𝑡 is a centered Gaussian with covariance

∫ 𝑡
0 (𝑏𝑠 ⊗ 𝑏𝑠) d𝑠 . In general, however, the

law of 𝑋𝑡 is not easily describable. Nevertheless, it is possible to understand the joint law
of (𝑋𝑡 )𝑡∈[0,𝑇 ] , which is a measure P on path space.

To see why this is the case, consider a discrete-time analogue of (3.2.4):

𝑋𝑘+1 B 𝐹 (𝑋𝑘) + 𝜉𝑘 , 𝑘 = 0, 1, 2, . . . ,

where 𝐹 : R𝑑 → R𝑑 is a deterministic map and (𝜉𝑘)𝑘∈N is a sequence of i.i.d. Gaussian
variables. Again, due to the non-linear mapping 𝐹 , the law of𝑋𝑘 is hard to describe exactly,
yet once we condition on 𝑋𝑘 , the law of 𝑋𝑘+1 is an explicit Gaussian. This observation
makes it straightforward to write down an explicit and simple expression for the joint
law of (𝑋0, 𝑋1, . . . , 𝑋𝑁 ).

Returning to (3.2.4), we can think of it in the same way: namely, conditioned on the
past, the conditional law of the diffusion in the next instant is a Gaussian with some mean
and covariance. Moreover, by using the formula for the density ratio of two Gaussians,
one can guess the formula

dP
dW = exp

(∫ 𝑇

0
⟨𝑏𝑠, d𝐵𝑠⟩ −

1
2

∫ 𝑇

0
∥𝑏𝑠 ∥2 d𝑠

)
. (3.2.5)

Note that this exactly mirrors Theorem 3.2.1, except that now we allow for adapted
processes (𝑏𝑡 )𝑡≥0.

Let us now discuss how we would establish (3.2.5) carefully. Actually, we will pro-
ceed in the opposite order from our informal discussion: we will first define P via the
formula (3.2.5), and then investigate the effect of the change of measure from W to P on
our stochastic processes. This requires a change of perspective: instead of considering two
processes (𝐵𝑡 )𝑡∈[0,𝑇 ] and (𝑋𝑡 )𝑡∈[0,𝑇 ] , we instead think of a single process (𝐵𝑡 )𝑡∈[0,𝑇 ] defined
on our canonical filtered space (Ω = C([0,𝑇 ]),ℱ, (ℱ𝑡 )𝑡∈[0,𝑇 ]). Recall that (𝐵𝑡 )𝑡∈[0,𝑇 ] is
just the coordinate process 𝐵𝑡 (𝜔) = 𝜔𝑡 . When we endow our space with the Wiener
measure W, then (𝐵𝑡 )𝑡∈[0,𝑇 ] becomes a standard Brownian motion. On the other hand, if
we instead endow our space with the measure P, we will show that (𝐵𝑡 )𝑡∈[0,𝑇 ] is, in some
sense, a Brownian motion with drift.

To carry out our plan, the first step is to show that (3.2.5) defines a valid probability
measure P. In other words, we need the W-expectation of the right-hand side of (3.2.5)
to equal 1. Actually, for any 𝑡 ∈ [0,𝑇 ], let us write W𝑡 to be the restriction of W to ℱ𝑡

(and similarly write P𝑡 ). In order for our putative P𝑡 to be a probability measure for each
𝑡 ∈ [0,𝑇 ], we would require

𝑡 ↦→ dP𝑡
dW𝑡

?
= exp

(∫ 𝑡

0
⟨𝑏𝑠, d𝐵𝑠⟩ −

1
2

∫ 𝑡

0
∥𝑏𝑠 ∥2 d𝑠

)



146 CHAPTER 3. ADDITIONAL TOPICS IN STOCHASTIC ANALYSIS

to have constant W-expectation, equal to 1 for all 𝑡 ∈ [0,𝑇 ]. This would follow if we knew
that this defined a W-martingale.

Assume thatEW
∫ 𝑇

0 ∥𝑏𝑠 ∥
2 d𝑠 < ∞. Then, the process 𝑡 ↦→

∫ 𝑡
0 ⟨𝑏𝑠, d𝐵𝑠⟩ is aW-martingale,

and 𝑡 ↦→
∫ 𝑡

0 ∥𝑏𝑠 ∥
2 d𝑠 is its quadratic variation. We will simply write 𝑀 B

∫ ·
0 ⟨𝑏, d𝐵⟩ for the

martingale and [𝑀,𝑀] for its quadratic variation. Then,

E(𝑀) B exp
(
𝑀 − 1

2 [𝑀,𝑀]
)

is called the exponential martingale associated with 𝑀 . Is it actually a martingale?
Applying Itô’s formula in the form (3.1.6),

dE(𝑀)𝑡 = E(𝑀)𝑡
(
d𝑀𝑡 −

1
2 d[𝑀,𝑀]𝑡 +

1
2 d[𝑀,𝑀]𝑡

)
= E(𝑀)𝑡 d𝑀𝑡 ,

so E(𝑀) is a stochastic integral. From Proposition 1.1.15, this tells us that E(𝑀) is a
continuous local W-martingale. In other words, it is possible for E(𝑀) to fail to be a
martingale if some integrability conditions are violated. For now, we will assume that
E(𝑀) is an honest2 martingale, treating this point as a technical issue, although later we
will see that there is a clear understanding of what happens when this assumption fails.

Under this assumption, the measure P defined via (3.2.5) is a probability measure on
path space. We now claim that under P, the process 𝑡 ↦→ 𝐵̃𝑡 B 𝐵𝑡 − [𝐵,𝑀]𝑡 = 𝐵𝑡 −

∫ 𝑡
0 𝑏𝑠 d𝑠

is a standard Brownian motion. Actually, this is not too hard to check using (3.2.5) and
characteristic functions; we leave it as Exercise 3.1.

We have arrived at the following theorem.

Theorem 3.2.6 (Girsanov). Let (𝐵𝑡 )𝑡∈[0,𝑇 ] be a standard Brownian motion under the

Wiener measure W and let (𝑏𝑡 )𝑡∈[0,𝑇 ] be a progressive process with EW
∫ 𝑇

0 ∥𝑏𝑠 ∥
2 d𝑠 < ∞.

Let 𝑀𝑡 B
∫ 𝑡

0 ⟨𝑏𝑠, d𝐵𝑠⟩ for 𝑡 ∈ [0,𝑇 ] and let [𝑀,𝑀]𝑡 B
∫ 𝑡

0 ∥𝑏𝑠 ∥
2 d𝑠 denote the quadratic

variation. Define the exponential martingale

E(𝑀) B exp
(
𝑀 − 1

2 [𝑀,𝑀]
)
.

Assume that E(𝑀) is a W-martingale and define the measure P on path space via

dP
dW = E(𝑀)𝑇 .

2We borrow the terminology from [Ste01].
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Then, under P,

𝑡 ↦→ 𝐵̃𝑡 B 𝐵𝑡 − [𝐵,𝑀]𝑡 = 𝐵𝑡 −
∫ 𝑡

0
𝑏𝑠 d𝑠 is a standard Brownian motion .

At present, Girsanov’s theorem may seem rather abstract, and perhaps the best way
to learn its meaning is to see it in action. We will put it to work in Section 4.4.

When is the exponential martingale an honest martingale? Since E(𝑀) is a non-
negative local martingale, then it is a supermartingale, i.e., we always have EW E(𝑀)𝑇 ≤ 1.
The only situation in which we encounter difficulties is when EW E(𝑀)𝑇 < 1, which
would lead P defined via (3.2.5) to be a sub-probability measure. One might suspect that
this is related to some probability mass “running off to∞”, and indeed one can show that
1 − EW E(𝑀)𝑇 is precisely the probability that the diffusion has exploded by time 𝑇 , in
the sense discussed in Section 1.1.3. Therefore, the following criteria for E(𝑀) to be a
martingale are really criteria for non-explosion.

The standard sufficient condition for E(𝑀) to be a martingale is Novikov’s condition,
EW exp( 12 [𝑀,𝑀]𝑇 ) < ∞. An even weaker condition, known as Kazamaki’s condition,
requires only that sup𝑡∈[0,𝑇 ] EW exp( 12 𝑀𝑡 ) < ∞. In principle, one of these conditions
should be checked before applying Girsanov’s theorem. However, if one is only interested
in bounding a quantity such as the KL divergence or a Rényi divergence, one could
use the technique of localization, mentioned in Section 1.1.1, together with the lower
semicontinuity of the KL divergence, to avoid these conditions altogether.

3.3 Doob’s Transform
In this section, we will introduce a more sophisticated use of change of measure on path
space, known as Doob’s transform. Some applications include obtaining SDEs for processes
conditioned on an endpoint and deriving the Föllmer process in the next section.

Suppose that Q is a reference measure on path space, describing the law of the SDE

d𝑋𝑡 = 𝑏𝑡 (𝑋𝑡 ) d𝑡 + 𝜎𝑡 (𝑋𝑡 ) d𝐵𝑡 , 𝑋0 ∼ 𝜋0 . (3.3.1)

Let 𝑃𝑠,𝑡 denote the transition operator from time 𝑠 to time 𝑡 (note that our reference
process is time-inhomogeneous). The question we address in this section is the following:
suppose that P is another probability measure on path space such that its Radon–Nikodym
derivative w.r.t. Q only depends on 𝑋𝑇 , the path at time 𝑇 :

dP𝑇
dQ𝑇

= ℎ𝑇 (𝑋𝑇 ) .
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Since P𝑇 ≪ Q𝑇 , we know from the previous section that the process𝑋 under P corresponds
to the original process under Q with a change of drift. Can we solve for this drift?

The process 𝑡 ↦→ dP𝑡
dQ𝑡

must be a martingale, and we make the ansatz that at time 𝑡 , it
only depends on the path at time 𝑡 : dP𝑡

dQ𝑡
= ℎ𝑡 (𝑋𝑡 ). Applying Itô’s formula to (ℎ𝑡 (𝑋𝑡 ))𝑡∈[0,𝑇 ] ,

dℎ𝑡 (𝑋𝑡 ) = (𝜕𝑡ℎ𝑡 +ℒ𝑡ℎ𝑡 ) (𝑋𝑡 ) + ⟨∇ℎ𝑡 (𝑋𝑡 ), 𝜎𝑡 (𝑋𝑡 ) d𝐵𝑡 ⟩ , (3.3.2)

and we deduce that this is a martingale if and only if

𝜕𝑡ℎ𝑡 +ℒ𝑡ℎ𝑡 = 0 ,

where ℒ𝑡 𝑓 B
1
2 ⟨𝜎𝑡𝜎

T
𝑡 ,∇2𝑓 ⟩ + ⟨𝑏𝑡 ,∇𝑓 ⟩ is the generator at time 𝑡 . This is the backward heat

equation (indeed, if 𝑋 is a Brownian motion, then the equation reads 𝜕𝑡ℎ𝑡 + 1
2 Δℎ𝑡 = 0),

which makes sense since we have a terminal time condition for ℎ𝑇 . In the case when the
process is time-homogeneous (i.e., the coefficients do not depend on 𝑡 ), setting ℎ←𝑡 B ℎ𝑇−𝑡 ,
we see that ℎ← satisfies the forward heat equation 𝜕𝑡ℎ←𝑡 = ℒℎ←𝑡 , which has the solution
ℎ←𝑡 = 𝑃0,𝑡ℎ

←
0 . Switching back to ℎ, we deduce that ℎ𝑡 = 𝑃0,𝑇−𝑡ℎ𝑇 .

Now that we have a formula for dP𝑡
dQ𝑡

, let us solve for the change of drift. On one
hand, we know that if 𝐵̃ = 𝐵 − [𝐵,𝑀] is a standard Brownian motion under P, where
𝑀 B

∫ ·
0 ⟨Δ, d𝐵⟩, then Girsanov’s theorem (Theorem 3.2.6) yields

d
(
ln dP𝑡

dQ𝑡
)
= ⟨Δ𝑡 , d𝐵𝑡 ⟩ −

1
2 ∥Δ𝑡 ∥

2 d𝑡 .

On the other hand, Itô’s formula and (3.3.2) yield

d
(
lnℎ𝑡 (𝑋𝑡 )

)
=

1
ℎ𝑡 (𝑋𝑡 )

dℎ𝑡 (𝑋𝑡 ) −
1

2ℎ𝑡 (𝑋𝑡 )2
d[ℎ·(𝑋 ), ℎ·(𝑋 )]𝑡

=
1

ℎ𝑡 (𝑋𝑡 )
⟨∇ℎ𝑡 (𝑋𝑡 ), 𝜎𝑡 (𝑋𝑡 ) d𝐵𝑡 ⟩ −

1
2ℎ𝑡 (𝑋𝑡 )2

∥𝜎𝑡 (𝑋𝑡 )T ∇ℎ𝑡 (𝑋𝑡 )∥2 d𝑡

and we quickly deduce that

Δ𝑡 = 𝜎𝑡 (𝑋𝑡 )T ∇ lnℎ𝑡 (𝑋𝑡 ) .

Finally, we have obtained

d𝑋𝑡 =
(
𝑏𝑡 (𝑋𝑡 ) + 𝜎𝑡 (𝑋𝑡 ) Δ𝑡

)
d𝑡 + 𝜎𝑡 (𝑋𝑡 ) d𝐵̃𝑡

=
(
𝑏𝑡 (𝑋𝑡 ) + 𝜎𝑡 (𝑋𝑡 ) 𝜎𝑡 (𝑋𝑡 )T ∇ lnℎ𝑡 (𝑋𝑡 )

)
d𝑡 + 𝜎𝑡 (𝑋𝑡 ) d𝐵̃𝑡 .

This is our expression for the SDE under P𝑇 . We recall that in the time-homogeneous case,
we actually have ℎ𝑡 = 𝑃0,𝑇−𝑡ℎ𝑇 .
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3.3.1 Conditioning on an Endpoint
As a first application, we will show how the Doob transform allows us to condition on
𝑋𝑇 = 𝑥𝑇 , for some fixed 𝑥𝑇 ∈ R𝑑 . To see what this means, let 𝑡 < 𝑇 and let 𝜂𝑡 be a bounded
ℱ𝑡 -measurable random variable; let us try to compute EQ [𝜂𝑡 | 𝑋𝑇 ]. By the definition of the
conditional expectation, we wish to compute EQ [𝜂𝑡 𝑓 (𝑋𝑇 )] for any bounded measurable
𝑓 : R𝑑 → R. Using the transition operator 𝑃𝑡,𝑇 (which, in an abuse of notation, we identify
with the transition kernel itself), and writing 𝜋𝑡 B lawQ(𝑋𝑡 ),

EQ [𝜂𝑡 𝑓 (𝑋𝑇 )] = EQ
[
𝜂𝑡 E

Q [𝑓 (𝑋𝑇 ) | 𝑋𝑡 ]
]
= EQ

[
𝜂𝑡

∫
𝑓 (𝑥𝑇 ) 𝑃𝑡,𝑇 (𝑋𝑡 , d𝑥𝑇 )

]
= EQ

[
𝜂𝑡

∫
𝑓 (𝑥𝑇 )

d𝑃𝑡,𝑇 (𝑋𝑡 , ·)
d𝜋𝑇

(𝑥𝑇 ) 𝜋𝑇 (d𝑥𝑇 )
]

=

∫
𝑓 (𝑥𝑇 ) EQ

[
𝜂𝑡

d𝑃𝑡,𝑇 (𝑋𝑡 , ·)
d𝜋𝑇

(𝑥𝑇 )
]
𝜋𝑇 (d𝑥𝑇 ) .

We conclude that if ℎ𝑥𝑇𝑡 (𝑥) B
d𝑃𝑡,𝑇 (𝑥,·)

d𝜋𝑇 (𝑥𝑇 ), then

EQ [𝜂𝑡 | 𝑋𝑇 = 𝑥𝑇 ] = EQ [𝜂𝑡 ℎ𝑥𝑇𝑡 (𝑋𝑡 )] .
Since this holds for every 𝜂𝑡 , it says that if P denotes the measure Q conditioned on
𝑋𝑇 = 𝑥𝑇 , then

dP𝑡
dQ𝑡

= ℎ
𝑥𝑇
𝑡 (𝑋𝑡 ) for all 0 ≤ 𝑡 < 𝑇 .

We are now in the setting of Doob’s transform. In particular, under P,

d𝑋𝑡 =
(
𝑏𝑡 (𝑋𝑡 ) + 𝜎𝑡 (𝑋𝑡 ) 𝜎𝑡 (𝑋𝑡 )T ∇ lnℎ𝑥𝑇𝑡 (𝑋𝑡 )

)
d𝑡 + 𝜎𝑡 (𝑋𝑡 ) d𝐵̃𝑡 , 0 ≤ 𝑡 < 𝑇 . (3.3.3)

Example 3.3.4 (Brownian bridge). Suppose that 𝐵 = 𝑋 is a standard Brownian
motion under Q. Then, 𝑃𝑠,𝑡 = normal(0, (𝑡 − 𝑠) 𝐼𝑑) and 𝜋𝑡 = 𝑃0,𝑡 . If we condition 𝐵 to
hit 𝑥𝑇 at time 𝑇 , then this process is known as a Brownian bridge.

We can calculate

ℎ
𝑥𝑇
𝑡 (𝑥) ∝ exp

(
−∥𝑥 − 𝑥𝑇 ∥

2

2 (𝑇 − 𝑡)

)
=⇒ ∇ lnℎ𝑥𝑇𝑡 (𝑥) = −

𝑥 − 𝑥𝑇
𝑇 − 𝑡 .

Hence, we arrive at the SDE representation for Brownian bridge,

d𝑋𝑡 =
𝑥𝑇 − 𝑋𝑡
𝑇 − 𝑡 d𝑡 + d𝐵̃𝑡 .
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Note that the drift is singular as 𝑡 ↗ 𝑇 . Of course, it must be, in order to drive the
process to hit a single point 𝑥𝑇 at time 𝑇 .

3.3.2 Reversing the SDE
Next, we describe how to construct the time reversal of the SDE (𝑋𝑡 )𝑡∈[0,𝑇 ] . Namely,
suppose that 𝜋𝑡 B law(𝑋𝑡 ) is the marginal law of 𝑋 at time 𝑡 . We will construct another
SDE 𝑋← such that law(𝑋←𝑡 ) = 𝜋𝑇−𝑡 for all 𝑡 ∈ [0,𝑇 ]. This construction will play an
important role in the study of the proximal sampler in Chapter 8.

Perhaps the most straightforward approach is to start with the Fokker–Planck equation
for 𝑋 . Let 𝑋 denote the general SDE (3.3.1), but for the sake of simplifying calculations
we shall assume that the diffusion matrix 𝜎𝑡 does not depend on the spatial variable, for
all 𝑡 ∈ [0,𝑇 ]. Then, we have the Fokker–Planck equation

𝜕𝑡𝜋𝑡 =
1
2 ⟨𝜎𝑡𝜎

T
𝑡 ,∇2𝜋𝑡 ⟩ − div(𝜋𝑡𝑏𝑡 ) .

Therefore, the time reversal 𝜋←𝑡 B 𝜋𝑇−𝑡 satisfies

𝜕𝑡𝜋
←
𝑡 = −1

2 ⟨𝜎𝑇−𝑡𝜎
T
𝑇−𝑡 ,∇

2𝜋←𝑡 ⟩ + div(𝜋←𝑡 𝑏𝑇−𝑡 ) .

Next, we note that

⟨𝜎𝑇−𝑡𝜎T
𝑇−𝑡 ,∇

2𝜋←𝑡 ⟩ = div(𝜎𝑇−𝑡𝜎T
𝑇−𝑡 ∇𝜋

←
𝑡 ) = div

(
𝜋←𝑡 (𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ∇ ln𝜋←𝑡 )
)

hence we can write

𝜕𝑡𝜋
←
𝑡 =

1
2 ⟨𝜎𝑇−𝑡𝜎

T
𝑇−𝑡 ,∇

2𝜋←𝑡 ⟩ + div
(
𝜋←𝑡 (𝑏𝑇−𝑡 − 𝜎𝑇−𝑡𝜎T

𝑇−𝑡∇ ln𝜋←𝑡 )
)
. (3.3.5)

We can therefore read off the SDE

d𝑋←𝑡 = {−𝑏𝑇−𝑡 (𝑋←𝑡 ) + 𝜎𝑇−𝑡𝜎T
𝑇−𝑡 ∇ ln𝜋←𝑡 (𝑋←𝑡 )} d𝑡 + 𝜎𝑇−𝑡 d𝐵𝑡 . (3.3.6)

If we initialize this SDE with 𝑋←0 ∼ 𝜋𝑇 , then 𝑋←𝑡 ∼ 𝜋←𝑡 = 𝜋𝑇−𝑡 for all 𝑡 ∈ [0,𝑇 ].
If we initialize this SDE at 𝑋←0 = 𝑥𝑇 , does it then follow that 𝑋←

𝑇
∼ 𝜋0|𝑇 (· | 𝑥𝑇 ), where

𝜋0|𝑇 denotes the conditional distribution of 𝑋0 given 𝑋𝑇 ? This would follow if we knew
that (𝑋←0 , 𝑋←

𝑇
) has the same joint distribution as (𝑋𝑇 , 𝑋0), but this is not clear from the

above derivation, which produced the process 𝑋← by matching only the marginal laws.
To see that this statement indeed holds, we will instead apply the conditioning argument
from the previous section.
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In the previous section, recalling that P is the measure Q conditioned on 𝑋𝑇 = 𝑥𝑇 , we
know that lawP(𝑋𝑡 ) = 𝜋𝑡 |𝑇 (· | 𝑥𝑇 ). Therefore, from (3.3.3) and writing 𝜋𝑡 |𝑇 B 𝜋𝑡 |𝑇 (· | 𝑥𝑇 )
to lighten the notation, we deduce that

𝜕𝑡𝜋𝑡 |𝑇 =
1
2 ⟨𝜎𝑡𝜎

T
𝑡 ,∇2𝜋𝑡 |𝑇 ⟩ − div

(
𝜋𝑡 |𝑇

(
𝑏𝑡 + 𝜎𝑡𝜎T

𝑡 ∇ ln
d𝑃𝑡,𝑇
d𝜋𝑇

) )
.

The time reversal 𝜋←
𝑡 |𝑇 B 𝜋𝑇−𝑡 |𝑇 satisfies

𝜕𝑡𝜋
←
𝑡 |𝑇 = −1

2 ⟨𝜎𝑇−𝑡𝜎
T
𝑇−𝑡 ,∇

2𝜋←
𝑡 |𝑇 ⟩ + div

(
𝜋←
𝑡 |𝑇

(
𝑏𝑇−𝑡 + 𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ∇ ln
d𝑃𝑇−𝑡,𝑇

d𝜋𝑇
) )
. (3.3.7)

As an application of the Bayes rule,

d𝑃𝑇−𝑡,𝑇 (𝑥, ·)
d𝜋𝑇

(𝑥𝑇 ) =
𝜋𝑇 |𝑇−𝑡 (𝑥𝑇 | 𝑥)

𝜋𝑇 (𝑥𝑇 )
=
𝜋𝑇−𝑡 |𝑇 (𝑥 | 𝑥𝑇 )
𝜋𝑇−𝑡 (𝑥)

and

∇ ln
𝜋𝑇−𝑡 |𝑇 (· | 𝑥𝑇 )

𝜋𝑇−𝑡
= ∇ ln𝜋←

𝑡 |𝑇 − ∇ ln𝜋←𝑡 .

Substituting this into (3.3.7) and applying the logarithmic derivative trick,

𝜕𝑡𝜋
←
𝑡 |𝑇 =

1
2 ⟨𝜎𝑇−𝑡𝜎

T
𝑇−𝑡 ,∇

2𝜋←
𝑡 |𝑇 ⟩ + div

(
𝜋←
𝑡 |𝑇 (𝑏𝑇−𝑡 − 𝜎𝑇−𝑡𝜎

T
𝑇−𝑡 ∇ ln𝜋←𝑡 )

)
. (3.3.8)

Observe that this is the same Fokker–Planck equation as (3.3.5), except that it is now
satisfied by 𝑡 ↦→ 𝜋←

𝑡 |𝑇 rather than 𝑡 ↦→ 𝜋←𝑡 . Therefore, the SDE corresponding to (3.3.8) is
the same SDE (3.3.6) above. Since 𝜋←0|𝑇 = 𝛿𝑥𝑇 , this confirms that initializing (3.3.6) with
𝑋←0 = 𝑥𝑇 yields 𝑋←𝑡 ∼ 𝜋←𝑡 |𝑇 for all 𝑡 ∈ [0,𝑇 ].

Note that the time reversal of the SDE depends on the initial distribution.

3.4 Föllmer Drift
As an application of the Doob transform, we now introduce a process attributed to [Föl85].
Under Q, let (𝑋𝑡 )𝑡∈[0,1] be a standard Brownian motion started at 0. Then, the law of 𝑋1 is
standard Gaussian, 𝛾 B normal(0, 𝐼𝑑). Next, we take P to be a path measure under which
𝑋1 ∼ 𝜇, for some other probability measure 𝜇 with 𝜇 ≪ 𝛾 .
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To achieve this, we can use the construction in Section 3.3, namely, we take dP1
dQ1

=

ℎ1(𝑋1) where ℎ1 =
d𝜇
d𝛾 . This yields ℎ𝑡 = 𝑃1−𝑡

d𝜇
d𝛾 , and

d𝑋𝑡 = ∇ ln 𝑃1−𝑡
d𝜇
d𝛾 (𝑋𝑡 ) d𝑡 + d𝐵̃𝑡 , 𝑋0 = 0 ,

where 𝐵̃ is the P-Brownian motion. This process is known as the Föllmer process, and
the added drift term is known as the Föllmer drift. The fundamental property enjoyed
by this process (or more specifically, by P) is that

KL(P ∥ Q) = EP ln d𝜇
d𝛾 (𝑋1) = E𝜇 ln d𝜇

d𝛾 = KL(𝜇 ∥ 𝛾) . (3.4.1)

On the other hand, if P̂ is any other path measure under which 𝑋1 ∼ 𝜇, then by the
data-processing inequality (Theorem 1.5.3) we have KL(P̂ ∥ Q) ≥ KL(𝜇 ∥ 𝛾). This reflects a
certain entropy optimality property for the Föllmer process. Moreover, if 𝐵̂ is a P̂-Brownian
motion and under P̂,

d𝑋𝑡 = 𝑏𝑡 (𝑋𝑡 ) d𝑡 + d𝐵̂𝑡 ,

then by Girsanov’s theorem (Theorem 3.2.6), this entropy optimality property becomes

KL(P ∥ Q) = 1
2 E

P
∫ 1

0



∇ ln 𝑃1−𝑡
d𝜇
d𝛾 (𝑋𝑡 )



2 d𝑡 ≤ 1
2 E

P̂
∫ 1

0
∥𝑏𝑡 (𝑋𝑡 )∥2 d𝑡 = KL(P̂ ∥ Q) .

(3.4.2)

We say that among all drifts that drive the process to satisfy 𝑋1 ∼ 𝜇, the Föllmer drift has
minimal “energy”.

Moreover, by the chain rule for the KL divergence,

KL(P ∥ Q) = KL(𝜇 ∥ 𝛾) +
∫

KL(P|𝑋1=𝑥 ∥ Q|𝑋1=𝑥 ) 𝜇 (d𝑥) ,

where P|𝑋1=𝑥 = lawP((𝑋𝑡 )0<𝑡<1 | 𝑋1 = 𝑥) and similarly for Q|𝑋1=𝑥 . The optimality prop-
erty (3.4.1) for the Föllmer process entails that the second term above vanishes, which
means that under P, the conditional law of the path given 𝑋1 = 𝑥 is the same as the
corresponding conditional law under Q. The latter corresponds to the Brownian bridge
(see Example 3.3.4).
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3.4.1 Application to Functional Inequalities
The use of the Föllmer drift as a potent tool for establishing functional inequalities was
perhaps pioneered by Lehec [Leh13], although he attributes the idea earlier, e.g., to
Borell [Bor00]. Here, we demonstrate its power to establish the Gaussian log-Sobolev and
T2 inequalities, and refer to [Leh13] and subsequent literature for further applications.

Transport inequality. Under P, we know that 𝑋1 ∼ 𝜇 and 𝐵̃1 ∼ 𝛾 . Hence,

𝑊 2
2 (𝜇,𝛾) ≤ EP [∥𝑋1 − 𝐵̃1∥2] = EP

[


∫ 1

0
∇ ln 𝑃1−𝑡

d𝜇
d𝛾 (𝑋𝑡 ) d𝑡




2]
≤ EP

∫ 1

0



∇ ln 𝑃1−𝑡
d𝜇
d𝛾 (𝑋𝑡 )



2 d𝑡 = 2 KL(𝜇 ∥ 𝛾) ,

where we used (3.4.1) and (3.4.2) in the last line.

Log-Sobolev inequality. Let ℎ𝑡 B 𝑃1−𝑡
d𝜇
d𝛾 and recall from the construction of the Doob

transform that (ℎ𝑡 (𝑋𝑡 ))𝑡∈[0,1] is a Q-martingale. We claim that (∇ lnℎ𝑡 (𝑋𝑡 ))𝑡∈[0,1] is a
P-martingale. To prove this, let 𝑠 ≤ 𝑡 and let 𝐴𝑠 ∈ ℱ𝑠 . Then,

EP𝑡 [∇ lnℎ𝑡 (𝑋𝑡 ) 1𝐴𝑠
] = EP𝑡

[∇ℎ𝑡 (𝑋𝑡 )
ℎ𝑡 (𝑋𝑡 )

1𝐴𝑠

]
= EQ𝑡 [∇ℎ𝑡 (𝑋𝑡 ) 1𝐴𝑠

] = EQ𝑡 [∇𝑃1−𝑡ℎ1(𝑋𝑡 ) 1𝐴𝑠
]

= EQ𝑡 [𝑃1−𝑡∇ℎ1(𝑋𝑡 ) 1𝐴𝑠
] = EQ𝑠

[
E[𝑃1−𝑡∇ℎ1(𝑋𝑡 ) | ℱ𝑠] 1𝐴𝑠

]
= EQ𝑠 [𝑃1−𝑠∇ℎ1(𝑋𝑠) 1𝐴𝑠

] .

Applying this equality for 𝑠 = 𝑡 yields EP𝑡 [∇ lnℎ𝑡 (𝑋𝑡 ) 1𝐴𝑠
] = EP𝑠 [∇ lnℎ𝑠 (𝑋𝑠) 1𝐴𝑠

], or

EP [∇ lnℎ𝑡 (𝑋𝑡 ) | ℱ𝑠] = ∇ lnℎ𝑠 (𝑋𝑠) .

In particular, 𝑡 ↦→ ∥∇ lnℎ𝑡 (𝑋𝑡 )∥2 is a P-submartingale.
Now, using the equality for the KL divergence and the submartingale property,

KL(𝜇 ∥ 𝛾) = 1
2 E

P
∫ 1

0



∇ ln 𝑃1−𝑡
d𝜇
d𝛾 (𝑋𝑡 )



2 d𝑡 ≤ 1
2 E

P [

∇ ln d𝜇
d𝛾 (𝑋1)



2]
=

1
2 FI(𝜇 ∥ 𝛾) .

3.4.2 Connection to Stochastic Localization
In this section, we relate the Föllmer process to Eldan’s stochastic localization scheme
(introduced in [Eld13]), which by now has solidified its status as a core tool in high-
dimensional probability. Although we do not have space in this book to describe its
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many applications, we present some basic ideas here to help the reader understand the
connections with the extant literature; see [KP21] for more details.

Stochastic localization is a method of understanding a probability measure 𝜇 by
decomposing it into simpler parts, with the goal of, e.g., establishing functional inequalities
or other useful properties for 𝜇. It was inspired by earlier work on deterministic localization
schemes [KLS95], but instead seeks to produce a random measure-valued process (𝑝𝑡 )𝑡≥0.
This process is such that 𝑝0 = 𝜇, 𝑝∞ = 𝛿𝑋 for some random variable 𝑋 , and (𝑝𝑡 )𝑡≥0 is a
martingale. The last property implies that 𝑋 ∼ 𝜇, and indeed, E𝑝𝑡 = 𝜇 for all 𝑡 ≥ 0. This is
the decomposition of 𝜇 into “simpler parts” as alluded to earlier.

How might we build such a process? We motivate the process via a Bayesian interpre-
tation. Consider the process 𝜃𝑡 B 𝑡𝑋 + 𝐵𝑡 , where as usual (𝐵𝑡 )𝑡≥0 is a Brownian motion,
independent of 𝑋 . At time 𝑡 ≈ 0, the Brownian motion dominates, so 𝜃𝑡 contains almost
no information about 𝑋 . At time 𝑡 → ∞, the linear term 𝑡𝑋 dominates and 𝜃𝑡 contains
nearly perfect information about 𝑋 . Therefore, if we set 𝑝𝑡 to be the conditional law of 𝑋
given the observation 𝜃𝑡 , then we expect 𝑝0 = 𝜇 and 𝑝∞ = 𝛿𝑋 . One can check that (𝑝𝑡 )𝑡≥0
is indeed a martingale.

We can relate this process to the usual heat flow via rescaling: let 𝜃𝑡 B 𝜃𝑡/𝑡 , so that
𝜃𝑡 = 𝑋 + 𝐵𝑡/𝑡 . The time inversion property of Brownian motion implies that (𝐵̆𝑡 )𝑡≥0 is
also a Brownian motion, where 𝐵̆1/𝑡 B 𝐵𝑡/𝑡 . Hence, 𝜃𝑡 = 𝑋 + 𝐵̆1/𝑡 is the output of the
heat flow, started at 𝑋 , after time 1/𝑡 (note the time inversion). If we let 𝜌0,𝑠 denote the
joint distribution of the heat flow, started at 𝜇, at times 0 and 𝑠 , and denote conditional
distributions accordingly, we can write 𝑝𝑡 = law(𝑋 | 𝜃𝑡 ) = 𝜌0|𝑡−1 (· | 𝜃𝑡/𝑡). Thus,

𝑝𝑡 (𝑥) ∝ 𝜇 (𝑥) exp
(
−𝑡 ∥𝑥 − 𝜃𝑡/𝑡 ∥

2

2

)
.

We now want to take logarithms in this expression and apply Itô’s formula to derive
a stochastic evolution equation. Before doing so, note that the equation 𝜃𝑡 = 𝑡𝑋 + 𝐵𝑡 ,
which seems to give d𝜃𝑡 = 𝑋 d𝑡 + d𝐵𝑡 , does not express 𝜃 as a Markov process (since 𝑋
is not adapted to the filtration at time 𝑡 < ∞). However, one can replace this equation
by the equivalent Markov evolution d𝜃𝑡 = E[𝑋 | ℱ𝑡 ] d𝑡 + d𝐵𝑡 = 𝑎𝑡 d𝑡 + d𝐵𝑡 , where we set
𝑎𝑡 B

∫
𝑥 𝑝𝑡 (d𝑥); see [KP21]. Then, a calculation starting from

d ln𝑝𝑡 (𝑥) = −d
(𝑡 ∥𝑥 − 𝜃𝑡/𝑡 ∥2

2

)
− d ln

∫
exp

(
−𝑡 ∥𝑦 − 𝜃𝑡/𝑡 ∥

2

2

)
𝜇 (d𝑦)

eventually yields (Exercise 3.2)

d𝑝𝑡 (𝑥) = 𝑝𝑡 (𝑥) ⟨𝑥 − 𝑎𝑡 , d𝐵𝑡 ⟩ , (3.4.3)
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which was the form in which stochastic localization was originally introduced.
To see the connection with the Föllmer process (𝐹𝑡 )𝑡∈[0,1] with 𝐹1 ∼ 𝜇, recall that

given 𝐹1, the law of (𝐹𝑡 )0<𝑡<1 is a Brownian bridge. In other words, 𝐹𝑡 = 𝑡𝐹1 + BB𝑡 , where
(BB𝑡 )𝑡∈[0,1] is the Brownian bridge process starting and ending at 0. We can identify 𝐹1 = 𝑋 ,
in which case this expression for 𝐹 nearly resembles the expression for the tilt process 𝜃
in stochastic localization. To make this precise, we claim that the Brownian bridge can
be constructed as BB𝑡 = (1 − 𝑡) 𝐵𝑡/(1−𝑡) . With this identification, then 𝐹𝑡 = (1 − 𝑡) 𝜃𝑡/(1−𝑡) ,
i.e., the Föllmer process is a rescaled time compression of the tilt process 𝜃 from R+ to the
interval [0, 1]; see Exercise 3.3 for details.

This discussion also shows that these concepts are related to the idea of running the
heat flow backward in time (e.g., we consider the conditional distribution 𝜌0|𝑡−1 above).
These ideas will reappear in Chapter 8 as the proximal sampler.

3.5 Schrödinger Bridge
In this section, we consider a generalization of the Föllmer process. The setup arises
from a hot gas Gedankenexperiment due to Schrödinger. Let 𝜇 and 𝜈 be two probability
measures over R𝑑 , representing the observed distribution of a cloud of particles at times
0 and 1 respectively. In the absence of the observation of 𝜈 , we may have modelled the
evolution of the gas particles as a scaled Brownian motion: 𝑋𝑡 = 𝑋0 +

√
𝜀 d𝐵𝑡 for 𝑡 ∈ [0, 1],

where 𝑋0 ∼ 𝜇 and (𝐵𝑡 )𝑡∈[0,1] are independent, and 𝜀 > 0 represents the noise level of the
process. However, if the observed distribution 𝜈 differs from the law 𝜇 ∗ normal(0, 𝜀𝐼𝑑) of
𝑋1 in our model, what then is our best guess for the law of the trajectory (𝑋𝑡 )𝑡∈[0,1]? The
law of the trajectory is said to bridge the distributions 𝜇0 and 𝜇1.

Schrödinger formulated this as a KL minimization problem:
minimize

P∈P(C([0,1]))
KL(P ∥W𝜇,𝜀) such that (𝑋0)#P = 𝜇 , (𝑋1)#P = 𝜈 .

Here, the minimization takes place over the set of path measures (probability measures
over C([0, 1])), and W𝜇,𝜀 denotes the path measure corresponding to Brownian motion,
rescaled by

√
𝜀 and started at 𝜇. The choice of KL divergence as our criterion can be

motivated by large deviations theory.
We can solve this problem as follows. If we condition on the endpoints 𝑋0 and 𝑋1 and

apply the KL chain rule, we end up with
KL(P ∥W𝜇,𝜀) = KL

(
lawP(𝑋0, 𝑋1)



 lawW𝜇,𝜀 (𝑋0, 𝑋1)
)
+ EP KL(P|𝑋0,𝑋1 ∥W𝜇,𝜀 |𝑋0,𝑋1) ,

where P|𝑋0,𝑋1 , W𝜇,𝜀 |𝑋0,𝑋1 denote the path measures P, W𝜇,𝜀 conditioned on (𝑋0, 𝑋1) respec-
tively. Also, W𝜇,𝜀 |𝑋0,𝑋1 is a Brownian bridge (rescaled by

√
𝜀), and the second term above

can be made zero by setting P|𝑋0,𝑋1 = W𝜇,𝜀 |𝑋0=𝑋1 .
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Thus far, the development has closely mirrored our discussion of the Föllmer process,
which is the special case of the Schrödinger bridge when 𝜇 = 𝛿0. The interesting new
features of this more general setting arise, however, when we consider minimizing the
first term in the KL chain rule, which is a minimization over joint distributions for (𝑋0, 𝑋1)
with 𝑋0 ∼ 𝜇 and 𝑋1 ∼ 𝜈 , i.e., a coupling of 𝜇 and 𝜈 . In the Föllmer case, this minimization
problem was trivial, essentially because the space of couplings of a Dirac measure 𝛿0
and any other measure 𝜈 is also trivial (consisting solely of 𝛿0 ⊗ 𝜈). Our goal now is to
understand this minimization problem when the space of couplings is non-trivial.

3.5.1 Entropically Regularized Optimal Transport
Our first step is to note that for 𝜂 B lawW𝜇,𝜀 (𝑋0, 𝑋1),

𝜂 (d𝑥, d𝑦) ∝ 𝜇 (d𝑥) exp
(
−∥𝑦 − 𝑥 ∥

2

2𝜀

)
d𝑦 .

Therefore, we can explicitly write, for 𝛾 B lawP(𝑋0, 𝑋1),

KL(𝛾 ∥ 𝜂) = 1
2𝜀

∫
∥𝑥 − 𝑦∥2 𝛾 (d𝑥, d𝑦) +

∫
ln 𝛾 (𝑥,𝑦)

𝜇 (𝑥) 𝛾 (d𝑥, d𝑦) + const.

=
1
2𝜀

∫
∥𝑥 − 𝑦∥2 𝛾 (d𝑥, d𝑦) + KL(𝛾 ∥ 𝜇 ⊗ 𝜈) + const.

where we used the fact that
∫

ln𝜈 (𝑦) 𝛾 (d𝑥, d𝑦) =
∫

ln𝜈 d𝜈 does not depend on 𝛾 , allowing
us to absorb it into the constant term. Hence, the problem of finding the optimal coupling
𝛾 between 𝜇 and 𝜈 for the Schrödinger bridge problem is an entropically regularized
variant of the optimal transport problem from Section 1.3. More generally, we have:

Definition 3.5.1. Let X and Y be complete separable metric spaces, let 𝜀 > 0, and
let 𝑐 : X × Y→ [0,∞] be a cost function. The entropically regularized optimal
transport cost from 𝜇 ∈ P(X) to 𝜈 ∈ P(Y) with cost 𝑐 is

T𝑐,𝜀 (𝜇, 𝜈) B inf
𝛾∈C(𝜇,𝜈)

[∫
𝑐 (𝑥,𝑦) 𝛾 (d𝑥, d𝑦) + 𝜀 KL(𝛾 ∥ 𝜇 ⊗ 𝜈)

]
.

Entropic optimal transport was introduced to speed up computation of optimal trans-
port costs in [Cut13]; see the bibliographical notes for further discussion. One can show
that if 𝑐 is lower semicontinuous, then there always exists a unique entropic optimal
transport plan. Note that unlike Theorem 1.3.8, which required 𝜇 to have a density in



3.5. SCHRÖDINGER BRIDGE 157

order for uniqueness of the optimal transport plan with quadratic cost, here uniqueness
always holds as a consequence of the strict convexity of the KL divergence.

To summarize our observations thus far, we have argued that the solution to the
Schrödinger bridge problem is to first draw (𝑋0, 𝑋1) from the entropic optimal transport
plan between 𝜇 and 𝜈 with cost 𝑐 (𝑥,𝑦) = 1

2 ∥𝑥 − 𝑦∥
2, and then to join 𝑋0 and 𝑋1 by a

Brownian bridge (rescaled by
√
𝜀). Although in principle this completes the description of

the Schrödinger bridge, we can go further by characterizing the entropic optimal transport
plan via a duality principle.

Duality works here similarly as Kantorovich duality did for unregularized optimal
transport, and we simply quote the main theorem here.

Theorem 3.5.2 (duality for entropic optimal transport). There exist maximizers 𝑓𝜀 , 𝑔𝜀
to the dual problem

sup
(𝑓 ,𝑔)∈𝐿1 (𝜇)×𝐿1 (𝜈)

{∫
𝑓 d𝜇 +

∫
𝑔 d𝜈 − 𝜀

∬
exp

( 𝑓 ⊕ 𝑔 − 𝑐
𝜀

)
d(𝜇 ⊗ 𝜈) + 𝜀

}
which are unique up to adding a constant to 𝑓𝜀 and subtracting that same constant from
𝑔𝜀 . The optimal value of the dual problem equals the entropic optimal transport cost
from 𝜇 to 𝛾 , and the entropic optimal transport plan 𝛾𝜀 is of the form

𝛾𝜀 (d𝑥, d𝑦) = exp
( 𝑓𝜀 (𝑥) + 𝑔𝜀 (𝑦) − 𝑐 (𝑥,𝑦)

𝜀

)
𝜇 (d𝑥) 𝜈 (d𝑦) . (3.5.3)

The expression (3.5.3) characterizes the optimal solution in the following sense. If 𝛾𝜀 is
any coupling of 𝜇 and 𝜈 of the form (3.5.3) for some 𝑓𝜀 , 𝑔𝜀 , then 𝛾𝜀 is the entropic optimal
transport plan, and (𝑓𝜀, 𝑔𝜀) is a pair of optimal dual potentials.

Note that compared to the dual problem for Kantorovich duality, we have replaced
the “hard” constraint of 𝑓 ⊕ 𝑔 ≤ 𝑐 with the “soft” constraint of adding the penalty term∬

exp((𝑓 ⊕ 𝑔 − 𝑐)/𝜀) d(𝜇 ⊗ 𝜈) into the objective.

Let us now specialize to the case of quadratic cost, 𝑐 (𝑥,𝑦) = 1
2 ∥𝑥 −𝑦∥

2. In this case, it
is natural to work with 𝜑𝜀 B 1

2 ∥·∥
2 − 𝑓𝜀 and𝜓𝜀 B 1

2 ∥·∥
2 − 𝑔𝜀 , since then (provided that

we fix a normalization for the potentials, e.g.,
∫
𝜑𝜀 d𝜇 =

∫
𝜓𝜀 d𝜈) we have the convergence

𝜑𝜀 → 𝜀 and𝜓𝜀 → 𝜓 of the entropic potentials to their unregularized counterparts as 𝜀 ↘ 0
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(see [NW22]). The condition that 𝛾𝜀 has marginals 𝜇 and 𝜈 yields the coupled equations

𝜑𝜀 (𝑥) = 𝜀 ln
∫

exp
( ⟨𝑥,𝑦⟩ −𝜓𝜀 (𝑦)

𝜀

)
𝜈 (d𝑦) ,

𝜓𝜀 (𝑦) = 𝜀 ln
∫

exp
( ⟨𝑥,𝑦⟩ − 𝜑𝜀 (𝑥)

𝜀

)
𝜇 (d𝑥) .

(3.5.4)

From these expressions, one can prove the following lemma (see Exercise 3.4).

Lemma 3.5.5. The following relations hold:

∇𝜑𝜀 (𝑥) = E𝛾𝜀 [𝑌 | 𝑋 = 𝑥] , ∇𝜓𝜀 (𝑦) = E𝛾𝜀 [𝑋 | 𝑌 = 𝑦] .

Also,

∇2𝜑𝜀 (𝑥) =
1
𝜀

cov𝛾𝜀 (𝑌 | 𝑋 = 𝑥) , ∇2𝜓𝜀 (𝑦) =
1
𝜀

cov𝛾𝜀 (𝑋 | 𝑌 = 𝑦) .

Since covariance matrices are always positive semidefinite, these expressions wit-
ness the convexity of 𝜑𝜀 and𝜓𝜀 , and provide another explanation for Brenier’s theorem
(Theorem 1.3.8).

3.5.2 Caffarelli’s Contraction Theorem
We now provide an application of the theory of entropic optimal transport to functional
inequalities. We will establish bounds on the Hessian of entropic potential which, as
𝜀 ↘ 0, furnish bounds on the Brenier potential for the unregularized optimal transport
problem. This will yield a proof of Caffarelli’s contraction theorem.

Theorem 3.5.6 ([CP23]). Suppose that 𝜇 is 𝛽-log-smooth and that 𝜈 is 𝛼-strongly
log-concave, i.e., ∇2 log(1/𝜇) ⪯ 𝛽𝐼𝑑 and ∇2 log(1/𝜈) ⪰ 𝛼𝐼𝑑 . Then, the entropic Brenier
potential 𝜑𝜀 from 𝜇 to 𝜈 satisfies

∇2𝜑𝜀 ⪯
1
2
(√︁

4𝛽/𝛼 + 𝜀2𝛽2 − 𝜀𝛽
)
𝐼 .

Letting 𝜀 ↘ 0, one readily obtains (see [CP23]):
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Corollary 3.5.7 (Caffarelli’s contraction theorem). Suppose that 𝜇 is 𝛽-log-smooth
and that 𝜈 is 𝛼-strongly log-concave, i.e., ∇2 log(1/𝜇) ⪯ 𝛽𝐼𝑑 and ∇2 log(1/𝜈) ⪰ 𝛼𝐼𝑑 .
Then, the Brenier map ∇𝜑 from 𝜇 to 𝜈 is

√︁
𝛽/𝛼-Lipschitz.

The proof of Theorem 3.5.6 will exploit the representation of the Hessians of the
entropic Brenier potentials as covariance matrices (Lemma 3.5.5), together with a pair of
covariance inequalities.

Theorem 3.5.8 (Cramér–Rao inequality). Let 𝜋 ∝ exp(−𝑉 ) be a probability measure
over R𝑑 . For any well-behaved function 𝑓 : R𝑑 → R, it holds that

var𝜋 𝑓 ≥ ⟨E𝜋 𝑓 , (E𝜋 ∇2𝑉 )−1 E𝜋 𝑓 ⟩ .

Proof. Integration by parts and E𝜋 ∇𝑉 = 0 yield

E𝜋 ∇𝑓 =

∫
∇𝑓 d𝜋 =

∫ (
𝑓 ∇ ln 1

𝜋

)
d𝜋 = E𝜋 [(𝑓 − E𝜋 𝑓 ) ∇𝑉 ] .

Therefore,

⟨E𝜋 ∇𝑓 , (E𝜋 ∇2𝑉 )−1 E𝜋 ∇𝑓 ⟩ = E𝜋
[
(𝑓 − E𝜋 𝑓 ) ⟨∇𝑉 , (E𝜋 ∇2𝑉 )−1 E𝜋 ∇𝑓 ⟩

]
≤
√︃
(var𝜋 𝑓 ) E𝜋

〈
E𝜋 ∇𝑓 , (E𝜋 ∇2𝑉 )−1 (∇𝑉 )⊗2 (E𝜋 ∇2𝑉 )−1 E𝜋 ∇𝑓

〉
.

Another integration by parts shows that E𝜋 [(∇𝑉 )⊗2] = E𝜋 ∇2𝑉 , so the result follows by
rearranging the above expression. □

Corollary 3.5.9 (covariance bounds). Let 𝜋 ∝ exp(−𝑉 ) be a probability measure over
R𝑑 and let cov𝜋 denote its covariance matrix. Then,

(E𝜋 ∇2𝑉 )−1 ⪯ cov𝜋 ⪯ E𝜋 [(∇2𝑉 )−1] .

Proof. The lower and upper bounds follow respectively from the Cramér–Rao inequality
(Theorem 3.5.8) and the Brascamp–Lieb inequality (Theorem 2.2.8) by taking test functions
𝑓 = ⟨𝑒, ·⟩ for unit vectors 𝑒 ∈ R𝑑 . □

Proof of Theorem 3.5.6. We write 𝜇 ∝ exp(−𝑉 ) and 𝜈 ∝ exp(−𝑊 ). For any 𝑥 ∈ R𝑑 ,
from Lemma 3.5.5 and the upper bound in Corollary 3.5.9, we obtain

∇2𝜑𝜀 (𝑥) = 𝜀−1 cov
𝛾
𝑌 |𝑋=𝑥
𝜀

⪯ 𝜀−1 E
𝛾
𝑌 |𝑋=𝑥
𝜀
[(𝜀−1 ∇2𝜓𝜀 + ∇2𝑊 )−1] ⪯ E

𝛾
𝑌 |𝑋=𝑥
𝜀
[(∇2𝜓𝜀 + 𝜀𝛼𝐼 )−1] .
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For any 𝑦 ∈ R𝑑 , from Lemma 3.5.5 and the lower bound in Corollary 3.5.9,

∇2𝜓𝜀 (𝑦) = 𝜀−1 cov
𝛾
𝑋 |𝑌=𝑦
𝜀

⪰ 𝜀−1 (E
𝛾
𝑋 |𝑌=𝑦
𝜀
[𝜀−1 ∇2𝜑𝜀 + ∇2𝑉 ]

)−1 ⪰
(
E
𝛾
𝑋 |𝑌=𝑦
𝜀
[∇2𝜑𝜀 + 𝜀𝛽𝐼 ]

)−1
.

Let 𝐿𝜀 B sup𝑥∈R𝑑 𝜆max(∇2𝜑𝜀 (𝑥)). From the two inequalities above, we can conclude that

𝜆max
(
∇2𝜑𝜀 (𝑥)

)
≤

(
(𝐿𝜀 + 𝜀𝛽)−1 + 𝜀𝛼

)−1

and hence

𝐿𝜀 ≤
(
(𝐿𝜀 + 𝜀𝛽)−1 + 𝜀𝛼

)−1
.

Solving the quadratic inequality yields the upper bound on 𝐿𝜀 in the theorem. □

As discussed in Section 2.3, if we apply Caffarelli’s contraction theorem taking 𝜇 as
the standard Gaussian measure (so 𝛽 = 1), we deduce that the optimal transport map
from the standard Gaussian to any 𝛼-strongly log-concave measure is 𝛼−1/2-Lipschitz.
Together with the preservation of functional inequalities under Lipschitz mappings (Propo-
sition 2.3.3), it allows us to transfer functional inequalities satisfied by the standard Gaus-
sian measure to all strongly log-concave measures. In this way, Caffarelli’s contraction
theorem is a “universal blueprint” for proving such inequalities. This point was already
made in Caffarelli’s original paper [Caf00].

For example, one can use it to transfer the functional inequalities established for the
standard Gaussian in Section 3.4 to strongly log-concave measures. As another example,
one can prove the Gaussian isoperimetric inequality in Theorem 2.5.27 by first establishing
it for Gaussians and appealing to Caffarelli contraction.

Bibliographical Notes
The discussion of quadratic variation and Girsanov’s theorem is heavily inspired by the
treatment in [Le 16].

The study of functions of bounded variation and the relationship with absolute con-
tinuity and total variation can be found in any standard graduate text on real analysis,
e.g., [Fol99]. See [Ste01, Proposition 8.6] for a simple case of Theorem 3.1.5.

The discussion of abstract Wiener spaces and the Cameron–Martin theorem is the
starting point of calculus on path space, which is usually called the Malliavin calculus.
To illustrate, suppose we have a functional 𝐹 (𝐵) of the Brownian path 𝐵, and we ask how
𝐹 (𝐵) changes under infinitesimal perturbations 𝐵 ↦→ 𝐵 + ℎ. The key point is that one
should restrict to directions ℎ which belong to the Cameron–Martin space, which leads to
the concept of the Malliavin derivative.
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Girsanov’s theorem is also used heavily in mathematical finance, and for this purpose
the book [Ste01] is warmly recommended.

See [CGP21] for an introduction to the Schrödinger bridge problem. [TODO: Literature
on entropic optimal transport.]

Exercises
Quadratic Variation

Change of Measure in Path Space

⊵ Exercise 3.1 (proof of Girsanov’s theorem)
Let 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 ≤ 𝑇 and 𝜃1, . . . , 𝜃𝑛 ∈ R𝑑 . Let 𝑏, 𝐵, and 𝐵̃ be as in Theo-
rem 3.2.6. Using the formula for the Radon–Nikodym derivative of P w.r.t. W, compute
EP exp(i∑𝑛

𝑖=1⟨𝜃𝑖, 𝐵̃𝑡𝑖 − 𝐵̃𝑡𝑖−1⟩) and deduce that 𝐵̃ is a P-Brownian motion.

Doob’s Transform

Föllmer Drift

⊵ Exercise 3.2 (derivation of stochastic localization)
Derive the evolution equation (3.4.3) for stochastic localization.

⊵ Exercise 3.3 (Föllmer and stochastic localization)
Let BB𝑡 B (1 − 𝑡) 𝐵𝑡/(1−𝑡) . By solving the SDE that we derived for Brownian bridge
in Example 3.3.4 (with 𝑥𝑇 = 0), show that BB is indeed a Brownian bridge. Then, verify
that 𝐹𝑡 = (1 − 𝑡) 𝜃𝑡/(1−𝑡) .

Schrödinger Bridge

⊵ Exercise 3.4 (entropic potentials)
Derive (3.5.4) and use it to prove Lemma 3.5.5 for the entropic potentials.
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Part II

Complexity of Sampling
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CHAPTER 4

Analysis of Langevin Monte Carlo

In this chapter, we will provide several analyses of the Langevin Monte Carlo (LMC)
algorithm, i.e., the iteration

𝑋(𝑘+1)ℎ B 𝑋𝑘ℎ − ℎ ∇𝑉 (𝑋𝑘ℎ) +
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ) . (LMC)

This is known as the Euler–Maruyama discretization of the Langevin diffusion.
Although LMC does not achieve state-of-the-art complexity bounds, it is one of the

most fundamental sampling algorithms. Through the quantitative convergence analysis
of LMC, we will develop techniques for discretization analysis that are broadly useful for
studying more complex algorithms.

To emphasize the kinship of optimization and sampling as the core theme of this
book, we include “optimization boxes” which provide background and context for the
corresponding results in optimization.

Before proceeding, we state the following fundamental lemma, which will be used
repeatedly in the arguments.

Lemma 4.E.1 (basic lemma). Let 𝜋 ∝ exp(−𝑉 ).

1. If ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0 and 𝑉 is minimized at 𝑥★, then E𝜋 [∥· − 𝑥★∥2] ≤ 𝑑/𝛼 .

2. If ∇2𝑉 ⪯ 𝛽𝐼𝑑 , then E𝜋 [∥∇𝑉 ∥2] ≤ 𝛽𝑑 .

165
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Proof. We use the fact that for the generator ℒ = Δ − ⟨∇𝑉 ,∇·⟩ of the Langevin diffusion,
E𝜋 ℒ𝑓 = 0 for all test functions 𝑓 : R𝑑 → R.

1. Take 𝑓 = 1
2 ∥· − 𝑥★∥

2. By strong convexity,

0 = E𝜋 ℒ𝑓 = 𝑑 − E𝜋 ⟨∇𝑉 , · − 𝑥★⟩ ≤ 𝑑 − 𝛼 E𝜋 [∥· − 𝑥★∥2] .

2. Take 𝑓 = 𝑉 . Since ∇2𝑉 ⪯ 𝛽𝐼𝑑 , then Δ𝑉 ≤ 𝛽𝑑 , whence

0 = E𝜋 ℒ𝑉 = E𝜋 [Δ𝑉 − ∥∇𝑉 ∥2] ≤ 𝛽𝑑 − E𝜋 [∥∇𝑉 ∥2] . □

4.1 Proof via Wasserstein Coupling
Perhaps the most straightforward analysis of LMC is based on coupling together the
discrete-time algorithm with the continuous-time diffusion, and using this coupling
to bound the discretization error in Wasserstein distance. The underlying continuous-
time result we use here is the fact that strong log-concavity implies contraction in the
Wasserstein metric for the Langevin diffusion. On one hand, this proof is robust and can
be applied to more complicated processes; on the other hand, its reliance on contractivity
means it is not applicable under weaker assumptions such as an LSI.

Before proceeding, we review the corresponding result for gradient descent.

Optimization Box 4.1.1. Let 𝑉 : R𝑑 → R be strongly convex and smooth, i.e.,
𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . The gradient descent (GD) algorithm with fixed step size ℎ > 0
is the iteration 𝑥𝑘+1 = 𝑥𝑘 − ℎ ∇𝑉 (𝑥𝑘). Using strong convexity, we can show that GD
converges exponentially fast to the minimizer 𝑥★ of𝑉 . First, note that for any 𝑦 ∈ R𝑑 ,
by expanding the square and applying strong convexity,

∥𝑥𝑘+1 − 𝑦∥2 = ∥𝑥𝑘 − ℎ ∇𝑉 (𝑥𝑘) − 𝑦∥2

= ∥𝑥𝑘 − 𝑦∥2 − 2ℎ ⟨∇𝑉 (𝑥𝑘), 𝑥𝑘 − 𝑦⟩ + ℎ2 ∥∇𝑉 (𝑥𝑘)∥2

≤ (1 − 𝛼ℎ) ∥𝑥𝑘 − 𝑦∥2 − 2ℎ {𝑉 (𝑥𝑘) −𝑉 (𝑦)} + ℎ2 ∥∇𝑉 (𝑥𝑘)∥2 .

Now take 𝑦 = 𝑥★. Using the smoothness of 𝑉 ,

𝑉 (𝑥𝑘+1) −𝑉 (𝑥𝑘) ≤ ⟨∇𝑉 (𝑥𝑘), 𝑥𝑘+1 − 𝑥𝑘⟩ +
𝛽

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥
2 = −ℎ

(
1 − 𝛽ℎ2

)
∥∇𝑉 (𝑥𝑘)∥2 .

For any ℎ ≤ 1/𝛽 , it yields ∥∇𝑉 (𝑥𝑘)∥2 ≤ 2
ℎ
{𝑉 (𝑥𝑘) −𝑉 (𝑥𝑘+1)} ≤ 2

ℎ
{𝑉 (𝑥𝑘) −𝑉 (𝑥★)}.
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Substituting this above, it yields ∥𝑥𝑘+1−𝑥★∥2 ≤ (1−𝛼ℎ) ∥𝑥𝑘−𝑥★∥2. Choosing ℎ = 1/𝛽 ,
one obtains ∥𝑥𝑁 − 𝑥★∥ ≤ 𝜀 in 𝑁 ≤ 𝑂 (𝜅 log(∥𝑥0 − 𝑥★∥/𝜀)) iterations.

We now consider the corresponding result for LMC.

Theorem 4.1.2. For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of the 𝑘-th iterate of LMC with step
size ℎ > 0. Assume that the target 𝜋 ∝ exp(−𝑉 ) satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then,
provided ℎ ≲ 1

𝛽𝜅
, for all 𝑁 ∈ N,

𝑊2(𝜇𝑁ℎ, 𝜋) ≤ exp
(
−𝛼𝑁ℎ2

)
𝑊2(𝜇0, 𝜋) +𝑂

(𝛽𝑑1/2ℎ1/2

𝛼

)
. (4.1.3)

In particular, if we initialize at 𝜇0 = 𝛿𝑥★, where 𝑥★ minimizes 𝑉 , and we take ℎ ≍ 𝜀2

𝛽𝜅𝑑
,

then for any 𝜀 ∈ [0,
√
𝑑] we obtain the guarantee

√
𝛼𝑊2(𝜇𝑁ℎ, 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝜅2𝑑

𝜀2 log 𝑑
𝜀2

)
iterations .

Remark 4.1.4. We pause to make a few comments about the assumptions and result.

1. Typically we assume that we have access to the mode 𝑥★ of 𝜋 , since the complexity
of finding the minimizer of 𝑉 via convex optimization is typically less than the
complexity of sampling.

2. It is convenient to use the metric
√
𝛼𝑊2 instead of𝑊2 because it is scale-invariant.

Namely, for 𝜆 > 0, if we define the scaling map 𝑠𝜆 : R𝑑 → R𝑑 via 𝑥 ↦→ 𝜆𝑥 , then
information divergences such as KL satisfy KL((𝑠𝜆)#𝜇 ∥ (𝑠𝜆)#𝜋) = KL(𝜇 ∥ 𝜋). On
the other hand,𝑊2 is not invariant,𝑊2((𝑠𝜆)#𝜇, (𝑠𝜆)#𝜋) = 𝜆𝑊2(𝜇, 𝜋), but

√
𝛼𝑊2 is

(because the distribution (𝑠𝜆)#𝜋 is 𝛼/𝜆2-strongly convex).
Recall also that the T2 transport inequality, implied by 𝛼-strong log-concavity,
asserts that

√
𝛼𝑊2(·, 𝜋) ≤

√︁
2 KL(· ∥ 𝜋). Therefore,

√
𝛼𝑊2 is a more natural metric.

3. The result in (4.1.3) is not sharp; in Section 4.3, via a more sophisticated analysis
and averaging, we will improve the iteration complexity to 𝑂 (𝑑𝜅/𝜀2).

4. The inequality (4.1.3) has the following interpretation: for fixed ℎ > 0, the first
term tends to zero exponentially fast, which reflects the fact that LMC converges
to its stationary distribution 𝜇∞. However, the stationary distribution is biased,
𝜇∞ ≠ 𝜋 , and the second term provides an upper bound on the bias𝑊2(𝜇∞, 𝜋). Note
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the contrast with Optimization Box 4.1.1, in which there is no bias; this will be
discussed further in Section 4.3.

First, let us see why the first statement of Theorem 4.1.2 implies the second. By
taking ℎ ≍ 𝜀2

𝛽𝜅𝑑
, we can make the second term in (4.1.3) at most 𝜀

2
√
𝛼

, and then for all
𝑁 ≳ 1

𝛼ℎ
log(
√
𝛼𝑊2(𝛿𝑥★, 𝜋)/𝜀) ≍ 𝑑𝜅2

𝜀2 log(
√
𝑑/𝜀) the first term is also at most 𝜀

2
√
𝛼

.
We now prove the first statement.

Proof of Theorem 4.1.2. 1. One-step discretization bound. Suppose that the continuous-
time Langevin diffusion and the LMC algorithm are both initialized at the same measure
𝜇0. We will first bound the discretization error𝑊 2

2 (𝜇ℎ, 𝜋ℎ) in one step.
We couple the two processes by taking 𝑋0 = 𝑍0 and using the same Brownian motion:

𝑋ℎ = 𝑍0 − ℎ ∇𝑉 (𝑍0) +
√

2𝐵ℎ ,

𝑍ℎ = 𝑍0 −
∫ ℎ

0
∇𝑉 (𝑍𝑡 ) d𝑡 +

√
2𝐵ℎ .

Then,

𝑊 2
2 (𝜇ℎ, 𝜋ℎ) ≤ E[∥𝑋ℎ − 𝑍ℎ∥2] ≤ E

[


∫ ℎ

0
∇𝑉 (𝑍𝑡 ) d𝑡 − ℎ ∇𝑉 (𝑍0)




2]
≤ ℎ

∫ ℎ

0
E[∥∇𝑉 (𝑍𝑡 ) − ∇𝑉 (𝑍0)∥2] d𝑡 .

Therefore, we just have to bound the movement ∥𝑍𝑡 − 𝑍0∥ = ∥−
∫ 𝑡

0 ∇𝑉 (𝑍𝑠) d𝑠 +
√

2𝐵𝑡 ∥
of the Langevin diffusion in time 𝑡 . Roughly, we expect ∥

∫ 𝑡
0 ∇𝑉 (𝑍𝑠) d𝑠 ∥ = 𝑂 (

√
𝑑 𝑡) if the

size of the gradient is 𝑂 (
√
𝑑), and ∥𝐵𝑡 ∥ = 𝑂 (

√
𝑑𝑡). For small 𝑡 , it is the Brownian motion

term which is dominant, which is a common intuition for discretization proofs.
To rigorously bound this term, we appeal to stochastic calculus, see Lemma 4.1.8. For

𝑡 ≤ 1
3𝛽 , it yields the bound

E[∥𝑍𝑡 − 𝑍0∥2] ≤ 8𝑡2 E[∥∇𝑉 (𝑍0)∥2] + 8𝑑𝑡

and hence

𝑊 2
2 (𝜇ℎ, 𝜋ℎ) ≤ 𝛽2ℎ

∫ ℎ

0
E[∥𝑍𝑡 − 𝑍0∥2] d𝑡 ≤ 3𝛽2ℎ4 E[∥∇𝑉 (𝑍0)∥2] + 4𝛽2𝑑ℎ3 .
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2. Multi-step discretization bound. We produce a coupling of 𝜇(𝑘+1)ℎ and 𝜋 as fol-
lows. First, let 𝑋𝑘ℎ ∼ 𝜇𝑘ℎ and 𝑍𝑘ℎ ∼ 𝜋 be optimally coupled. Using the same Brownian
motion, we set

𝑋(𝑘+1)ℎ B 𝑋𝑘ℎ − ℎ ∇𝑉 (𝑋𝑘ℎ) +
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ) ,

𝑍𝑡 B 𝑍𝑘ℎ −
∫ 𝑡

𝑘ℎ

∇𝑉 (𝑍𝑠) d𝑠 +
√

2 (𝐵𝑡 − 𝐵𝑘ℎ) , for 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] .

Clearly 𝑋(𝑘+1)ℎ ∼ 𝜇(𝑘+1)ℎ; also, since 𝜋 is stationary for the Langevin diffusion, then
𝑍 (𝑘+1)ℎ ∼ 𝜋 . We also introduce an auxiliary process: let

𝑋𝑡 B 𝑋𝑘ℎ −
∫ 𝑡

𝑘ℎ

∇𝑉 (𝑋𝑠) d𝑠 +
√

2 (𝐵𝑡 − 𝐵𝑘ℎ) for 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ]

denote the Langevin diffusion started at 𝑋𝑘ℎ . We bound

𝑊2(𝜇(𝑘+1)ℎ, 𝜋) ≤
√︃
E[∥𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ∥2]

≤
√︃
E[∥𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ∥2] +

√︃
E[∥𝑋(𝑘+1)ℎ − 𝑋(𝑘+1)ℎ∥2] .

Now we examine the two terms. In the first term, both𝑋 and𝑍 evolve via the Langevin
diffusion for an 𝛼-strongly convex potential, so we have the following contraction (which
is established by a direct coupling argument, see Theorem 1.4.10):

E[∥𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ∥2] ≤ exp(−2𝛼ℎ) E[∥𝑋𝑘ℎ − 𝑍𝑘ℎ∥2] = exp(−2𝛼ℎ)𝑊 2
2 (𝜇𝑘ℎ, 𝜋) .

For the second term, 𝑋 is the LMC algorithm and 𝑋 is the continuous-time Langevin
diffusion, both initialized at the same distribution 𝜇𝑘ℎ . Hence, we can apply our one-step
discretization bound from before and deduce that

E[∥𝑋(𝑘+1)ℎ − 𝑋(𝑘+1)ℎ∥2] ≤ 3𝛽2ℎ4 E[∥∇𝑉 (𝑋𝑘ℎ)∥2] + 4𝛽2𝑑ℎ3

≲ 𝛽4ℎ4 E[∥𝑋𝑘ℎ − 𝑍𝑘ℎ∥2] + 𝛽2ℎ4 E𝜋 [∥∇𝑉 ∥2] + 𝛽2𝑑ℎ3

≤ 𝛽4ℎ4𝑊 2
2 (𝜇𝑘ℎ, 𝜋) + 𝛽3𝑑ℎ4 + 𝛽2𝑑ℎ3 ,

where we used the basic lemma (Lemma 4.E.1). Note that the second term can be dropped
since we are assuming ℎ ≲ 1/𝛽 .

Combining everything and using √𝑥 + 𝑦 ≤
√
𝑥 + √𝑦 for 𝑥,𝑦 ≥ 0,

𝑊2(𝜇(𝑘+1)ℎ, 𝜋) ≤ exp(−𝛼ℎ)𝑊2(𝜇𝑘ℎ, 𝜋) +𝑂
(
𝛽2ℎ2𝑊2(𝜇𝑘ℎ, 𝜋) + 𝛽𝑑1/2ℎ3/2) .
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Provided ℎ ≲ 𝛼/𝛽2, we can ensure that exp(−𝛼ℎ) + 𝑂 (𝛽2ℎ2) ≤ exp(−𝛼ℎ/2), therefore
absorbing the extra Wasserstein error term. It yields

𝑊2(𝜇(𝑘+1)ℎ, 𝜋) ≤ exp
(
−𝛼ℎ2

)
𝑊2(𝜇𝑘ℎ, 𝜋) +𝑂 (𝛽𝑑1/2ℎ3/2) .

After iterating this recursion, it implies

𝑊2(𝜇𝑁ℎ, 𝜋) ≤ exp
(
−𝛼𝑁ℎ2

)
𝑊2(𝜇0, 𝜋) +𝑂

(𝛽𝑑1/2ℎ1/2

𝛼

)
.

This finishes the proof. □

Remark 4.1.5. By inspecting the proof, one can see that that the following stronger
inequality holds. Let us denote by 𝑃LMC the transition kernel for one step of LMC, and 𝑃
the transition kernel for the Langevin diffusion run for timeℎ. Then, under the assumptions
of Theorem 4.1.2, for any 𝑥,𝑦 ∈ R𝑑 ,

𝑊2
(
𝑃LMC(𝑥, ·), 𝑃 (𝑦, ·)

)
≤ exp(−𝛼ℎ) ∥𝑥 − 𝑦∥ +𝑂

(
𝛽ℎ2 ∥∇𝑉 (𝑦)∥ + 𝛽𝑑1/2ℎ3/2) . (4.1.6)

If we square this inequality and apply Young’s inequality, it implies

𝑊 2
2
(
𝑃LMC(𝑥, ·), 𝑃 (𝑦, ·)

)
≤ exp(−2𝛼ℎ) ∥𝑥 − 𝑦∥2 +𝑂

(
𝛽2ℎ4 ∥∇𝑉 (𝑦)∥2 + 𝛽2𝑑ℎ3)

+𝑂
(
∥𝑥 − 𝑦∥ (𝛽ℎ2 ∥∇𝑉 (𝑦)∥ + 𝛽𝑑1/2ℎ3/2)

)
≤ exp(−𝛼ℎ) ∥𝑥 − 𝑦∥2 +𝑂

(𝛽2ℎ3 ∥∇𝑉 (𝑦)∥2
𝛼

+ 𝛽
2𝑑ℎ2

𝛼

)
. (4.1.7)

Iterating either (4.1.6) or (4.1.7), together with a coupling argument, implies back the
guarantee of Theorem 4.1.2.

We finish by presenting the lemma we used in the proof of Theorem 4.1.2. The following
proof is very typical of stochastic calculus arguments, so it is worth internalizing.

Lemma 4.1.8. Let (𝑍𝑡 )𝑡≥0 denote the Langevin diffusion and let (𝜋𝑡 )𝑡≥0 denote its law.
Assume that ∇𝑉 is 𝛽-Lipschitz. Then, provided that 𝑡 ≤ 1

3𝛽 ,

E[∥𝑍𝑡 − 𝑍0∥2] ≤ 8𝑡2 E[∥∇𝑉 (𝑍0)∥2] + 8𝑑𝑡 .

Proof. By definition,

E[∥𝑍𝑡 − 𝑍0∥2] = E
[


−∫ 𝑡

0
∇𝑉 (𝑍𝑠) d𝑠 +

√
2𝐵𝑡




2]



4.2. PROOF VIA INTERPOLATION ARGUMENT 171

≤ 2𝑡
∫ 𝑡

0
E[∥∇𝑉 (𝑍𝑠)∥2] d𝑠 + 4E[∥𝐵𝑡 ∥2] .

Using the 𝛽-Lipschitzness of ∇𝑉 , ∥∇𝑉 (𝑍𝑠)∥ ≤ ∥∇𝑉 (𝑍0)∥ + 𝛽 ∥𝑍𝑠 − 𝑍0∥. Thus,

E[∥𝑍𝑡 − 𝑍0∥2] ≤ 4𝛽2𝑡

∫ 𝑡

0
E[∥𝑍𝑠 − 𝑍0∥2] d𝑠 + 4𝑡2 E[∥∇𝑉 (𝑍0)∥2] + 4𝑑𝑡 .

Applying Grönwall’s inequality (Lemma 1.1.21), it implies

E[∥𝑍𝑡 − 𝑍0∥2] ≤ {4𝑡2 E[∥∇𝑉 (𝑍0)∥2] + 4𝑑𝑡} exp(4𝛽2𝑡2) .

Finally, use the assumption 𝑡 ≤ 1
3𝛽 to conclude. □

4.2 Proof via Interpolation Argument
We now give a guarantee for LMC that holds even when 𝑉 is possibly non-convex.

Optimization Box 4.2.1. Suppose 𝑉 : R𝑑 → R is 𝛽-smooth but non-convex. Recall
from Optimization Box 4.1.1 that along the iterates of GD,

𝑉 (𝑥𝑘+1) −𝑉 (𝑥𝑘) ≤ −
ℎ

2 ∥∇𝑉 (𝑥𝑘)∥
2 ,

provided that ℎ ≤ 1/𝛽 (we only used smoothness to derive this inequality). This is
known as the descent lemma. We now combine this with an assumption that 𝑉
satisfies a Polyak–Łojasiewicz (PL) inequality

∥∇𝑉 (𝑥)∥2 ≥ 2𝛼 {𝑉 (𝑥) −𝑉 (𝑥★)} for all 𝑥 ∈ R𝑑 .

The PL inequality is implied by 𝛼-strong convexity (see Section 1.4.2), but it is weaker
and allows for non-convex 𝑉 . We then obtain

𝑉 (𝑥𝑘+1) −𝑉 (𝑥★) = 𝑉 (𝑥𝑘+1) −𝑉 (𝑥𝑘) +𝑉 (𝑥𝑘) −𝑉 (𝑥★)

≤ −ℎ2 ∥∇𝑉 (𝑥𝑘)∥
2 +𝑉 (𝑥𝑘) −𝑉 (𝑥★) ≤ (1 − 𝛼ℎ) {𝑉 (𝑥𝑘) −𝑉 (𝑥★)} .

Setting ℎ = 1/𝛽 , we can achieve𝑉 (𝑥𝑁 ) −𝑉 (𝑥★) ≤ 𝜀2 in𝑂 (𝜅 log((𝑉 (𝑥0) −𝑉 (𝑥★))/𝜀2))
iterations under PL and smoothness. Note that in this setting, convergence of the
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objective gap is the best we can hope for, since the PL inequality allows for multiple
global minimizers.

Recall from Section 1.4.2 that the sampling analogue of the PL inequality is the log-
Sobolev inequality (LSI), which naturally raises the question of whether the LSI is enough
to obtain sampling guarantees. The next proof we give is from [VW19] (slightly refined
using a lemma from [Che+21a]). Here, we mimic the continuous-time convergence proof
in KL divergence by first defining a continuous-time interpolation of the LMC iterates.
Upon differentiating the KL divergence along this interpolation, we discover two terms: the
first is the Fisher information, and the second is a discretization error term. By controlling
the latter, we prove a convergence result for LMC assuming only that 𝜋 satisfies LSI and
that ∇𝑉 is Lipschitz.

The interpolation of LMC is defined as follows: we set

𝑋𝑡 B 𝑋𝑘ℎ − (𝑡 − 𝑡−) ∇𝑉 (𝑋𝑡− ) +
√

2 (𝐵𝑡 − 𝐵𝑡− ) , (4.2.2)

where we have introduced the notation 𝑡− B ⌊𝑡/ℎ⌋ ℎ.

Proposition 4.2.3. Let (𝜇𝑡 )𝑡≥0 be the law of the interpolated process (4.2.2). Then,

𝜕𝑡𝜇𝑡 = div
[
𝜇𝑡

(
∇ ln 𝜇𝑡

𝜋
+ E[∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ) | 𝑋𝑡 = ·]

)]
.

The proof is a little tricky to write out formally.

Proof. Let 𝜇𝑡 |ℱ𝑡− denote the law of 𝑋𝑡 conditioned on the filtration ℱ𝑡− at time 𝑡−. Then,
(𝜇𝑡 |ℱ𝑡− )𝑡∈[𝑡−,𝑡−+ℎ] satisfies the Fokker–Planck equation

𝜕𝑡𝜇𝑡 |ℱ𝑡− = Δ𝜇𝑡 |ℱ𝑡− + div
(
𝜇𝑡 |ℱ𝑡− ∇𝑉 (𝑋𝑡− )

)
.

Next, we take the expectation of the above equation; since E 𝜇𝑡 |ℱ𝑡− = 𝜇𝑡 ,

𝜕𝑡𝜇𝑡 = Δ𝜇𝑡 + divE[𝜇𝑡 |ℱ𝑡− ∇𝑉 (𝑋𝑡− )] .

Write Pℱ𝑡− for the probability measure on ℱ𝑡− , and write Pℱ𝑡− |𝑡 to denote the conditional
measure given 𝑋𝑡 . Note that 𝜇𝑡 |ℱ𝑡− (𝑥 | 𝜔) Pℱ𝑡− (d𝜔) = 𝜇𝑡 (𝑥) Pℱ𝑡− |𝑡 (d𝜔 | 𝑥). So,

E[𝜇𝑡 |ℱ𝑡− (𝑥) ∇𝑉 (𝑋𝑡− )] =
∫

𝜇𝑡 |ℱ𝑡− (𝑥 | 𝜔) ∇𝑉
(
𝑋𝑡− (𝜔)

)
Pℱ𝑡− (d𝜔)

= 𝜇𝑡 (𝑥)
∫
Pℱ𝑡− |𝑡 (d𝜔 | 𝑥) ∇𝑉

(
𝑋𝑡− (𝜔)

)
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= 𝜇𝑡 (𝑥) E[∇𝑉 (𝑋𝑡− ) | 𝑋𝑡 = 𝑥] .

Therefore,

𝜕𝑡𝜇𝑡 = Δ𝜇𝑡 + div
(
𝜇𝑡 E[∇𝑉 (𝑋𝑡− ) | 𝑋𝑡 = ·]

)
= div

(
𝜇𝑡 ∇ ln 𝜇𝑡

𝜋

)
+ div

(
𝜇𝑡 E[∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ) | 𝑋𝑡 = ·]

)
. □

Corollary 4.2.4. Along the law (𝜇𝑡 )𝑡≥0 of the interpolated process (4.2.2),

𝜕𝑡 KL(𝜇𝑡 ∥ 𝜋) ≤ −
3
4 FI(𝜇𝑡 ∥ 𝜋) + E[∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− )∥2] .

Recall that the Fisher information is FI(𝜇 ∥ 𝜋) B E𝜇 [∥∇ ln(𝜇/𝜋)∥2] if 𝜇 has a smooth
density with respect to 𝜋 .

Proof. Using Proposition 4.2.3,

𝜕𝑡 KL(𝜇𝑡 ∥ 𝜋) = −E𝜇𝑡
〈
∇ ln 𝜇𝑡

𝜋
, ∇ ln 𝜇𝑡

𝜋
+ E[∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ) | 𝑋𝑡 = ·]

〉
= − FI(𝜇𝑡 ∥ 𝜋) + E𝜇𝑡

〈
∇ ln 𝜇𝑡

𝜋
, E[∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− ) | 𝑋𝑡 = ·]

〉
.

Using Young’s inequality,

E𝜇𝑡

〈
∇ ln 𝜇𝑡

𝜋
, E[∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− ) | 𝑋𝑡 = ·]

〉
≤ 1

4 FI(𝜇𝑡 ∥ 𝜋) + E
[
∥E[∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− ) | 𝑋𝑡 ] ∥2

]
≤ 1

4 FI(𝜇𝑡 ∥ 𝜋) + E[∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− )∥2] . □

Before we give the convergence proof for LMC, we need one more lemma. Recall that
for Theorem 4.1.2, we needed to control E[∥𝑋𝑘ℎ∥2], which we accomplished via strong
convexity of 𝑉 (??). Under the weaker assumption of an LSI, it is trickier to control the
moments of the LMC iterates, but we have the following magic lemma.

Lemma 4.2.5 ([Che+21a, Lemma 16]). Suppose that 𝜋 ∝ exp(−𝑉 ) where ∇𝑉 is 𝛽-
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Lipschitz. Then, for any probability measure 𝜇,

E𝜇 [∥∇𝑉 ∥2] ≤ FI(𝜇 ∥ 𝜋) + 2𝛽𝑑 .

Proof. For the generator ℒ of the Langevin diffusion (with potential 𝑉 ), we can calculate
ℒ𝑉 = Δ𝑉 − ∥∇𝑉 ∥2. Also, since ∇2𝑉 ⪯ 𝛽𝐼𝑑 , then Δ𝑉 ≤ 𝛽𝑑 . Thus, using the fundamental
integration by parts identity (Theorem 1.2.14),

E𝜇 [∥∇𝑉 ∥2] = E𝜇 [Δ𝑉 −ℒ𝑉 ] ≤ 𝛽𝑑 +
∫
(−ℒ𝑉 ) d𝜇

d𝜋 d𝜋 = 𝛽𝑑 +
∫ 〈
∇𝑉 ,∇ d𝜇

d𝜋
〉

d𝜋

= 𝛽𝑑 +
∫ 〈
∇𝑉 ,∇ ln d𝜇

d𝜋
〉

d𝜇

≤ 𝛽𝑑 + 1
2 E𝜇 [∥∇𝑉 ∥

2] + 1
2 FI(𝜇 ∥ 𝜋) .

Rearranging the inequality yields the result. □

Also, recall that an LSI implies KL(· ∥ 𝜋) ≤ 𝐶LSI
2 FI(· ∥ 𝜋).

Theorem 4.2.6 ([VW19]). For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of the 𝑘-th iterate of LMC
with step size ℎ > 0. Assume that the target 𝜋 ∝ exp(−𝑉 ) satisfies LSI and that ∇𝑉 is
𝛽-Lipschitz. Then, for all ℎ ≤ 1

4𝛽 , for all 𝑁 ∈ N,

KL(𝜇𝑁ℎ ∥ 𝜋) ≤ exp
(
− 𝑁ℎ
𝐶LSI

)
KL(𝜇0 ∥ 𝜋) +𝑂 (𝐶LSI𝛽

2𝑑ℎ + 𝛽2𝑑ℎ2) .

In particular, for all 𝜀 ∈ [0,𝐶LSI𝛽
√
𝑑], if we takeℎ ≍ 𝜀2

𝐶LSI𝛽
2𝑑 , then we obtain the guarantee√︁

KL(𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝐶2
LSI𝛽

2𝑑

𝜀2 log KL(𝜇0 ∥ 𝜋)
𝜀

)
iterations .

Proof. In light of Corollary 4.2.4, we focus our attention on the discretization error term

E[∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− )∥2] ≤ 𝛽2 E[∥𝑋𝑡 − 𝑋𝑡− ∥2]
= 𝛽2 (𝑡 − 𝑡−)2 E[∥∇𝑉 (𝑋𝑡− )∥2] + 2𝛽2 E[∥𝐵𝑡 − 𝐵𝑡− ∥2] .

In order to apply Lemma 4.2.5, it is more convenient to have E[∥∇𝑉 (𝑋𝑡 )∥2] instead of
E[∥∇𝑉 (𝑋𝑡− )∥2]. So, we use

E[∥∇𝑉 (𝑋𝑡− )∥2] ≤ 2E[∥∇𝑉 (𝑋𝑡 )∥2] + 2E[∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− )∥2] .
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If ℎ ≤ 1
2𝛽 , we can combine this inequality with the previous one and rearrange to obtain

E[∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− )∥2] ≤ 4𝛽2 (𝑡 − 𝑡−)2 E[∥∇𝑉 (𝑋𝑡 )∥2] + 4𝛽2 E[∥𝐵𝑡 − 𝐵𝑡− ∥2]
≤ 4𝛽2 (𝑡 − 𝑡−)2 E[∥∇𝑉 (𝑋𝑡 )∥2] + 4𝛽2𝑑 (𝑡 − 𝑡−) .

For the first term, we apply Lemma 4.2.5, yielding for ℎ ≤ 1
4𝛽

4𝛽2 (𝑡 − 𝑡−)2 E[∥∇𝑉 (𝑋𝑡 )∥2] ≤ 4𝛽2ℎ2 FI(𝜇𝑡 ∥ 𝜋) + 8𝛽3𝑑 (𝑡 − 𝑡−)2

≤ 1
4 FI(𝜇𝑡 ∥ 𝜋) + 2𝛽2𝑑 (𝑡 − 𝑡−) .

Combining with our differential inequality from Corollary 4.2.4 and LSI,

𝜕𝑡 KL(𝜇𝑡 ∥ 𝜋) ≤ −
1
2 FI(𝜇𝑡 ∥ 𝜋) + 6𝛽2𝑑 (𝑡 − 𝑡−) ≤ −

1
𝐶LSI

KL(𝜇𝑡 ∥ 𝜋) + 6𝛽2𝑑 (𝑡 − 𝑡−) .

This implies that

𝜕𝑡

[
exp

(𝑡 − 𝑡−
𝐶LSI

)
KL(𝜇𝑡 ∥ 𝜋)

]
≤ 6𝛽2𝑑 (𝑡 − 𝑡−) exp

(𝑡 − 𝑡−
𝐶LSI

)
and upon integration,

KL(𝜇(𝑘+1)ℎ ∥ 𝜋) ≤ exp
(
− ℎ

𝐶LSI

)
KL(𝜇𝑘ℎ ∥ 𝜋) + 3𝛽2𝑑ℎ2 .

Iterating and splitting into cases based on whether or not ℎ ≤ 𝐶LSI,

KL(𝜇𝑁ℎ ∥ 𝜋) ≤ exp
(
− 𝑁ℎ
𝐶LSI

)
KL(𝜇0 ∥ 𝜋) +𝑂 (max{𝐶LSI𝛽

2𝑑ℎ, 𝛽2𝑑ℎ2}) . □

Recall from Theorem 2.2.15 that an LSI implies exponential decay in every Rényi
divergence, not just the KL divergence. Working with Rényi divergences of order 𝑞 > 1
introduces substantial new difficulties for the discretization analysis, which is why it is
remarkable that the proof above can be adapted to the Rényi case with the introduction
of some additional tricks; see Chapter 6.

4.3 Proof via Convex Optimization
Next, we turn towards an astonishing proof, due to [DMM19], which is inspired by
convex optimization. This proof also yields the state-of-the-art dependence of LMC on
the condition number 𝜅 of the target 𝜋 .
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Let the target be 𝜋 = exp(−𝑉 ) (for this proof, we are assuming that 𝑉 is normalized
so that

∫
exp(−𝑉 ) = 1; this just simplifies the notation but does not change the algorithm

nor the analysis). We now view sampling as the composite optimization problem of
minimizing the objective

KL(𝜇 ∥ 𝜋) B
∫

𝑉 d𝜇︸   ︷︷   ︸
CE(𝜇)

+
∫

𝜇 ln 𝜇︸    ︷︷    ︸
CH(𝜇)

,

where the two terms are the energy and the (negative) entropy. Accordingly, we break up
the iterates of LMC into the steps

𝑋 +
𝑘ℎ
B 𝑋𝑘ℎ − ℎ ∇𝑉 (𝑋𝑘ℎ) ,

𝑋(𝑘+1)ℎ B 𝑋 +
𝑘ℎ
+
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ) .

The first step is simply a deterministic gradient descent update on the function 𝑉 . If
we write 𝜇+

𝑘ℎ
for the law of 𝑋 +

𝑘ℎ
, then in the space of measures one can show that 𝜇+

𝑘ℎ

is obtained from 𝜇𝑘ℎ by taking a gradient step for the energy functional E w.r.t. the
Wasserstein geometry.1 On the other hand, the second step applies the heat flow; in
the space of measures, this is a Wasserstein gradient flow for the entropy functional H.
Since the gradient descent algorithm is sometimes known as the “forward” method in
optimization (as opposed to a proximal step which is the “backward” method), this has
led to LMC being dubbed the “forward–flow” algorithm.

We refer to [Wib18] for more on this perspective. In particular, it suggests why the
LMC scheme is biased: the “forward-flow” discretization scheme is biased for optimization
as well! Generally speaking, when we split dynamics into its constituent parts and apply
a discretization method to each part, this is known as a splitting scheme, and it is the
cornerstone of numerical integration. Not all splitting schemes are born equal, however—
as we have seen, it requires care to design one that is asymptotically unbiased. Recall
from Exercise 1.19 that E is smooth if 𝑉 is smooth, but H is non-smooth. Wisdom from
optimization theory tells us that the appropriate scheme to use here is the “forward–
backward” or “proximal gradient” method, but unfortunately the “backward” step for the
entropy cannot be easily implemented.

This can be viewed as the blessing and curse of sampling. It is a blessing because for
the non-smooth term in sampling—namely, the entropy H—although we can implement

1Technically this is only true if the step size ℎ is chosen so that ℎ ∥∇2𝑉 ∥op ≤ 1. This is because on any
Riemannian manifold in which geodesics cannot be extended indefinitely, the gradient descent steps must
be short enough to ensure that the iterates are still travelling along geodesics.
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neither the forward nor the backward discretizations, we can implement the exact gradient
flow, by sampling a Gaussian, and the gradient flow thankfully succeeds even in the
presence of non-smoothness. On the other hand, it is a curse because the “mismatch” of
the forward and flow operations as a splitting scheme leads to asymptotic bias. We will
revisit this issue of bias in Chapter 8 via the proximal sampler.

Nevertheless, we will leverage this splitting perspective to provide another analysis
of LMC. The strategy of the proof is to show that the forward step of LMC dissipates
the energy while not increasing the entropy too much, and that the flow step of LMC
dissipates the entropy while not increasing the energy too much.

Optimization Box 4.3.1. Let 𝑉 : R𝑑 → R satisfy 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 , and recall
from Optimization Box 4.1.1 that along GD,

∥𝑥𝑘+1 − 𝑦∥2 ≤ (1 − 𝛼ℎ) ∥𝑥𝑘 − 𝑦∥2 − 2ℎ {𝑉 (𝑥𝑘) −𝑉 (𝑦)} + ℎ2 ∥∇𝑉 (𝑥𝑘)∥2 . (4.3.2)

Applying the descent lemma ∥∇𝑉 (𝑥𝑘)∥2 ≤ 2
ℎ
{𝑉 (𝑥𝑘) −𝑉 (𝑥𝑘+1)} for ℎ ≤ 1/𝛽 ,

∥𝑥𝑘+1 − 𝑦∥2 ≤ (1 − 𝛼ℎ) ∥𝑥𝑘 − 𝑦∥2 − 2ℎ {𝑉 (𝑥𝑘+1) −𝑉 (𝑦)} . (4.3.3)

Inspired by [AGS08], we refer to this as an evolution variational inequality (EVI).
It is quite a flexible tool for optimization. For example, we can set 𝑦 = 𝑥★, and if 𝛼 > 0,
use the fact that𝑉 (𝑥𝑘) −𝑉 (𝑥★) ≥ 0 to conclude that ∥𝑥𝑘+1−𝑥★∥2 ≤ (1−𝛼ℎ) ∥𝑥𝑘 −𝑦∥2,
recovering Optimization Box 4.1.1. However, even when 𝛼 = 0, we can set 𝑦 = 𝑥★,
ℎ = 1/𝛽 , and telescope this inequality to conclude that

𝑉 (𝑥𝑁 ) −𝑉 (𝑥★) ≤
1
𝑁

𝑁−1∑︁
𝑘=0
{𝑉 (𝑥𝑘+1) −𝑉 (𝑥★)} ≤

𝛽 ∥𝑥0 − 𝑥★∥2
2𝑁 ,

where the first inequality follows from the descent lemma.

In analogy, we aim to prove the following key lemma.

Lemma 4.3.4. Let 𝜋 = exp(−𝑉 ) be the target and assume that 0 ⪯ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 .
Let (𝜇𝑘ℎ)𝑘∈N denote the iterates of LMC with step size ℎ ∈ [0, 1

𝛽
]. Then,

2ℎ KL(𝜇(𝑘+1)ℎ ∥ 𝜋) ≤ (1 − 𝛼ℎ)𝑊 2
2 (𝜇𝑘ℎ, 𝜋) −𝑊 2

2 (𝜇(𝑘+1)ℎ, 𝜋) + 2𝛽𝑑ℎ2 . (4.3.5)

From this, we deduce the following results.
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Theorem 4.3.6 ([DMM19]). Suppose that 𝜋 = exp(−𝑉 ) is the target distribution and
that 𝑉 satisfies 0 ⪯ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Let (𝜇𝑘ℎ)𝑘∈N denote the law of LMC.

1. (weakly convex case) Suppose that 𝛼 = 0. For any 𝜀 ∈ [0,
√
𝑑], if we take step

size ℎ ≍ 𝜀2

𝛽𝑑
, then for the mixture distribution 𝜇𝑁ℎ B 𝑁 −1 ∑𝑁

𝑘=1 𝜇𝑘ℎ it holds that√︁
KL(𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝛽𝑑𝑊 2
2 (𝜇0, 𝜋)
𝜀4

)
iterations .

2. (strongly convex case) Suppose that 𝛼 > 0 and let 𝜅 B 𝛽/𝛼 denote the con-
dition number. Then, for any 𝜀 ∈ [0,

√
𝑑], with step size ℎ ≍ 𝜀2

𝛽𝑑
we obtain

√
𝛼𝑊2(𝜇𝑁ℎ, 𝜋) ≤ 𝜀 and

√︁
KL(𝜇𝑁ℎ,2𝑁ℎ ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝜅𝑑
𝜀2 log

√
𝛼𝑊2(𝜇0, 𝜋)

𝜀

)
iterations ,

where 𝜇𝑁ℎ,2𝑁ℎ B 𝑁 −1 ∑2𝑁
𝑘=𝑁+1 𝜇𝑘ℎ .

Proof. We use Lemma 4.3.4.

1. By summing the inequality (4.3.5) and using the convexity of the KL divergence,

KL(𝜇𝑁ℎ ∥ 𝜋) ≤
1
𝑁

𝑁∑︁
𝑘=1

KL(𝜇𝑘ℎ ∥ 𝜋) ≤
𝑊 2

2 (𝜇0, 𝜋)
2𝑁ℎ + 𝛽𝑑ℎ .

The result follows from our choice of ℎ and 𝑁 .

2. First, we prove the 𝑊2 guarantee. Using the fact that KL(𝜇(𝑘+1)ℎ ∥ 𝜋) ≥ 0 and
iterating the inequality (4.3.5) we obtain

𝑊 2
2 (𝜇𝑁ℎ, 𝜋) ≤ (1 − 𝛼ℎ)𝑁𝑊 2

2 (𝜇0, 𝜋) + 2𝛽𝑑ℎ2
𝑁−1∑︁
𝑘=0
(1 − 𝛼ℎ)𝑘

≤ exp(−𝛼𝑁ℎ)𝑊 2
2 (𝜇0, 𝜋) +𝑂 (𝜅𝑑ℎ) .

With our choice of ℎ and 𝑁 , we obtain
√
𝛼𝑊2(𝜇𝑁ℎ, 𝜋) ≤ 𝜀.

Next, forget about the previous 𝑁 iterations of LMC and consider 𝜇𝑁ℎ to be the
new initialization to LMC. Applying the weakly convex result now yields the KL
guarantee

√︁
KL(𝜇𝑁ℎ,2𝑁ℎ ∥ 𝜋) ≤ 𝜀. □
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We next turn towards the proof of Lemma 4.3.4.

Proof of Lemma 4.3.4. We break the proof into three steps.
1. The forward step dissipates the energy. Let 𝑍 ∼ 𝜋 be optimally coupled to 𝑋𝑘ℎ .

Then, E(𝜇+
𝑘ℎ
) − E(𝜋) = E[𝑉 (𝑋 +

𝑘ℎ
) −𝑉 (𝑍 )]. However, since 𝑋 +

𝑘ℎ
is obtained from 𝑋𝑘ℎ via a

gradient descent step on 𝑉 , we can apply the EVI (4.3.3) to argue that

E(𝜇+
𝑘ℎ
) − E(𝜋) ≤ 1

2ℎ E[(1 − 𝛼ℎ) ∥𝑋𝑘ℎ − 𝑍 ∥
2 − ∥𝑋 +

𝑘ℎ
− 𝑍 ∥2]

≤ 1
2ℎ {(1 − 𝛼ℎ)𝑊

2
2 (𝜇𝑘ℎ, 𝜋) −𝑊 2

2 (𝜇+𝑘ℎ, 𝜋)} . (4.3.7)

2. The flow step does not substantially increase the energy. Next, using the 𝛽-
smoothness of 𝑉 ,

E(𝜇(𝑘+1)ℎ) − E(𝜇+𝑘ℎ) = E[𝑉 (𝑋(𝑘+1)ℎ) −𝑉 (𝑋
+
𝑘ℎ
)]

≤ E
[
⟨∇𝑉 (𝑋 +

𝑘ℎ
), 𝑋(𝑘+1)ℎ − 𝑋 +𝑘ℎ⟩ +

𝛽

2 ∥𝑋(𝑘+1) − 𝑋
+
𝑘ℎ
∥2
]

= E[
√

2 ⟨∇𝑉 (𝑋 +
𝑘ℎ
), 𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ⟩ + 𝛽 ∥𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ∥2]

= 𝛽𝑑ℎ . (4.3.8)

3. The flow step dissipates the entropy. Let (𝑄𝑡 )𝑡≥0 denote the heat semigroup,
i.e., 𝑄𝑡 𝑓 (𝑥) B E 𝑓 (𝑥 +

√
2𝐵𝑡 ), so that 𝜇(𝑘+1)ℎ = 𝜇+

𝑘ℎ
𝑄ℎ . Then, since the heat flow is the

Wasserstein gradient flow of H, and the Wasserstein gradient of H is ∇𝑊2H(𝜇) = ∇ ln 𝜇,
one can show that

𝜕𝑡𝑊
2

2 (𝜇+𝑘ℎ𝑄𝑡 , 𝜋) ≤ 2E⟨∇ ln 𝜇 (𝑋 +
𝑘ℎ+𝑡 ), 𝑍 − 𝑋

+
𝑘ℎ+𝑡 ⟩

where 𝑋 +
𝑘ℎ+𝑡 ∼ 𝜇

+
𝑘ℎ
𝑄𝑡 and 𝑍 ∼ 𝜋 are optimally coupled. This follows from the formula

for the gradient of the squared Wasserstein distance (Theorem 1.4.11); it may be justified
more rigorously using, e.g., [AGS08, Theorem 10.2.2].

On the other hand, we showed that H is geodesically convex (see (1.4.3)), so

H(𝜋) −H(𝜇+
𝑘ℎ
𝑄𝑡 ) ≥ E⟨∇ ln 𝜇 (𝑋 +

𝑘ℎ+𝑡 ), 𝑍 − 𝑋
+
𝑘ℎ+𝑡 ⟩ .

Using the fact that 𝑡 ↦→ H(𝜇+
𝑘ℎ
𝑄𝑡 ) is decreasing (which also follows because 𝑡 ↦→ 𝜇+

𝑘ℎ
𝑄𝑡 is

the gradient flow of H), we then have

𝑊 2
2 (𝜇(𝑘+1)ℎ, 𝜋) −𝑊 2

2 (𝜇+𝑘ℎ, 𝜋) ≤ 2ℎ {H(𝜋) −H(𝜇(𝑘+1)ℎ)} . (4.3.9)

Concluding the proof. Combine (4.3.7), (4.3.8), and (4.3.9) to obtain (4.3.5). □
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Non-smooth case. The proof via convex optimization can also handle the non-smooth
case in which we only assume that 𝑉 is convex and Lipschitz. As before, we deduce the
convergence result from a key one-step inequality.

Lemma 4.3.10. Let 𝜋 = exp(−𝑉 ) be the target and assume that 𝑉 is convex and
𝐿-Lipschitz. Let (𝜇𝑘ℎ)𝑘∈N denote the iterates of LMC with step size ℎ > 0. Then,

2ℎ KL(𝜇(𝑘+1)ℎ ∥ 𝜋) ≤𝑊 2
2 (𝜇+𝑘ℎ, 𝜋) −𝑊

2
2 (𝜇+(𝑘+1)ℎ, 𝜋) + 𝐿

2ℎ2 .

Theorem 4.3.11 ([DMM19]). Suppose that 𝜋 = exp(−𝑉 ) is the target distribution and
that 𝑉 is convex and 𝐿-Lipschitz. Let (𝜇𝑘ℎ)𝑘∈N denote the law of LMC. For any 𝜀 > 0, if
we take step size ℎ ≍ 𝜀2

𝐿2 , then for the mixture distribution 𝜇𝑁ℎ B 𝑁 −1 ∑𝑁
𝑘=1 𝜇𝑘ℎ it holds

that
√︁

KL(𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝐿2𝑊 2
2 (𝜇+0 , 𝜋)
𝜀4

)
iterations .

Proof. This follows from Lemma 4.3.10 in exactly the same way that the weakly convex
case of Theorem 4.3.6 follows from Lemma 4.3.4. □

Proof of Lemma 4.3.10. The main task here is to obtain dissipation of the energy functional
E under our new assumptions. Let 𝑍 ∼ 𝜋 be optimally coupled to 𝑋(𝑘+1)ℎ . From (4.3.2),

2ℎ {E(𝜇(𝑘+1)ℎ) − E(𝜋)} ≤ E[∥𝑋(𝑘+1)ℎ − 𝑍 ∥2 − ∥𝑋 +(𝑘+1)ℎ − 𝑍 ∥
2 + ℎ2 ∥∇𝑉 (𝑋(𝑘+1)ℎ)∥2] .

We no longer have the descent lemma (which requires smoothness) at our disposal, but
we can instead bound the last term by 𝐿2ℎ2 using the Lipschitz assumption. Hence,

2ℎ {E(𝜇(𝑘+1)ℎ) − E(𝜋)} ≤𝑊 2
2 (𝜇(𝑘+1)ℎ, 𝜋) −𝑊 2

2 (𝜇+(𝑘+1)ℎ, 𝜋) + 𝐿
2ℎ2 . (4.3.12)

On the other hand, recall from (4.3.9) that

2ℎ {H(𝜇(𝑘+1)ℎ) −H(𝜋)} ≤𝑊 2
2 (𝜇+𝑘ℎ, 𝜋) −𝑊

2
2 (𝜇(𝑘+1)ℎ, 𝜋) .

Together with (4.3.12), this completes the proof. □
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4.4 Proof via Girsanov’s Theorem
The idea behind the next proof is to control the discretization error KL(𝜇𝑁ℎ ∥ 𝜋𝑁ℎ), where
𝜇𝑁ℎ is the law of the LMC iterate 𝑋𝑁ℎ and 𝜋𝑁ℎ is the law of the Langevin diffusion 𝑍𝑁ℎ
initialized at 𝜇0. This is accomplished using Girsanov’s theorem (see Section 3.2.2).

Unlike the previous proofs, which assumed strong log-concavity or LSI for 𝜋 , control-
ling this discretization error will only require mild assumptions, such as smoothness of
𝑉 and sub-Gaussianity of 𝜋 . The point, however, is that control of KL(𝜇𝑁ℎ ∥ 𝜋𝑁ℎ) does
not immediately yield quantitative convergence of 𝜇𝑁ℎ → 𝜋 ; indeed, this also requires
quantitative convergence of 𝜋𝑁ℎ → 𝜋 , which does require some kind of assumption such
as strong log-concavity or a functional inequality.

Another remark is that the preceding proofs all had the following structure: for a
fixed step size ℎ > 0, as the number of iterations 𝑁 →∞, the error of LMC is at most a
quantity depending on ℎ, and which can be made as small as we like by taking ℎ small. In
particular, to achieve a desired error it suffices that the step size be sufficiently small and
that the number of iterations be sufficiently large. In contrast, for the following proof we
will only be able to establish a bound on KL(𝜇𝑁ℎ ∥ 𝜋𝑁ℎ) which grows with the iteration
number 𝑁 . Consequently, in our final sampling guarantee, we will not be able to take 𝑁
too large; our guarantee will only imply that the error of LMC is small if 𝑁 lies in some
range. Conceptually, this is unsatisfying because “running the Markov chain too long”
should not be a problem, and it only arises as an artefact of the proof. Nonetheless, it is
worthwhile learning the proof because it is broadly applicable.

Historically, the Girsanov method was one of the first discretization techniques utilized
in the modern quantitative study of sampling (see [DT12]). The argument we present here
is similar in spirit to [DT12], although we have made a few refinements.

Discretization analysis. In the following theorem, we assume that 𝜋 is strongly log-
concave for simplicity.

Theorem 4.4.1. Let 𝜋 ∝ exp(−𝑉 ) be the target and assume 0 ⪯ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and
∇𝑉 (0) = 0. Let (𝜇𝑘ℎ)𝑡≥0 denote the law of LMC, and let (𝜋𝑡 )𝑡≥0 denote the law of the
Langevin diffusion initialized at 𝜇0. Then, for ℎ ∈ [0, 1

𝛽
],

KL(𝜇𝑁ℎ ∥ 𝜋𝑁ℎ) ≲ 𝛽4ℎ3𝑁
(∫
∥·∥2 d𝜇0 +

𝑑

𝛼

)
+ 𝛽2𝑑ℎ2𝑁 .

Proof. For𝑇 B 𝑁ℎ, let (𝐵𝑡 )𝑡∈[0,𝑇 ] be our standard Brownian motion and consider the SDE

d𝑋𝑡 = −∇𝑉 (𝑋𝑡 ) d𝑡 +
√

2 d𝐵𝑡 , 𝑋0 ∼ 𝜇0 .
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Let W𝑇 denote the Wiener measure on our path space, under which (𝑋𝑡 )𝑡∈[0,𝑇 ] becomes
the Langevin diffusion started at 𝑋0 ∼ 𝜇0. We would like to write

d𝑋𝑡 = −∇𝑉 (𝑋𝑡− ) d𝑡 +
√

2 d𝐵̃𝑡 ,

and to find a path measure P𝑇 under which (𝐵̃𝑡 )𝑡∈[0,𝑇 ] is a P𝑇 -Brownian motion. If so,
then under P𝑇 , we see that (𝑋𝑡 )𝑡∈[0,𝑇 ] is the interpolated LMC process. Noting that d𝐵𝑡 =
d𝐵̃𝑡 − d[𝐵,𝑀]𝑡 where d𝑀𝑡 B

1√
2 ⟨∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ), d𝐵𝑡 ⟩, we consider the exponential

martingale E(𝑀) associated with 𝑀 .
By the data-processing inequality (Theorem 1.5.3), KL(𝜇𝑁ℎ ∥ 𝜋𝑁ℎ) ≤ KL(P𝑇 ∥W𝑇 ), so

it suffices to bound the latter. By Girsanov’s theorem (Theorem 3.2.6),2

KL(P𝑇 ∥W𝑇 ) = EP𝑇 ln dP𝑇
dW𝑇

= EP𝑇 ln E(𝑀)𝑇

= EP𝑇
[ 1
√

2

∫ 𝑇

0
⟨∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ), d𝐵𝑡 ⟩ −

1
4

∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

]
.

However, we must be cautious! Here, (𝐵𝑡 )𝑡∈[0,𝑇 ] is a W𝑇 -standard Brownian. As a sanity
check, if (𝐵𝑡 )𝑡∈[0,𝑇 ] were a P𝑇 -standard Brownian motion, then the first term would vanish
(since stochastic integrals have zero mean) and the KL divergence would be negative,
which is absurd. Instead, we rewrite the above expression in terms of 𝐵̃, obtaining

KL(P𝑇 ∥W𝑇 ) =
1
4

∫ 𝑇

0
EP𝑇 [∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− )∥2] d𝑡 ≤

𝛽2

4

∫ 𝑇

0
EP𝑇 [∥𝑋𝑡 − 𝑋𝑡− ∥2] d𝑡

=
𝛽2

4

∫ 𝑇

0
{(𝑡 − 𝑡−)2 EP𝑇 [∥∇𝑉 (𝑋𝑡− )∥2] + 2𝑑 (𝑡 − 𝑡−)} d𝑡

≤ 𝛽4ℎ3

12

𝑁−1∑︁
𝑘=0
EP𝑇 [∥𝑋𝑘ℎ∥2] +

𝛽2𝑑ℎ2𝑁

4 .

We can use the bound on the second moment of the LMC iterates (??) to get

KL(P𝑇 ∥W𝑇 ) ≲ 𝛽4ℎ3𝑁
(
EP𝑇 [∥𝑋0∥2] +

𝑑

𝛼

)
+ 𝛽2𝑑ℎ2𝑁 . □

The preceding argument is similar to the Wasserstein coupling proof (Theorem 4.1.2),
and indeed in both proofs we used strong log-concavity. However, in the Wasserstein cou-
pling proof, the strong log-concavity assumption is crucial because it implies contraction

2Actually, as noted in the discussion in Section 3.2.2, to obtain the first equality one should check
Novikov’s condition. However, since all we desire is an upper bound on the KL divergence, this can be
avoided with a localization argument. We omit the details.
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in the Wasserstein metric, whereas the preceding discretization argument only requires a
bound on the second moment of the LMC iterates which can be obtained in other ways.

What sampling guarantee does Theorem 4.4.1 imply? Unfortunately, neither KL nor√
KL satisfy the triangle inequality, which poses a difficulty for bounding the distance

of 𝜇𝑁ℎ from the target 𝜋 . One way to skirt this difficulty is to simply use the fact that√
KL ≳ ∥·∥TV (Pinsker’s inequality, Exercise 2.13) and the fact that the total variation

distance satisfies the triangle inequality.

Corollary 4.4.2. Let 𝜋 ∝ exp(−𝑉 ) be the target and assume 0 ⪯ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑
and ∇𝑉 (0) = 0. Let (𝜇𝑘ℎ)𝑡≥0 denote the law of LMC initialized at the distribution
𝜇0 = normal(0, 𝛽−1𝐼𝑑). Then, for all 𝜀 ∈ (0, 1) and for ℎ = Θ̃( 𝛼𝜀2

𝛽2𝑑 ), we obtain the
guarantee ∥𝜇𝑁ℎ − 𝜋 ∥TV ≤ 𝜀 provided that

𝑁 = Θ̃
(𝜅2𝑑

𝜀2

)
iterations .

Proof. Since strong log-concavity implies an LSI, which in turn implies exponential con-
vergence of the Langevin diffusion to its target in KL divergence (Theorem 1.2.25 and Theo-
rem 1.2.29), we obtain

√︁
KL(𝜋𝑁ℎ ∥ 𝜋) ≤ 𝜀√

2 provided 𝑁ℎ ≳ 1
𝛼

log KL(𝜇0∥𝜋)
𝜀2 . With our choice

of initialization, KL(𝜇0 ∥ 𝜋) ≲ 𝑑 log𝜅 and
∫
∥·∥2 d𝜇0 ≲ 𝑑/𝛽 ≤ 𝑑/𝛼 .

We now take the number of iterations to satisfy 𝑁ℎ ≍ 1
𝛼

log KL(𝜇0∥𝜋)
𝜀2 . Then, with our

choice of ℎ, we obtain from Theorem 4.4.1 that
√︁

KL(𝜇𝑁ℎ ∥ 𝜋𝑁ℎ) ≤ 𝜀√
2 . By the triangle

inequality and Pinsker’s inequality,

∥𝜇𝑁ℎ − 𝜋 ∥TV ≤ ∥𝜇𝑁ℎ − 𝜋𝑁ℎ∥TV + ∥𝜋𝑁ℎ − 𝜋 ∥TV

≤
√︂

1
2 KL(𝜇𝑁ℎ ∥ 𝜋𝑁ℎ) +

√︂
1
2 KL(𝜋𝑁ℎ ∥ 𝜋) ≤ 𝜀 .

Finally, plugging in the choice of ℎ into 𝑁ℎ ≍ 1
𝛼

log KL(𝜇0∥𝜋)
𝜀2 yields the result. □

We remark that if one follows this Pinsker approach, then in the Girsanov bound
above one could alternatively bound KL(𝜋𝑁ℎ ∥ 𝜇𝑁ℎ) if this turns out to be easier.

Although the quantitative dependence in Corollary 4.4.2 matches prior results (e.g.,
via the interpolation method in Theorem 4.2.6), the final result is unsatisfying because
we have moved to a weaker metric (TV rather than KL) for a seemingly silly reason (the
failure of the triangle inequality for the KL divergence). Indeed, we have a convergence
result for the Langevin diffusion in KL, and our discretization bound is in KL, yet our final
result is in TV. Can we remedy this?
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To address this, we can introduce the Rényi divergences (defined in (2.2.14)); recall
that KL = R1. We have a continuous-time result for the Langevin diffusion in Rényi
divergence (Theorem 2.2.15), and it turns out that with some additional tricks it is possible
to extend the Girsanov discretization argument to any Rényi divergence. Moreover, the
Rényi divergences satisfy a weak triangle inequality (see Lemma 6.2.4). This allows us to
combine a continuous-time Rényi result with a Rényi discretization argument to yield a
Rényi sampling guarantee. We provide the details for this approach in Chapter 6.

Bibliographical Notes
Historically, the LMC algorithm, which is called unadjusted because of the lack of a
Metropolis–Hastings filter, was only studied relatively recently in non-asymptotic settings.
Before the work of [DT12], it was more common to study MALA (which we introduce and
study in Chapter 7). The ideas which go into the basic𝑊2 coupling proof for Theorem 4.1.2
were developed in a series of works on strongly log-concave sampling: [DT12; Dal17a;
Dal17b; DM17; DM19]. The Girsanov argument of Theorem 4.4.1 is also due to [DT12].

There are two other notable proof techniques that we have omitted from this chapter:
reflection coupling [Ebe11; Ebe16] and mean squared analysis [Li+19; Li+22; LZT22].
Reflection coupling uses a carefully chosen coupling of the Brownian motions rather than
just taking the two Brownian motions to be the same as we have done (the latter coupling
is called the synchronous coupling). Mean squared analysis is a general framework
which combines local errors (one-step discretization bounds) into global error bounds.
These two methods are useful for performing discretization analysis under more general
sets of assumptions, but they are limited to providing guarantees in𝑊1 or𝑊2.

Exercises
Proof via Wasserstein Coupling

⊵ Exercise 4.1 (explicit computations for a Gaussian target)
Suppose that the target distribution is a Gaussian, 𝜋 = normal(0, Σ), and that LMC is
initialized at a Gaussian. Can you write down the iterates and stationary distribution of
LMC explicitly? What happens when Σ = 𝐼𝑑?

Perform some explicit computations for this example and compare them to the general
results for LMC that we derived in this chapter.

⊵ Exercise 4.2 (second moment bounds for LMC)
Assume that ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0 and ∇𝑉 (𝑥★) = 0. Prove that if ℎ ≤ 1/𝛽 , then the LMC
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iterates initialized at 𝛿𝑥★ with step size ℎ > 0 have uniformly bounded second moment:
sup𝑘∈N E[∥𝑋𝑘ℎ∥2] ≲ 𝑑/𝛼 . (Write a recursion for E[∥𝑋(𝑘+1)ℎ∥2] in terms of E[∥𝑋𝑘ℎ∥2]. In
order to prove the result for all step sizes ℎ ≤ 1

𝛽
, you may need to appeal to coercivity of

the gradient, Lemma 5.2.3.)

⊵ Exercise 4.3 (𝑊2 guarantees from a one-step bound)
Write out the details for Remark 4.1.5.

⊵ Exercise 4.4 (LMC with decaying step size)
Show that by considering LMC with a decaying step size ℎ𝑘 ≍ 1

𝛼𝑘
, one can obtain an

iteration complexity which removes the logarithmic factor in Theorem 4.1.2.
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CHAPTER 5

Faster Low-Accuracy Samplers

We now move beyond the basic LMC algorithm and consider samplers with better depen-
dence on the dimension and inverse accuracy. There are two main sources of improvement
that we explore in this chapter. The first is to use a more sophisticated discretization
method than the basic Euler–Maruyama discretization. The second is to consider a differ-
ent stochastic process, called the underdamped Langevin diffusion. By combining these
two ideas, we arrive at the state-of-the-art complexity bounds for low-accuracy samplers.

5.1 Randomized Midpoint Discretization
In this section, we study the randomized midpoint discretization, which was intro-
duced in [SL19]. The application to the Langevin diffusion was carried out in [HBE20].

Consider the continuous-time Langevin diffusion from time 𝑘ℎ to (𝑘 + 1)ℎ:

𝑍 (𝑘+1)ℎ = 𝑍𝑘ℎ −
∫ (𝑘+1)ℎ

𝑘ℎ

∇𝑉 (𝑍𝑡 ) d𝑡 +
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ) .

In the Euler discretization, we approximate the second term via −ℎ ∇𝑉 (𝑍𝑘ℎ). However, if
we want an unbiased estimator of the integral, then we can introduce an auxiliary random
variable 𝑢𝑘 ∼ uniform[0, 1] and use

𝑍 (𝑘+1)ℎ ≈ 𝑍𝑘ℎ − ℎ ∇𝑉 (𝑍 (𝑘+𝑢𝑘 )ℎ) +
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ) .

187
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To compute this approximation, however, we need to know 𝑍 (𝑘+𝑢𝑘 )ℎ . We have

𝑍 (𝑘+𝑢𝑘 )ℎ = 𝑍𝑘ℎ −
∫ (𝑘+𝑢𝑘 )ℎ

𝑘ℎ

∇𝑉 (𝑍𝑡 ) d𝑡 +
√

2 (𝐵(𝑘+𝑢𝑘 )ℎ − 𝐵𝑘ℎ) .

Note that we are in the same situation as before. In particular, if we desire, we can
draw another uniform random variable 𝑢′

𝑘
and approximate the second term above via

−𝑢𝑘ℎ ∇𝑉 (𝑍 (𝑘+𝑢𝑘𝑢′𝑘 )ℎ). In principle, this procedure can be repeated indefinitely. However,
we will see that just one step of this procedure suffices: further applications of this
procedure do not improve the discretization error. Instead, we will simply approximate
𝑍 (𝑘+𝑢𝑘 )ℎ via an Euler–Maruyama step:

𝑍 (𝑘+𝑢𝑘 )ℎ ≈ 𝑍𝑘ℎ − 𝑢𝑘ℎ ∇𝑉 (𝑍𝑘ℎ) +
√

2 (𝐵(𝑘+𝑢𝑘 )ℎ − 𝐵𝑘ℎ) .

To summarize, the randomized midpoint discretization of the Langevin diffusion,
which we will call RM-LMC, is the following update:

𝑋(𝑘+1)ℎ B 𝑋𝑘ℎ − ℎ ∇𝑉 (𝑋(𝑘+𝑢𝑘 )ℎ) +
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ) ,
𝑋(𝑘+𝑢𝑘 )ℎ B 𝑋𝑘ℎ − 𝑢𝑘ℎ ∇𝑉 (𝑋𝑘ℎ) +

√
2 (𝐵(𝑘+𝑢𝑘 )ℎ − 𝐵𝑘ℎ) ,

(RM-LMC)

where (𝑢𝑘)𝑘∈N is a sequence of i.i.d. uniform[0, 1] random variables which are independent
of𝑋0 and the Brownian motion. The algorithm uses two gradient evaluations per iteration.
Also, when implementing this recursion, it is important to note that the two Brownian
increments are coupled. To sample the Brownian increments, draw two i.i.d. standard
Gaussians 𝜉𝑘 and 𝜉′

𝑘
, and set

𝐵(𝑘+𝑢𝑘 )ℎ − 𝐵𝑘ℎ B
√︁
𝑢𝑘ℎ 𝜉𝑘 ,

𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ B
√︁
𝑢𝑘ℎ 𝜉𝑘 +

√︁
(1 − 𝑢𝑘)ℎ 𝜉′𝑘 .

We now analyze the complexity of this algorithm following the Wasserstein coupling
proof of Section 4.1.

Theorem 5.1.1. For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of the 𝑘-th iterate of RM-LMC
with step size ℎ > 0. Assume that the target 𝜋 ∝ exp(−𝑉 ) satisfies ∇𝑉 (0) = 0 and
𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then, provided ℎ ≲ 1

𝛽𝜅1/2 , for all 𝑁 ∈ N,

𝑊 2
2 (𝜇𝑁ℎ, 𝜋) ≤ exp(−𝛼𝑁ℎ)𝑊 2

2 (𝜇0, 𝜋) +𝑂
(𝛽2𝑑ℎ2

𝛼
+ 𝛽

4𝑑ℎ3

𝛼2 + 𝛽
6𝑑ℎ4

𝛼3

)
.

In particular, if we initialize at 𝜇0 = 𝛿0 and take ℎ ≍ 𝜀

𝛽𝑑1/2 (1 ∧ 𝑑1/4

𝜀1/2𝜅1/2 ), then for any
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𝜀 ∈ [0,
√
𝑑] we obtain the guarantee

√
𝛼𝑊2(𝜇𝑁ℎ, 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝜅𝑑1/2

𝜀

(
1 ∨ 𝜀

1/2𝜅1/2

𝑑1/4
) )

iterations .

Proof. Recall from the proof of Theorem 4.1.2 that we started with a one-step discretization
bound, and then we derived a multi-step discretization bound. In particular, for the one-
step bound, we showed that if 𝜋ℎ is the law of the continuous-time Langevin diffusion
started at 𝜇0, then

𝑊 2
2 (𝜇ℎ, 𝜋ℎ) ≲ 𝛽4ℎ4 E[∥𝑍0∥2] + 𝛽2𝑑ℎ3 . (5.1.2)

It turns out that (5.1.2) still holds for RM-LMC. Since the proof is almost the same as
before, we leave it as an exercise (Exercise 5.1).

The benefits of the randomized midpoint discretization enter once we consider the
multi-step discretization. As in Theorem 4.1.2, we let 𝑋𝑘ℎ ∼ 𝜇𝑘ℎ and 𝑍𝑘ℎ ∼ 𝜋 be optimally
coupled, and we let (𝑋𝑡 )𝑡∈[𝑘ℎ,(𝑘+1)ℎ] and (𝑍𝑡 )𝑡∈[𝑘ℎ,(𝑘+1)ℎ] denote continuous-time Langevin
diffusions initialized at 𝑋𝑘ℎ and 𝑍𝑘ℎ respectively; all of these processes are coupled by
using the same Brownian motion to drive them. We bound

𝑊 2
2 (𝜇(𝑘+1)ℎ, 𝜋) ≤ E[∥𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ∥2]

= E[∥𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ∥2] + E[∥𝑋(𝑘+1)ℎ − 𝑋(𝑘+1)ℎ∥2]
+ 2E⟨𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ, 𝑋(𝑘+1)ℎ − 𝑋(𝑘+1)ℎ⟩ .

Now observe that in the cross term, the only quantity that depends on the uniform random
variable 𝑢𝑘 is 𝑋(𝑘+1)ℎ . In particular, if we let ℱ(𝑘+1)ℎ denote the 𝜎-algebra generated by
𝑋𝑘ℎ and (𝐵𝑡 )𝑡∈[𝑘ℎ,(𝑘+1)ℎ] and we apply Young’s inequality, then for any 𝜆 > 0,

2E⟨𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ, 𝑋(𝑘+1)ℎ − 𝑋(𝑘+1)ℎ⟩
= 2E⟨𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ,E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] − 𝑋(𝑘+1)ℎ⟩

≤ 𝜆 E[∥𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ∥2] +
1
𝜆
E
[
∥E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] − 𝑋(𝑘+1)ℎ∥2

]
and plugging this in,

𝑊 2
2 (𝜇(𝑘+1)ℎ, 𝜋) ≤ (1 + 𝜆) E[∥𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ∥2] + E[∥𝑋(𝑘+1)ℎ − 𝑋(𝑘+1)ℎ∥2]

+ 1
𝜆
E
[
∥E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] − 𝑋(𝑘+1)ℎ∥2

]
.

Before jumping into the calculations, let us see what we have gained, focusing on the
dependence on the step size. As before, we need to take 𝜆 ≍ ℎ. Previously, in Remark 4.1.5
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(see (4.1.7)), the error term was 𝑂 (ℎ2) due to the use of Young’s inequality. In this
calculation, we have split the error term into E[∥𝑋(𝑘+1) − 𝑋(𝑘+1)ℎ∥2] = 𝑂 (ℎ3) as well as
another error term, which has a factor of 𝑂 ( 1

ℎ
) but also has the expectation over the

uniform random variable inside the norm. If we can show that this expectation makes the
error smaller order than before (the interpretation being that the randomized midpoint
reduces the bias), then we obtain smaller discretization error overall.

The one-step discretization bound (5.1.2) yields

E[∥𝑋(𝑘+1)ℎ − 𝑋(𝑘+1)ℎ∥2] ≲ 𝛽4ℎ4 E[∥𝑋𝑘ℎ∥2] + 𝛽2𝑑ℎ3 .

Next,

E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] = 𝑋𝑘ℎ − ℎ E[∇𝑉 (𝑋(𝑘+𝑢𝑘 )ℎ) | ℱ(𝑘+1)ℎ] +
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ)

= 𝑋𝑘ℎ −
∫ (𝑘+1)ℎ

𝑘ℎ

∇𝑉 (𝑋𝑡 ) d𝑡 +
√

2 (𝐵(𝑘+1)ℎ − 𝐵𝑘ℎ) .

Hence,

E
[
∥E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] − 𝑋(𝑘+1)ℎ∥2

]
= E

[


∫ (𝑘+1)ℎ

𝑘ℎ

{∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡 )} d𝑡



2]

≤ ℎ
∫ (𝑘+1)ℎ

𝑘ℎ

E[∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡 )∥2] d𝑡

≤ 𝛽2ℎ

∫ (𝑘+1)ℎ

𝑘ℎ

E[∥𝑋𝑡 − 𝑋𝑡 ∥2] d𝑡 .

By definition, 𝑋𝑡 = 𝑋𝑘ℎ − (𝑡 − 𝑘ℎ) ∇𝑉 (𝑋𝑘ℎ) +
√

2 (𝐵𝑡 − 𝐵𝑘ℎ), so

E
[
∥E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] − 𝑋(𝑘+1)ℎ∥2

]
≤ 𝛽2ℎ

∫ (𝑘+1)ℎ

𝑘ℎ

E
[


∫ 𝑡

𝑘ℎ

{∇𝑉 (𝑋𝑘ℎ) − ∇𝑉 (𝑋𝑠)} d𝑠



2]

d𝑡

≤ 𝛽2ℎ2
∫ (𝑘+1)ℎ

𝑘ℎ

∫ 𝑡

𝑘ℎ

E[∥∇𝑉 (𝑋𝑘ℎ) − ∇𝑉 (𝑋𝑠)∥2] d𝑠 d𝑡

≤ 𝛽4ℎ2
∫ (𝑘+1)ℎ

𝑘ℎ

∫ 𝑡

𝑘ℎ

E[∥𝑋𝑘ℎ − 𝑋𝑠 ∥2] d𝑠 d𝑡 ≲ 𝛽4ℎ4 {𝛽2ℎ2 E[∥𝑋𝑘ℎ∥2] + 𝑑ℎ}

where the last inequality uses the movement bound for the Langevin process that we
proved in Lemma 4.1.8.
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Next, recall that by contraction of the Langevin diffusion under strong log-concavity
(Theorem 1.4.10), E[∥𝑋(𝑘+1)ℎ − 𝑍 (𝑘+1)ℎ∥2] ≤ exp(−2𝛼ℎ)𝑊 2

2 (𝜇𝑘ℎ, 𝜋). Choosing 𝜆 = 𝛼ℎ
2 ,

𝑊 2
2 (𝜇(𝑘+1)ℎ, 𝜋) ≤ exp

(
−3𝛼ℎ

2
)
𝑊 2

2 (𝜇𝑘ℎ, 𝜋)

+𝑂
(
𝛽4ℎ4 E[∥𝑋𝑘ℎ∥2] + 𝛽2𝑑ℎ3 + 𝛽

6ℎ5

𝛼
E[∥𝑋𝑘ℎ∥2] +

𝛽4𝑑ℎ4

𝛼

)
.

At this point, we could bound E[∥𝑋𝑘ℎ∥2] recursively, similarly to ??, but instead we will
use a trick:

E[∥𝑋𝑘ℎ∥2] =𝑊 2
2 (𝜇𝑘ℎ, 𝛿0) ≲𝑊 2

2 (𝜇𝑘ℎ, 𝜋) +𝑊 2
2 (𝜋, 𝛿0) ≲𝑊 2

2 (𝜇𝑘ℎ, 𝜋) +
𝑑

𝛼
.

It implies that if we take ℎ ≲ 1
𝛽𝜅1/2 , then

𝑊 2
2 (𝜇(𝑘+1)ℎ, 𝜋) ≤ exp(−𝛼ℎ)𝑊 2

2 (𝜇𝑘ℎ, 𝜋) +𝑂
(
𝛽2𝑑ℎ3 + 𝛽

4𝑑ℎ4

𝛼
+ 𝛽

6𝑑ℎ5

𝛼2

)
.

Unrolling the recursion,

𝑊 2
2 (𝜇𝑁ℎ, 𝜋) ≤ exp(−𝛼𝑁ℎ)𝑊 2

2 (𝜇0, 𝜋) +𝑂
(𝛽2𝑑ℎ2

𝛼
+ 𝛽

4𝑑ℎ3

𝛼2 + 𝛽
6𝑑ℎ4

𝛼3

)
.

From the analysis, it can be seen that the bottleneck term (at least for dimension de-
pendence) is not from the term involving E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ]. This justifies our earlier
comment that one step of the randomized midpoint procedure already suffices. □

Remark 5.1.3. From the proof, we obtain the following one-step bound for the kernel
𝑃RM−LMC of RM-LMC:

𝑊 2
2
(
𝑃RM−LMC(𝑥, ·), 𝑃 (𝑦, ·)

)
≤ exp(−𝛼ℎ) ∥𝑥 − 𝑦∥2 +𝑂 (𝛽4ℎ4 ∥𝑦∥2 + 𝛽2𝑑ℎ3) .

Note that this improves over (4.1.7) for LMC.
The complexity guarantee for RM-LMC is considerably better than that for LMC.

In fact, it is known that the randomized midpoint method is essentially an optimal
discretization method (which is not the same as saying that RM-LMC is an optimal
sampling algorithm); see [CLW21]. Another optimal discretization, not covered in this
book, is the shifted ODE method of [FLO21].

One notable downside of the randomized midpoint discretization is that the analysis
seems specific to the Wasserstein coupling approach. In particular, it is currently not
known how to obtain matching guarantees in KL divergence.

In the above result, we proved a slightly weaker complexity bound in order to stream-
line the proof. It is possible to improve the second term of 𝜅3/2𝑑1/4/𝜀1/2 in the guarantee
of Theorem 5.1.1; see Exercise 5.2.



192 CHAPTER 5. FASTER LOW-ACCURACY SAMPLERS

5.2 Hamiltonian Monte Carlo
The next algorithm we introduce, known as Hamiltonian Monte Carlo (HMC), was
popularized in the context of sampling by Neal [Nea11]. As the name suggests, it is
inspired by Hamiltonian mechanics. Although this algorithm is usually combined with a
Metropolis–Hastings filter, we defer a discussion of this until Chapter 7. In this section,
we instead focus on an analysis of the ideal (i.e., continuous-time) dynamics.

5.2.1 Introduction to Ideal HMC
First, we augment the target distribution 𝜋 to add a momentum variable 𝑝 . Specifically,
define the distribution 𝝅 on phase space R𝑑 × R𝑑 via

𝝅 (𝑥, 𝑝) ∝ exp
(
−𝑉 (𝑥) − 1

2 ∥𝑝 ∥
2) .

The first marginal of 𝝅 is 𝜋 ∝ exp(−𝑉 ), so if we obtain a sample from 𝝅 then upon
projecting to the first coordinate we obtain a sample from 𝜋 .

The augmented target can also be written as 𝝅 ∝ exp(−𝐻 ), where 𝐻 is the Hamil-
tonian 𝐻 (𝑥, 𝑝) B 𝑉 (𝑥) + 1

2 ∥𝑝 ∥
2. In Hamiltonian mechanics, which is a reformulation

of classical mechanics, the laws of motion are governed by Hamilton’s equations, a
system of coupled first-order ODEs:1

¤𝑥𝑡 = ∇𝑝𝐻 (𝑥𝑡 , 𝑝𝑡 ) = 𝑝𝑡 ,
¤𝑝𝑡 = −∇𝑥𝐻 (𝑥𝑡 , 𝑝𝑡 ) = −∇𝑉 (𝑥𝑡 ) .

Introducing the antisymmetric matrix

𝑱 B

[
0 𝐼𝑑
−𝐼𝑑 0

]
,

Hamilton’s equations can be written succinctly as

( ¤𝑥𝑡 , ¤𝑝𝑡 ) = 𝑱 ∇𝐻 (𝑥𝑡 , 𝑝𝑡 ) .

Let 𝐹𝑡 : R𝑑 ×R𝑑 → R𝑑 ×R𝑑 denote the flow map, i.e., 𝐹𝑡 (𝑥0, 𝑝0) is the solution (𝑥𝑡 , 𝑝𝑡 )
to Hamilton’s equations started from (𝑥0, 𝑝0). Then, we show that 𝐹𝑡 leaves the augmented
target 𝝅 invariant: (𝐹𝑡 )#𝝅 = 𝝅 . Indeed, if 𝑓 : R𝑑 × R𝑑 → R is a function on phase space
and (𝑥𝑡 , 𝑝𝑡 )𝑡≥0 evolve via Hamilton’s equations started at (𝑥0, 𝑝0) ∼ 𝝅 ,

𝜕𝑡
��
𝑡=0 E 𝑓 (𝑥𝑡 , 𝑝𝑡 ) = E⟨∇𝑓 (𝑥0, 𝑝0), ( ¤𝑥0, ¤𝑝0)⟩ =

∫
⟨∇𝑓 (𝑥0, 𝑝0), ( ¤𝑥0, ¤𝑝0)⟩ d𝝅 (𝑥0, 𝑝0)

1In contrast, Newton’s law ¥𝑥𝑡 = −∇𝑉 (𝑥𝑡 ) is a second-order ODE.
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= −
∫

𝑓 div
( [

𝑝

−∇𝑉

]
𝝅
)

= −
∫

𝑓

{
div

[
𝑝

−∇𝑉

]
+
〈[

𝑝

−∇𝑉

]
,

[
∇𝑥 ln𝝅
∇𝑝 ln𝝅

]〉}
d𝝅 = 0 .

Further properties of the Hamiltonian dynamics are explored in Exercise 5.4.
However, simply running Hamilton’s equations does not yield a convergent sampling

algorithm. For example, suppose that 𝑉 (𝑥) = 1
2 ∥𝑥 ∥

2; then, each flow map 𝐹𝑡 is actually
a diffeomorphism. This implies, for example, that KL((𝐹𝑡 )#𝝁 ∥ (𝐹𝑡 )#𝝅) = KL(𝝁 ∥ 𝝅) for
any initial distribution 𝝁 on phase space. To get around this issue, we can “refresh” the
momentum periodically. More specifically, we pick an integration time 𝑇 > 0, and every
𝑇 units of time we draw a new momentum vector from the standard Gaussian distribution
(which is the distribution of the momentum under 𝝅 ).

Ideal HMC: Pick an integration time𝑇 > 0 and draw (𝑋0, 𝑃0) ∼ 𝝁0. For each iteration
𝑘 = 0, 1, 2, . . . :

1. Refresh the velocity by drawing 𝑃 ′
𝑘𝑇
∼ normal(0, 𝐼𝑑).

2. Integrate Hamilton’s equations: set (𝑋(𝑘+1)𝑇 , 𝑃(𝑘+1)𝑇 ) B 𝐹𝑇 (𝑋𝑘𝑇 , 𝑃 ′𝑘𝑇 ).

Since both steps of each iteration preserve 𝝅 , the entire algorithm preserves 𝝅 . At
this stage, though, this algorithm is still idealized because it assumes the ability to exactly
integrate Hamilton’s equations. This may be possible for very special cases, but it is not
in general, and certainly not within our oracle model. Nevertheless, it is instructive to
first analyze the ideal algorithm.

5.2.2 Analysis of Ideal HMC

Theorem 5.2.1 (ideal HMC, [CV19]). Assume that the target 𝜋 ∝ exp(−𝑉 ) satisfies
𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . For 𝑘 ∈ N, let 𝜋𝑘𝑇 denote the law of the 𝑘-th iterate 𝑋𝑘𝑇 of ideal HMC
with integration time 𝑇 > 0. Then, if we set 𝑇 = 1

2
√
𝛽
, we obtain

𝑊 2
2 (𝜇𝑁𝑇 , 𝜋) ≤ exp

(
− 𝑁

16𝜅

)
𝑊 2

2 (𝜇0, 𝜋) .

It is known that the convergence rate in this theorem is optimal, see [CV19]. We now
follow the proof, which is a purely deterministic analysis of Hamilton’s equations. First,
we need two lemmas.
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Lemma 5.2.2 (a priori bound). Let (𝑥𝑡 , 𝑝𝑡 )𝑡≥0 and (𝑥′𝑡 , 𝑝′𝑡 )𝑡≥0 denote two solutions to
Hamilton’s equations of motion with 𝑝0 = 𝑝

′
0 and a potential 𝑉 satisfying ∇2𝑉 ⪯ 𝛽𝐼𝑑 .

Then, for all 𝑡 ∈ [0, 1
2
√
𝛽
], it holds that

1
2 ∥𝑥0 − 𝑥′0∥2 ≤ ∥𝑥𝑡 − 𝑥′𝑡 ∥2 ≤ 2 ∥𝑥0 − 𝑥′0∥2 .

Proof. First, note that 𝜕𝑡 ∥𝑝𝑡 − 𝑝′𝑡 ∥ ≤ ∥∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 )∥ ≤ 𝛽 ∥𝑥𝑡 − 𝑥′𝑡 ∥. It follows that
|𝜕𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥| ≤ ∥𝑝𝑡 − 𝑝′𝑡 ∥ ≤ 𝛽

∫ 𝑡
0 ∥𝑥𝑠 − 𝑥

′
𝑠 ∥ d𝑠 and hence

∥𝑥𝑡 − 𝑥′𝑡 ∥ ≤ ∥𝑥0 − 𝑥′0∥ + 𝛽
∫ 𝑡

0

∫ 𝑠

0
∥𝑥𝑟 − 𝑥′𝑟 ∥ d𝑟 d𝑠 .

Applying an ODE comparison lemma, one may deduce that ∥𝑥𝑡 − 𝑥′𝑡 ∥ ≤
√

2 ∥𝑥0 − 𝑥′0∥. The
lower bound is similar. □

Lemma 5.2.3 (coercivity). Suppose 𝑓 : R𝑑 → R satisfies 0 ⪯ ∇2𝑓 ⪯ 𝛽𝐼𝑑 . Then, for all
𝑥,𝑦 ∈ R𝑑 , it holds that

𝛽 ⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦), 𝑥 − 𝑦⟩ ≥ ∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥2 .

Proof. See Exercise 5.5. □

We now prove the contraction result for the Hamiltonian dynamics.

Proposition 5.2.4 (contraction of Hamilton’s equations). Consider any two solutions
(𝑥𝑡 , 𝑝𝑡 )𝑡≥0 and (𝑥′𝑡 , 𝑝′𝑡 )𝑡≥0 to Hamilton’s equations of motion with 𝑝0 = 𝑝

′
0 and a potential

𝑉 satisfying 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then, for all 𝑡 ∈ [0, 1
2
√
𝛽
], it holds that

∥𝑥𝑡 − 𝑥′𝑡 ∥2 ≤ exp
(
−𝛼𝑡

2

4
)
∥𝑥0 − 𝑥′0∥2 .

Proof. We compute

1
2 𝜕𝑡 ∥𝑥𝑡 − 𝑥

′
𝑡 ∥2 = ⟨𝑥𝑡 − 𝑥′𝑡 , 𝑝𝑡 − 𝑝′𝑡 ⟩ ,

1
2 𝜕

2
𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 = ∥𝑝𝑡 − 𝑝′𝑡 ∥2 − ⟨𝑥𝑡 − 𝑥′𝑡 ,∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 )⟩ = −𝜌𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 + ∥𝑝𝑡 − 𝑝′𝑡 ∥2 ,
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where we define

𝜌𝑡 B
⟨∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 ), 𝑥𝑡 − 𝑥′𝑡 ⟩

∥𝑥𝑡 − 𝑥′𝑡 ∥2
.

To bound ∥𝑝𝑡 −𝑝′𝑡 ∥2, we use |𝜕𝑡 ∥𝑝𝑡 −𝑝′𝑡 ∥| ≤ ∥∇𝑉 (𝑥𝑡 ) −∇𝑉 (𝑥′𝑡 )∥. Also, by the coercivity
lemma (Lemma 5.2.3),

∥∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 )∥2 ≤ 𝛽 ⟨∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 ), 𝑥𝑡 − 𝑥′𝑡 ⟩ = 𝛽𝜌𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 ≤ 2𝛽𝜌𝑡 ∥𝑥0 − 𝑥′0∥2

where we used Lemma 5.2.2. Hence, by the Cauchy–Schwarz inequality,

∥𝑝𝑡 − 𝑝′𝑡 ∥2 ≤
���∫ 𝑡

0

��𝜕𝑠 ∥𝑝𝑠 − 𝑝′𝑠 ∥�� d𝑠 ���2 ≤ ���∫ 𝑡

0

√︁
2𝛽𝜌𝑠 ∥𝑥0 − 𝑥′0∥ d𝑠

���2
≤ 2𝛽𝑡 ∥𝑥0 − 𝑥′0∥2

∫ 𝑡

0
𝜌𝑠 d𝑠 .

From this and Lemma 5.2.2, we deduce

𝜕2
𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 ≤ −

(
𝜌𝑡 − 4𝛽𝑡

∫ 𝑡

0
𝜌𝑠 d𝑠

)
∥𝑥0 − 𝑥′0∥2 .

Integrating and using 𝜌 ≥ 0,

𝜕𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 ≤ −
(∫ 𝑡

0
𝜌𝑠 d𝑠 − 4𝛽

∫ 𝑡

0
𝑠

∫ 𝑟

0
𝜌𝑟 d𝑟 d𝑠

)
∥𝑥0 − 𝑥′0∥2

≤ −
(∫ 𝑡

0
𝜌𝑠 d𝑠 − 2𝛽𝑡2

∫ 𝑡

0
𝜌𝑠 d𝑠

)
∥𝑥0 − 𝑥′0∥2

= −(1 − 2𝛽𝑡2)
(∫ 𝑡

0
𝜌𝑠 d𝑠

)
∥𝑥0 − 𝑥′0∥2 ≤ −

𝛼𝑡

2 ∥𝑥0 − 𝑥′0∥2 .

Integrating again then yields

∥𝑥𝑡 − 𝑥′𝑡 ∥2 ≤ ∥𝑥0 − 𝑦0∥2 −
𝛼𝑡2

4 ∥𝑥0 − 𝑥′0∥2 ≤ exp
(
−𝛼𝑡

2

4
)
∥𝑥0 − 𝑥′0∥2 . □

If we choose 𝑇 = 1
2
√
𝛽
, then the contraction factor is exp(− 1

16𝜅 ) ≤ 1 − 1/(32𝜅). In
particular, let 𝑃 denote the transition kernel of one step of ideal HMC with integration
time 𝑇 . We have the𝑊1 contraction

𝑊1
(
𝑃 ((𝑥, 𝑝), ·), 𝑃 ((𝑥′, 𝑝′), ·)

)
≤

(
1 − 1

32𝜅
)
∥(𝑥, 𝑝) − (𝑥′, 𝑝′)∥ ,

which, in the language of Section 2.7, says that the coarse Ricci curvature of 𝑃 is bounded
below by 𝜅/32. Hence, by Theorem 2.7.5, we immediately obtain the following corollary.
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Corollary 5.2.5. Assume that the target 𝜋 ∝ exp(−𝑉 ) satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Let
𝑃 be the Markov kernel for ideal HMC with integration time 𝑇 = 1

2
√
𝛽

. Then, 𝑃 satisfies

a Poincaré inequality with constant at most 32𝜅, where 𝜅 B 𝛽/𝛼 .

We conclude this section by observing that, since Hamilton’s equations are a deter-
ministic system of ODEs, we can approximately integrate them using any ODE solver;
unlike for the Langevin diffusion, there is no need to consider any SDE discretization here.
By following this approach, [CV19] also provide the following sampling guarantee.

Theorem 5.2.6 (unadjusted HMC, [CV19]). Assume that the target 𝜋 ∝ exp(−𝑉 )
satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and ∇𝑉 (0) = 0. Then, there is a sampling algorithm based on
a discretization of ideal HMC which outputs 𝜇 satisfying

√
𝛼𝑊2(𝜇, 𝜋) ≤ 𝜀 using

𝑂

(𝜅3/2𝑑1/2

𝜀

)
gradient queries .

5.3 The Underdamped Langevin Diffusion
In ideal HMC, the momentum is refreshed periodically. We now consider a variant in
which the momentum is refreshed continuously. The underdamped Langevin diffusion
is the solution to the SDE

d𝑋𝑡 = 𝑃𝑡 d𝑡 ,
d𝑃𝑡 = −∇𝑉 (𝑋𝑡 ) d𝑡 − 𝛾𝑃𝑡 d𝑡 +

√︁
2𝛾 d𝐵𝑡 .

Here, 𝛾 > 0 is a parameter known as the friction parameter; as the name suggests, the
physical interpretation is that the Hamiltonian system is damped by friction.

The underdamped Langevin diffusion is motivated by the acceleration phenomenon
in optimization, which we first recall in continuous time.

Optimization Box 5.3.1. Consider the following ODE system:

¤𝑥𝑡 = 𝑝𝑡 ,
¤𝑝𝑡 = −∇𝑉 (𝑥𝑡 ) − 𝛾𝑝𝑡 .

This is the deterministic analogue of the underdamped Langevin diffusion. If we
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assume that𝑉 is 𝛼-strongly convex, then one can show that with the choice 𝛾 = 2
√
𝛼 ,

𝑉 (𝑥𝑡 ) −𝑉 (𝑥★) ≤ 2 exp(−
√
𝛼 𝑡) {𝑉 (𝑥0) −𝑉 (𝑥★)} , (5.3.2)

see Exercise 5.6. Moreover, the ODE system is stable for integration times of order 𝑡 ≍
1/
√︁
𝛽 , where 𝛽 is the smoothness of 𝑉 , and hence one expects that the discretization

of this system yields an algorithm for optimization with a square root dependence
on the condition number 𝜅. This is indeed the case, but discretization is subtle;
see, e.g., [Nes18, §2.2] for an analysis of a discrete-time scheme which achieves
𝑉 (𝑥𝑁 ) −𝑉 (𝑥★) ≤ 𝜀2 in 𝑂 (

√
𝜅 log(𝜅 (𝑉 (𝑥0) −𝑉 (𝑥★))/𝜀2)) iterations.

This phenomenon is known as acceleration in optimization. Historically, the
development happened in the opposite order: Nesterov put forth his algorithm, now
known as Nesterov’s accelerated gradient descent, in [Nes83], and his algorithm is
optimal amongst all first-order algorithms [NY83]. The continuous-time formulation
of acceleration was introduced later, in [SBC16].

Motivated by the acceleration phenomenon in optimization, we undertake a detailed
study of the underdamped Langevin diffusion to see if such a phenomenon also holds for
log-concave sampling. At present, however, our understanding is inconclusive.

Unlike the Langevin diffusion, the underdamped Langevin diffusion is not a reversible
Markov process. Moreover, it is an example of hypocoercive dynamics, which means that
the Markov semigroup approach based on Poincaré and log-Sobolev inequalities fails,
necessitating the use of more sophisticated PDE analysis (see Section 5.3.4).

5.3.1 Continuous-Time Considerations

It is illuminating to write the dynamics in the space of measures. By computing the
generator of this Markov process and writing down the corresponding Fokker–Planck
equation, we arrive at the PDE

𝜕𝑡𝝅 𝑡 = 𝛾Δ𝑝𝝅 𝑡 + div
(
𝝅 𝑡

[
−𝑝

∇𝑉 + 𝛾𝑝

] )
for the evolution of the law (𝝅 𝑡 )𝑡≥0 of the underdamped Langevin diffusion. We can write
this as the continuity equation

𝜕𝑡𝝅 𝑡 = div
(
𝝅 𝑡

[
∇𝑝 ln𝝅

−∇𝑥 ln𝝅 − 𝛾∇𝑝 ln𝝅 + 𝛾∇𝑝 ln𝝅 𝑡

] )
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where 𝝅 (𝑥, 𝑝) ∝ exp(−𝐻 (𝑥, 𝑝)) = exp(−𝑉 (𝑥) − 1
2 ∥𝑝 ∥

2). However, taking advantage of
the fact that

div
(
𝝅 𝑡

[
−∇𝑝 ln𝝅 𝑡
∇𝑥 ln𝝅 𝑡

] )
= 0 ,

we have the more interpretable expression

𝜕𝑡𝝅 𝑡 = div
(
𝝅 𝑡 𝑱 𝛾

[
∇𝑥 ln(𝝅 𝑡/𝝅)
∇𝑝 ln(𝝅 𝑡/𝝅)

] )
, 𝑱 𝛾 B

[
0 1
−1 𝛾

]
,

or

𝜕𝑡𝝅 𝑡 = div
(
𝝅 𝑡 𝑱 𝛾 [∇𝑊2 KL(· ∥ 𝝅)] (𝝅 𝑡 )

)
. (5.3.3)

This shows that the underdamped Langevin diffusion is not interpreted as a gradient flow
of the KL divergence, but rather a “damped Hamiltonian flow” for the KL divergence.

We begin with a contraction result for the continuous-time process based on [Che+18].
Note that we use the same change of variables as in Exercise 5.6.

Theorem 5.3.4. Let (𝑋 0
𝑡 , 𝑃

0
𝑡 )𝑡≥0 and (𝑋 1

𝑡 , 𝑃
1
𝑡 )𝑡≥0 be two copies of the underdamped

Langevin diffusion, driven by the same Brownian motion. Assume that the potential
satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then, defining the modified norm

||| (𝑥, 𝑝) |||2 B


𝑥 +√︄ 2

𝛽
𝑝


2 + ∥𝑥 ∥2

and setting 𝛾 =
√︁

2𝛽 , we obtain the contraction

||| (𝑋 1
𝑡 , 𝑃

1
𝑡 ) − (𝑋 0

𝑡 , 𝑃
0
𝑡 ) ||| ≤ exp

(
− 𝛼𝑡√︁

2𝛽

)
||| (𝑋 1

0 , 𝑃
1
0 ) − (𝑋 0

0 , 𝑃
0
0 ) ||| .

Proof. Write 𝛿𝑋𝑡 B 𝑋 1
𝑡 − 𝑋 0

𝑡 and 𝛿𝑃𝑡 B 𝑃1
𝑡 − 𝑃0

𝑡 . Then, by Itô’s formula (Theorem 1.1.18),

d(𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡 ) =
[
𝛿𝑃𝑡 − 𝜂 {∇𝑉 (𝑋 1

𝑡 ) − ∇𝑉 (𝑋 0
𝑡 )} − 𝛾𝜂 𝛿𝑃𝑡

]
d𝑡

=

[
−(𝛾𝜂 − 1) 𝛿𝑃𝑡 − 𝜂

(∫ 1

0
∇2𝑉

(
(1 − 𝑠)𝑋 0

𝑡 + 𝑠 𝑋 1
𝑡

)
d𝑠
)

︸                                    ︷︷                                    ︸
C𝐻𝑡

𝛿𝑋𝑡

]
d𝑡

=

[
−
(
𝛾 − 1

𝜂

)
(𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡 ) +

(
𝛾 − 1

𝜂
− 𝜂𝐻𝑡

)
𝛿𝑋𝑡

]
d𝑡
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as well as

d(𝛿𝑋𝑡 ) = 𝛿𝑃𝑡 d𝑡 =
[ 1
𝜂
(𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡 ) −

1
𝜂
𝛿𝑋𝑡

]
d𝑡

so that
1
2 𝜕𝑡 {∥𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡 ∥

2 + ∥𝛿𝑋𝑡 ∥2}

= −
〈[
𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡

𝑋𝑡

]
,

[
𝛾 − 1

𝜂
1
2 (𝜂𝐻𝑡 − 𝛾)

1
2 (𝜂𝐻𝑡 − 𝛾)

1
𝜂

] [
𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡

𝑋𝑡

]〉
.

We now check that if 𝛾 = 2
𝜂

and 𝜂 =
√︃

2
𝛽
, then the eigenvalues of the matrix above are

lower bounded by 𝛼𝜂/2 = 𝛼/
√︁

2𝛽 . □

We check that the new norm we defined is equivalent to the Euclidean norm.

Lemma 5.3.5. For all 𝑥, 𝑝 ∈ R𝑑 ,

1
3
(
∥𝑥 ∥2 + 2

𝛽
∥𝑝 ∥2

)
≤ ||| (𝑥, 𝑝) |||2 ≤ 3

(
∥𝑥 ∥2 + 2

𝛽
∥𝑝 ∥2

)
.

Proof. The upper bound follows from

||| (𝑥, 𝑝) |||2 =


𝑥 +√︄ 2

𝛽
𝑝


2 + ∥𝑥 ∥2 ≤ 2

(
∥𝑥 ∥2 + 2

𝛽
∥𝑝 ∥2

)
+ ∥𝑥 ∥2 .

The lower bound follows from

2
𝛽
∥𝑝 ∥2 ≤ 2



𝑥 +√︄ 2
𝛽
𝑝


2 + 2 ∥𝑥 ∥2 . □

Consequently, the contraction result in Theorem 5.3.4 implies

∥𝑋 1
𝑡 − 𝑋 0

𝑡 ∥2 +
2
𝛽
∥𝑃1

𝑡 − 𝑃0
𝑡 ∥2 ≤ 9 exp

(
−
√

2𝛼𝑡√︁
𝛽

) (
∥𝑋 1

0 − 𝑋 0
0 ∥2 +

2
𝛽
∥𝑃1

0 − 𝑃0
0 ∥2

)
.

Remark 5.3.6. If we compare Theorem 5.3.4 with Optimization Box 5.3.1, we see that we
had to choose a larger value for the friction (𝛾 ≍

√︁
𝛽 rather than 𝛾 ≍

√
𝛼) and this leads

to a slower exponential contraction with rate 𝛼/
√︁
𝛽 (instead of

√
𝛼). Thus, Theorem 5.3.4

can be considered an unaccelerated convergence rate.
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5.3.2 Wasserstein Coupling Argument
We now discretize the underdamped Langevin diffusion. Of course, we could apply a simple
Euler–Maruyama discretization to the SDE, but there is a slightly better discretization
here. We observe that if we fix the value of the gradient term at time 𝑘ℎ, then the rest of
the SDE is a linear SDE, and can be integrated exactly. Namely, consider

d𝑋𝑡 = 𝑃𝑡 d𝑡 ,
d𝑃𝑡 = −∇𝑉 (𝑋𝑘ℎ) d𝑡 − 𝛾𝑃𝑡 d𝑡 +

√︁
2𝛾 d𝐵𝑡 ,

for 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] . (ULMC)

Then, the solution to the SDE is given explicitly in the following lemma.

Lemma 5.3.7. Conditioned on (𝑋𝑘ℎ, 𝑃𝑘ℎ), the law of (𝑋(𝑘+1)ℎ, 𝑃(𝑘+1)ℎ) is explicitly given
as normal(𝑀(𝑘+1)ℎ, Σ) where

𝑀(𝑘+1)ℎ =

[
𝑋𝑘ℎ + 𝛾−1 (1 − exp(−𝛾ℎ)) 𝑃𝑘ℎ − 𝛾−1 (ℎ − 𝛾−1 (1 − exp(−𝛾ℎ))) ∇𝑉 (𝑋𝑘ℎ)

𝑃𝑘ℎ exp(−𝛾ℎ) − 𝛾−1 (1 − exp(−𝛾ℎ)) ∇𝑉 (𝑋𝑘ℎ)

]
and

Σ =

[
2
𝛾
{ℎ − 2

𝛾
(1 − exp(−𝛾ℎ)) + 1

2𝛾 (1 − exp(−2𝛾ℎ))} ∗
1
𝛾
{1 − 2 exp(−𝛾ℎ) + exp(−2𝛾ℎ)} 1 − exp(−2𝛾ℎ)

]
⊗ 𝐼𝑑 .

The ∗ indicates that the entry is determined by symmetry.

The lemma is an exercise in stochastic calculus (Exercise 5.7). The point is that the
discretization given as ULMC is implementable.

We now proceed to a discretization analysis based on [Che+18].

Theorem 5.3.8. For 𝑘 ∈ N, let 𝝁𝑘ℎ denote the law of the 𝑘-th iterate of ULMC with
appropriately tuned step size ℎ > 0 and friction parameter 𝛾 > 0. Also, let 𝜇𝑘ℎ denote
the law of 𝑋𝑘ℎ . Assume that the target 𝜋 ∝ exp(−𝑉 ) satisfies ∇𝑉 (0) = 0 and 𝛼𝐼𝑑 ⪯
∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then, we obtain the guarantee

√
𝛼𝑊2(𝜇𝑁ℎ, 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝜅2𝑑1/2

𝜀

)
iterations .

Remark 5.3.9. This result is not the best possible. Indeed, a refined analysis by [DR20]
obtains the iteration complexity 𝑂 (𝜅3/2𝑑1/2/𝜀).
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Proof. One-step discretization bound. As in Theorem 4.1.2, we start with a one-step
bound. Let (𝑋𝑡 , 𝑃𝑡 )𝑡≥0 denote ULMC and let (𝑋𝑡 , 𝑃𝑡 )𝑡≥0 denote the continuous-time under-
damped Langevin diffusion, both driven by the same Brownian motion and started at the
same random pair. We want to bound the distance E[||| (𝑋ℎ, 𝑃ℎ) − (𝑋ℎ, 𝑃ℎ) |||2]. According
to Lemma 5.3.5, it suffices to bound E[∥𝑋ℎ − 𝑋ℎ∥2] and E[∥𝑃ℎ − 𝑃ℎ∥2] separately.

First,

E[∥𝑋ℎ − 𝑋ℎ∥2] = E
[


∫ ℎ

0
{𝑃𝑡 − 𝑃𝑡 } d𝑡




2]
≤ ℎ

∫ ℎ

0
E[∥𝑃𝑡 − 𝑃𝑡 ∥2] d𝑡 .

Next,

E[∥𝑃𝑡 − 𝑃𝑡 ∥2] = E
[


∫ 𝑡

0
{−∇𝑉 (𝑋0) + ∇𝑉 (𝑋𝑠) − 𝛾 (𝑃𝑠 − 𝑃𝑠)} d𝑠




2]
≲ ℎ

∫ 𝑡

0

(
E[∥∇𝑉 (𝑋𝑠) − ∇𝑉 (𝑋0)∥2] + 𝛾2 E[∥𝑃𝑠 − 𝑃𝑠 ∥2]

)
d𝑠 .

By Grönwall’s inequality, if ℎ ≤ 1
𝛾
= 1√

2𝛽
, then

E[∥𝑃𝑡 − 𝑃𝑡 ∥2] ≲ ℎ
∫ 𝑡

0
E[∥∇𝑉 (𝑋𝑠) − ∇𝑉 (𝑋0)∥2] d𝑠 ≤ 𝛽2ℎ

∫ 𝑡

0
E[∥𝑋𝑠 − 𝑋0∥2] d𝑡 .

Again, we need a movement bound for the underdamped Langevin diffusion, which is
done in Lemma 5.3.10. Substituting this in and assuming ℎ ≲ 1

𝛽1/2 ,

E[||| (𝑋ℎ, 𝑃ℎ) − (𝑋ℎ, 𝑃ℎ) |||2] ≲ E[∥𝑋ℎ − 𝑋ℎ∥2] +
1
𝛽
E[∥𝑃ℎ − 𝑃ℎ∥2]

≲ 𝛽2ℎ4 E[||| (𝑋0, 𝑃0) |||2] + 𝛽3/2𝑑ℎ5 .

Multi-step discretization bound. LetW2 denote the coupling cost for the norm
|||·|||2. Let 𝝁̂ (𝑘+1)ℎ denote the law of the continuous-time underdamped Langevin diffusion
started at 𝝁𝑘ℎ . Then, from Theorem 5.3.4 and the one-step discretization bound,

W(𝝁 (𝑘+1)ℎ, 𝝅) ≤ W(𝝁̂ (𝑘+1)ℎ, 𝝅) +W(𝝁 (𝑘+1)ℎ, 𝝁̂ (𝑘+1)ℎ)

≤ exp
(
− 𝛼ℎ√︁

2𝛽

)
W(𝝁𝑘ℎ, 𝝅) +𝑂

(
𝛽ℎ2W(𝝁𝑘ℎ, 𝜹0) + 𝛽3/4𝑑1/2ℎ5/2) .

Also,W(𝝁𝑘ℎ, 𝜹0) ≤ W(𝝁𝑘ℎ, 𝝅) +W(𝝅 , 𝜹0) ≲W(𝝁𝑘ℎ, 𝝅) +
√︁
𝑑/𝛼 , where we used the

moment bound in ??. If ℎ ≲ 1
𝛽1/2𝜅

, then we can absorb the W(𝝁𝑘ℎ, 𝝅) term into the
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contraction rate and deduce

W(𝝁 (𝑘+1)ℎ, 𝝅) ≤ exp
(
− 𝛼ℎ

2
√︁
𝛽

)
W(𝝁𝑘ℎ, 𝝅) +𝑂

(𝛽𝑑1/2ℎ2

𝛼1/2 + 𝛽3/4𝑑1/2ℎ5/2
)
.

Iterating,

W(𝝁𝑁ℎ, 𝝅) ≤ exp
(
−𝛼𝑁ℎ

2
√︁
𝛽

)
W(𝝁0, 𝝅) +𝑂

(𝛽3/2𝑑1/2ℎ

𝛼3/2 + 𝛽
5/4𝑑1/2ℎ3/2

𝛼

)
.

Choosing the step size appropriately yields the result. □

The next lemma provides the movement bound (Exercise 5.8).

Lemma 5.3.10. Let (𝑋𝑡 , 𝑃𝑡 )𝑡≥0 denote the underdamped Langevin diffusion with poten-
tial 𝑉 satisfying ∇2𝑉 ⪯ 𝛽𝐼𝑑 and ∇𝑉 (0) = 0. If 𝑡 ≤ 1

𝛾
∧ 1√

𝛽
, then

E[∥𝑋𝑡 − 𝑋0∥2] ≲ 𝑡2 E[∥𝑃0∥2] + 𝛾𝑑𝑡3 + 𝛽2𝑡4 E[∥𝑋0∥2] .

5.3.3 Randomized Midpoint Discretization
The randomized midpoint method of Section 5.1 can be applied to the underdamped
Langevin diffusion to yield an even better sampling guarantee. This was carried out
in [SL19], and we state the final result here.

Theorem 5.3.11. Assume that the target 𝜋 ∝ exp(−𝑉 ) satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and
∇𝑉 (0) = 0. Then, the randomized midpoint discretization of the underdamped Langevin
diffusion outputs 𝜇 such that

√
𝛼𝑊2(𝜇, 𝜋) ≤ 𝜀 using

𝑂

(𝜅𝑑1/3

𝜀2/3
(
1 ∨ 𝜀

1/3𝜅1/6

𝑑1/6
) )

gradient queries .

Since the proof is a combination of the proof techniques introduced for the random-
ized midpoint discretization (Theorem 5.1.1) and the analysis of underdamped Langevin
(Theorem 5.3.8), we leave it as an exercise

With respect to the dimension dependence, this is the current state-of-the-art guaran-
tee for sampling from strongly log-concave distributions.
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5.3.4 Hypocoercivity
Our study of the underdamped Langevin diffusion has produced samplers with substan-
tially improved sampling complexity, culminating in Theorem 5.3.11, but we have not
addressed the motivating question in this section. Namely, is there an acceleration phe-
nomenon for sampling, in the sense of an algorithm with a square root dependence on
the condition number? (See Optimization Box 5.3.1.)

Toward this question and others, such as whether we can obtain KL divergence
guarantees under functional inequality assumptions (as we did in Section 4.2), we must
now enter into a discussion of the hypocoercivity arguments which until this point we
had deferred due to the higher level of technical sophistication.

We start by noting that the generator of the underdamped Langevin diffusion can
be written (see Exercise 5.10) as ℒ = 𝛾ℒOU +ℒHam, where ℒOU is the generator of the
Ornstein–Uhlenbeck process (Exercise 1.5) acting on the momentum coordinate,

ℒOU𝑓 B Δ𝑝 𝑓 − ⟨𝑝,∇𝑝 𝑓 ⟩ ,

and ℒHam captures the Hamiltonian part of the dynamics,

ℒHam𝑓 B ⟨𝑝,∇𝑥 𝑓 ⟩ − ⟨∇𝑉 ,∇𝑝 𝑓 ⟩ .

If we write the Fokker–Planck equation for the underdamped Langevin diffusion in terms
of the relative density 𝜌𝑡 B d𝝅𝑡

d𝝅 , we obtain the differential equation

𝜕𝑡𝜌𝑡 = ℒ𝜌𝑡 . (5.3.12)

Now suppose that we wish to prove convergence in the chi-squared divergence. The
first approach to try is to simply differentiate 𝑡 ↦→ ∥𝜌𝑡 −1∥2

𝐿2 (𝝅) , as we did for the Langevin
diffusion. We find that

𝜕𝑡 ∥𝜌𝑡 − 1∥2
𝐿2 (𝝅) = 2𝛾 ⟨𝜌𝑡 − 1,ℒOU (𝜌𝑡 − 1)⟩𝐿2 (𝝅) + 2 ⟨𝜌𝑡 − 1,ℒHam (𝜌𝑡 − 1)⟩𝐿2 (𝝅) .

Unfortunately, this naı̈ve calculation cannot succeed. To see why, note first that ℒHam
is anti-symmetric in 𝐿2(𝝅), i.e., ℒ∗Ham = −ℒHam, so the second term above vanishes
(Exercise 5.11). Moreover, the first term is not coercive, in the sense that the putative
inequality ⟨𝜌𝑡 − 1,ℒOU (𝜌𝑡 − 1)⟩𝐿2 (𝝅) ≲ −∥𝜌𝑡 − 1∥2

𝐿2 (𝝅) generally fails, because ℒOU has a
large kernel: namely, all test functions which depend only on the position coordinate.

However, there is a certain intuition that the underdamped Langevin diffusion ought
to converge anyway: the ℒOU operator is coercive when restricted to the momentum
coordinate, and the Hamiltonian dynamics encoded in ℒHam causes the position and
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momentum coordinates to “mix”. Indeed, it is the interaction of the two parts of the
dynamics that drives the system to equilibrium.

We now give an exposition to the theory of hypocoercivity, as treated in Villani’s
monograph [Vil09a], which places the above intuition into a mathematical framework.
The theory has two key ingredients. First, the “interaction” between the two parts of the
dynamics is handled by studying the commutator of the two operators. Second, in order
to take advantage of the non-zero commutator, we perform an analysis in a modified norm
(similar in spirit to the twisted metric in the coupling argument of Theorem 5.3.4). We
will establish the following theorem.

Theorem 5.3.13 (hypocoercivity). For 𝑡 > 0, let 𝑓𝑡 B 𝜌𝑡 − 1 B d𝝅𝑡

d𝝅 − 1 denote
the centered relative density along the underdamped Langevin diffusion with friction
coefficient 𝛾 = 𝑐0

√︁
𝛽 , 𝑐0 > 0. Assume that measure 𝜋 ∝ exp(−𝑉 ) on R𝑑 satisfies a

Poincaré inequality with constant 𝛼−1, and that the potential 𝑉 is 𝛽-smooth. Then, there
is a constant 𝑐 > 0 depending only on 𝑐0 such that

∥ 𝑓𝑡 ∥2𝐿2 (𝝅) +
1
𝛽
∥∇𝑥 𝑓𝑡 ∥2𝐿2 (𝝅) + ∥∇𝑝 𝑓𝑡 ∥

2
𝐿2 (𝝅)

≲ exp
(
−𝑐𝛼𝑡√︁

𝛽

) (
∥ 𝑓0∥2𝐿2 (𝝅) +

1
𝛽
∥∇𝑥 𝑓0∥2𝐿2 (𝝅) + ∥∇𝑝 𝑓0∥

2
𝐿2 (𝝅)

)
.

To better appreciate the core of the argument, we follow [Vil09a] and switch to more
abstract notation. Although we are only concerned here with the underdamped Langevin
diffusion, some of the following discussion will be phrased more generally to emphasize
its broader applicability. We observe that ℒOU = −∇∗𝑝∇𝑝 , which makes apparent its
symmetry and non-positivity, and hence study an operator ℒ of the form ℒ = −𝛾𝐴𝐴∗+𝐵,
where 𝐴 and 𝐵 are linear operators and 𝐵 is anti-symmetric. Thus, we will take

𝐴 B ∇𝑝 , 𝐵 B ℒHam , 𝐶 B [𝐴, 𝐵] .

Here, [𝐴, 𝐵] B 𝐴𝐵 − 𝐵𝐴 is the commutator. As a preliminary step, we must compute
these commutators, which we leave as an important exercise (Exercise 5.11):

[𝐴,𝐴∗] = id , 𝐶 = ∇𝑥 , [𝐵,𝐶] = ∇2𝑉 ∇𝑝 = ∇2𝑉 𝐴 . (Com)

Here, [𝐴,𝐴∗] is interpreted as ( [𝜕𝑝1,∇∗𝑝], . . . , [𝜕𝑝𝑑 ,∇∗𝑝]). Also, 𝐶 commutes with 𝐴 and 𝐴∗.
Finally, we let ∥·∥ denote a Hilbert norm, which is taken to be ∥·∥𝐿2 (𝝅) for the application
to underdamped Langevin.
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Already, the commutator calculation proves to be interesting. Indeed, due to the
anti-symmetry of 𝐵, the computation of the time derivative along the dynamics2 induced
by ℒ yields 2 ⟨𝑓 ,ℒ𝑓 ⟩ = −2𝛾 ∥𝐴𝑓 ∥2, and the problem is that the quantity ∥𝐴𝑓 ∥ is not
coercive, in the sense that it does not control ∥ 𝑓 ∥ from above. In other words, 𝐴𝐴∗
may not be strictly positive definite. For underdamped Langevin, this corresponds to
∥𝐴𝑓 ∥ = ∥∇𝑝 𝑓 ∥𝐿2 (𝝅) and so we are missing a term—namely, the norm of the position
gradient. But this position gradient shows up precisely as the commutator 𝐶 .

Motivated by this observation, the plan is to instead consider ∥ 𝑓 ∥2 + ∥𝐴𝑓 ∥2 + ∥𝐶𝑓 ∥2,
which corresponds to the usual squared Sobolev norm ∥ 𝑓 ∥2

𝐿2 (𝝅) + ∥∇𝑓 ∥
2
𝐿2 (𝝅) for under-

damped Langevin. Importantly, this quantity is coercive, as a consequence of the Poincaré
inequality for 𝝅 (which follows from the assumed Poincaré inequality for 𝜋 , together with
the Poincaré inequality for the standard Gaussian). In other words, rather than requiring
𝐴𝐴∗ to be positive definite, we now only require 𝐴𝐴∗ + 𝐶𝐶∗ to be positive definite. In
general, this process can be repeated: if𝐴𝐴∗ +𝐶𝐶∗ is still not positive definite, we can take
another commutator 𝐶1 = [𝐶, 𝐵] and add 𝐶1𝐶

∗
1 , etc., and the number of times this pro-

cess must be repeated corresponds to the degeneracy of the equation. For underdamped
Langevin, just the addition of 𝐶𝐶∗ is enough.

However, simply differentiating 𝑡 ↦→ ∥ 𝑓𝑡 ∥2 + ∥𝐴𝑓𝑡 ∥2 + ∥𝐶𝑓𝑡 ∥2 is still not enough to
establish convergence. The other crucial ingredient is to change the norm. Hence, we shall
consider the following Lyapunov functional

L𝑡 B ∥ 𝑓𝑡 ∥2 + 𝑎 ∥𝐴𝑓𝑡 ∥2 −
2𝑏√︁
𝛽
⟨𝐴𝑓𝑡 ,𝐶 𝑓𝑡 ⟩ +

𝑐

𝛽
∥𝐶𝑓𝑡 ∥2 .

We will choose 𝑎, 𝑏, 𝑐 > 0 to be universal constants such that 𝑎𝑐 > 𝑏2, which will ensure
that the above Lyapunov functional is equivalent up to universal constants to the norm
∥ 𝑓 ∥2 + ∥𝐴𝑓 ∥2 + 𝛽−1 ∥𝐶𝑓 ∥2.

As Villani writes, the key intuition is that the effect of ℒOU = −𝐴∗𝐴 is to dissipate
the terms ∥ 𝑓 ∥2, ∥𝐴𝑓 ∥2, and ∥𝐶𝑓 ∥2, whereas the effect of 𝐵 is to dissipate the mixed term
−⟨𝐴𝑓 ,𝐶 𝑓 ⟩. To see this, suppose that 𝑀 is an operator which commutes with 𝐴. Then, if
𝜕𝑡𝑔𝑡 = −𝐴∗𝐴𝑔𝑡 ,

𝜕𝑡 ∥𝑀𝑔𝑡 ∥2 = −2 ⟨𝑀𝑔𝑡 , 𝑀𝐴∗𝐴𝑔𝑡 ⟩ = −2 ⟨𝑀𝑔𝑡 , 𝐴∗𝐴𝑀𝑔𝑡 ⟩ = −2 ∥𝐴𝑀𝑔𝑡 ∥2 ≤ 0 .

On the other hand, if 𝜕𝑡𝑔𝑡 = 𝐵𝑔𝑡 , from anti-symmetry, the definition of 𝐶 , and (Com),

−𝜕𝑡 ⟨𝐴𝑔𝑡 ,𝐶𝑔𝑡 ⟩ = −⟨𝐴𝐵𝑔𝑡 ,𝐶𝑔𝑡 ⟩ − ⟨𝐴𝑔𝑡 ,𝐶𝐵𝑔𝑡 ⟩
= −⟨𝐴𝐵𝑔𝑡 ,𝐶𝑔𝑡 ⟩ − ⟨𝐴𝑔𝑡 , 𝐵𝐶𝑔𝑡 ⟩ − ⟨𝐴𝑔𝑡 , [𝐶, 𝐵]𝑔𝑡 ⟩

2In the abstract setting, this refers to 𝑡 ↦→ exp(ℒ𝑡) 𝑓0, i.e., the semigroup with generator ℒ.



206 CHAPTER 5. FASTER LOW-ACCURACY SAMPLERS

= −⟨𝐴𝐵𝑔𝑡 ,𝐶𝑔𝑡 ⟩ + ⟨𝐵𝐴𝑔𝑡 ,𝐶𝑔𝑡 ⟩ + ⟨𝐴𝑔𝑡 , [𝐵,𝐶]𝑔𝑡 ⟩
= −∥𝐶𝑔𝑡 ∥2 + ⟨𝐴𝑔𝑡 ,∇2𝑉 𝐴𝑔𝑡 ⟩ .

Up to an error term, we have obtained decay in the missing “𝐶 direction”!
We now proceed to the full calculation.

Proof of Theorem 5.3.13. If we differentiate L𝑡 , we obtain −D(𝑓𝑡 ), where we calculate

D(𝑓 ) = 2𝛾 ∥𝐴𝑓 ∥2 + 𝑎 (· · · )︸ ︷︷ ︸
I

+ 2𝑏√︁
𝛽
(· · · )︸     ︷︷     ︸
II

+ 𝑐
𝛽
(· · · )︸  ︷︷  ︸
III

.

Our aim is to lower bound D(𝑓𝑡 ) by a multiple of L𝑡 . Following Villani’s notation, we
divide each of the terms I, II, and III with subscripts, I𝐴, I𝐵 , etc., to signify the part of the
time derivative which comes from −𝐴∗𝐴 or from 𝐵. We estimate each of these six terms.
Based on the above intuition, we expect I𝐴, II𝐵 , and III𝐴 to contribute terms that help us,
whereas the other terms are error terms. Throughout, we repeatedly use the commutator
calculations in (Com).

We start with the first term.

I𝐴 = 2𝑎𝛾 ⟨𝐴𝑓 ,𝐴𝐴∗𝐴𝑓 ⟩ = 2𝑎𝛾 (⟨𝐴𝑓 ,𝐴∗𝐴2𝑓 ⟩ + ∥𝐴𝑓 ∥2) = 2𝑎𝛾 (∥𝐴2𝑓 ∥2 + ∥𝐴𝑓 ∥2) ,
II𝐵 = −2𝑎 ⟨𝐴𝑓 ,𝐴𝐵𝑓 ⟩ = −2𝑎 ⟨𝐴𝑓 , 𝐵𝐴𝑓 ⟩ − 2𝑎 ⟨𝐴𝑓 ,𝐶 𝑓 ⟩ = −2𝑎 ⟨𝐴𝑓 ,𝐶 𝑓 ⟩
≥ −2𝑎 ∥𝐴𝑓 ∥ ∥𝐶𝑓 ∥ .

Next, for the second term, by the above calculations,

II𝐴 = −2𝑏𝛾√︁
𝛽
(⟨𝐴𝐴∗𝐴𝑓 ,𝐶 𝑓 ⟩ + ⟨𝐴𝑓 ,𝐶𝐴∗𝐴𝑓 ⟩)

= −2𝑏𝛾√︁
𝛽
(⟨𝐴∗𝐴2𝑓 ,𝐶 𝑓 ⟩ + ⟨𝐴𝑓 ,𝐶 𝑓 ⟩ + ⟨𝐴𝑓 ,𝐴∗𝐶𝐴𝑓 ⟩)

= −2𝑏𝛾√︁
𝛽
(2 ⟨𝐴2𝑓 , 𝐴𝐶𝑓 ⟩ + ⟨𝐴𝑓 ,𝐶 𝑓 ⟩) ≥ −2𝑏𝛾√︁

𝛽
(2 ∥𝐴2𝑓 ∥ ∥𝐴𝐶𝑓 ∥ + ∥𝐴𝑓 ∥∥𝐶𝑓 ∥)

II𝐵 =
2𝑏√︁
𝛽
(∥𝐶𝑓 ∥2 − ⟨𝐴𝑓 ,∇2𝑉 𝐴𝑓 ⟩) ≥ 2𝑏√︁

𝛽
(∥𝐶𝑓 ∥2 − 𝛽 ∥𝐴𝑓 ∥2) .

Finally, for the third term,

III𝐴 =
2𝑐𝛾
𝛽
⟨𝐶𝑓 ,𝐶𝐴∗𝐴𝑓 ⟩ = 2𝑐𝛾

𝛽
∥𝐴𝐶𝑓 ∥2 ,



5.3. THE UNDERDAMPED LANGEVIN DIFFUSION 207

III𝐵 = −2𝑐
𝛽
⟨𝐶𝑓 ,𝐶𝐵𝑓 ⟩ = −2𝑐

𝛽
(⟨𝐶𝑓 , 𝐵𝐶𝑓 ⟩ + ⟨𝐶𝑓 , [𝐶, 𝐵] 𝑓 ⟩) = 2𝑐

𝛽
⟨𝐶𝑓 ,∇2𝑉 𝐴𝑓 ⟩

≥ −2𝑐 ∥𝐴𝑓 ∥ ∥𝐶𝑓 ∥ .

Let 𝐷 (𝑓 ) B (∥𝐴𝑓 ∥, 1√
𝛽
∥𝐶𝑓 ∥, ∥𝐴2𝑓 ∥, 1√

𝛽
∥𝐴𝐶𝑓 ∥). Now assume that 𝛾 = 𝑐0

√︁
𝛽 for some

constant 𝑐0 > 0. We have established the inequality D(𝑓 ) ≥ ⟨𝐷 (𝑓 ), Σ𝐷 (𝑓 )⟩ where

Σ =
√︁
𝛽


2𝑐0 + 2𝑎𝑐0 − 2𝑏 −2𝑎 − 2𝑐

2𝑏
2𝑎𝑐0 −4𝑏𝑐0

2𝑐𝑐0

 .
Now we want to show that we can choose constants 𝑎, 𝑏, 𝑐 > 0 with 𝑎𝑐 > 𝑏2, depending
only on 𝑐0, such that the symmetric part of Σ is positive definite. In this case, since Σ is
block diagonal, this just amounts to 𝑎𝑐 > 𝑏2 as well as 4𝑏 (𝑐0 + 𝑎𝑐0 − 𝑏) − (𝑎 + 𝑐)2 > 0. If
we scale 𝑎, 𝑏, 𝑐 down so that max{𝑎, 𝑏, 𝑐} ≪ 𝑐0 ∧ 1 then the second condition is clearly
satisfied. With this, we have obtained

𝜕𝑡L𝑡 = −D(𝑓𝑡 ) ≲ −
√︁
𝛽 ∥𝐴𝑓𝑡 ∥2 −

1√︁
𝛽
∥𝐶𝑓𝑡 ∥2 .

Applying the Poincaré inequality for 𝝅 (in the norm given by ∥(𝑥, 𝑝)∥2 B ∥𝑥 ∥2 + ∥𝑝 ∥2/𝛼),

𝜕𝑡L𝑡 ≲ −
𝛼√︁
𝛽

(
∥𝐴𝑓𝑡 ∥2 +

1
𝛼
∥𝐶𝑓𝑡 ∥2

)
≤ − 𝛼

2
√︁
𝛽

(
∥ 𝑓𝑡 ∥2 + ∥𝐴𝑓𝑡 ∥2 +

1
𝛼
∥𝐶𝑓𝑡 ∥2

)
≲ − 𝛼√︁

𝛽
L𝑡 .

In the last line, we used the fact that L𝑡 is equivalent up to constants to the Sobolev norm
∥ 𝑓 ∥2 + ∥𝐴𝑓 ∥2 + 1

𝛽
∥𝐶𝑓 ∥2. □

Remarkably, there is a variant of this theorem which holds for KL convergence, which
proceeds via a twisted version of the Fisher information.

Theorem 5.3.14 (entropic hypocoercivity). In the setting of Theorem 5.3.13, suppose
instead that 𝜋 satisfies a log-Sobolev inequality with constant 𝛼−1. Then, there is a
Lyapunov function

L𝑡 B KL(𝝅 𝑡 ∥ 𝝅) + E𝝅𝑡

〈
∇ ln 𝝅 𝑡

𝝅
,

( [
𝑎/𝛽 𝑏/

√︁
𝛽

𝑏/
√︁
𝛽 𝑐

]
⊗ 𝐼𝑑

)
∇ ln 𝝅 𝑡

𝝅

〉
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such that for all 𝑡 ≥ 0,

L𝑡 ≤ exp
(
−𝑐𝛼𝑡√︁

𝛽

)
L0 .

This concludes our exposition to hypocoercivity. The study of hypocoercive dynamics
is still an active area of research, and there have been many developments since Villani’s
original monograph; see the bibliographical notes for a short discussion. However, Theo-
rem 5.3.13 and Theorem 5.3.14 still only yield unaccelerated rates of convergence. Very
recently, through different techniques (based on a space-time Poincaré inequality), Cao,
Lu, and Wang obtained the following remarkable result.

Theorem 5.3.15 (space-time Poincaré inequality, [CLW23]). Suppose that 𝜋 is log-
concave and satisfies a Poincaré inequality with constant 𝛼−1, and set 𝛾 =

√
𝛼 . There is

a universal constant 𝑐 > 0 such that for all 𝑡 ≥ 0, for underdamped Langevin,

𝜒2(𝝅 𝑡 ∥ 𝝅) ≲ exp(−𝑐
√
𝛼 𝑡) 𝜒2(𝝅0 ∥ 𝝅) .

Note that this is indeed the accelerated rate! Unfortunately, this is a “Poincaré-type”
result, which leads to a worse dependence on the dimension (see the discussion in Sec-
tion 1.5). Currently, it is not known how to prove a “log-Sobolev” version of this result.
Moreover, the current discretization methods are lossy, and have not yet translated Theo-
rem 5.3.15 into an accelerated discrete-time guarantee.

Bibliographical Notes
In the analysis of the randomized midpoint discretization of the Langevin diffusion
(Theorem 5.1.1), we have simplified the original proof of [HBE20] at the cost of proving a
slightly weaker result. The sharper argument of [HBE20] is outlined in Exercise 5.2.

Besides the randomized midpoint method, the shifted ODE discretization [FLO21]
also achieves a state-of-the-art iteration complexity of 𝑂 (𝑑1/3/𝜀2/3) when applied to the
underdamped Langevin diffusion.

HMC and its variants are some of the most popular algorithms employed in practice,
especially the no-U-turn sampler (NUTS) [HG14] which adaptively sets the integration
time. In terms of complexity analysis, the paper [CV19] (whose proof we followed
in Theorem 5.2.1) provided the tight analysis of ideal HMC. Other complexity results
obtained for HMC under various assumptions include [MV18; MS19; BEZ20].
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The underdamped Langevin diffusion has been studied quantitatively in [Che+18;
EGZ19; DR20; Ma+21; Zha+23].

The literature on hypocoercivity is large and we do not intend to comprehensively
survey it here, but we give a few pointers. Our treatment of hypocoercivity is inspired by
the monograph [Vil09a], which was the first to develop the theory in a general framework.
The illuminating work of [Bau17] relates the hypocoercive calculations to the Bakry–
Émery calculus. The approach to hypocoercivity taken here is sometimes called “𝐻 1

hypocoercivity” because the constructed norm is equivalent to the 𝐻 1(𝝅) Sobolev norm,
but there is another approach based on “𝐿2 hypocoercivity”. The latter is called the “DMS
framework” after [DMS09]; see [RS18] for the application to underdamped Langevin.
Finally, we mention that the space-time Poincaré approach of [CLW23] builds on the
earlier work of [Alb+21].

Exercises
Randomized Midpoint Discretization

⊵ Exercise 5.1 (one-step discretization bound for RM-LMC)
Prove the one-step discretization bound (5.1.2) for RM-LMC.

⊵ Exercise 5.2 (sharper rate for RM-LMC)
In this exercise we show how to obtain a slightly sharper guarantee for RM-LMC than
the one in Theorem 5.1.1. Note that Theorem 5.1.1 provides the rate

𝑁 = 𝑂

(𝜅𝑑1/2

𝜀
∨ 𝜅

3/2𝑑1/4

𝜀1/2

)
=

{
𝜅𝑑1/2/𝜀 , 𝜅 ≤

√
𝑑/𝜀 ,

𝜅3/2𝑑1/4/𝜀1/2 , 𝜅 ≥
√
𝑑/𝜀 ,

(5.E.1)

whereas the rate we show in this exercise is

𝑁 = 𝑂

(𝜅𝑑1/2

𝜀
∨ 𝜅

4/3𝑑1/3

𝜀2/3

)
=

{
𝜅𝑑1/2/𝜀 , 𝜅 ≤

√
𝑑/𝜀 ,

𝜅4/3𝑑1/3/𝜀2/3 , 𝜅 ≥
√
𝑑/𝜀 .

(5.E.2)

1. Check that the rate (5.E.2) is indeed better than (5.E.1).

The main idea behind the improved rate is that throughout the proof of Theorem 5.1.1, we
used the inequality

E[∥∇𝑉 (𝑋𝑘ℎ)∥2] ≤ 𝛽2 E[∥𝑋𝑘ℎ∥2] , (5.E.3)
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which is wasteful. Instead, we will show that

1
𝑁

𝑁−1∑︁
𝑘=0
E[∥∇𝑉 (𝑋𝑘ℎ)∥2] ≲ 𝛽𝑑 . (5.E.4)

Note that since we expect E[∥𝑋𝑘ℎ∥2] ≍ 𝑑/𝛼 , then the new bound (5.E.4) is an improvement
by a factor of 𝜅.

2. Rewrite the proof of Theorem 5.1.1, avoiding the use of the inequality (5.E.3), and
leaving the error bound in terms of

∑𝑁−1
𝑘=0 E[∥∇𝑉 (𝑋𝑘ℎ)∥2]. As a sanity check, the

result should imply the rate (5.E.2) once the key inequality (5.E.4) is proven.

3. Applying Itô’s formula (Theorem 1.1.18) to 𝑉 (𝑋𝑡 ), write down an expression for
E[𝑉 (𝑋(𝑘+1)ℎ) −𝑉 (𝑋𝑘ℎ)]. By bounding the error terms carefully and assuming that
ℎ ≲ 1

𝛽
, prove that

E[𝑉 (𝑋(𝑘+1)ℎ) −𝑉 (𝑋(𝑘+1)ℎ)]

≥ E[𝑉 (𝑋(𝑘+1)ℎ) −𝑉 (𝑋𝑘ℎ)] +
ℎ

4 E[∥∇𝑉 (𝑋𝑘ℎ)∥
2] −𝑂 (𝛽𝑑ℎ) .

4. Using the smoothness inequality,

E[𝑉 (𝑋(𝑘+1)ℎ) | ℱ(𝑘+1)ℎ]
≤ 𝑉 (𝑋(𝑘+1)ℎ) + ⟨∇𝑉 (𝑋(𝑘+1)ℎ),E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] − 𝑋(𝑘+1)ℎ⟩

+ 𝛽2 E[∥𝑋(𝑘+1)ℎ − 𝑋(𝑘+1)ℎ∥
2 | ℱ(𝑘+1)ℎ] .

Applying the Cauchy–Schwarz and Young’s inequality to the middle term,

⟨∇𝑉 (𝑋(𝑘+1)ℎ),E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] − 𝑋(𝑘+1)ℎ⟩

≤ 𝜆 ∥∇𝑉 (𝑋(𝑘+1)ℎ)∥2 +
1
𝜆
∥E[𝑋(𝑘+1)ℎ | ℱ(𝑘+1)ℎ] − 𝑋(𝑘+1)ℎ∥2

for an appropriate choice of 𝜆 > 0. Use this to show that

E[𝑉 (𝑋(𝑘+1)ℎ) −𝑉 (𝑋(𝑘+1)ℎ)] ≲ 𝛽ℎ2 E[∥∇𝑉 (𝑋𝑘ℎ)∥2] + 𝛽3𝑑ℎ3 .

5. Combining these inequalities, assuming that 𝛽ℎ is sufficiently small and that we
initialize with 𝑋0 = arg min𝑉 , prove the key inequality (5.E.4).
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Hamiltonian Monte Carlo

⊵ Exercise 5.3 (Gaussian calculations for HMC)
Suppose that the target 𝜋 is a standard Gaussian distribution. Compute the flow map 𝐹𝑡 for
the Hamiltonian dynamics. Also, if we start at the initial distribution 𝜇0 = normal(0, 𝜎2𝐼𝑑),
show that the distribution 𝝁𝑡 over phase space at time 𝑡 of ideal HMC is a Gaussian
distribution, normal(0, Σ𝑡 ), and compute Σ𝑡 ∈ R2𝑑×2𝑑 .

⊵ Exercise 5.4 (basic properties of Hamiltonian dynamics)
In this exercise, we explore some fundamental properties of the Hamiltonian dynamics.

1. (conservation of energy) Along the Hamiltonian dynamics, (𝑥𝑡 , 𝑝𝑡 )𝑡≥0, show that
𝐻 (𝑥𝑡 , 𝑝𝑡 ) = 𝐻 (𝑥0, 𝑝0). In fact, for any function 𝑓 : R𝑑 × R𝑑 → R whose Poisson
bracket with 𝐻 vanishes, i.e.,

{𝑓 , 𝐻 } B ⟨∇𝑥 𝑓 ,∇𝑝𝐻 ⟩ − ⟨∇𝑝 𝑓 ,∇𝑥𝐻 ⟩ = 0 ,

it holds that 𝑓 (𝑥𝑡 , 𝑝𝑡 ) = 𝑓 (𝑥0, 𝑝0).

2. (conservation of volume) By differentiating 𝑡 ↦→ det∇𝐹𝑡 (𝑥, 𝑝) and using the flow
map equation 𝜕𝑡𝐹𝑡 (𝑥, 𝑝) = 𝑱 ∇𝐻 (𝐹𝑡 (𝑥, 𝑝)), prove that det∇𝐹𝑡 (𝑥, 𝑝) = 1 for all 𝑡 ≥ 0
and 𝑥, 𝑝 ∈ R𝑑 . This shows that 𝐹𝑡 : R𝑑 → R𝑑 is a volume-preserving map.

3. (time reversibility) Suppose that (𝑥𝑡 , 𝑝𝑡 )𝑡∈[0,𝑇 ] solve Hamilton’s equations. Show
that (𝑥𝑇−𝑡 ,−𝑝𝑇−𝑡 )𝑡∈[0,𝑇 ] also solve Hamilton’s equations. In other words, if 𝑅 is the
moment reversal operator, i.e.,

𝑅 =

[
𝐼𝑑 0
0 −𝐼𝑑

]
,

then 𝐹−1
𝑇

= 𝑅 ◦ 𝐹𝑇 ◦ 𝑅.

⊵ Exercise 5.5 (coercivity)
Prove Lemma 5.2.3.

Hint: Let 𝑧 B 𝑦 − 1
𝛽
{∇𝑓 (𝑦) − ∇𝑓 (𝑥)}. Apply the convexity inequality to 𝑓 (𝑥) − 𝑓 (𝑧),

and the smoothness inequality to 𝑓 (𝑧) − 𝑓 (𝑦), in order to upper bound 𝑓 (𝑥) − 𝑓 (𝑦).
Combine this with the symmetric inequality for 𝑓 (𝑦) − 𝑓 (𝑥).

The Underdamped Langevin Diffusion

⊵ Exercise 5.6 (Nesterov’s algorithm in continuous time)
Consider the continuous-time formulation of Nesterov’s algorithm, as given in Optimiza-
tion Box 5.3.1. Assume that 𝑉 is 𝛼-strongly convex. Prove the rate (5.3.2).
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Hint: Let 𝑧𝑡 B 𝑥𝑡 + 2
𝛾
𝑝𝑡 . Consider the Lyapunov functional

L𝑡 B 𝑉 (𝑥𝑡 ) −𝑉 (𝑥★) +
𝛼

2 ∥𝑧𝑡 − 𝑥★∥
2 .

Prove that ¤L𝑡 ≤ 0. You may find the following identity to be helpful: ⟨𝑧 − 𝑥, 𝑧 − 𝑥★⟩ =
1
2 (∥𝑧 − 𝑥 ∥

2 + ∥𝑧 − 𝑥★∥2 − ∥𝑥 − 𝑥★∥2).

⊵ Exercise 5.7 (derivation of the ULMC updates)
Solve the SDE for ULMC to prove Lemma 5.3.7.

⊵ Exercise 5.8 (movement bound for the underdamped Langevin diffusion)
Prove the movement bound for underdamped Langevin (Lemma 5.3.10).

⊵ Exercise 5.9 (analysis of RM-ULMC)
Prove Theorem 5.3.11 (or at least write out enough of the analysis to convince yourself of
the main term 𝜅𝑑1/3/𝜀2/3 in the rate).

⊵ Exercise 5.10 (Fokker–Planck equation for the underdamped Langevin diffusion)
Check the expression ℒ = 𝛾ℒOU +ℒHam for the generator of the underdamped Langevin
diffusion given in Section 5.3.4. Then, check the various calculations leading up to the
Fokker–Planck equations (5.3.3) and (5.3.12).

⊵ Exercise 5.11 (computations with adjoints and commutators)
Prove that ℒ∗Ham = −ℒHam and that ℒOU = −∇∗𝑝∇𝑝 , where the adjoints are taken in 𝐿2(𝝅).
Moreover, verify the commutator relations (Com).

⊵ Exercise 5.12 (entropic hypocoercivity)
Adapt the proof of Theorem 5.3.13 to prove Theorem 5.3.14.



CHAPTER 6

Convergence in Rényi Divergence

In this chapter, we study sampling guarantees which hold in Rényi divergences. Recall
from Section 2.2.4 that the Rényi divergences are a family of information divergences,
indexed by a parameter 𝑞, such that the Rényi divergence of order 𝑞 = 1 is the KL
divergence, and the Rényi divergence of order 2 is related to the chi-squared divergence
via R2 = ln(1 + 𝜒2). Rényi divergence guarantees are stronger than𝑊2 or KL guarantees,
and they have been of interest in their own right in differential privacy [Mir17]. The
results from this chapter will also be used to be used in the subsequent Chapter 7.

In Section 2.2.4, we studied the continuous-time convergence of the Langevin diffusion
in Rényi divergence under either a Poincaré inequality or a log-Sobolev inequality. We
will build upon these results in order to study the discretized LMC algorithm. Then, we
will consider the underdamped Langevin diffusion, which was introduced in Section 5.3.

6.1 Analysis of LMC via Interpolation Argument
In this section, we follow [Che+21a], which generalizes the argument of Theorem 4.2.6 and
provides a clean Rényi convergence proof for LMC under the assumption of a log-Sobolev
inequality (LSI).

As in Section 4.2, we begin by writing a differential inequality for the Rényi diver-
gence along the interpolation (4.2.2) of LMC. The proof is a combination of the proofs
of Theorem 2.2.15 and Corollary 4.2.4, so it is left as Exercise 6.1. Throughout this section,
let 𝑞 ≥ 2 be fixed.

213
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Proposition 6.1.1. Along the law (𝜇𝑡 )𝑡≥0 of the interpolated process (4.2.2),

𝜕𝑡R𝑞 (𝜇𝑡 ∥ 𝜋) ≤ −
3
𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+ 𝑞 E[𝜓𝑡 (𝑋𝑡 ) ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2] ,

where 𝜌𝑡 B
d𝜇𝑡
d𝜋 and𝜓𝑡 B 𝜌

𝑞−1
𝑡 /E𝜋 (𝜌

𝑞

𝑡 ).

In analogy with the usual Fisher information, the quantity

FI𝑞 (𝜇 ∥ 𝜋) B
4
𝑞

E𝜋 [∥∇(𝜌𝑞/2)∥2]
E𝜋 (𝜌𝑞)

, 𝜌 B
d𝜇
d𝜋 ,

may be considered the “Rényi Fisher information”. As in the proof of Theorem 2.2.15,
under a log-Sobolev inequality, we have

FI𝑞 (𝜇 ∥ 𝜋) ≥
2

𝑞𝐶LSI
R𝑞 (𝜇 ∥ 𝜋) ,

so the first term in Proposition 6.1.1 provides a decay in the Rényi divergence. In the
discretization analysis, our task is to control the second term.

Note that

E𝜓𝑡 (𝑋𝑡 ) = E𝜇𝑡 𝜓𝑡 = E𝜋
[
𝜌𝑡

𝜌
𝑞−1
𝑡

E𝜋 (𝜌𝑞𝑡 )
]
= 1 ,

so 𝜓𝑡 (𝑋𝑡 ) acts as a change of measure. The main difficulty of the proof is that whereas
we know how to control the term ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2 under the original probability
measure P (indeed, this is precisely what we accomplished in Theorem 4.2.6), it is not
straightforward to control this term under the measure P defined by dP

dP = 𝜓𝑡 (𝑋𝑡 ). To-
wards this end, we shall employ change of measure inequalities that allow us to relate
expectations under P to expectations under P. Note that𝜓𝑡 = 1 when 𝑞 = 1, which is why
these difficulties can be avoided when working with the KL divergence.

The main theorem that we wish to prove is as follows.

Theorem 6.1.2 ([Che+21a]). For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of the 𝑘-th iterate
of LMC with step size ℎ > 0. Assume that the target 𝜋 ∝ exp(−𝑉 ) satisfies LSI and that
∇𝑉 is 𝛽-Lipschitz. Also, for simplicity, assume that 𝐶LSI, 𝛽 ≥ 1. TODO: Check if this is
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necessary. Then, for all ℎ ≤ 1
192𝐶LSI𝛽

2𝑞2 , for all 𝑁 ≥ 𝑁0, it holds that

R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ≤ exp
(
− (𝑁 − 𝑁0)ℎ

4𝐶LSI

)
R2(𝜇0 ∥ 𝜋) +𝑂 (𝐶LSI𝛽

2𝑑ℎ𝑞) ,

where 𝑁0 B ⌈2𝐶LSI
ℎ

ln(𝑞 − 1)⌉. In particular, for all 𝜀 ∈ [0,
√︁
𝑑/𝑞], if we choose the step

size ℎ = Θ̃( 𝜀2

𝛽2𝑑𝑞𝐶LSI
), then we obtain the guarantee

√︁
R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝐶2
LSI𝛽

2𝑑𝑞

𝜀2 logR2(𝜇0 ∥ 𝜋)
)

iterations .

For clarity of exposition, we begin with a discretization analysis that incurs a worse
dependence on 𝑞. Afterwards, we show how to improve the dependence on 𝑞 via a
hypercontractivity argument.

Proof of Theorem 6.1.2 with suboptimal dependence on 𝑞. As in the proof of Theorem 4.2.6,
our aim is to control the error term E[𝜓𝑡 (𝑋𝑡 ) ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2], where from the
𝛽-smoothness of 𝑉 and from ℎ ≤ 1

3𝛽 we have

∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2 ≤ 9𝛽2 (𝑡 − 𝑘ℎ)2 ∥∇𝑉 (𝑋𝑡 )∥2 + 6𝛽2 (𝑡 − 𝑘ℎ) ∥𝐵𝑡 − 𝐵𝑘ℎ∥2 .

There are two terms to control. For the first term, applying the duality lemma for the
Fisher information (Lemma 4.2.5) to the measure𝜓𝑡𝜇𝑡 ,

E𝜓𝑡 𝜇𝑡 [∥∇𝑉 ∥2] ≤ FI(𝜓𝑡𝜇𝑡 ∥ 𝜋) + 2𝛽𝑑 = E𝜇𝑡
[
𝜓𝑡



∇ ln
(
𝜓𝑡

d𝜇𝑡
d𝜋

)

2] + 2𝛽𝑑

=
E𝜋 [𝜌𝑞𝑡 ∥∇ ln(𝜌𝑞𝑡 )∥2]

E𝜋 (𝜌𝑞𝑡 )
+ 2𝛽𝑑 =

4E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+ 2𝛽𝑑 ,

where we used the identity

E𝜇𝑡
[
𝜓𝑡



∇ ln
(
𝜓𝑡

d𝜇𝑡
d𝜋

)

2]
=

4E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

(6.1.3)

which follows from the chain rule from calculus.
For the second error term, we must control the term ∥𝐵𝑡 − 𝐵𝑘ℎ∥2 under the measure

P, where dP
dP = 𝜓𝑡 (𝑋𝑡 ). The difficulty is that under P, 𝐵 is no longer a standard Brownian

motion, so it is difficult to control this term directly. Instead, we apply the Donsker–
Varadhan variational principle (Theorem 1.5.4) to relate the expectation under P (denoted
E) with the expectation under P. For any random variable 𝜁 , it yields

E𝜁 ≤ KL(P ∥ P) + lnE exp 𝜁 .
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Applying this to 𝜁 B 𝑐 (∥𝐵𝑡 − 𝐵𝑘ℎ∥ − E∥𝐵𝑡 − 𝐵𝑘ℎ∥)2 for a constant 𝑐 > 0 to be chosen
later, we obtain

E[∥𝐵𝑡 − 𝐵𝑘ℎ∥2] ≤ 2E[∥𝐵𝑡 − 𝐵𝑘ℎ∥2] +
2
𝑐
E𝜁

≤ 2𝑑 (𝑡 − 𝑘ℎ) + 2
𝑐

{
KL(P ∥ P) + lnE exp

(
𝑐 (∥𝐵𝑡 − 𝐵𝑘ℎ∥ − E∥𝐵𝑡 − 𝐵𝑘ℎ∥)2

)}
.

Under P, 𝐵𝑡 − 𝐵𝑘ℎ ∼ normal(0, (𝑡 − 𝑘ℎ) 𝐼𝑑). Applying concentration of measure for the
Gaussian distribution (see, e.g., Theorem 2.4.8), if 𝑐 ≲ 1

𝑡−𝑘ℎ , then

E exp
(
𝑐 (∥𝐵𝑡 − 𝐵𝑘ℎ∥ − E∥𝐵𝑡 − 𝐵𝑘ℎ∥)2

)
≤ 2 .

In fact, it suffices to take 𝑐 = 1
8 (𝑡−𝑘ℎ) . Next, using the LSI for 𝜋 ,

KL(P ∥ P) = E𝜓𝑡 𝜇𝑡 ln𝜓𝑡 = E𝜓𝑡 𝜇𝑡 ln
𝜌
𝑞−1
𝑡

E𝜇𝑡 (𝜌
𝑞−1
𝑡 )

=
𝑞 − 1
𝑞
E𝜓𝑡 𝜇𝑡 ln

𝜌
𝑞

𝑡

E𝜇𝑡 (𝜌
𝑞−1
𝑡 )

𝑞/(𝑞−1)

=
𝑞 − 1
𝑞

{
E𝜓𝑡 𝜇𝑡 ln

𝜌
𝑞

𝑡

E𝜇𝑡 (𝜌
𝑞−1
𝑡 )
− 1
𝑞 − 1 lnE𝜇𝑡 (𝜌

𝑞−1
𝑡 )︸                 ︷︷                 ︸

≥0

}
≤ 𝑞 − 1

𝑞
KL(𝜓𝑡𝜇𝑡 ∥ 𝜋)

≤ (𝑞 − 1)𝐶LSI

2𝑞 E𝜓𝑡 𝜇𝑡
[

∇ ln

(
𝜓𝑡

d𝜇𝑡
d𝜋

)

2]
=

2 (𝑞 − 1)𝐶LSI

𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

,

where we applied the identity (6.1.3). Hence,

E[𝜓𝑡 (𝑋𝑡 ) ∥𝐵𝑡 − 𝐵𝑘ℎ∥2]

≤ 2𝑑 (𝑡 − 𝑘ℎ) + 32𝐶LSIℎ (𝑞 − 1)
𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+ (16 ln 2) (𝑡 − 𝑘ℎ)

≤ 14𝑑 (𝑡 − 𝑘ℎ) + 32𝐶LSIℎ
E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

.

All in all, applying Proposition 6.1.1 and collecting the error terms,

𝜕𝑡R𝑞 (𝜇𝑡 ∥ 𝜋) ≤ −
3
𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+ 9𝛽2𝑞 (𝑡 − 𝑘ℎ)2
{4E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]

E𝜋 (𝜌𝑞𝑡 )
+ 2𝛽𝑑

}
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+ 6𝛽2𝑞
{
14𝑑 (𝑡 − 𝑘ℎ) + 32𝐶LSIℎ

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

}
.

From 𝐶LSI, 𝛽 ≥ 1 and ℎ ≤ 1
192𝐶LSI𝛽

2𝑞2 , we can absorb some of the error terms into the decay
term and apply the LSI for 𝜋 (see Theorem 2.2.15), yielding

𝜕𝑡R𝑞 (𝜇𝑡 ∥ 𝜋) ≤ −
1
𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+𝑂 (𝛽3𝑑ℎ2𝑞 + 𝛽2𝑑ℎ𝑞)

≤ − 1
2𝑞𝐶LSI

R𝑞 (𝜇𝑡 ∥ 𝜋) +𝑂 (𝛽2𝑑ℎ𝑞) .

This implies the differential inequality

𝜕𝑡
{
exp

( 𝑡 − 𝑘ℎ
2𝑞𝐶LSI

)
R𝑞 (𝜇𝑡 ∥ 𝜋)

}
≲ exp

( 𝑡 − 𝑘ℎ
2𝑞𝐶LSI

)
𝛽2𝑑ℎ𝑞 ≲ 𝛽2𝑑ℎ𝑞 .

Integrating this over 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] yields

R𝑞 (𝜇(𝑘+1)ℎ ∥ 𝜋) ≤ exp
(
− ℎ

2𝑞𝐶LSI

)
R𝑞 (𝜇𝑘ℎ ∥ 𝜋) +𝑂 (𝛽2𝑑ℎ2𝑞) .

Unrolling the recursion,

R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ≤ exp
(
− 𝑁ℎ

2𝑞𝐶LSI

)
R𝑞 (𝜇0 ∥ 𝜋) +𝑂 (𝐶LSI𝛽

2𝑑ℎ𝑞2) . □

We pause to reflect upon the proof. As discussed above, the key steps are to use
change of measure inequalities in order to relate expectations under P to expectations
under P. This is accomplished via the Fisher information duality lemma (Lemma 4.2.5)
and the Donsker–Varadhan variational principle (Theorem 1.5.4). These inequalities yield
an additional error term of the form FI(𝜓𝑡𝜇𝑡 ∥ 𝜋) (for the latter, this error term appears
after an application of the LSI). The magical part of the calculation is that FI(𝜓𝑡𝜇𝑡 ∥ 𝜋) is
precisely equal to the Rényi Fisher information (up to constants), and when the step size
ℎ is sufficiently small it can be absorbed into the decay term of the differential inequality
in Proposition 6.1.1.

The proof above implies an iteration complexity whose dependence on 𝑞 scales as
𝑁 = 𝑂 (𝑞3). In order to improve the dependence on 𝑞, we modify the differential in-
equality of Proposition 6.1.1 by making the parameter 𝑞 time-dependent, similarly to the
hypercontractivity principle (Exercise 2.7). The proof is left as Exercise 6.1.
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Proposition 6.1.4 (hypercontractivity). Suppose that 𝜋 satisfies a log-Sobolev inequal-
ity. Along the law (𝜇𝑡 )𝑡≥0 of the interpolated process (4.2.2), if we define the parameter
𝑞(𝑡) B 1 + (𝑞0 − 1) exp 𝑡

2𝐶LSI
, then

𝜕𝑡

( 1
𝑞(𝑡) ln

∫
𝜌
𝑞(𝑡)
𝑡 d𝜋

)
≤ −2 (𝑞(𝑡) − 1)

𝑞(𝑡)2
E𝜋 [∥∇(𝜌𝑞(𝑡)/2𝑡 )∥2]
E𝜋 (𝜌𝑞(𝑡)𝑡 )

+
(
𝑞(𝑡) − 1

)
E[𝜓𝑡 (𝑋𝑡 ) ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2] ,

where 𝜌𝑡 B
d𝜇𝑡
d𝜋 and𝜓𝑡 B 𝜌

𝑞(𝑡)−1
𝑡 /E𝜋 (𝜌𝑞(𝑡)𝑡 ).

Proof of Theorem 6.1.2 with improved dependence on 𝑞. Let 𝑞 ≥ 3.
Initial waiting phase. We apply hypercontractivity (Proposition 6.1.4) with 𝑞0 = 2

and for 𝑡 ≤ 𝑁0ℎ, where 𝑁0 B ⌈2𝐶LSI
ℎ

ln(𝑞 − 1)⌉. Note that 𝑞 ≤ 𝑞(𝑁0ℎ) ≤ 2𝑞. The bound on
the error term from the previous proof yields

𝜕𝑡

( 1
𝑞(𝑡) ln

∫
𝜌
𝑞(𝑡)
𝑡 d𝜋

)
≲ 𝛽2𝑑ℎ𝑞(𝑡) .

Integrating this over 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] yields

1
𝑞((𝑘 + 1)ℎ) ln

∫
𝜌
𝑞((𝑘+1)ℎ)
(𝑘+1)ℎ d𝜋 − 1

𝑞(𝑘ℎ) ln
∫

𝜌
𝑞(𝑘ℎ)
𝑘ℎ

d𝜋 ≲ 𝛽2𝑑ℎ2𝑞 .

Unrolling the recursion yields

1
𝑞(𝑁0ℎ)

ln
∫

𝜌
𝑞(𝑁0ℎ)
𝑁0ℎ

d𝜋 − 1
2 ln

∫
𝜌2

0 d𝜋 ≲ 𝛽2𝑑ℎ2𝑞𝑁0 ≤ 𝑂 (𝐶LSI𝛽
2𝑑ℎ𝑞) .

Finishing the convergence analysis. Next, after shifting time indices and applying
the previous proof of Theorem 6.1.2 with 𝑞 = 2,

R𝑞 (𝜇(𝑁+𝑁0)ℎ ∥ 𝜋) ≤
1

𝑞(𝑁0ℎ) − 1 ln
∫

𝜌
𝑞(𝑁0ℎ)
(𝑁+𝑁0)ℎ d𝜋 ≤ 3

4 ln
∫

𝜌2
𝑁ℎ

d𝜋 +𝑂 (𝐶LSI𝛽
2𝑑ℎ𝑞)

≤ 3
4 exp

(
− 𝑁ℎ

4𝐶LSI

)
R2(𝜇0 ∥ 𝜋) +𝑂 (𝐶LSI𝛽

2𝑑ℎ𝑞) .

This proves the desired result. □
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The proof of Theorem 6.1.2 is rather specific to the LSI case because we use the LSI to
bound the KL term KL(𝜓𝑡𝜇𝑡 ∥ 𝜋) via the Rényi Fisher information, which is then absorbed
into the differential inequality of Proposition 6.1.1. However, it turns out that rather than
assuming an LSI for 𝜋 , it suffices to have an LSI for 𝜇𝑡 for all 𝑡 ≥ 0 (possibly with an LSI
constant that grows with 𝑡 ). One situation in which this holds is when we initialize LMC
with a measure 𝜇0 that satisfies an LSI, and the potential 𝑉 is convex. Note that this
situation is not included in the case when 𝜋 satisfies an LSI, because 𝑉 may only have
linear growth at infinity (whereas from Theorem 2.4.8, if 𝜋 ∝ exp(−𝑉 ) satisfies an LSI,
then 𝑉 necessarily has quadratic growth at infinity). We explore this in Exercise 6.2.

6.2 Analysis of LMC via Girsanov’s Theorem
We now provide a Rényi analysis for LMC based on Girsanov’s theorem; see Sections 3.2.2
and 4.4 for background. The advantage of this approach is that it is more generalizable, as
it is less reliant on seemingly miraculous calculations. The results of this section will also
be used for the analysis of MALA in Chapter 7.

Discretization error. Following the proof of Theorem 4.4.1 in Section 4.4, let P𝑇 , W𝑇 be
path measures such that under P𝑇 , (𝑋𝑡 )𝑡∈[0,𝑇 ] is the interpolated LMC process, and under
W𝑇 , (𝑋𝑡 )𝑡∈[0,𝑇 ] is the Langevin diffusion. Both processes are initialized at some measure
𝜇0. Our goal is to prove the following theorem.

Theorem 6.2.1. Assume that the potential 𝑉 is 𝛽-smooth and that ℎ ≲ 1/(𝛽2𝑞2𝑇 )
where 𝑇 = 𝑁ℎ. Then, for all 𝑞 ≥ 2,

R𝑞 (P𝑇 ∥W𝑇 ) ≲
1
𝑞

max
𝑘=0,1,...,𝑁−1

lnEW𝑇 exp
{
𝑂
(
𝛽2ℎ2𝑞2𝑇 ∥∇𝑉 (𝑋𝑘ℎ)∥2

)}
+ 𝛽2𝑑ℎ𝑞𝑇 .

Proof. From Girsanov’s theorem (Theorem 3.2.6; see also Section 4.4), we have1

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞]
= EW𝑇 exp

( 𝑞
√

2

∫ 𝑇

0
⟨∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ), d𝐵𝑡 ⟩

− 𝑞4

∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
.

1Again, we ignore Novikov’s condition, which can be avoided via localization.
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Unlike the analysis in KL divergence, the stochastic integral is now inside the exponential.
The first step is to remove this term, which we accomplish as follows. First, by the
Cauchy–Schwarz inequality and for any 𝜆 > 0,{

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞]}2
≤ EW𝑇 exp

(√
2𝑞

∫ 𝑇

0
⟨∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ), d𝐵𝑡 ⟩

− 𝜆
∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
× EW𝑇 exp

( (
𝜆 − 𝑞2

) ∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
.

Next, recall from Section 3.2.2 that for any martingale 𝑀 , the exponential martingale
E(𝑀) B exp(𝑀− 1

2 [𝑀,𝑀]) is a local martingale. We apply this to the martingale𝑀 given
by𝑀𝑡 B

√
2𝑞

∫ 𝑡
0 ⟨∇𝑉 (𝑋𝑠− ) −∇𝑉 (𝑋𝑠), d𝐵𝑠⟩ by taking 𝜆 = 𝑞2. Then, E(𝑀) is a non-negative

local martingale, so it is a supermartingale, and EW𝑇 E(𝑀)𝑇 ≤ 1. Finally, noting that the
expectation above is at least 1, we can drop the square and we obtain

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞] ≤ EW𝑇 exp
(
𝑞2

∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
≤ EW𝑇 exp

(
𝛽2𝑞2

∫ 𝑇

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡

)
.

Let us first consider a single iteration, over the time interval [0, ℎ], and suppose that
the processes are started at 𝑥 ∈ R𝑑 . Then,

∥𝑋𝑡 − 𝑥 ∥ =



−∫ 𝑡

0
∇𝑉 (𝑋𝑠) d𝑠 +

√
2𝐵𝑡




 ≤ ∫ 𝑡

0
∥∇𝑉 (𝑋𝑠)∥ d𝑠 +

√
2 ∥𝐵𝑡 ∥

≤ 𝛽
∫ 𝑡

0
∥𝑋𝑠 − 𝑥 ∥ d𝑠 + ℎ ∥∇𝑉 (𝑥)∥ +

√
2 ∥𝐵𝑡 ∥ .

By Grönwall’s inequality, if ℎ ≤ 1/𝛽 , it yields, for all 𝑡 ∈ [0, ℎ],

∥𝑋𝑡 − 𝑥 ∥ ≤ 3ℎ ∥∇𝑉 (𝑥)∥ + 3
√

2 sup
𝑠∈[0,𝑡]

∥𝐵𝑠 ∥ .

Therefore, for any 𝜂 > 0,

EW𝑇 exp
(
𝜂 sup
𝑡∈[0,ℎ]

∥𝑋𝑡 − 𝑥 ∥2
)
≤ exp(18𝜂ℎ2 ∥∇𝑉 (𝑥)∥2) EW𝑇 exp

(
36𝜂 sup

𝑡∈[0,ℎ]
∥𝐵𝑡 ∥2

)
.
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We require a tail bound for Brownian motion (Lemma 6.2.3 below), which yields

lnEW𝑇 exp
(
𝜂 sup
𝑡∈[0,ℎ]

∥𝑋𝑡 − 𝑥 ∥2
)
≲ 𝜂ℎ2 ∥∇𝑉 (𝑥)∥2 + 𝜂𝑑ℎ , (6.2.2)

provided that 𝜂 ≲ 1/ℎ.
We must now iterate this bound. One approach is to condition on the process up until

time (𝑁 − 1)ℎ and apply (6.2.2), which yields

EW𝑇 exp
(
𝛽2𝑞2

∫ 𝑁ℎ

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡

)
≤ EW𝑇 exp

(
𝛽2𝑞2

∫ (𝑁−1)ℎ

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡 +𝑂

(
𝛽2ℎ3𝑞2 ∥∇𝑉 (𝑋(𝑁−1)ℎ)∥2 + 𝛽2𝑑ℎ2𝑞2) )

but now the terms in the exponential are dependent and we cannot peel off the next
term. To circumvent this issue, we instead apply Jensen’s inequality (or equivalently, the
AM–GM inequality):

EW𝑇 exp
(
𝛽2𝑞2

∫ 𝑇

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡

)
≤ 1
𝑇

∫ 𝑇

0
EW𝑇 exp(𝛽2𝑞2𝑇 ∥𝑋𝑡 − 𝑋𝑡− ∥2) d𝑡 .

Applying (6.2.2) conditionally, it yields

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞] ≤ 1
𝑇

∫ 𝑇

0
EW𝑇 exp

(
𝑂
(
𝛽2ℎ2𝑞2𝑇 ∥∇𝑉 (𝑋𝑡− )∥2 + 𝛽2𝑑ℎ𝑞2𝑇

) )
d𝑡

provided that 𝛽2𝑞2𝑇 ≲ 1/ℎ, i.e., ℎ ≲ 1/(𝛽2𝑞2𝑇 ). The result follows. □

In the proof, we used the following lemma; see Exercise 6.3.

Lemma 6.2.3. Let (𝐵𝑡 )𝑡≥0 denote a standard Brownian motion in R𝑑 . Then, for 𝜆, 𝑡 > 0
such that 𝜆 < 1

2𝑡 ,

E exp
(
𝜆 sup
𝑠∈[0,𝑡]

∥𝐵𝑠 ∥2
)
≤

( 1 + 2𝜆𝑡
1 − 2𝜆𝑡

)𝑑
.

Sampling guarantees. We now show how to combine the continuous-time Rényi
analysis (Theorem 2.2.15) with the discretization bound (Theorem 6.2.1) to obtain sampling
guarantees. The first ingredient we need is a weak triangle inequality (Exercise 6.4).
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Lemma 6.2.4 (weak triangle inequality). For any 𝑞 > 1, 𝜆 ∈ (0, 1), and any probability
measures 𝜇, 𝜈 , 𝜋 :

R𝑞 (𝜇 ∥ 𝜋) ≤
𝑞 − 𝜆
𝑞 − 1 R𝑞/𝜆 (𝜇 ∥ 𝜈) + R(𝑞−𝜆)/(1−𝜆) (𝜈 ∥ 𝜋) . (6.2.5)

In particular, for 𝜆 = 1/2,

R𝑞 (𝜇 ∥ 𝜋) ≤
𝑞 − 1/2
𝑞 − 1 R2𝑞 (𝜇 ∥ 𝜈) + R2𝑞−1(𝜈 ∥ 𝜋) .

Next, in order to apply Theorem 6.2.1, we also need a concentration inequality for
∥∇𝑉 ∥ under 𝜋 . The following result is taken from [Neg22; AC23].

Lemma 6.2.6 (score concentration). Let 𝜋 ∝ exp(−𝑉 ) and assume that ∇𝑉 is 𝛽-
Lipschitz. Then, ∇𝑉 is

√︁
𝛽-sub-Gaussian under 𝜋 , in the sense that for any 𝑣 ∈ R𝑑 ,

E𝜋 exp ⟨∇𝑉 , 𝑣⟩ ≤ exp
(𝛽 ∥𝑣 ∥2

2
)
.

In particular, for any 0 < 𝛿 < 1/2, with probability at least 1 − 𝛿 under 𝜋 ,

∥∇𝑉 ∥ ≲
√︁
𝛽𝑑 +

√︂
𝛽 log 1

𝛿
.

We also need to transfer this concentration to different measures, which is accom-
plished via the following general principle.

Lemma 6.2.7 (change of measure). Suppose that a test function 𝜙 satisfies

𝜋{𝜙 ≥ 𝜂} ≤ 𝜓 (𝜂) , for all 𝜂 > 0 .

Then, for any measure 𝜇 and any 𝑞 > 1,

𝜇{𝜙 ≥ 𝜂} ≤ 𝜓 (𝜂) (𝑞−1)/𝑞 exp
(𝑞 − 1
𝑞

R𝑞 (𝜇 ∥ 𝜋)
)
.

Proof. We note the following simple calculation:

𝜇{𝜙 ≥ 𝜂} =
∫

1{𝜙 ≥ 𝜂} d𝜇
d𝜋 d𝜋 ≤ 𝜋{𝜙 ≥ 𝜂}(𝑞−1)/𝑞

{∫ ( d𝜇
d𝜋

)𝑞 d𝜋
}1/𝑞

. □
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We can now prove the following result.

Theorem 6.2.8. For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of the 𝑘-th iterate of LMC with step
size ℎ > 0. Assume that ∇𝑉 is 𝛽-Lipschitz, 𝑞 ≥ 2, and that 𝜀 is sufficiently small.

1. If 𝜋 satisfies a log-Sobolev inequality, then for an appropriate choice of ℎ we obtain
R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀2 with

𝑁 = Θ
(𝐶2

LSI𝛽
2𝑑𝑞3

𝜀2 log2 R2𝑞−1(𝜇0 ∥ 𝜋)
𝜀2

)
iterations .

2. If 𝜋 satisfies a Poincaré inequality, then for an appropriate choice of ℎ we obtain
R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀2 with

𝑁 = Θ
(𝐶2

PI𝛽
2𝑑𝑞3

𝜀2
(
R2𝑞−1(𝜇0 ∥ 𝜋)2 + log2 1

𝜀

) )
iterations .

Proof. Let (𝜋𝑡 )𝑡≥0 denote the Langevin diffusion started at 𝜇0. By the weak triangle
inequality (Lemma 6.2.4),

R𝑞 (𝜇𝑇 ∥ 𝜋) ≲ R2𝑞 (𝜇𝑇 ∥ 𝜋𝑇 ) + R2𝑞−1(𝜋𝑇 ∥ 𝜋) .

By Theorem 2.2.15, the second term is at most 𝜀2 for𝑇 ≍ 𝑞𝐶LSI ln(R2𝑞−1(𝜇0 ∥ 𝜋)/𝜀2) in the
LSI case, and for 𝑇 ≍ 𝑞𝐶PI (R2𝑞−1(𝜇0 ∥ 𝜋) + log(1/𝜀)) in the PI case.

Next, Lemma 6.2.6 yields, for some universal 𝐶 > 0,

𝜋{∥∇𝑉 ∥ ≥ 𝐶
√︁
𝛽 (
√
𝑑 + 𝜂)} ≤ exp(−𝜂2) for all 𝜂 > 0 .

By Lemma 6.2.7, for any 𝑡 ∈ [0,𝑇 ],

𝜋𝑡 {∥∇𝑉 ∥ ≥ 𝐶
√︁
𝛽 (
√
𝑑 + 𝜂)} ≤ exp

(
−2𝑞 − 1

2𝑞
(
𝜂2 − R2𝑞 (𝜋𝑡 ∥ 𝜋)

) )
.

By the data-processing inequality (Theorem 1.5.3), R2𝑞 (𝜋𝑡 ∥ 𝜋) ≤ R2𝑞 (𝜇0 ∥ 𝜋). We can
conclude that with probability at least 1 − 𝛿 under 𝜋𝑡 ,

∥∇𝑉 ∥ ≲
√︃
𝛽
(
𝑑 + R2𝑞 (𝜇0 ∥ 𝜋)

)
+
√︂
𝛽 log 1

𝛿
.

From Theorem 6.2.1, provided that ℎ ≲ 1/(𝛽2𝑞2𝑇 ) and ℎ ≲ 1/(𝛽3/2𝑞𝑇 1/2),

R2𝑞 (𝜇𝑇 ∥ 𝜋𝑇 ) ≲ 𝛽3ℎ2𝑞𝑇
(
𝑑 + R2𝑞 (𝜇0 ∥ 𝜋)

)
+ 𝛽2𝑑ℎ𝑞𝑇 .

The theorem follows by choosing ℎ appropriately. □
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If we assume that R2𝑞−1(𝜇0 ∥ 𝜋) = 𝑂 (𝑑) (see [Che+21a] for justification) and that
𝛽𝐶LSI, 𝛽𝐶PI = 𝑂 (1), then the complexity reads 𝑂 (𝑑𝑞3/𝜀2) in the LSI case and 𝑂 (𝑑3𝑞3/𝜀2)
in the PI case. In the LSI case, this is worse than the result in Theorem 6.1.2 in two ways:
first, the dependence on 𝑞 (because here we did not take advantage of hypercontractivity);
and second, Theorem 6.2.8 does not allow for taking an unbounded number of steps of
LMC (it suggests that if we run LMC for too long, then we will start to drift farther away
from 𝜋 , which is absurd).

As mentioned above, however, the benefit of the Girsanov approach is its flexibility,
which allowed us to tackle the Poincaré case. This flexibility will be important when we
study the underdamped Langevin diffusion in the next section. Finally, we remark that
the sampling guarantee under a Poincaré inequality will be considerably improved via
the proximal sampler in Chapter 8.

Bibliographical Notes
Rényi guarantees for LMC were first considered in [VW19], which proved convergence of
LMC to its biased stationary distribution provided that the biased limit satisfies a Poincaré
or log-Sobolev inequality. However, this does not lead to a sampling guarantee unless the
size of the “Rényi bias” (the Rényi divergence between the biased stationary distribution
and the true target distribution) can be estimated.

Motivated by applications to differential privacy, [GT20] provided the first Rényi
sampling guarantees for LMC under strong log-concavity by using a technique based on
the adaptive composition lemma for Rényi divergences. This result was refined in [EHZ22]
via a two-phase analysis, still relying on the adaptive composition lemma. Subsequently,
building off the earlier work of [Che+21b] (which essentially contains a one-step Rényi
discretization argument), it was realized in [Che+21a] that the earlier arguments of [GT20;
EHZ22] can be streamlined by replacing the adaptive composition lemma entirely with
Girsanov’s theorem. The proofs of Theorem 6.1.2 and Exercise 6.2 are also from [Che+21a].
The proof of Theorem 6.2.8 given here is a further refinement of [Che+21a].

Exercises
Analysis of LMC via Interpolation Argument

⊵ Exercise 6.1 (Rényi differential inequality)
Prove Proposition 6.1.1 and Proposition 6.1.4.
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⊵ Exercise 6.2 (Rényi discretization bound for log-concave targets)
Suppose that 𝜋 ∝ exp(−𝑉 ) is log-concave, that ∇𝑉 (0) = 0, and that ∇𝑉 is 𝛽-Lipschitz.
Also, suppose that we initialize LMC at 𝜇0 = normal(0, 𝛽−1𝐼𝑑). The goal of this exercise is
to prove a Rényi discretization bound for LMC under these assumptions.

1. First, show that 𝜇𝑡 satisfies an LSI for all 𝑡 ≥ 0, and write down a bound for𝐶LSI(𝜇𝑡 )
(the bound should grow linearly with 𝑡 ).
Hint: See Section 2.3.

2. Follow the proof of Theorem 6.1.2 (the first proof which incurs a suboptimal depen-
dence on 𝑞). Note that in Theorem 6.1.2, we bounded KL(P ∥ P) ≤ 𝑞−1

𝑞
KL(𝜓𝑡𝜇𝑡 ∥ 𝜋)

and we applied the LSI for 𝜋 . This time, use KL(P ∥ P) = KL(𝜓𝑡𝜇𝑡 ∥ 𝜇𝑡 ) and apply
the LSI for 𝜇𝑡 instead.
Also, instead of using the decay of the Rényi divergence under a LSI, use the decay of
the Rényi divergence under a PI (Theorem 2.2.15). (Since 𝜋 is log-concave, it neces-
sarily satisfies a Poincaré inequality with some constant𝐶PI, see the Bibliographical
Notes to Chapter 2.)
Prove that if 𝜀 ≤

√︁
1/𝑞 ∧

√︁
𝐶PI𝑑/𝛽 , then with an appropriate choice of step size ℎ

and with 𝑁 = Θ̃(𝐶2
PI𝛽

2𝑑2𝑞3/𝜀2) iterations of LMC, we obtain
√︁
R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀.

(Unlike the guarantee of Theorem 6.1.2, here the guarantee does not allow 𝑁 to be
too large, due to the growing LSI constant of the iterates.)

Analysis of LMC via Girsanov’s Theorem

⊵ Exercise 6.3 (sub-Gaussian bound for Brownian motion)
Prove Lemma 6.2.3.

Hint: The reflection principle states that if (𝐵̃𝑡 )𝑡≥0 is a one-dimensional Brownian
motion, then for every 𝜂 > 0, P(sup𝑠∈[0,𝑡] 𝐵̃𝑠 > 𝜂) = 2P(𝐵̃𝑡 > 𝜂).

⊵ Exercise 6.4 (weak triangle inequality)
Prove the weak triangle inequality (Lemma 6.2.4). What happens if we take 𝑞 = 1 + 𝜀,
𝜆 = 1 − 𝜀, and send 𝜀 ↘ 0?



226 CHAPTER 6. CONVERGENCE IN RÉNYI DIVERGENCE



CHAPTER 7

High-Accuracy Samplers

So far, we have focused on discretizations of diffusions. Discretization of a continuous-
time Markov process yields a discrete-time Markov chain whose stationary distribution is
no longer equal to the target 𝜋 ; the algorithm is biased. Nevertheless, we showed that the
size of the bias can be made smaller than any desired accuracy 𝜀 by choosing a small step
size ℎ, which then leads to quantitative sampling guarantees.

However, the number of iterations of the algorithm is proportional to the inverse
step size 1/ℎ, and consequently the complexity of the algorithms scaled as poly(1/𝜀). In
this section, we address the problem of designing high-accuracy samplers, i.e., samplers
whose complexity scales as polylog(1/𝜀). To accomplish this, we must fix the bias of the
sampling algorithm, which is accomplished via the Metropolis–Hastings filter.

7.1 Rejection Sampling
Before introducing the Metropolis–Hastings filter, we begin with a warm up and introduce
the concept of rejection via the rejection sampling algorithm.

Rejection Sampling: Let 𝜋 be the target distribution and let 𝜋 be an unnormalized
version of 𝜋 , i.e., 𝜋 ∝ 𝜋 . Suppose we can sample from a distribution 𝜇 and that an
unnormalized version 𝜇̃ of 𝜇 satisfies 𝜇̃ ≥ 𝜋 . Then, repeat until acceptance:

1. Draw 𝑋 ∼ 𝜇.

2. Accept 𝑋 with probability 𝜋 (𝑋 )/𝜇̃ (𝑋 ).

227
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Unlike the other sampling algorithms we have considered thus far, rejection sampling
always terminates with an exact sample from 𝜋 .

Theorem 7.1.1. The output of rejection sampling is a sample drawn exactly from 𝜋 .
Also, the number of samples drawn from 𝜇 until a sample is accepted follows a geometric
distribution with mean 𝑍𝜇/𝑍𝜋 , where 𝑍𝜇 B

∫
𝜇̃ and 𝑍𝜋 B

∫
𝜋 .

Proof. The probability of acceptance is

P(acceptance) =
∫

𝜋

𝜇̃
d𝜇 = 𝑍𝜋

𝑍𝜇

∫
𝜋

𝜇
d𝜇 = 𝑍𝜋

𝑍𝜇

and clearly the number of samples drawn until acceptance is geometrically distributed.
To show that the output 𝑋 of rejection sampling is drawn exactly according to 𝜋 , let

(𝑈𝑖)∞𝑖=1
i.i.d.∼ uniform[0, 1] and (𝑋𝑖)∞𝑖=1

i.i.d.∼ 𝜇 be independent. Then, for any event 𝐴,

P(𝑋 ∈ 𝐴) =
∞∑︁
𝑛=0
P
(
𝑋𝑛+1 ∈ 𝐴, 𝑈𝑖 >

𝜋 (𝑋𝑖)
𝜇̃ (𝑋𝑖)

∀𝑖 ∈ [𝑛], 𝑈𝑛+1 ≤
𝜋 (𝑋𝑛+1)
𝜇̃ (𝑋𝑛+1)

)
=

∞∑︁
𝑛=0
P
(
𝑋𝑛+1 ∈ 𝐴, 𝑈𝑛+1 ≤

𝜋 (𝑋𝑛+1)
𝜇̃ (𝑋𝑛+1)

)
P
(
𝑈1 >

𝜋 (𝑋1)
𝜇̃ (𝑋1)

)𝑛
=

∞∑︁
𝑛=0

(∫
𝐴

𝜋

𝜇̃
d𝜇

) (∫ (
1 − 𝜋

𝜇̃

)
d𝜇

)𝑛
=
𝑍𝜋

𝑍𝜇
𝜋 (𝐴)

∞∑︁
𝑛=0

(
1 − 𝑍𝜋

𝑍𝜇

)𝑛
= 𝜋 (𝐴) . □

The rejection sampling algorithm requires the construction of the upper envelope 𝜇̃.
We now demonstrate how to construct this envelope for our usual class of distributions.
Namely, suppose that 𝜋 ∝ exp(−𝑉 ) satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 , and that ∇𝑉 (0) = 0.
We can assume that our unnormalized version 𝜋 = exp(−𝑉 ) of 𝜋 satisfies𝑉 (0) = 0 (if not,
replace 𝑉 by 𝑉 −𝑉 (0)). Then, by strong convexity of 𝑉 , we see that 𝜋 ≤ exp(−𝛼2 ∥·∥

2),
and we can take 𝜇̃ B exp(−𝛼2 ∥·∥

2), which means that the normalized distribution is
𝜇 = normal(0, 𝛼−1𝐼𝑑). To understand the efficiency of rejection sampling, we need to
bound the ratio 𝑍𝜇/𝑍𝜋 of normalizing constants. By smoothness of 𝑉 ,

𝑍𝜇

𝑍𝜋
=
(2π/𝛼)𝑑/2∫

exp(−𝑉 )
≤ (2π/𝛼)𝑑/2∫

exp(− 𝛽2 ∥·∥2)
=
(2π/𝛼)𝑑/2

(2π/𝛽)𝑑/2
= 𝜅𝑑/2 ,

with 𝜅 B 𝛽/𝛼 . We summarize this result in the following proposition.
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Proposition 7.1.2. Let the target 𝜋 ∝ exp(−𝑉 ) on R𝑑 satisfy 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 ,
𝑉 (0) = 0, and ∇𝑉 (0) = 0. Then, rejection sampling with the envelope 𝜇̃ B exp(−𝛼2 ∥·∥

2)
returns an exact sample from 𝜋 with a number of iterations that is a geometric random
variable with mean at most 𝜅𝑑/2, where 𝜅 B 𝛽/𝛼 .

The rejection sampling guarantee can be formulated in one of two ways. We can think
of the algorithm as returning an exact sample from 𝜋 , with a random number of iterations
(the number of iterations is geometrically distributed). Alternatively, if we place an upper
bound 𝑁 on the number of iterations of the algorithm and output “FAIL” if we have not
terminated by iteration 𝑁 , then the probability of “FAIL” is at most 𝜀 B (1 − 1/𝜅𝑑/2)𝑁 ,
and if 𝜇𝑁 denotes the law of the output of the algorithm, then ∥𝜇𝑁 − 𝜋 ∥TV ≤ 𝜀. If we flip
this around and fix the target accuracy 𝜀, we see that the number of iterations required to
achieve this guarantee is 𝑁 ≥ 𝜅𝑑/2 ln(1/𝜀).

Although this result is acceptable in low dimension, the complexity of this approach
quickly becomes intractable even for moderately high-dimensional problems. In the next
section, we will see that by combining the idea of rejection with local proposals, we can
obtain tractable sampling algorithms in high dimension.

7.2 The Metropolis–Hastings Filter
A Metropolis–Hastings algorithm consists of proposing moves from a proposal kernel
𝑄 , and then accepting or rejecting each move with a carefully chosen probability which
ensures that the resulting Markov chain has the desired stationary distribution 𝜋 .

In more detail, let 𝑄 be a kernel on R𝑑 × R𝑑 , that is: for each 𝑥 ∈ R𝑑 , 𝑄 (𝑥, ·) is a
probability measure on R𝑑 . We will mostly consider proposals such that each 𝑄 (𝑥, ·) has
a density with respect to Lebesgue measure, and via an abuse of notation we will write
𝑄 (𝑥,𝑦) for this density evaluated at 𝑦 (an exception is when we consider MHMC below).

Starting from𝑋 ∈ R𝑑 , we tentatively propose a new point 𝑌 ∼ 𝑄 (𝑋, ·). We then accept
the point 𝑌 with probability 𝐴(𝑋,𝑌 ) (called the acceptance probability); otherwise, we
stay at the old point 𝑋 . Iterate this process until convergence.

There are different possible choices for the acceptance probability 𝐴, but the choice
we consider here is the Metropolis–Hastings filter

𝐴(𝑥,𝑦) B 1 ∧ 𝜋 (𝑦)𝑄 (𝑦, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑦) . (7.2.1)

The overall algorithm is summarized as follows.
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Metropolis–Hastings algorithm (with proposal 𝑄): initialize at a point 𝑋0 ∈ R𝑑 .
Then, iterate the following steps for 𝑘 = 1, 2, 3, . . . :

1. Propose a new point 𝑌𝑘 ∼ 𝑄 (𝑋𝑘−1, ·).

2. With probability 𝐴(𝑋𝑘−1, 𝑌𝑘), set 𝑋𝑘 B 𝑌𝑘 ; otherwise, set 𝑋𝑘 B 𝑋𝑘−1. Here, 𝐴 is the
acceptance probability defined via (7.2.1).

This algorithm defines a discrete-time Markov chain whose transition kernel 𝑇 can be
written explicitly as

𝑇 (𝑥, d𝑦) = 𝑄 (𝑥, d𝑦)𝐴(𝑥,𝑦) +
(
1 −

∫
𝑄 (𝑥, d𝑦′)𝐴(𝑥,𝑦′)

)
︸                             ︷︷                             ︸

rejection probability

𝛿𝑥 (d𝑦) . (7.2.2)

A discrete-time Markov chain with transition kernel 𝑃 is called reversible with
respect to 𝜋 if it holds that 𝜋 (d𝑥) 𝑃 (𝑥, d𝑦) = 𝜋 (d𝑦) 𝑃 (𝑦, d𝑥). Similarly to our discussion
in Section 1.2, discrete-time reversible Markov chains can be studied via spectral theory.

Theorem 7.2.3. The Metropolis–Hastings algorithm with proposal 𝑄 is reversible with
respect to 𝜋 .

Proof. We want to check that 𝜋 (𝑥)𝑇 (𝑥,𝑦) = 𝜋 (𝑦)𝑇 (𝑦, 𝑥) for all 𝑥,𝑦 ∈ R𝑑 with 𝑥 ≠ 𝑦. We
can write

𝜋 (𝑥)𝑇 (𝑥,𝑦) = 𝜋 (𝑥)𝑄 (𝑥,𝑦)𝐴(𝑥,𝑦) = 𝜋 (𝑥)𝑄 (𝑥,𝑦)min
{
1, 𝜋 (𝑦)𝑄 (𝑦, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑦)

}
= min{𝜋 (𝑥)𝑄 (𝑥,𝑦), 𝜋 (𝑦)𝑄 (𝑦, 𝑥)}

and this expression is symmetric in 𝑥 and 𝑦. □

Take note of the flexibility of the Metropolis–Hastings algorithm! Regardless of the
choice of proposal kernel𝑄 , the filter always makes the algorithm unbiased. Of course, the
choice of 𝑄 will be crucial later in order to guarantee rapid convergence to stationarity.

Implementability of the Metropolis–Hastings algorithm. To implement the algo-
rithm, the proposal 𝑄 must be simple enough such that (1) we can sample from 𝑄 (𝑥, ·)
easily, and (2) we can compute the density 𝑄 (𝑥,𝑦) easily (which is required to compute
the acceptance probability). Note that although the target density 𝜋 appears in the expres-
sion (7.2.1) for the acceptance probability, it only appears as a ratio, and in particular we
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do not need to know the normalization constant of 𝜋 . Hence, the Metropolis–Hastings
filter can be implemented using queries to the density of 𝜋 up to normalization, which
are “zeroth-order queries” (unlike, e.g., LMC, which uses first-order information through
queries to the gradient ∇𝑉 ).

Metropolis–Hastings as a projection. There is a nice geometric interpretation of the
Metropolis–Hastings filter as a projection, due to [BD01]. Given a proposal kernel 𝑄 ,
let 𝑇 (𝑄) denote the Metropolis–Hastings kernel obtained from 𝑄 (see (7.2.2)). Then, the
mapping 𝑄 ↦→ 𝑇 (𝑄) is a projection of the proposal kernel 𝑄 onto the space of reversible
Markov chains with stationary distribution 𝜋 with respect to an 𝐿1 notion of distance.

The distance is defined as follows:

d(𝑇,𝑇 ′) B
∫
(R𝑑×R𝑑 )\diag

|𝑇 (𝑥,𝑦) −𝑇 ′(𝑥,𝑦) | 𝜋 (d𝑥) d𝑦 (7.2.4)

where diag B {(𝑥, 𝑥) | 𝑥 ∈ R𝑑} is the diagonal in R𝑑 × R𝑑 .

Theorem 7.2.5 ([BD01]). Let ℛ(𝜋) denote the space of kernels 𝑇 which are reversible
with respect to 𝜋 , and such that for each 𝑥 ∈ R𝑑 , 𝑇 (𝑥, ·) admits a density with respect to
Lebesgue measure (except possibly having an atom at 𝑥). Then,

𝑇 (𝑄) ∈ arg min
𝑇∈ℛ(𝜋)

d(𝑄,𝑇 ) .

Proof. Let 𝑇 ∈ ℛ(𝜋), and let 𝑆 B {(𝑥,𝑦) ∈ R𝑑 | 𝜋 (𝑥)𝑄 (𝑥,𝑦) > 𝜋 (𝑦)𝑄 (𝑦, 𝑥)}. Then,

d(𝑄,𝑇 ) =
∫
(R𝑑×R𝑑 )\diag

|𝑄 (𝑥,𝑦) −𝑇 (𝑥,𝑦) | 𝜋 (d𝑥) d𝑦

=

∫
𝑆

|𝑄 (𝑥,𝑦) −𝑇 (𝑥,𝑦) | 𝜋 (d𝑥) d𝑦 +
∫
(R𝑑×R𝑑 )\(𝑆∪diag)

|𝑄 (𝑥,𝑦) −𝑇 (𝑥,𝑦) | 𝜋 (d𝑥) d𝑦

=

∫
𝑆

|𝑄 (𝑥,𝑦) −𝑇 (𝑥,𝑦) | 𝜋 (d𝑥) d𝑦 +
∫
𝑆

|𝑄 (𝑦, 𝑥) −𝑇 (𝑦, 𝑥) | 𝜋 (d𝑦) d𝑥 .

Using reversibility of 𝑇 , the second term is∫
𝑆

|𝑄 (𝑦, 𝑥) −𝑇 (𝑦, 𝑥) | 𝜋 (d𝑦) d𝑥 =

∫
𝑆

|𝜋 (𝑥)𝑄 (𝑦, 𝑥) − 𝜋 (𝑥)𝑇 (𝑥,𝑦) | d𝑥 d𝑦

≥
∫
𝑆

|𝜋 (𝑥)𝑄 (𝑥,𝑦) − 𝜋 (𝑦)𝑄 (𝑦, 𝑥) | d𝑥 d𝑦 −
∫
𝑆

|𝑄 (𝑥,𝑦) −𝑇 (𝑥,𝑦) | 𝜋 (d𝑥) d𝑦 . (7.2.6)
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Putting this together, d(𝑄,𝑇 ) ≥
∫
𝑆
|𝜋 (𝑥)𝑄 (𝑥,𝑦)−𝜋 (𝑦)𝑄 (𝑦, 𝑥) | d𝑥 d𝑦, so we have obtained

a lower bound which does not depend on 𝑇 . On the other hand, we can check that the
only inequality (7.2.6) that we used is an equality for 𝑇 = 𝑇 (𝑄). □

7.3 An Overview of High-Accuracy Samplers
As we already discussed, the Metropolis–Hastings framework is quite flexible: by instan-
tiating it with different choices for the proposal 𝑄 , we obtain several different algorithms.

Metropolized random walk (MRW). Perhaps the simplest proposal is to simply
take 𝑄 (𝑥, ·) = normal(𝑥, ℎ 𝐼𝑑), which yields the Metropolized random walk (MRW)
algorithm. This corresponds to simply taking a random walk around the state space, where
some steps are occasionally rejected. Note that since the proposal is independent of the
target 𝜋 , the overall algorithm only uses queries to the density of 𝜋 up to normalization
(to implement the filter); thus, it is the only algorithm we have discussed so far (besides
rejection sampling) which uses only a zeroth-order oracle for the potential 𝑉 .

Metropolis-adjusted Langevin algorithm (MALA). A better choice of proposal is

𝑄 (𝑥, ·) = normal
(
𝑥 − ℎ ∇𝑉 (𝑥), 2ℎ 𝐼𝑑

)
which is simply one step of the LMC algorithm; this yields the Metropolis-adjusted
Langevin algorithm (MALA). We will carefully study the convergence guarantees for
MALA in this chapter.

Metropolized Hamiltonian Monte Carlo (MHMC). Recall the Hamiltonian Monte
Carlo (HMC) algorithm that we introduced in Section 5.2. The ideal HMC algorithm is not
implementable because it requires the ability to exactly integrate Hamilton’s equations,
and this is generally not possible outside of a few special cases.

We now consider approximately implementing Hamilton’s equations through the use
of a numerical integrator. Although several choices are available, for Hamilton’s equations
it is preferable to use a symplectic integrator.1 We will focus on the simplest and most
well-known such integrator, called the leapfrog integrator.

1When placed within the framework of geometry, Hamiltonian mechanics is encoded via symplectic
geometry, which is the study of manifolds equipped with a symplectic 2-form. The flow map for Hamilton’s
equations preserves this symplectic form, and is therefore known as a symplectomorphism. Symplectic
integrators are special integrators which also preserve the symplectic form. This property leads to stability,
especially for long integration times.
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Leapfrog Integrator: Pick a step size ℎ > 0 and a total number of iterations 𝐾 ,
corresponding to the total integration time via 𝑇 = 𝐾ℎ. Let (𝑥0, 𝑝0) be the initial point.
For 𝑘 = 0, 1, 2, . . . , 𝐾 − 1:

1. Set 𝑝 (𝑘+ 1
2 )ℎ
B 𝑝𝑘ℎ − ℎ

2 ∇𝑉 (𝑥𝑘ℎ).

2. Set 𝑥 (𝑘+1)ℎ B 𝑥𝑘ℎ + ℎ 𝑝 (𝑘+ 1
2 )ℎ

.

3. Set 𝑝 (𝑘+1)ℎ B 𝑝 (𝑘+ 1
2 )ℎ
− ℎ

2 ∇𝑉 (𝑥 (𝑘+1)ℎ).

Once we apply the leapfrog integrator to HMC, we obtain a discrete-time sampling
algorithm which is once again biased. We then correct the bias through the use of the
Metropolis–Hastings filter. Specifically, for an integration time 𝑇 = 𝐾ℎ, let

𝐹leap(𝑥, 𝑝) = output 𝑥𝑇 of the leapfrog integrator with 𝐾 steps,
started at (𝑥, 𝑝) .

Remarkably, the acceptance probability can be computed in closed form, and this relies on
specific properties of the leapfrog integrator. The full algorithm is summarized as follows.

Metropolized Hamiltonian Monte Carlo (MHMC): Initialize at 𝑋0 ∼ 𝜇0. For
iterations 𝑘 = 0, 1, 2, . . . :

1. Refresh the momentum: draw 𝑃𝑘 ∼ normal(0, 𝐼𝑑).

2. Propose a trajectory: let (𝑋 ′
𝑘
, 𝑃 ′
𝑘
) B 𝐹leap(𝑋𝑘 , 𝑃𝑘).

3. Accept the trajectory with probability 1 ∧ exp{𝐻 (𝑋𝑘 , 𝑃𝑘) −𝐻 (𝑋 ′𝑘 , 𝑃
′
𝑘
)}. If the trajec-

tory is accepted, set 𝑋𝑘+1 B 𝑋 ′
𝑘
; otherwise, we set 𝑋𝑘+1 B 𝑋𝑘 .

It turns out that when 𝐾 = 1, the MHMC algorithm reduces to MALA (Exercise 7.1).
We next justify why the MHMC algorithm leaves 𝝅 invariant. Actually, although we

have written down the MHMC algorithm in the form which is easiest to implement, it
obscures the underlying structure of the algorithm. The proof of the next theorem will
clarify this point.

Theorem 7.3.1. The augmented target distribution 𝝅 ∝ exp(−𝐻 ) is invariant for the
MHMC algorithm.

Proof. First, we note that the step of refreshing the momentum leaves 𝝅 invariant, so it
suffices to study the proposal and acceptance steps.
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For the moment, let us pretend that the proposal actually uses the true flow map
𝐹𝑇 (which exactly integrates Hamilton’s equations for time 𝑇 ) rather than the leapfrog
integrator 𝐹leap. Then, the proposal kernel is deterministic, 𝑄 ((𝑥, 𝑝), ·) = 𝛿𝐹𝑇 (𝑥,𝑝) . Up until
now, we have been assuming that the proposal kernel admits a density w.r.t. Lebesgue
measure, which certainly does not hold here, but we will brush over this technicality as it
is not the key point here.

If we naı̈vely apply the Metropolis–Hastings filter, the probability of accepting a
proposal (𝑥′, 𝑝′) starting from (𝑥, 𝑝) involves a ratio 𝑄 ((𝑥′, 𝑝′), (𝑥, 𝑝))/𝑄 ((𝑥, 𝑝), (𝑥′, 𝑝′)),
but this ratio is ill-defined in our setting. The problem is that if (𝑥′, 𝑝′) = 𝐹𝑇 (𝑥, 𝑝), then it
is not the case that (𝑥, 𝑝) = 𝐹𝑇 (𝑥′, 𝑝′); the proposal is not reversible. Hence, we would be
led to reject every single trajectory.

To fix this, recall from Exercise 5.4 that we have the following time reversibility
property: if 𝑅 denotes the momentum flip operator (𝑥, 𝑝) ↦→ (𝑥,−𝑝), then it holds that
𝐹−1
𝑇

= 𝑅 ◦ 𝐹𝑇 ◦ 𝑅. It implies that 𝐹𝑇 ◦ 𝑅 = 𝑅 ◦ 𝐹−1
𝑇

= (𝐹𝑇 ◦ 𝑅)−1, so 𝐹𝑇 ◦ 𝑅 is idempotent. In
other words, if we use the proposal 𝐹𝑇 ◦ 𝑅 (i.e., first flip the momentum before integrating
Hamilton’s equations), then the proposal would be reversible and the above issue does not
arise, as the ratio 𝑄 ((𝑥′, 𝑝′), (𝑥, 𝑝))/𝑄 ((𝑥, 𝑝), (𝑥′, 𝑝′)) would equal 1. Observe also that
using 𝐹𝑇 ◦ 𝑅 instead of 𝐹𝑇 does not change the algorithm since we refresh the momentum
at each step (and if 𝑃𝑘 ∼ normal(0, 𝐼𝑑), then −𝑃𝑘 ∼ normal(0, 𝐼𝑑) as well).

Once we use the proposal (𝑥′, 𝑝′) = (𝐹𝑇 ◦ 𝑅) (𝑥, 𝑝) = 𝐹𝑇 (𝑥,−𝑝), the Metropolis–
Hastings acceptance probability is calculated to be

1 ∧ 𝝅 (𝑥′, 𝑝′)
𝝅 (𝑥, 𝑝) = 1 ∧ exp{𝐻 (𝑥, 𝑝) − 𝐻 (𝑥′, 𝑝′)} . (7.3.2)

When we use the exact flow map 𝐹𝑇 , then the Hamiltonian is conserved (Exercise 5.4) so
the above probability is one; every trajectory is accepted. However, the above expression
is indeed meaningful if we instead use the leapfrog integrator 𝐹leap.

So far, we have motivated the expression (7.3.2) based on the exact flow map 𝐹𝑇 , but
clearly the above argument holds just as well for the leapfrog integrator 𝐹leap as soon as
we verify the property 𝐹−1

leap = 𝑅 ◦ 𝐹leap ◦ 𝑅, and this is where we use the specific form of
the leapfrog integrator. We leave the verification as Exercise 7.2. □

Remark 7.3.3. The proof shows that the proposal of MHMC should really be thought of
as 𝐹leap ◦ 𝑅, instead of 𝐹leap. In fact, if we did not refresh the momentum, then repeatedly
applying the idempotent operator 𝐹leap ◦ 𝑅 would just cause the algorithm to jump back
and forth between two points (𝑥, 𝑝) and (𝑥′, 𝑝′), which is silly; hence one should also
apply another momentum flip after the filter. In symbols, if MH denotes the Metropolis–
Hastings filter step, and Refresh denotes the momentum refreshment step, we should
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think of MHMC as the composition

MHMC = 𝑅 ◦MH(𝐹leap ◦ 𝑅) ◦ Refresh .

This is simplified to

MHMC = MH(𝐹leap ◦ 𝑅) ◦ Refresh .

because Refresh ◦ 𝑅 = Refresh.

Lazy chains. Technically, many of the convergence results actually hold for lazy ver-
sions of the Markov chain. Specifically, for ℓ ∈ [0, 1], the ℓ-lazy version of a Markov
chain replaces its transition kernel 𝑇 with the modified kernel 𝑇ℓ given by

𝑇ℓ (𝑥, d𝑦) = (1 − ℓ)𝑇 (𝑥, d𝑦) + ℓ 𝛿𝑥 (d𝑦) .

The laziness condition is familiar from the study of discrete-time Markov chains on discrete
state spaces, in which laziness is useful for avoiding periodic behavior. For the remainder
of this section, we will generally be considering 1

2 -lazy versions of the Metropolis–Hastings
chains without explicitly mentioning this. In any case, this modification only multiplies
the mixing time by a factor of 2, so it does not significantly alter the results.

Feasible start vs. warm start. When discussing Metropolis–Hastings algorithms, we
must distinguish between convergence rates when initialized at a feasible start, vs. a
warm start. These terms are not precisely defined, but loosely speaking a feasible start
refers to an easily computable distribution which works well uniformly over the class of
target distributions under consideration. In this section, a feasible start usually refers to
the normal(0, 𝛽−1𝐼𝑑) distribution, where 𝛽 is the smoothness of𝑉 and we assume that the
minimizer of 𝑉 is 0. On the other hand, a warm start is a distribution which is already
somewhat close to the target 𝜋 ; for this section, it can be taken to mean a distribution 𝜇0
such that 𝜒2(𝜇0 ∥ 𝜋) = 𝑂 (1). Unsurprisingly, the rates are faster with a warm start.

The situation at hand is similar to the discussion in Section 1.5. Basically, the simplest
way to study a Metropolis–Hastings chain is via spectral theory, which is related to
Poincaré inequalities and hence to the chi-squared divergence at initialization. We also
know that Poincaré inequalities tend to yield poor convergence guarantees in continuous
time, which can be remedied via stronger inequalities (such as a log-Sobolev inequality).
To an extent, this is also possible for Metropolis–Hastings algorithms. However, it is a
fairly recent2 finding that for MALA there is an intrinsic and substantial difference in

2The phenomenon described here is anticipated, at least qualitatively, from older work on Markov chains.
The recent part of this story is the quantitative study of this effect in the context of MALA.
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convergence rates for the feasible and warm start cases, even under the assumption of
strong log-concavity. This is unlike the case of LMC; e.g., the guarantee of Theorem 4.2.6
is not significantly improved by assuming KL(𝜇0 ∥ 𝜋) = 𝑂 (1).

State-of-the-art results. We now give the current state-of-the-art convergence guar-
antees for the Metropolis–Hastings algorithms that we have introduced.

Theorem 7.3.4 (feasible start case, [Dwi+19; Che+20a; LST20]). Suppose that the
target 𝜋 ∝ exp(−𝑉 ) satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and ∇𝑉 (0) = 0. Consider the
following Metropolis–Hastings algorithms initialized at normal(0, 𝛽−1𝐼𝑑) and with an
appropriately tuned choice of parameters.

1. MRW outputs a measure 𝜇𝑁 satisfying
√︁
𝜒2(𝜇𝑁 ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂
(
𝜅2𝑑 polylog 1

𝜀

)
iterations .

2. MALA outputs a measure 𝜇𝑁 satisfying
√︁
𝜒2(𝜇𝑁 ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂
(
𝜅𝑑 polylog 1

𝜀

)
iterations .

3. Assume in addition that ∇3𝑉 is bounded and that 𝜅 ≪
√
𝑑 . Then, MHMC outputs

a measure 𝜇𝑁 satisfying
√︁
𝜒2(𝜇𝑁 ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂
(
𝜅3/4𝑑 polylog 1

𝜀

)
gradient queries .

Note that the result for MHMC is not directly comparable because it makes a stronger
second-order smoothness assumption.

Next, we present the results under a warm start.

Theorem 7.3.5 (warm start case, [Che+21b; WSC21]). Suppose that 𝜋 ∝ exp(−𝑉 )
satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Consider MALA initialized at a distribution satisfying
𝜒2(𝜇0 ∥ 𝜋) = 𝑂 (1). Then, MALA outputs a measure 𝜇𝑁 satisfying

√︁
KL(𝜇𝑁 ∥ 𝜋) ≤ 𝜀 (or
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R𝑞 (𝜇𝑁 ∥ 𝜋) ≤ 𝜀 for any 1 ≤ 𝑞 < 2) after

𝑁 = 𝑂
(
𝜅𝑑1/2 polylog 1

𝜀

)
iterations .

Moreover, it is known that the results for MALA in both the feasible and warm start
cases are sharp in a suitable sense. The goal for the rest of the chapter is to prove these
MALA convergence results (up to some technical details).

7.4 Markov Chains in Discrete Time
As discussed in the introduction to this chapter, the key advantage of Metropolis–Hastings
algorithms is that they are unbiased and hence lead to high-accuracy algorithms. In order
to prove complexity bounds that scale as polylog(1/𝜀), where 𝜀 is the target accuracy,
it is important that we do not simply bound the distance between MALA and, e.g., the
continuous-time Langevin diffusion, as we did in Chapter 4. This is not to say that tools
from Chapter 4 are completely irrelevant, only that we must first develop some new
techniques for studying discrete-time Markov chains.

7.4.1 Markov Semigroup Theory
Let 𝑃 be a Markov kernel. It generates a discrete-time semigroup (𝑃𝑘)𝑘∈N, and some of the
ideas from Markov semigroup theory (Section 1.2) can be adapted to the present context.

Generator. We define the generator of the semigroup to be the operator ℒ B 𝑃 − id,
acting on 𝐿2(𝜋) via 𝑃 𝑓 (𝑥) B

∫
𝑓 (𝑦) 𝑃 (𝑥, d𝑦) (where 𝜋 is the stationary distribution for

𝑃 ). Note that since the operator norm of 𝑃 is at most 1, then 𝑃 − id is always a negative
operator (similarly to the infinitesimal generator ℒ from Section 1.2).

Reversibility. We defined reversibility in Section 7.2 and showed that Metropolis–
Hastings algorithms are reversible w.r.t. the target distribution 𝜋 . For the rest of the
section, we will focus on reversible Markov chains.

Spectral gap. The spectral gap of 𝑃 is the largest 𝜆 > 0 such that for all 𝑓 ∈ 𝐿2(𝜋)
with E𝜋 𝑓 = 0,

⟨𝑓 , (−ℒ) 𝑓 ⟩𝐿2 (𝜋) ≥ 𝜆 ∥ 𝑓 ∥2𝐿2 (𝜋) .
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Equivalently, if (𝑋0, 𝑋1) are two successive iterates of the chain started at stationarity, it
is equivalent to require

2𝜆 var 𝑓 (𝑋0) ≤ E[|𝑓 (𝑋1) − 𝑓 (𝑋0) |2] . (7.4.1)

In analogy with Section 1.2, we also say that 𝑃 satisfies a Poincaré inequality with
constant 1/𝜆. We already saw in Section 2.7 that a Poincaré inequality is implied by a
lower bound on the coarse Ricci curvature.

The right-hand side of (7.4.1) can be interpreted as a Dirichlet energy,

ℰ(𝑓 , 𝑓 ) B ⟨𝑓 , (−ℒ) 𝑓 ⟩𝐿2 (𝜋) ,

and the Markov chain can be viewed as an 𝐿2(𝜋) gradient descent on the Dirichlet energy;
see Exercise 7.3. We have the following convergence result.

Theorem 7.4.2. Suppose that the spectral gap of 𝑃 is 𝜆 > 0. Then, for the law (𝜇𝑘)𝑘∈N
of the iterates of the 1

2 -lazy version of 𝑃 , we have

𝜒2(𝜇𝑁 ∥ 𝜋) ≤ exp(−𝜆𝑁 ) 𝜒2(𝜇0 ∥ 𝜋) .

Modified log-Sobolev inequality. We say that 𝑃 satisfies a modified log-Sobolev
inequality (MLSI) with constant 𝐶MLSI if for all 𝑓 ∈ 𝐿2(𝜋) with 𝑓 ≥ 0,

ent𝜋 𝑓 ≤
𝐶MLSI

2 ℰ(𝑓 , ln 𝑓 ) .

We have already encountered this inequality as Definition 1.2.24, although there we simply
called it the log-Sobolev inequality. In the context of discrete Markov processes, however,
since the chain rule fails and the different variants of the log-Sobolev inequality are no
longer equivalent, it is worth being careful about the terminology.

It is trickier to deduce entropy decay from the MLSI in discrete time, and to avoid
this issue we shall work in continuous time instead. The Markov kernel 𝑃 gives rise to
the generator ℒ B 𝑃 − id, which in turn generates a continuous-time semigroup (𝑃𝑡 )𝑡≥0
via 𝑃𝑡 B exp(𝑡ℒ). Note that the generator of (𝑃𝑡 )𝑡≥0 is also ℒ and hence the Dirichlet
energy for (𝑃𝑡 )𝑡≥0 coincides with the Dirichlet energy for (𝑃𝑘)𝑘∈N. Now, if we apply the
calculation (1.2.23) to the semigroup (𝑃𝑡 )𝑡≥0, we find that under an MLSI,

KL(𝜇𝑃𝑡 ∥ 𝜋) ≤ exp
(
− 2𝑡
𝐶MLSI

)
KL(𝜇 ∥ 𝜋) ,
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see Theorem 1.2.25.
Moreover, the continuous-time semigroup (𝑃𝑡 )𝑡≥0 can be simulated. Namely, let

(𝜏𝑘)𝑘∈N+
i.i.d.∼ exponential(1),𝑇𝑘 B

∑𝑘
𝑗=1 𝜏 𝑗 , and consider the following algorithm. Initialize

at 𝑋0 ∼ 𝜇0, and for 𝑘 = 0, 1, 2, . . . , let 𝑋𝑇𝑘+1 ∼ 𝑃 (𝑋𝑇𝑘 , ·), so that (𝑋𝑇𝑘 )𝑘∈N are the iterates of
the discrete-time Markov chain with kernel 𝑃 . Also, for 𝑡 ≥ 0, if 𝑇𝑘 ≤ 𝑡 < 𝑇𝑘+1, then set
𝑋𝑡 B 𝑋𝑇𝑘 . This yields a continuous-time Markov process (𝑋𝑡 )𝑡≥0, and one can check that
the associated Markov semigroup is exactly (𝑃𝑡 )𝑡≥0. Moreover, by concentration of i.i.d.
sums, it holds that 𝑇𝑘 ≈ 𝑘 , so that if the semigroup (𝑃𝑡 )𝑡≥0 requires time 𝑇mix in order to
mix to a desired level of accuracy, then the algorithm which simulates (𝑋𝑡 )𝑡≥0 requires
≈ 𝑇mix iterations to reach the same level of mixing.

This argument can even be made rigorous, using concentration inequalities for the
Poisson random variable, in order to argue that a MLSI for 𝑃 implies a mixing time bound
(in total variation distance, say) for the discrete-time chain (𝑃𝑘)𝑘∈N. We omit the details
and content ourselves with the knowledge that an MLSI for 𝑃 at least leads to the existence
of an implementable algorithm (simulating (𝑋𝑡 )𝑡≥0) with good mixing.

We leave the converse implication (that entropy decay for the discrete-time Markov
chain generated by 𝑃 implies an MLSI for 𝑃 ) as Exercise 7.4.

7.4.2 Conductance
Unfortunately, it is usually quite challenging to prove either a Poincaré inequality or a
modified log-Sobolev inequality for discrete-time Markov chains, which motivates the
use of conductance.

The conductance of 𝑃 is the greatest number 𝔠 > 0 such that for all events 𝐴 ⊆ R𝑑 ,∫
𝐴

𝑃 (𝑥,𝐴c) 𝜋 (d𝑥) ≥ 𝔠 𝜋 (𝐴) 𝜋 (𝐴c) .

A small conductance implies the presence of bottlenecks in the space: subsets 𝐴 of the
state space from which it is difficult for the Markov chain to exit. On the other hand, it is
a remarkable fact that once the presence of these bottlenecks is eliminated, then there is a
positive spectral gap. This is the content of a celebrated result of Cheeger.

Theorem 7.4.3 (Cheeger’s inequality, [LS88]). The conductance 𝔠 and the spectral gap
𝜆 satisfy the inequalities

1
8 𝔠2 ≤ 𝜆 ≤ 𝔠 .
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Both inequalities are sharp up to constants. The upper bound on 𝜆 is fairly immediate
(see Exercise 7.3), so we focus on the lower bound. We begin by reformulating the
conductance as a functional inequality.

Lemma 7.4.4. Let the conductance of the chain be 𝔠 > 0. Then, for all 𝑓 ∈ 𝐿1(𝜋),

E𝜋 |𝑓 − E𝜋 𝑓 | ≤
1
𝔠
E|𝑓 (𝑋1) − 𝑓 (𝑋0) | , (7.4.5)

where (𝑋0, 𝑋1) are two successive iterates of the chain started at stationarity.

Proof. Let 𝑋 ′0 be an i.i.d. copy of 𝑋0. Then,

E𝜋 |𝑓 − E𝜋 𝑓 | = E|𝑓 (𝑋 ′0) − E 𝑓 (𝑋0) | ≤ E|𝑓 (𝑋 ′0) − 𝑓 (𝑋0) | .

On the other hand, by reversibility,

E|𝑓 (𝑋1) − 𝑓 (𝑋0) | =
∬
|𝑓 (𝑥1) − 𝑓 (𝑥0) | 𝑃 (𝑥0, d𝑥1) 𝜋 (d𝑥0)

= 2
∬

1{𝑓 (𝑥1) > 𝑓 (𝑥0)} [𝑓 (𝑥1) − 𝑓 (𝑥0)] 𝑃 (𝑥0, d𝑥1) 𝜋 (d𝑥0)

= 2
∭

1{𝑓 (𝑥1) > 𝑡 ≥ 𝑓 (𝑥0)} 𝑃 (𝑥0, d𝑥1) 𝜋 (d𝑥0) d𝑡

= 2
∫ (∫

{𝑓 ≤𝑡}
𝑃 (𝑥0, {𝑓 ≤ 𝑡}c) 𝜋 (d𝑥0)

)
d𝑡

≥ 2𝔠
∫

𝜋 ({𝑓 ≤ 𝑡}) 𝜋 ({𝑓 > 𝑡}) d𝑡

= 2𝔠
∭

1{𝑓 (𝑥′0) > 𝑡 ≥ 𝑓 (𝑥0)} 𝜋 (d𝑥0) 𝜋 (d𝑥′0) d𝑡

= 2𝔠
∬

1{𝑓 (𝑥′0) > 𝑓 (𝑥0)} [𝑓 (𝑥′0) − 𝑓 (𝑥0)] 𝜋 (d𝑥0) 𝜋 (d𝑥′0)

= 𝔠

∬
|𝑓 (𝑥′0) − 𝑓 (𝑥0) | 𝜋 (d𝑥0) 𝜋 (d𝑥′0) = 𝔠 E|𝑓 (𝑋 ′0) − 𝑓 (𝑋0) | . □

Compare this with the relationship between the Cheeger isoperimetric inequality and
the 𝐿1–𝐿1 Poincaré inequality in Theorem 2.5.14. Indeed, the trick above of passing to the
level sets of 𝑓 is the discrete version of the coarea inequality (Theorem 2.5.12).

Recall also that an 𝐿1–𝐿1 Poincaré inequality implies an 𝐿2–𝐿2 Poincaré inequality
with 𝐶2,2 ≲ 𝐶1,1, see Proposition 2.5.17. On the other hand, 𝐶2,2 is the square root of the
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usual Poincaré constant, 𝐶2,2 = 1/
√
𝜆, where 𝜆 is the spectral gap. To prove Cheeger’s

inequality, we are going to follow the same principle in discrete time. This is exactly the
source of the square in the lower bound 𝜆 ≳ 𝔠2 of Cheeger’s inequality.

Proof of Cheeger’s inequality (Theorem 7.4.3). We will prove the lower bound on the spec-
tral gap with a worse constant than 1

8 in order to make the proof more straightforward;
see [LS88] for a proof with the constant 1

8 .
Let 𝑓 : R𝑑 → R have 0 as a median and let 𝑔 B 𝑓 2 sgn 𝑓 , so that 0 is a median of 𝑔

as well. Assume that the chain has conductance 𝔠 > 0. Then, recalling the equivalence
between the mean and the median (Lemma 2.4.4) and using Lemma 7.4.4 on 𝑔,

E𝜋 [|𝑓 − E𝜋 𝑓 |2] ≍ E𝜋 [|𝑓 −med𝜋 𝑓 |2] = E𝜋 |𝑔 −med𝜋 𝑔 | ≍ E𝜋 |𝑔 − E𝜋 𝑔 |

≤ 1
𝔠
E|𝑔(𝑋1) − 𝑔(𝑋0) | =

1
𝔠
E|𝑓 (𝑋1)2 − 𝑓 (𝑋0)2 |

=
1
𝔠
E[|𝑓 (𝑋1) − 𝑓 (𝑋0) | |𝑓 (𝑋0) + 𝑓 (𝑋1) |]

≲
1
𝔠

√︁
E[|𝑓 (𝑋1) − 𝑓 (𝑋0) |2] E𝜋 [𝑓 2]

=
1
𝔠

√︁
E[|𝑓 (𝑋1) − 𝑓 (𝑋0) |2] E𝜋 [|𝑓 −med𝜋 𝑓 |2]

≍ 1
𝔠

√︁
E[|𝑓 (𝑋1) − 𝑓 (𝑋0) |2] E𝜋 [|𝑓 − E𝜋 𝑓 |2]

and rearranging this inequality proves the result. □

A lower bound on the conductance via overlaps. At this stage, it may not seem that
we have gained anything by moving from the spectral gap to the conductance. We now
introduce a key lemma, which provides a tractable lower bound on the conductance in
terms of two geometric quantities: a Cheeger isoperimetric inequality for target 𝜋 (we
introduced this inequality in Section 2.5.2), and overlap bounds on the Markov chain.
Recall that an 𝛼-strongly log-concave measure 𝜋 satisfies the Cheeger isoperimetric
inequality with Ch ≲ 1/

√
𝛼 (Corollary 2.5.19).

Lemma 7.4.6. Assume the following:

1. The target 𝜋 satisfies a Cheeger isoperimetric inequality with constant Ch > 0.

2. There exists 𝑟 ∈ [0,Ch] such that for any points 𝑥,𝑦 ∈ R𝑑 with ∥𝑥 − 𝑦∥ ≤ 𝑟 , it
holds that ∥𝑃 (𝑥, ·) − 𝑃 (𝑦, ·)∥TV ≤ 1

2 .



242 CHAPTER 7. HIGH-ACCURACY SAMPLERS

Then, 𝔠 ≥ 𝑟/(64 Ch).

Proof. Let 𝐴0 ⊆ R𝑑 ; for symmetry of notation, write 𝐴1 B 𝐴c
0. By reversibility,∫

𝐴0

𝑃 (𝑥,𝐴1) 𝜋 (d𝑥) =
∫
𝐴1

𝑃 (𝑦,𝐴0) 𝜋 (d𝑦) =
1
2

(∫
𝐴0

𝑃 (𝑥,𝐴1) 𝜋 (d𝑥) +
∫
𝐴1

𝑃 (𝑦,𝐴0) 𝜋 (d𝑦)
)
.

We want to lower bound this by a constant times 𝜋 (𝐴0) 𝜋 (𝐴1).
Define bad sets and a good set:

𝐵0 B
{
𝑥 ∈ 𝐴0

�� 𝑃 (𝑥,𝐴1) <
1
4
}
,

𝐵1 B
{
𝑦 ∈ 𝐴1

�� 𝑃 (𝑦,𝐴0) <
1
4
}
,

𝐺 B R𝑑 \ (𝐵0 ∪ 𝐵1) .

We can assume that 𝜋 (𝐵0) ≥ 𝜋 (𝐴0)/2 and 𝜋 (𝐵1) ≥ 𝜋 (𝐴1)/2. Indeed, if we have, e.g.,
𝜋 (𝐵0) ≤ 𝜋 (𝐴0)/2, then 𝜋 (𝐴0 \ 𝐵0) ≥ 𝜋 (𝐴0)/2, and∫

𝐴0

𝑃 (𝑥,𝐴1) 𝜋 (d𝑥) ≥
∫
𝐴0\𝐵0

𝑃 (𝑥,𝐴1) 𝜋 (d𝑥) ≥
1
4 𝜋 (𝐴0 \ 𝐵0) ≥

1
8 𝜋 (𝐴0) .

Next, suppose that 𝑥 ∈ 𝐵0 and 𝑦 ∈ 𝐵1. Then, 𝑃 (𝑥,𝐴0) ≥ 3
4 , whereas 𝑃 (𝑦,𝐴0) < 1

4 . It
follows that ∥𝑃 (𝑥, ·) − 𝑃 (𝑦, ·)∥TV > 1

2 . By our second assumption, ∥𝑥 −𝑦∥ > 𝑟 . This shows
that 𝐵1 ⊆ (𝐵𝑟0)

c, or 𝐵c
1 ⊇ 𝐵𝑟0. On the other hand, 𝐺 = 𝐵c

0 ∩ 𝐵c
1 ⊇ 𝐵𝑟0 \ 𝐵0. The integral form

of the isoperimetric inequality in (2.5.11) shows that

𝜋 (𝐺) ≥ 𝜋 (𝐵𝑟0) − 𝜋 (𝐵0) ≥
𝑟

2 Ch
𝜋 (𝐵0) 𝜋 (𝐵1) ≥

𝑟

8 Ch
𝜋 (𝐴0) 𝜋 (𝐴1) .

Hence,

1
2

(∫
𝐴0

𝑃 (𝑥,𝐴1) 𝜋 (d𝑥) +
∫
𝐴1

𝑃 (𝑦,𝐴0) 𝜋 (d𝑦)
)

≥ 1
2

(∫
𝐴0∩𝐺

𝑃 (𝑥,𝐴1) 𝜋 (d𝑥) +
∫
𝐴1∩𝐺

𝑃 (𝑦,𝐴0) 𝜋 (d𝑦)
)

≥ 1
8
(
𝜋 (𝐴0 ∩𝐺) + 𝜋 (𝐴1 ∩𝐺)

)
=

1
8 𝜋 (𝐺) ≥

𝑟

64 Ch
𝜋 (𝐴0) 𝜋 (𝐴1) . □
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From conductance to 𝑠-conductance. Unfortunately, the framework that we have
developed so far is not flexible enough to study MALA. In particular, requiring that the
second condition in Lemma 7.4.6 hold for all pairs of points 𝑥,𝑦 ∈ R𝑑 is rather restrictive,
especially because there are many points which we are unlikely to ever visit in the course
of running the sampling algorithm. To address these issues, many variants of conductance
have been proposed in the literature. Here we will introduce only one other variant, the
𝑠-conductance, which seems reasonably flexible.

For 𝑠 ∈ [0, 1], the 𝑠-conductance of 𝑇 is the largest 𝔠𝑠 > 0 such that for all events
𝐴 ⊆ R𝑑 , it holds that∫

𝐴

𝑃 (𝑥,𝐴c) 𝜋 (d𝑥) ≥ 𝔠𝑠
(
𝜋 (𝐴) − 𝑠

) (
𝜋 (𝐴c) − 𝑠

)
.

Observe that if 𝜋 (𝐴) ≤ 𝑠 , then the above inequality holds trivially. Hence, this definition
allows us to restrict attention to events which are reasonably probable under 𝜋 .

For the conductance, we had Cheeger’s inequality which relates conductance to the
spectral gap and ultimately to convergence. For the 𝑠-conductance, the following theorem
is an appropriate substitute.

Theorem 7.4.7 ([LS93, Corollary 1.6]). For any 0 < 𝑠 ≤ 1
2 , let

Δ𝑠 B sup{|𝜇0(𝐴) − 𝜋 (𝐴) | : 𝐴 ⊆ R𝑑 , 𝜋 (𝐴) ≤ 𝑠} .

Then, the law 𝜇𝑁 of the 𝑁 -th iterate of a Markov chain with 𝑠-conductance 𝔠𝑠 and
initialized at 𝜇0 satisfies

∥𝜇𝑁 − 𝜋 ∥TV ≤ Δ𝑠 +
Δ𝑠
𝑠

exp
(
−c2

𝑠 𝑁

2

)
.

In particular,

∥𝜇𝑁 − 𝜋 ∥TV ≤
√︁
𝑠 𝜒2(𝜇0 ∥ 𝜋) +

√︂
𝜒2(𝜇0 ∥ 𝜋)

𝑠
exp

(
−c2

𝑠 𝑁

2

)
.

Proof. The first statement is from [LS93, Corollary 1.6] and the proof is omitted, as the
proof is not particularly straightforward.

The second statement follows from the first: indeed, for 𝐴 ⊆ R𝑑 with 𝜋 (𝐴) ≤ 𝑠 ,

|𝜇0(𝐴) − 𝜋 (𝐴) | =
���∫ 1𝐴 d(𝜇0 − 𝜋)

��� = ���∫ 1𝐴

(𝜇0
𝜋
− 1

)
d𝜋

��� ≤ √︁
𝜋 (𝐴) 𝜒2(𝜇0 ∥ 𝜋)
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so that Δ𝑠 ≤
√︁
𝑠 𝜒2(𝜇0 ∥ 𝜋). □

This result says that if 𝑠 = 𝜀2/(4 𝜒2(𝜇0 ∥ 𝜋)), then we obtain ∥𝜇𝑁 − 𝜋 ∥TV ≤ 𝜀 after

𝑁 = 𝑂

( 1
𝔠2
𝑠

log 𝜒
2(𝜇0 ∥ 𝜋)
𝜀2

)
iterations .

Unfortunately, if 𝜒2(𝜇0 ∥ 𝜋) = exp𝑂 (𝑑), then the logarithmic term incurs additional
dimension dependence, which is why we can expect better mixing time bounds under the
warm start condition 𝜒2(𝜇0 ∥ 𝜋) = 𝑂 (1).

The key advantage of the 𝑠-conductance is that it allows for a version of the key lemma
with weaker assumptions; the proof is left as Exercise 7.5.

Lemma 7.4.8. Assume the following:

1. The target 𝜋 satisfies a Cheeger isoperimetric inequality with constant Ch > 0.

2. There exists 𝑟 ∈ [0,Ch] and an event 𝐸 ⊆ R𝑑 with probability 𝜋 (𝐸) ≥ 1 − 𝑟𝑠
16 Ch

such that

∀𝑥,𝑦 ∈ 𝐸, ∥𝑥 − 𝑦∥ ≤ 𝑟 =⇒ ∥𝑃 (𝑥, ·) − 𝑃 (𝑦, ·)∥TV ≤
1
2 .

Then, 𝔠𝑠 ≳ 𝑟/Ch.

7.5 Analysis of MALA for a Feasible Start
Using the tools we have developed, we now proceed to analyze the mixing time of MALA
under the assumptions of Theorem 7.3.4. However, we will not prove the full strength
of the result in Theorem 7.3.4; at the end of this section, we will indicate the extra steps
needed to reach Theorem 7.3.4.

Basic decomposition. The overall plan is to lower bound the 𝑠-conductance using the
key lemma (Lemma 7.4.8), which then upper bounds the mixing time via Theorem 7.4.7.
By strong log-concavity of 𝜋 , the first hypothesis of Lemma 7.4.8 is verified, so it remains
to bound the overlaps. For a kernel 𝑇 , we use the shorthand 𝑇𝑥 B 𝑇 (𝑥, ·).

By the triangle inequality, we have the decomposition

∥𝑇𝑥 −𝑇𝑦 ∥TV ≤ ∥𝑄𝑥 −𝑇𝑥 ∥TV + ∥𝑄𝑥 −𝑄𝑦 ∥TV + ∥𝑄𝑦 −𝑇𝑦 ∥TV . (7.5.1)
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The middle term ∥𝑄𝑥 −𝑄𝑦 ∥TV measures the overlap for the proposal kernel, and we will
shortly see that this term is easy to bound. Then, controlling the first and third terms
essentially amounts to lower bounding the acceptance probability of MALA, since the
only difference between 𝑄 and 𝑇 is the Metropolis–Hastings filter.

Overlap of the proposal kernel.

Lemma 7.5.2. For 𝑥 ∈ R𝑑 , let 𝑄𝑥 B normal(𝑥 − ℎ ∇𝑉 (𝑥), 2ℎ 𝐼𝑑), and assume that
∥∇2𝑉 ∥op ≤ 𝛽 . Then, provided ℎ ≤ 1

𝛽
, we have

∥𝑄𝑥 −𝑄𝑦 ∥TV ≤
∥𝑥 − 𝑦∥
√

2ℎ
.

Proof. By Pinsker’s inequality (Exercise 2.13),

∥𝑄𝑥 −𝑄𝑦 ∥2TV ≤
1
2 KL(𝑄𝑥 ∥ 𝑄𝑦) =

∥𝑥 − ℎ ∇𝑉 (𝑥) − 𝑦 + ℎ ∇𝑉 (𝑦)∥2
8ℎ ≤ ∥𝑥 − 𝑦∥

2

2ℎ
where the last inequality uses the fact that id − ℎ ∇𝑉 is 2-Lipschitz. □

Control of the acceptance probability. Next, consider the term ∥𝑄𝑥 −𝑇𝑥 ∥TV. Com-
puting this term is slightly tricky because 𝑇𝑥 has an atom at 𝑥 , but in the end we obtain

∥𝑄𝑥 −𝑇𝑥 ∥TV =
1
2

[
1 −

∫
𝑄 (𝑥, d𝑦)𝐴(𝑥,𝑦)︸                        ︷︷                        ︸

from the atom of 𝑇𝑥

+
∫
R𝑑\{𝑥}

|𝑄 (𝑥,𝑦) −𝑇 (𝑥,𝑦) | d𝑦
]

=
1
2

[
1 −

∫
𝑄 (𝑥, d𝑦)𝐴(𝑥,𝑦) +

∫
𝑄 (𝑥, d𝑦) {1 −𝐴(𝑥,𝑦)} d𝑦

]
= 1 −

∫
𝑄 (𝑥, d𝑦)𝐴(𝑥,𝑦) . (7.5.3)

This has a very clear interpretation: it is the probability that the proposed move starting
at 𝑥 is rejected. If we let 𝜉 ∼ normal(0, 𝐼𝑑) and 𝑌 B 𝑥 −ℎ ∇𝑉 (𝑥) +

√
2ℎ 𝜉 , we want a lower

bound on the quantity E𝐴(𝑥,𝑌 ), which comes from Markov’s inequality:

E𝐴(𝑥,𝑌 ) = Emin
{
1, 𝜋 (𝑌 )𝑄 (𝑌, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑌 )

}
≥ 𝜆 P

{𝜋 (𝑌 )𝑄 (𝑌, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑌 ) ≥ 𝜆

}
for all 0 < 𝜆 < 1 .

The approach now is to write out the ratio more explicitly, and then carefully group
together and bound the terms. (Unfortunately, this is not the most enlightening.)
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Explicitly, we have

𝜋 (𝑌 )𝑄 (𝑌, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑌 ) = exp

(
−𝑉 (𝑌 ) − ∥𝑥 − 𝑌 + ℎ ∇𝑉 (𝑌 )∥

2

4ℎ +𝑉 (𝑥) + ∥𝑌 − 𝑥 + ℎ ∇𝑉 (𝑥)∥
2

4ℎ

)
.

After some careful algebra,

4 ln 𝜋 (𝑌 )𝑄 (𝑌, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑌 ) = ℎ {∥∇𝑉 (𝑥)∥

2 − ∥∇𝑉 (𝑌 )∥2} (7.5.4)

− 2 {𝑉 (𝑌 ) −𝑉 (𝑥) − ⟨∇𝑉 (𝑥), 𝑌 − 𝑥⟩} (7.5.5)
+ 2 {𝑉 (𝑥) −𝑉 (𝑌 ) − ⟨∇𝑉 (𝑌 ), 𝑥 − 𝑌 ⟩} . (7.5.6)

Note that the terms are grouped to more easily apply the strong convexity and smoothness
of 𝑉 . It yields

(7.5.5) ≥ −𝛽 ∥𝑥 − 𝑌 ∥2 and (7.5.6) ≥ 𝛼 ∥𝑥 − 𝑌 ∥2 ≥ 0 .

Also, for ℎ ≤ 1
𝛽
,

(7.5.4) = ℎ ⟨∇𝑉 (𝑥) − ∇𝑉 (𝑌 ),∇𝑉 (𝑥) + ∇𝑉 (𝑌 )⟩
≥ −ℎ ∥∇𝑉 (𝑥) − ∇𝑉 (𝑌 )∥ ∥∇𝑉 (𝑥) + ∇𝑉 (𝑌 )∥
≥ −𝛽ℎ ∥𝑥 − 𝑌 ∥ (2 ∥∇𝑉 (𝑥)∥ + 𝛽 ∥𝑥 − 𝑌 ∥) ≥ −𝛽ℎ2 ∥∇𝑉 (𝑥)∥2 − 2𝛽 ∥𝑥 − 𝑌 ∥2 .

Therefore,

ln 𝜋 (𝑌 )𝑄 (𝑌, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑌 ) ≳ −𝛽ℎ

2 ∥∇𝑉 (𝑥)∥2 − 𝛽 ∥𝑥 − 𝑌 ∥2 ≳ −𝛽ℎ2 ∥∇𝑉 (𝑥)∥2 − 𝛽ℎ ∥𝜉 ∥2 .

At this stage, observe that we cannot lower bound this quantity (with high probability)
uniformly over 𝑥 , since ∥∇𝑉 (𝑥)∥ → ∞ as ∥𝑥 ∥ → ∞. This is why it is helpful to restrict to
𝑥 belonging to some high-probability event 𝐸, which is ultimately achieved by working
with 𝑠-conductance rather than conductance.

By standard concentration bounds, ∥𝜉 ∥2 ≤ 2𝑑 with probability at least 1 − exp(−𝑑/2).
Also, let 𝐸𝑅 B {𝑥 ∈ R𝑑 : ∥∇𝑉 (𝑥)∥ ≤

√︁
𝛽 𝑅}. It follows that for all 𝑥 ∈ 𝐸𝑅 , if we take

ℎ ≲ 1
𝛽 (𝑑∨𝑅) with a sufficiently small constant, then

E𝐴(𝑥,𝑌 ) ≥ 11
12 P

{𝜋 (𝑌 )𝑄 (𝑌, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑌 ) ≥

11
12

}
≥ 11

12

(
1 − exp

(
−𝑑2

) )
≥ 5

6 ,

for sufficiently large 𝑑 . Hence, for 𝑥 ∈ 𝐸𝑅 , we have ∥𝑄𝑥 −𝑇𝑥 ∥TV ≤ 1
6 .
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Completing the analysis. We have shown: if the step size is ℎ ≲ 1
𝛽 (𝑑∨𝑅) , then for all

𝑥,𝑦 ∈ 𝐸𝑅 with ∥𝑥 − 𝑦∥ ≤ 𝑟 ,

∥𝑇𝑥 −𝑇𝑦 ∥TV ≤ ∥𝑄𝑥 −𝑇𝑥 ∥TV + ∥𝑄𝑥 −𝑄𝑦 ∥TV + ∥𝑄𝑦 −𝑇𝑦 ∥TV ≤
1
6 +

𝑟
√

2ℎ
+ 1

6 ≤
1
2

provided we take 𝑟 =
√

2ℎ/6. Applying Lemma 7.4.8 (assuming ℎ ≲ 1
𝛼

), we deduce that
𝔠𝑠 ≳
√
𝛼ℎ provided 𝜋 (𝐸𝑅) ≥ 1 − 𝑐0𝑠

√
𝛼ℎ, where 𝑐0 > 0 is a universal constant. Since we

want the step size ℎ to be as large as possible, we take ℎ ≍ 1
𝛽 (𝑑∨𝑅) , where 𝑅 is chosen to

satisfy 𝜋 (𝐸c
𝑅
) ≲ 𝑠

√︃
1

𝜅 (𝑑∨𝑅) and 𝑠 ≍ 𝜀2/𝜒2(𝜇0 ∥ 𝜋). The final mixing time bound implied
by Theorem 7.4.7 is then 𝑂 (𝜅 (𝑑 ∨ 𝑅) log(𝜒2(𝜇0 ∥ 𝜋)/𝜀2)) iterations.

Up until this point, the analysis is largely similar to [Dwi+19].

Gradient concentration. The bound involves the parameter 𝑅. By definition, 𝑅 is
such that the norm ∥∇𝑉 ∥ of the gradient under 𝜋 is typically of size

√︁
𝛽 𝑅. Recall from,

e.g., Lemma 4.2.5 that E𝜋 ∥∇𝑉 ∥ ≲
√︁
𝛽𝑑 , which suggests that we can take 𝑅 ≲

√
𝑑 . However,

we need a high-probability bound on ∥∇𝑉 ∥, not a bound in expectation. Unfortunately,
a naı̈ve application of the fact that ∥∇𝑉 ∥ is 𝛽-Lipschitz, together with sub-Gaussian
concentration of Lipschitz functions (Theorem 2.4.8), only shows that the fluctuations
of ∥∇𝑉 ∥ around its expectation are of size

√︁
𝛽𝜅 (exercise!). When 𝜅 ≫ 𝑑 , this does

not recover the promised rate of 𝑂 (𝜅𝑑) (ignoring the dependence on initialization and
accuracy). To resolve this issue, [LST20] introduced a new concentration inequality for
∥∇𝑉 ∥ via the Brascamp–Lieb inequality (Theorem 2.2.8).

Lemma 7.5.7 ([LST20]). Suppose that 𝜋 ∝ exp(−𝑉 ) and that 0 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then,
for all 𝑡 ≥ 0,

𝜋{∥∇𝑉 ∥ ≥ E𝜋 ∥∇𝑉 ∥ + 𝑡} ≤ 3 exp
(
− 𝑡√︁

𝛽

)
.

This shows that the fluctuations of ∥∇𝑉 ∥ around its expectation are only of size
√︁
𝛽 .

From warm start to feasible start. The factor of log 𝜒2(𝜇0 ∥ 𝜋) in the bound incurs
additional dimension dependence under a feasible start, since with a Gaussian initialization
we can only show 𝜒2(𝜇0 ∥ 𝜋) ≤ 𝜅𝑑/2. The problem is that the conductance-based analysis
relies upon Poincaré-type inequalities, instead of log-Sobolev inequalities. To address
this issue, we can replace the assumption of a Cheeger isoperimetric inequality with a
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Gaussian isoperimetric inequality (see Section 2.5.4). The essential difference is that under
a Cheeger isoperimetric inequality, as 𝑝 B 𝜋 (𝐴) ↘ 0 we have 𝜋+(𝐴) ≳ 𝑝 , whereas
under a Gaussian isoperimetric inequality we have 𝜋+(𝐴) ≳ 𝑝

√︃
log 1

𝑝
. Using this stronger

assumption, [Che+20a] show that the dependence on the initialization can be improved to
log log 𝜒2(𝜇0 ∥ 𝜋). A similar effect can be achieved via the blocking conductance [KLM06],
which was used in [LST20]. We omit the details.

Lower bound. Finally, the analysis of MALA in Theorem 7.3.4 is tight, as shown in the
following lower bound.

Theorem 7.5.8 ([LST21a]). For every choice of step size ℎ > 0, there exists a target
distribution 𝜋 ∝ exp(−𝑉 ) on R𝑑 with 𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝜅𝐼𝑑 , as well as an initialization 𝜇0
with 𝜒2(𝜇0 ∥ 𝜋) ≤ exp𝑑 , such that the number of iterations required for MALA to reach
total variation at most 1

4 from 𝜋 is at least Ω̃(𝜅𝑑).

This theorem is a lower bound in the sense that all of the known proofs for MALA do
not use any property of the initialization 𝜇0 except through 𝜒2(𝜇0 ∥ 𝜋). Thus, in order to
improve the analysis of MALA under a feasible start, one must use more specific properties
of the initialization, or use some other modification that bypasses the lower bound (e.g.,
random step sizes).

7.6 Analysis of MALA for a Warm Start
We next turn towards the warm start case (Theorem 7.3.5). The improvement under a warm
start was first shown in [Che+21b], which obtained a rate of𝑂 (𝜅3/2𝑑1/2 polylog(1/𝜀)). This
result was improved in [WSC21] which obtained the sharp rate of 𝑂 (𝜅𝑑1/2 polylog(1/𝜀))
via completely different techniques. In this section, we follow [Che+21b] because the
proof is more conceptual. (Anyway, we will see in Chapter 8 how to boost the condition
number dependence to 𝜅 using the proximal sampler.)

We still follow the 𝑠-conductance framework of the previous section, including the
basic decomposition (7.5.1). The main difference lies in the control of ∥𝑄𝑥 −𝑇𝑥 ∥TV, which
was previously accomplished by lower bounding the acceptance probability. Surprisingly,
the following proof never works directly with the acceptance probability, despite the fact
that ∥𝑄𝑥 −𝑇𝑥 ∥TV is precisely the rejection probability at 𝑥 (see (7.5.3)).

Using the projection property. The key insight is to use projection characterization
of the Metropolis–Hastings filter (Theorem 7.2.5): the MALA kernel𝑇 is the closest kernel
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to the proposal𝑄 (in an appropriate 𝐿1 distance) among all reversible Markov chains with
stationary distribution 𝜋 . Concretely, for any other kernel 𝑄 which is reversible w.r.t. 𝜋 ,∬
(R𝑑×R𝑑 )\diag

|𝑄 (𝑥,𝑦) −𝑇 (𝑥,𝑦) | 𝜋 (d𝑥) d𝑦 ≤
∬
(R𝑑×R𝑑 )\diag

|𝑄 (𝑥,𝑦) −𝑄 (𝑥,𝑦) | 𝜋 (d𝑥) d𝑦 .

Now supposing that 𝑄 has no atoms, this inequality is the same as∫
∥𝑄𝑥 −𝑇𝑥 ∥TV 𝜋 (d𝑥) ≤ 2

∫
∥𝑄𝑥 −𝑄𝑥 ∥TV 𝜋 (d𝑥) . (7.6.1)

Thus, we can indirectly bound ∥𝑄𝑥 − 𝑇𝑥 ∥TV, at least on average. Moreover, there is a
very natural choice of 𝑄 here: since 𝑄 is obtained from a discretization of the Langevin
diffusion, we can take 𝑄 to be the continuous-time Langevin diffusion run for time ℎ,
which is indeed reversible with respect to 𝜋 . The right-hand side of the above expression
then simply measures the discretization error, which we have already studied in detail.

Pointwise projection property. The projection property is not enough for our pur-
poses, however, since it only bounds ∥𝑄𝑥 − 𝑇𝑥 ∥TV in average, whereas we really need
high-probability bounds. Thankfully, we can extend the projection property.

Theorem 7.6.2 (pointwise projection property, [Che+21b, Theorem 6]). Let 𝑄 be an
atomless proposal kernel and let𝑇 be the corresponding Metropolis–Hastings kernel with
target 𝜋 . Then, for any atomless kernel 𝑄 which is reversible with respect to 𝜋 , and for
every 𝑥 ∈ R𝑑 ,

∥𝑄𝑥 −𝑇𝑥 ∥TV ≤ 2 ∥𝑄𝑥 −𝑄𝑥 ∥TV +
∫

𝜋 (𝑦)𝑄 (𝑦, 𝑥)
𝜋 (𝑥)

��𝑄 (𝑦, 𝑥)
𝑄 (𝑦, 𝑥)

− 1
�� d𝑦 .

Consequently, for any convex increasing function Φ : R+ → R+,∫
Φ(∥𝑄𝑥 −𝑇𝑥 ∥TV) 𝜋 (d𝑥) ≤

1
2

∫
Φ(4 ∥𝑄𝑥 −𝑄𝑥 ∥TV) 𝜋 (d𝑥)

+ 1
2

∬
Φ
(
2
��𝑄 (𝑥,𝑦)
𝑄 (𝑥,𝑦)

− 1
��) 𝑄 (𝑥, d𝑦) 𝜋 (d𝑥) . (7.6.3)

We will not need the inequality (7.6.3), so the proof is left as Exercise 7.8. The reason
why (7.6.3) is included in the theorem is because it makes it clear why we can expect the
pointwise projection property to imply high-probability bounds for ∥𝑄𝑥 −𝑇𝑥 ∥TV. Note
that when we integrate the projection property w.r.t. 𝜋 (d𝑥), we recover (7.6.1) with a
factor of 4 on the right-hand side instead of 2.
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Proof. We can write

∥𝑄𝑥 −𝑇𝑥 ∥TV = 1 −
∫

𝑄 (𝑥, d𝑦)𝐴(𝑥,𝑦) =
∫ [

1 −
(
1 ∧ 𝜋 (𝑦)𝑄 (𝑦, 𝑥)

𝜋 (𝑥)𝑄 (𝑥,𝑦)

)]
𝑄 (𝑥, d𝑦)

≤
∫ ���1 − 𝜋 (𝑦)𝑄 (𝑦, 𝑥)

𝜋 (𝑥)𝑄 (𝑥,𝑦)

���𝑄 (𝑥, d𝑦)
≤
∫ ���1 − 𝜋 (𝑦)𝑄 (𝑦, 𝑥)

𝜋 (𝑥)𝑄 (𝑥,𝑦)

���𝑄 (𝑥, d𝑦) + ∫ 𝜋 (𝑦)𝑄 (𝑦, 𝑥)
𝜋 (𝑥)

���𝑄 (𝑦, 𝑥)
𝑄 (𝑦, 𝑥)

− 1
��� d𝑦 .

Using reversibility of 𝑄 , the first term is∫ ���1 − 𝜋 (𝑦)𝑄 (𝑦, 𝑥)
𝜋 (𝑥)𝑄 (𝑥,𝑦)

���𝑄 (𝑥, d𝑦) = ∫
|𝑄 (𝑥,𝑦) −𝑄 (𝑥,𝑦) | d𝑦 = 2 ∥𝑄𝑥 −𝑄𝑥 ∥TV ,

which completes the proof. □

Applying the pointwise projection property. Our goal is to bound ∥𝑄𝑥 −𝑇𝑥 ∥TV for
all 𝑥 which lies in an event 𝐸 of very high probability under 𝜋 . We proceed by controlling
the two terms in the pointwise projection property separately.

We will omit many of the calculations from this point forwards. The calculations are
actually fairly straightforward (once one has some familiarity with stochastic calculus),
but are somewhat tedious. Moreover, the best way to learn these particular calculations
is to try them for oneself. We refer to [Che+21b] for details. Moreover, to simplify the
exposition, we will only focus on the dependence on 𝑑 and ℎ.

The first term, ∥𝑄𝑥 −𝑄𝑥 ∥TV, is more straightforward. It is helpful to apply Pinsker’s
inequality, leaving us to control KL(𝑄𝑥 ∥ 𝑄𝑥 ). This is precisely the kind of discretization
error that we controlled via Girsanov’s theorem in Section 4.4. In particular, it is possible
to show that ∥𝑄𝑥 −𝑄𝑥 ∥TV ≲ ℎ

√︁
𝑑 + ∥𝑥 ∥2. Since this is Lipschitz in 𝑥 , we can then apply

sub-Gaussian concentration under 𝜋 (Theorem 2.4.8) to obtain a high-probability bound
for this term under 𝜋 . In particular, we expect a step size of ℎ ≲ 1√

𝑑
to control this term.

To control the second term with high probability, it suffices to control the moments of
this quantity under 𝜋 : for 𝑝 ≥ 1,∫ ���∫ 𝜋 (𝑦)𝑄 (𝑦, 𝑥)

𝜋 (𝑥)
��𝑄 (𝑦, 𝑥)
𝑄 (𝑦, 𝑥)

− 1
�� d𝑦���𝑝 𝜋 (d𝑥) ≤ ∬ ��𝑄 (𝑦, 𝑥)

𝑄 (𝑦, 𝑥)
− 1

��𝑝 𝑄 (𝑦, d𝑥) 𝜋 (d𝑦) .
Let 𝑸̄𝑥 denote the measure on path space C([0, ℎ];R𝑑) of the Langevin diffusion started at
𝑥 . Similarly, let 𝑸𝑥 denote the same for the interpolation of LMC. By the data-processing
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inequality, we obtain∬ ��𝑄 (𝑦, 𝑥)
𝑄 (𝑦, 𝑥)

− 1
��𝑝 𝑄 (𝑦, d𝑥) 𝜋 (d𝑦) ≤ ∫

E𝑸̄𝑥
[��d𝑸𝑥

d𝑸̄𝑥

− 1
��𝑝 ] 𝜋 (d𝑥) .

We have a formula for the Radon–Nikodym derivative d𝑸̄𝑥

d𝑸𝑥
thanks to Girsanov’s theorem,

so again we can approach this via stochastic calculus. Controlling this term is slightly
more involved than controlling the KL divergence (essentially we are controlling a Rényi
divergence instead) but nevertheless we can bound the term when ℎ ≲ 1√

𝑑
.

With these high probability bounds, we can then return to the 𝑠-conductance analysis,
which implies that the mixing time is of order 1

ℎ
. Hence, under a warm start, the mixing

time improves from 𝑑 to
√
𝑑 .

TODO: Flesh out the calculations in this section.

Lower bound. Under a warm start, [Che+21b] showed a lower bound of roughly Ω̃(
√
𝑑),

which was improved in [WSC21] to Ω̃(𝜅
√
𝑑). We state the result here.

Theorem 7.6.4 ([WSC21]). For every choice of step size ℎ > 0, there exists a target
distribution 𝜋 ∝ exp(−𝑉 ) on R𝑑 with 𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝜅𝐼𝑑 , as well as an initialization 𝜇0
with 𝜒2(𝜇0 ∥ 𝜋) ≲ 1, such that the number of iterations required for MALA to reach
total total variation 𝜀 from 𝜋 is at least Ω̃(𝜅

√
𝑑 log(1/𝜀)).

Bibliographical Notes
TODO: Fill in.

Exercises
An Overview of High-Accuracy Samplers

⊵ Exercise 7.1 (MALA is a special case of MHMC)
Show that when 𝐾 = 1, the MHMC algorithm reduces to MALA.

⊵ Exercise 7.2 (MH filter for the leapfrog integrator)
For the leapfrog integrator 𝐹leap, verify that 𝐹−1

leap = 𝑅 ◦ 𝐹leap ◦ 𝑅.
Hint: First show that it suffices to consider 𝑇 = ℎ (i.e., 𝐾 = 1).
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Markov Chains in Discrete Time

⊵ Exercise 7.3 (reversible Markov chains as gradient descent on the Dirichlet energy)
Consider the setting of Section 7.4.

1. Show that ℰ(𝑓 , 𝑓 ) = 1
2 E[|𝑓 (𝑋1) − 𝑓 (𝑋0) |2], where (𝑋0, 𝑋1) are two successive

iterates of the Markov chain started at stationarity. We also write ℰ(𝑓 ) B ℰ(𝑓 , 𝑓 )
as a useful shorthand.

2. Show that if (𝜇𝑘)𝑘∈N are the laws of the iterates of the ℓ-lazy version of 𝑃 , then
the relative densities ( 𝜇𝑘

𝜋
)
𝑘∈N are the iterates of gradient descent on the Dirichlet

energy ℰ in 𝐿2(𝜋). How does the laziness parameter ℓ relate to the step size of the
gradient descent?

3. Observe that ℰ is a convex quadratic functional; show that 0 ⪯ ∇2
𝐿2 (𝜋)ℰ ⪯ 2.

What does the theory of convex optimization suggest for the value of the laziness
parameter ℓ?

4. Next, prove a generalization of Theorem 7.4.2 for any value of the laziness param-
eter ℓ ∈ [ 12 , 1] by showing that the spectral gap condition is equivalent to strong
convexity of ℰ. Why do we want ℓ ≥ 1

2 here?

5. Show that the conductance of the chain can also be described as the largest 𝔠 > 0
such that for all events 𝐴 ⊆ R𝑑 , it holds that ℰ(1𝐴) ≥ 𝔠 ∥1𝐴 − 𝜋 (𝐴)∥2𝐿2 (𝜋) . Hence,
conductance can be viewed as a restricted strong convexity condition (restricting
the space of functions to indicators of events). In particular, show the bound 𝜆 ≤ 𝔠

in Cheeger’s inequality (Theorem 7.4.3).

⊵ Exercise 7.4 (entropy decay implies MLSI)
Suppose that 𝑃 satisfies the following entropy decay condition: there exists 𝑐 ∈ (0, 1) such
that for all probability measures 𝑃 ,

KL(𝜇𝑃 ∥ 𝜋) ≤ (1 − 𝑐) KL(𝜇 ∥ 𝜋) .

Prove that 𝑃 satisfies a MLSI with constant 𝐶MLSI ≤ 2/𝑐 .

⊵ Exercise 7.5 (𝑠-conductance lemma)
Prove the 𝑠-conductance lemma (Lemma 7.4.8).
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Analysis of MALA for a Feasible Start

⊵ Exercise 7.6 (analysis of MRW)
Follow the analysis in this section and adapt it to the Metropolized random walk (MRW)
algorithm. What mixing time bound can you prove?

⊵ Exercise 7.7 (mixing time for a Gaussian target)
Adapt the analysis in this section to the case when the target distribution is the standard
Gaussian. Here, it is possible to do a much more refined analysis; see if you can show
that the mixing time of MALA is 𝑂 (𝑑1/3 polylog(1/𝜀)) from a warm start. See [Che+21b,
Appendix C] for hints.

Analysis of MALA for a Warm Start

⊵ Exercise 7.8 (pointwise projection property)
Prove (7.6.3) from the pointwise projection property.
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CHAPTER 8

The Proximal Sampler

In this chapter, we discuss the proximal sampler, which was introduced in [LST21c]. The
applications of the proximal sampler include improving the condition number dependence
of high-accuracy samplers and providing new state-of-the-art sampling guarantees for
various classes of target distributions. Besides these applications, the proximal sampler is
interesting in its own right due to its remarkable convergence analysis and its connections
with the proximal point method in optimization.

8.1 Introduction to the Proximal Sampler
Let 𝜋 ∝ exp(−𝑉 ) denote the target distribution. We fix ℎ > 0 and define the augmented
target distribution

𝝅 (𝑥,𝑦) ∝ exp
(
−𝑉 (𝑥) − ∥𝑦 − 𝑥 ∥

2

2ℎ

)
.

To avoid confusion, we will explicitly write 𝜋𝑋 = 𝜋 for the 𝑋 -marginal, and 𝜋𝑌 for the
𝑌 -marginal. Similarly, 𝜋𝑋 |𝑌 and 𝜋𝑌 |𝑋 denote the conditional distributions.

The proximal sampler applies Gibbs sampling to the augmented target. Explicitly, the
updates of the proximal sampler are as follows.

Proximal Sampler: Initialize 𝑋0 ∼ 𝜇0. For 𝑘 = 0, 1, 2, . . . :

1. Draw 𝑌𝑘 ∼ 𝜋𝑌 |𝑋 (· | 𝑋𝑘) = normal(𝑋𝑘 , ℎ𝐼𝑑).

255
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2. Draw 𝑋𝑘+1 ∼ 𝜋𝑋 |𝑌 (· | 𝑌𝑘).

Since Gibbs sampling always forms a reversible Markov chain with respect to the
target distribution, we conclude that the proximal sampler is unbiased: its stationary
distribution of the proximal sampler is 𝝅 . As written, however, the proximal sampler is
an idealized algorithm because it is not yet clear how to implement the second step of
sampling from 𝜋𝑋 |𝑌 . Note that

𝜋𝑋 |𝑌 (𝑥 | 𝑦) ∝𝑥 exp
(
−𝑉 (𝑥) − ∥𝑦 − 𝑥 ∥

2

2ℎ

)
.

Also, recall that in optimization, we wish to minimize the function 𝑉 , whereas in sam-
pling we want to sample from 𝜋 ∝ exp(−𝑉 ). Via this correspondence, we see that the
optimization analogue of sampling from 𝜋𝑋 |𝑌 is computing the proximal map

proxℎ𝑉 (𝑦) B arg min
𝑥∈R𝑑

{
𝑉 (𝑥) + ∥𝑦 − 𝑥 ∥

2

2ℎ

}
.

The distribution 𝜋𝑋 |𝑌 is known as the restricted Gaussian oracle (RGO), and the
proximal sampler can be viewed as the analogue of the proximal point method for sampling.
See Exercise 8.1 for another connection between the proximal sampler and the proximal
point method from optimization.

Implementability of the RGO. In order to obtain an actual algorithm from the proxi-
mal sampler, an implementation of the RGO must be provided. As we will see in Section 8.6,
the RGO can be implemented by using an auxiliary high-accuracy sampler such as MALA.
Although this may seem circular (if we need to use an auxiliary sampler to implement the
RGO, then why not use the auxiliary sampler in the first place without bothering with
the proximal sampler?), we will see there are benefits to the overall scheme. Namely, the
proximal sampler can boost the condition number dependence of the auxiliary sampler,
and it can be used to sample from a larger class of distributions.

For now, we will consider a simple implementation of the RGO based on rejection
sampling, which we studied in Section 7.1. Suppose that the potential 𝑉 is 𝛽-smooth.
Then, for𝑉𝑦 (𝑥) B 𝑉 (𝑥) + 1

2ℎ ∥𝑦−𝑥 ∥
2 we have ( 1

ℎ
− 𝛽) 𝐼𝑑 ⪯ ∇2𝑉𝑦 ⪯ ( 1

ℎ
+ 𝛽) 𝐼𝑑 . In particular,

if ℎ < 1
𝛽
, then the RGO is strongly log-concave. Note that the condition number of 𝑉𝑦

is 𝜅 = ( 1
ℎ
+ 𝛽)/( 1

ℎ
− 𝛽). If we now choose ℎ = 1

𝛽𝑑
, we can check that 𝜅 ≤ exp(4/𝑑) for

𝑑 ≥ 2. By Proposition 7.1.2, if we have access to the minimizer of 𝑉𝑦 (which is equivalent
to being able to compute the proximal operator for ℎ𝑉 ), we can construct an upper
envelope for which the average number of iterations of rejection sampling is bounded by
𝜅𝑑/2 ≤ exp(2) ≤ 8. We summarize this discussion as follows.
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Implementing the RGO via Rejection Sampling: To sample from 𝜋𝑋 |𝑌 (· | 𝑦),
where 𝑉 is 𝛽-smooth, we proceed via the following steps.

1. Compute the minimizer 𝑥★𝑦 of 𝑉𝑦 defined via 𝑉𝑦 (𝑥) B 𝑉 (𝑥) + 1
2ℎ ∥𝑦 − 𝑥 ∥

2, and
compute the minimum value 𝑉★

𝑦 . This can be done exactly if we assume access
to the proximal mapping of 𝑉 (which is a natural assumption when designing a
proximal algorithm for sampling); otherwise, if ℎ < 1

𝛽
, then this is a strongly convex

optimization problem and can be implemented using standard algorithms.

2. Let 𝜋𝑋 |𝑌 (· | 𝑦) B exp{−(𝑉𝑦 −𝑉★
𝑦 )} and 𝜇̃𝑦 B exp(−1/ℎ−𝛽

2 ∥· − 𝑥★𝑦 ∥2). Use rejection
sampling to sample from 𝜋𝑋 |𝑌 with the envelope 𝜇̃𝑦 .

Each iteration of rejection sampling requires one call to an evaluation oracle for 𝑉 (in
order to compute the acceptance probability). We summarize the guarantees for this
implementation of the RGO in the following theorem.

Theorem 8.1.1. Assume that 𝑉 is 𝛽-smooth. Then, if ℎ ≤ 1
𝛽𝑑

, rejection sampling
implements the RGO for 𝜋𝑋 exactly using one computation of the proximal map for 𝑉
and 𝑂 (1) expected calls to an evaluation oracle for 𝑉 .

Notation. We write 𝜇𝑋
𝑘

for the law of 𝑋𝑘 and 𝜇𝑌
𝑘

for the law of 𝑌𝑘 for the iterates of
the proximal sampler. Observe that if (𝑄𝑡 )𝑡≥0 denotes the standard heat semigroup, i.e.
𝜇𝑄𝑡 = 𝜇 ∗ normal(0, 𝑡𝐼𝑑), then 𝜇𝑌

𝑘
= 𝜇𝑋

𝑘
𝑄ℎ and 𝜋𝑌 = 𝜋𝑋𝑄ℎ .

We also abbreviate 𝜋𝑋 |𝑌 (· | 𝑦) as 𝜋𝑋 |𝑌=𝑦 .

8.2 Convergence under Strong Log-Concavity
One of the most remarkable features of the proximal sampler is that its convergence
analysis closely mirrors the continuous-time theory for the Langevin diffusion. In this
section, we initiate this study starting with the strongly log-concave case.

Recall that under strong log-concavity, we have contraction of the Langevin diffusion
(Theorem 1.4.10). We prove the analogue of this fact for the proximal sampler.

Theorem 8.2.1. Assume that the target 𝜋𝑋 is 𝛼-strongly log-concave. Also, let (𝜇𝑋
𝑘
)
𝑘∈N
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and (𝜇𝑋
𝑘
)
𝑘∈N denote two runs of the proximal sampler with target 𝜋𝑋 . Then,

𝑊2(𝜇𝑋𝑘 , 𝜇
𝑋
𝑘
) ≤

𝑊2(𝜇𝑋0 , 𝜇𝑋0 )
(1 + 𝛼ℎ)𝑘

.

The contraction factor matches the contraction for the proximal point method in
optimization, see Exercise 8.2. Since 𝜋𝑋 is left invariant by the proximal sampler, the
contraction result also implies a convergence result in𝑊2.

We will give two proofs of this theorem. First, note that it suffices to consider
one iteration and to prove 𝑊2(𝜇𝑋1 , 𝜇𝑋1 ) ≤

1
1+𝛼ℎ𝑊2(𝜇𝑋0 , 𝜇𝑋0 ). Next, since the heat flow

is a Wasserstein contraction (which follows from (1.4.9) but can also be proven by a
straightforward coupling), it holds that𝑊2(𝜇𝑌0 , 𝜇𝑌0 ) ≤𝑊2(𝜇𝑋0 , 𝜇𝑋0 ), so it suffices to show
𝑊2(𝜇𝑋1 , 𝜇𝑋1 ) ≤

1
1+𝛼ℎ𝑊2(𝜇𝑌0 , 𝜇𝑌0 ).

We will use the following coupling lemma.

Lemma 8.2.2. Suppose that for all 𝑦,𝑦 ∈ R𝑑 , we have

𝑊2(𝜋𝑋 |𝑌=𝑦, 𝜋𝑋 |𝑌=𝑦) ≤ 𝐶 ∥𝑦 − 𝑦∥ . (8.2.3)

Then,𝑊2(𝜇𝑋1 , 𝜇𝑋1 ) ≤ 𝐶𝑊2(𝜇𝑌0 , 𝜇𝑌0 ).

The intuition is that since 𝜇𝑋1 and 𝜇𝑋1 are obtained from 𝜇𝑌0 and 𝜇𝑌0 by sampling from
the RGO 𝜋𝑋 |𝑌 , the contraction statement in (8.2.3) can be used to bound𝑊2(𝜇𝑋1 , 𝜇𝑋1 ). The
proof of the lemma is relatively straightforward and good practice for working with
couplings, so it is left as Exercise 8.3.

The first proof we present is from [LST21b].

Proof of Theorem 8.2.1 via functional inequalities. To prove (8.2.3), we note that 𝜋𝑋 |𝑌 (· | 𝑦)
is (𝛼 + 1

ℎ
)-strongly log-concave. Recall that by the Bakry–Émery theorem (Theorem 1.2.29)

and the Otto–Villani theorem (Exercise 1.17) this implies the log-Sobolev inequality (1.4.7)
and Talagrand’s T2 inequality (1.4.8). Applying these inequalities,

𝑊 2
2 (𝜋𝑋 |𝑌=𝑦, 𝜋𝑋 |𝑌=𝑦) ≤

2
𝛼 + 1

ℎ

KL(𝜋𝑋 |𝑌=𝑦 ∥ 𝜋𝑋 |𝑌=𝑦) ≤ 1
(𝛼 + 1

ℎ
)2

FI(𝜋𝑋 |𝑌=𝑦 ∥ 𝜋𝑋 |𝑌=𝑦) .

We can compute the Fisher information explicitly. Indeed,

∇ ln 𝜋
𝑋 |𝑌=𝑦

𝜋𝑋 |𝑌=𝑦
= ∇

( ∥𝑦 − ·∥2
2ℎ − ∥𝑦 − ·∥

2

2ℎ

)
=
𝑦 − 𝑦
ℎ
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so that

FI(𝜋𝑋 |𝑌=𝑦 ∥ 𝜋𝑋 |𝑌=𝑦) = E𝜋𝑋 |𝑌=𝑦
[

∇ ln 𝜋

𝑋 |𝑌=𝑦

𝜋𝑋 |𝑌=𝑦



2]
=
∥𝑦 − 𝑦∥2
ℎ2 .

Hence,

𝑊 2
2 (𝜋𝑋 |𝑌=𝑦, 𝜋𝑋 |𝑌=𝑦) ≤

1
(𝛼 + 1

ℎ
)2
∥𝑦 − 𝑦∥2
ℎ2 =

1
(1 + 𝛼ℎ)2

∥𝑦 − 𝑦∥2 . □

The next proof, from [Che+22a], directly uses strong convexity in Wasserstein space.

Proof of Theorem 8.2.1 via Wasserstein calculus. This proof rests on the following interpre-
tation of the RGO. Let F(𝜇) B KL(𝜇 ∥ 𝜋𝑋 ). Then, by Exercise 8.1,

𝜋𝑋 |𝑌=𝑦 = arg min
𝜇∈P2 (R𝑑 )

{
F(𝜇) + 1

2ℎ 𝑊
2

2 (𝜇, 𝛿𝑦)
}
C proxℎF (𝛿𝑦) .

The first-order optimality conditions on Wasserstein space [AGS08, Lemma 10.1.2] reads

0 ∈ 𝜕F(𝜋𝑋 |𝑌=𝑦) + 1
ℎ
(id − 𝑦) , 𝜋𝑋 |𝑌=𝑦-a.s.

where 𝜕F is the subdifferential of F on Wasserstein space.
Using this, we obtain

id ∈ 𝑦 − ℎ 𝜕F(𝜋𝑋 |𝑌=𝑦) , 𝜋𝑋 |𝑌=𝑦-a.s.
id ∈ 𝑦 − ℎ 𝜕F(𝜋𝑋 |𝑌=𝑦) , 𝜋𝑋 |𝑌=𝑦-a.s.

Let 𝑇 be the optimal transport map from 𝜋𝑋 |𝑌=𝑦 to 𝜋𝑋 |𝑌=𝑦 . The second condition above
can then be rewritten as

𝑇 ∈ 𝑦 − ℎ 𝜕F(𝜋𝑋 |𝑌=𝑦) ◦𝑇 , 𝜋𝑋 |𝑌=𝑦-a.s.

We now abuse notation and write 𝜕F(𝜋𝑋 |𝑌=𝑦) for a particular element of the subdif-
ferential and similarly for 𝜕F(𝜋𝑋 |𝑌=𝑦). Then, 𝜋𝑋 |𝑌=𝑦-a.s.,

∥𝑇 − id∥2 = ∥𝑦 − 𝑦∥2 − 2ℎ ⟨𝜕F(𝜋𝑋 |𝑌=𝑦) ◦𝑇 − 𝜕F(𝜋𝑋 |𝑌=𝑦),𝑇 − id⟩
− ℎ2 ∥𝜕F(𝜋𝑋 |𝑌=𝑦) ◦𝑇 − 𝜕F(𝜋𝑋 |𝑌=𝑦)∥2 .

We now integrate w.r.t. 𝜋𝑋 |𝑌=𝑦 and apply strong convexity of F in Wasserstein space:

𝑊 2
2 (𝜋𝑋 |𝑌=𝑦, 𝜋𝑋 |𝑌=𝑦) ≤ ∥𝑦 − 𝑦∥2 − 2𝛼ℎ𝑊 2

2 (𝜋𝑋 |𝑌=𝑦, 𝜋𝑋 |𝑌=𝑦) − 𝛼2ℎ2𝑊 2
2 (𝜋𝑋 |𝑌=𝑦, 𝜋𝑋 |𝑌=𝑦)

and hence

𝑊 2
2 (𝜋𝑋 |𝑌=𝑦, 𝜋𝑋 |𝑌=𝑦) ≤

1
(1 + 𝛼ℎ)2

∥𝑦 − 𝑦∥2 . □
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The point of the second proof is that, although it uses some heavy machinery, it is just
a translation of a Euclidean optimization proof into the language of Wasserstein space
(see Exercise 8.2).

8.3 Simultaneous Heat Flow and Time Reversal
We now introduce two new techniques in order to further analyze the proximal sampler.

Simultaneous heat flow. The first technique is based on the observation that in going
from 𝜇𝑋

𝑘
to 𝜇𝑌

𝑘
, and from 𝜋𝑋 to 𝜋𝑌 , we are applying the heat flow. Given any 𝑓 -divergence

D𝑓 (· ∥ ·), we will compute its time derivative when both arguments undergo simultaneous
heat flow. Remarkably, the result will be almost the same as the time derivative of the
𝑓 -divergence to the target along the continuous-time Langevin diffusion, in a sense to be
made precise. The upshot is that the analysis of the proximal sampler closely resembles
the analysis of the continuous-time Langevin diffusion.

The simultaneous heat flow calculation is inspired by [VW19], and was carried out at
this level of generality in [Che+22a].

Let 𝑓 : R+ → R+ be a convex function with 𝑓 (1) = 0, and let D𝑓 be the associated
𝑓 -divergence (see Section 1.5). We begin with a quick computation of the time derivative
of the 𝑓 -divergence along the Langevin diffusion.

Theorem 8.3.1. Let (𝜋𝑡 )𝑡≥0 denote the law of the continuous-time Langevin diffusion
with target 𝜋 . Then, for any 𝑓 -divergence D𝑓 , it holds that

𝜕𝑡D𝑓 (𝜋𝑡 ∥ 𝜋) = −J𝑓 (𝜋𝑡 ∥ 𝜋) ,

where

J𝑓 (𝜇 ∥ 𝜋) B E𝜇
〈
∇
(
𝑓 ′ ◦ 𝜇

𝜋

)
,∇ ln 𝜇

𝜋

〉
. (8.3.2)

Proof. Using the Fokker–Planck equation,

𝜕𝑡D𝑓 (𝜋𝑡 ∥ 𝜋) = 𝜕𝑡
∫

𝑓
(𝜋𝑡
𝜋

)
d𝜋 =

∫
𝑓 ′
(𝜋𝑡
𝜋

)
𝜕𝑡𝜋𝑡 =

∫
𝑓 ′
(𝜋𝑡
𝜋

)
div

(
𝜋𝑡∇ ln 𝜋𝑡

𝜋

)
= −

∫ 〈
∇
(
𝑓 ′ ◦ 𝜋𝑡

𝜋

)
,∇ ln 𝜋𝑡

𝜋

〉
d𝜋𝑡 . □

Next, we compute the time derivative of the 𝑓 -divergence when both arguments
simultaneously evolve according to the heat flow.
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Theorem 8.3.3. Let (𝑄𝑡 )𝑡≥0 denote the standard heat semigroup. Then,

𝜕𝑡D𝑓 (𝜇𝑄𝑡 ∥ 𝜋𝑄𝑡 ) = −
1
2 J𝑓 (𝜇𝑄𝑡 ∥ 𝜋𝑄𝑡 ) ,

where J𝑓 is defined in (8.3.2).

Proof. For brevity, write 𝜇𝑡 B 𝜇𝑄𝑡 and 𝜋𝑡 B 𝜋𝑄𝑡 . Since 𝜕𝑡𝜇𝑡 = 1
2 Δ𝜇𝑡 =

1
2 div(𝜇𝑡∇ ln 𝜇𝑡 )

and similarly for 𝜕𝑡𝜋𝑡 , we compute

2 𝜕𝑡D𝑓 (𝜇𝑡 ∥ 𝜋𝑡 ) = 2 𝜕𝑡
∫

𝑓
( 𝜇𝑡
𝜋𝑡

)
d𝜋𝑡 = 2

∫
𝑓 ′
( 𝜇𝑡
𝜋𝑡

) (
𝜕𝑡𝜇𝑡 −

𝜇𝑡

𝜋𝑡
𝜕𝑡𝜋𝑡

)
+ 2

∫
𝑓
( 𝜇𝑡
𝜋𝑡

)
𝜕𝑡𝜋𝑡

=

∫
𝑓 ′
( 𝜇𝑡
𝜋𝑡

) (
div(𝜇𝑡∇ ln 𝜇𝑡 ) −

𝜇𝑡

𝜋𝑡
div(𝜋𝑡∇ ln𝜋𝑡 )

)
+
∫

𝑓
( 𝜇𝑡
𝜋𝑡

)
div(𝜋𝑡∇ ln𝜋𝑡 )

= −
∫ 〈
∇
(
𝑓 ′ ◦ 𝜇𝑡

𝜋𝑡

)
,∇ ln 𝜇𝑡

〉
d𝜇𝑡 +

∫ 〈
∇
[
𝑓 ′
( 𝜇𝑡
𝜋𝑡

) 𝜇𝑡
𝜋𝑡

]
,∇ ln𝜋𝑡

〉
d𝜋𝑡

−
∫ 〈
∇
(
𝑓 ◦ 𝜇𝑡

𝜋𝑡

)
,∇ ln𝜋𝑡

〉
d𝜋𝑡

= −
∫ 〈
∇
(
𝑓 ′ ◦ 𝜇𝑡

𝜋𝑡

)
,∇ ln 𝜇𝑡

𝜋𝑡

〉
d𝜇𝑡 +

∫ 〈
∇ 𝜇𝑡
𝜋𝑡
,∇ ln𝜋𝑡

〉
𝑓 ′
( 𝜇𝑡
𝜋𝑡

)
d𝜋𝑡

−
∫ 〈
∇ 𝜇𝑡
𝜋𝑡
,∇ ln𝜋𝑡

〉
𝑓 ′
( 𝜇𝑡
𝜋𝑡

)
d𝜋𝑡

= −J𝑓 (𝜇𝑡 ∥ 𝜋𝑡 ) . □

Although this theorem is already enough to prove new convergence results for the
proximal sampler, the rates will be slightly suboptimal. The reason for this is because we
have only considered one step of the proximal sampler, in which the algorithm goes from
𝜇𝑋
𝑘

to 𝜇𝑌
𝑘

(and the target goes from 𝜋𝑋 to 𝜋𝑌 ). In order to obtain the sharp convergence
rates, we also need to consider the second step, in which we go from 𝜇𝑌

𝑘
to 𝜇𝑋

𝑘+1 (and the
target returns from 𝜋𝑌 to 𝜋𝑋 ). For reasons that will become clear shortly, we refer to these
steps as the “forwards step” and the “backwards step” respectively.

First, consider the evolution of the target along the heat semigroup 𝑡 ↦→ 𝜋𝑋𝑄𝑡 , so
that at time ℎ we arrive at 𝜋𝑌 . The stochastic process representation of this evolution is
d𝑍𝑡 = d𝐵𝑡 , with 𝑍0 ∼ 𝜋𝑋 and 𝑍ℎ ∼ 𝜋𝑌 , thus describing the forward step. So far so good,
but how should we think about the backwards step? By definition, 𝜋𝑋 is obtained from
𝜋𝑌 by the relation 𝜋𝑋 =

∫
𝜋𝑋 |𝑌=𝑦 d𝜋𝑌 (𝑦), but this is not as helpful because we lose the

stochastic process view which allows us to apply calculus. Instead, we will think of 𝜋𝑋 as
being obtained from 𝜋𝑌 by the time reversal of the diffusion (𝑍𝑡 )𝑡∈[0,ℎ] .
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Time reversal. We now apply the result of Section 3.3.2, which implies that the time
reversal of the SDE

d𝑍𝑡 = d𝐵𝑡 , 𝑍0 ∼ 𝜋𝑋

is given by the SDE

d𝑍←𝑡 = ∇ ln(𝜋𝑋𝑄ℎ−𝑡 ) (𝑍←𝑡 ) d𝑡 + d𝐵𝑡 (8.3.4)

in the sense that if we initialize the SDE at 𝑍←0 = 𝑦, then 𝑍←
ℎ
∼ 𝜋𝑋 |𝑌=𝑦 .

In particular, if we initialize the process at 𝑍←0 ∼ 𝜋𝑌 , then 𝑍←
ℎ
∼ 𝜋𝑋 . On the other

hand, if we initialize the process at𝑍←0 ∼ 𝜇𝑌𝑘 , then the law of𝑍←
ℎ

is
∫
𝜋𝑋 |𝑌=𝑦 d𝜇𝑌

𝑘
(𝑦) = 𝜇𝑋

𝑘+1.
Thus, we have successfully exhibited a stochastic process representation which takes us
from 𝜇𝑌

𝑘
to 𝜇𝑋

𝑘+1. For any measure 𝜇, write 𝜇𝑄←𝑡 for the law of 𝑍←𝑡 initialized at 𝑍←0 ∼ 𝜇.

Simultaneous backwards heat flow. Next, we will show that the time derivative of
the 𝑓 -divergence along the simultaneous backwards heat flow also behaves the same way
as the simultaneous forwards heat flow. This leads to a pleasing symmetry between the
forwards and backwards steps of the proximal sampler.

Theorem 8.3.5. Let (𝑄←𝑡 )𝑡∈[0,ℎ] denote the construction described above by reversing
the heat flow started at 𝜋𝑋 . Then,

𝜕𝑡D𝑓 (𝜇𝑄←𝑡 ∥ 𝜋𝑌𝑄←𝑡 ) = −
1
2 J𝑓 (𝜇𝑄

←
𝑡 ∥ 𝜋𝑌𝑄←𝑡 ) ,

where J𝑓 is defined in (8.3.2).

Proof. For brevity, write 𝜇←𝑡 B 𝜇𝑄←𝑡 and 𝜋←𝑡 B 𝜋𝑌𝑄←𝑡 . By construction of the reversed
process, 𝜋←𝑡 = 𝜋𝑋𝑄ℎ−𝑡 . Then, by the Fokker–Planck equation,

𝜕𝑡𝜋
←
𝑡 = − div(𝜋←𝑡 ∇ ln𝜋←𝑡 ) +

1
2 Δ𝜋←𝑡 = −1

2 Δ𝜋←𝑡 ,

𝜕𝑡𝜇
←
𝑡 = − div(𝜇←𝑡 ∇ ln𝜋←𝑡 ) +

1
2 Δ𝜇←𝑡 = div

(
𝜇←𝑡 ∇ ln

𝜇←𝑡
𝜋←𝑡

)
− 1

2 Δ𝜇←𝑡 .

Note that the fact that (𝜋←𝑡 )𝑡∈[0,ℎ] satisfies the backwards heat equation is completely
natural in light of our construction via the reversed process.

Hence, we compute

2 𝜕𝑡D𝑓 (𝜇←𝑡 ∥ 𝜋←𝑡 ) = 2
∫

𝑓 ′
( 𝜇←𝑡
𝜋←𝑡

) (
𝜕𝑡𝜇
←
𝑡 −

𝜇←𝑡
𝜋←𝑡

𝜕𝑡𝜋
←
𝑡

)
+ 2

∫
𝑓
( 𝜇←𝑡
𝜋←𝑡

)
𝜕𝑡𝜋
←
𝑡
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=

∫
𝑓 ′
( 𝜇←𝑡
𝜋←𝑡

) (
2 div

(
𝜇←𝑡 ∇ ln

𝜇←𝑡
𝜋←𝑡

)
− Δ𝜇←𝑡 +

𝜇←𝑡
𝜋←𝑡

Δ𝜋←𝑡

)
−
∫

𝑓
( 𝜇←𝑡
𝜋←𝑡

)
Δ𝜋←𝑡

= 2
∫

𝑓 ′
( 𝜇←𝑡
𝜋←𝑡

)
div

(
𝜇←𝑡 ∇ ln

𝜇←𝑡
𝜋←𝑡

)
−
[∫

𝑓 ′
( 𝜇←𝑡
𝜋←𝑡

) (
Δ𝜇←𝑡 −

𝜇←𝑡
𝜋←𝑡

Δ𝜋←𝑡

)
+
∫

𝑓
( 𝜇←𝑡
𝜋←𝑡

)
Δ𝜋←𝑡

]
︸                                                                ︷︷                                                                ︸

(★)

.

The term (★) is exactly the same kind of term we encountered in the proof of Theorem 8.3.3,
and by the same calculations it equals −J𝑓 (𝜇←𝑡 ∥ 𝜋←𝑡 ). Therefore,

2 𝜕𝑡D𝑓 (𝜇←𝑡 ∥ 𝜋←𝑡 ) = −2
∫ 〈
∇
(
𝑓 ′ ◦

𝜇←𝑡
𝜋←𝑡

)
,∇ ln

𝜇←𝑡
𝜋←𝑡

〉
d𝜇←𝑡 + J𝑓 (𝜇←𝑡 ∥ 𝜋←𝑡 )

= −J𝑓 (𝜇←𝑡 ∥ 𝜋←𝑡 ) . □

8.4 Convergence under Log-Concavity
Next, we present a convergence proof for the proximal sampler under log-concavity,
following [Che+22a]. The proof can be compared to the 1/𝑡 convergence rate for the
Langevin diffusion under log-concavity (1.4.12), which was obtained via a Lyapunov
function argument.

Theorem 8.4.1. Assume that the target 𝜋𝑋 is log-concave. Then, for the law 𝜇𝑋
𝑘

of the
𝑘-th iterate of the proximal sampler,

KL(𝜇𝑋
𝑘
∥ 𝜋𝑋 ) ≤

𝑊 2
2 (𝜇𝑋0 , 𝜋𝑋 )
𝑘ℎ

.

Proof. Forwards step. Along the simultaneous heat flow, Theorem 8.3.3 shows that

𝜕𝑡 KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) = −
1
2 FI(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )

so we need to lower bound the Fisher information. Also, log-concavity is preserved by
convolution, so 𝜋𝑋𝑄𝑡 is log-concave. [TODO: Justify this fact.] Hence, by convexity of
the KL divergence to a log-concave target along Wasserstein geodesics (Theorem 1.4.5),

0 = KL(𝜋𝑋𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) ≥ KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) + E𝜇𝑋0 𝑄𝑡

〈
∇ ln

𝜇𝑋0 𝑄𝑡

𝜋𝑋𝑄𝑡
,𝑇𝜇𝑋0 𝑄𝑡→𝜋𝑋𝑄𝑡

− id
〉
.
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Rearranging this and using the Cauchy–Schwarz inequality,

E𝜇𝑋0 𝑄𝑡

[


∇ ln
𝜇𝑋0 𝑄𝑡

𝜋𝑋𝑄𝑡




2]
︸                      ︷︷                      ︸

FI(𝜇𝑋0 𝑄𝑡 ∥𝜋𝑋𝑄𝑡 )

𝑊 2
2 (𝜇𝑋0 𝑄𝑡 , 𝜋𝑋𝑄𝑡 ) ≥ KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )

2
.

Combining this with the fact that the Wasserstein distance is decreasing along the simul-
taneous heat flow,

𝜕𝑡 KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) ≤ −
1
2

KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )
2

𝑊 2
2 (𝜇𝑋0 , 𝜋𝑋 )

.

Solving this differential inequality,

1
KL(𝜇𝑌0 ∥ 𝜋𝑌 )

=
1

KL(𝜇𝑋0 𝑄ℎ ∥ 𝜋𝑋𝑄ℎ)
≥ 1

KL(𝜇𝑋0 ∥ 𝜋𝑋 )
+ ℎ

2𝑊 2
2 (𝜇𝑋0 , 𝜋𝑋 )

.

Backwards step. Along the simultaneous backwards heat flow, Theorem 8.3.5 gives

𝜕𝑡 KL(𝜇𝑌0𝑄←𝑡 ∥ 𝜋𝑌𝑄←𝑡 ) = −
1
2 FI(𝜇𝑌0𝑄←𝑡 ∥ 𝜋𝑌𝑄←𝑡 ) .

Since 𝜋𝑌𝑄←𝑡 = 𝜋𝑋𝑄ℎ−𝑡 is log-concave and 𝑡 ↦→𝑊 2
2 (𝜇𝑌0𝑄←𝑡 , 𝜋𝑌𝑄←𝑡 ) is decreasing (which

is checked via a coupling argument using the diffusion (8.3.4)), a similar calculation as the
forwards step leads to the inequality

1
KL(𝜇𝑋1 ∥ 𝜋𝑋 )

=
1

KL(𝜇𝑌0𝑄←ℎ ∥ 𝜋𝑌𝑄
←
ℎ
)
≥ 1

KL(𝜇𝑌0 ∥ 𝜋𝑌 )
+ ℎ

2𝑊 2
2 (𝜇𝑋0 , 𝜋𝑋 )

.

We iterate these inequalities, using the fact that 𝑊2(𝜇𝑋𝑘 , 𝜋
𝑋 ) ≤ 𝑊2(𝜇𝑋0 , 𝜋𝑋 ) for all

𝑘 ∈ N (which follows from Theorem 8.2.1) to obtain

1
KL(𝜇𝑋

𝑘
∥ 𝜋𝑋 )

≥ 1
KL(𝜇𝑋0 ∥ 𝜋𝑋 )

+ 𝑘ℎ

𝑊 2
2 (𝜇𝑋0 , 𝜋𝑋 )

or

KL(𝜇𝑋
𝑘
∥ 𝜋𝑋 ) ≤

KL(𝜇𝑋0 ∥ 𝜋𝑋 )
1 + 𝑘ℎ KL(𝜇𝑋0 ∥ 𝜋𝑋 )/𝑊 2

2 (𝜇𝑋0 , 𝜋𝑋 )
≤
𝑊 2

2 (𝜇𝑋0 , 𝜋𝑋 )
𝑘ℎ

. □
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8.5 Convergence under Functional Inequalities
We now prove convergence guarantees for the proximal sampler when the target satisfies
either a Poincaré inequality or a log-Sobolev inequality, following [Che+22a].

Theorem 8.5.1. Suppose that the target 𝜋𝑋 satisfies a Poincaré inequality with constant
𝐶PI. Then, for the law 𝜇𝑋

𝑘
of the 𝑘-th iterate of the proximal sampler,

𝜒2(𝜇𝑋
𝑘
∥ 𝜋𝑋 ) ≤

𝜒2(𝜇𝑋0 ∥ 𝜋𝑋 )
(1 + ℎ/𝐶PI)2𝑘

.

Proof. Forwards step. For the chi-squared divergence, we can check that the dissipation
functional is given by J (𝜇 ∥ 𝜋) = 2E𝜋 [∥∇(𝜇/𝜋)∥2]. Along the simultaneous heat flow,
by Theorem 8.3.3,

𝜕𝑡 𝜒
2(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) = −J (𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) = −E𝜋𝑋𝑄𝑡

[


∇ 𝜇𝑋0 𝑄𝑡
𝜋𝑋𝑄𝑡




2]
.

Since 𝜋𝑋 satisfies a Poincaré inequality with constant𝐶PI, by subadditivity of the Poincaré
constant under convolution (Proposition 2.3.7), 𝜋𝑋𝑄𝑡 satisfies a Poincaré inequality with
constant at most 𝐶PI + 𝑡 . It therefore yields

𝜕𝑡 𝜒
2(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) ≤ −

1
𝐶PI + 𝑡

var𝜋𝑋𝑄𝑡

𝜇𝑋0 𝑄𝑡

𝜋𝑋𝑄𝑡
= − 1

𝐶PI + 𝑡
𝜒2(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )

and hence

𝜒2(𝜇𝑌0 ∥ 𝜋𝑌 ) = 𝜒2(𝜇𝑋0 𝑄ℎ ∥ 𝜋𝑋𝑄ℎ) ≤ exp
(
−
∫ ℎ

0

1
𝐶PI + 𝑡

d𝑡
)
𝜒2(𝜇𝑋0 ∥ 𝜋𝑋 ) =

𝜒2(𝜇𝑋0 ∥ 𝜋𝑋 )
1 + ℎ/𝐶PI

.

Backwards step. Along the simultaneous backwards heat flow, Theorem 8.3.5 yields

𝜕𝑡 𝜒
2(𝜇𝑌0𝑄←𝑡 ∥ 𝜋𝑌𝑄←𝑡 ) = −E𝜋𝑌𝑄←𝑡

[


∇ 𝜇𝑌0𝑄←𝑡
𝜋𝑌𝑄←𝑡




2]
.

Using the fact that 𝜋𝑌𝑄←𝑡 = 𝜋𝑋𝑄ℎ−𝑡 satisfies the Poincaré inequality with constant at
most 𝐶PI + ℎ − 𝑡 , we deduce similarly that

𝜒2(𝜇𝑋1 ∥ 𝜋𝑋 ) = 𝜒2(𝜇𝑌0𝑄←ℎ ∥ 𝜋
𝑌𝑄←

ℎ
) ≤

𝜒2(𝜇𝑌0 ∥ 𝜋𝑌 )
1 + ℎ/𝐶PI

.

Iterating this pair of inequalities yields the result. □
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A similar result holds for the log-Sobolev inequality; since the proof is entirely analo-
gous, we leave it as Exercise 8.5.

Theorem 8.5.2. Suppose that the target 𝜋𝑋 satisfies a log-Sobolev inequality with
constant 𝐶LSI. Then, for the law 𝜇𝑋

𝑘
of the 𝑘-th iterate of the proximal sampler,

KL(𝜇𝑋
𝑘
∥ 𝜋𝑋 ) ≤

KL(𝜇𝑋0 ∥ 𝜋𝑋 )
(1 + ℎ/𝐶LSI)2𝑘

.

Recall that if 𝜋𝑋 is 𝛼-strongly log-concave, then it satisfies a log-Sobolev inequality
with constant 𝐶LSI ≤ 1/𝛼 (Theorem 1.2.29). Thus, the contraction factor of 1

(1+𝛼ℎ)2 in KL
divergence matches the contraction factor in𝑊 2

2 distance (Theorem 8.2.1). To get this
sharp result, it is necessary to utilize the backwards step.

Similarly to Theorem 2.2.15, it is also possible to obtain guarantees for Rényi diver-
gences, see Exercise 8.6.
Remark 8.5.3. It is a curious observation that in the𝑊2 guarantee of Theorem 8.2.1, the
contraction factor of 1

(1+𝛼ℎ)2 occurs solely in the backwards step, whereas in Theorem 8.5.2
the forwards and backwards steps each contribute a contraction factor of 1

1+𝛼ℎ .

8.6 Applications
The original application of the proximal sampler was for sampling from certain families of
structured log-concave distributions [LST21c]. Since then, the proximal sampler has been
used to provide new guarantees for non-smooth and weakly smooth potentials [GLL22;
LC22a; LC22b]. We will restrict ourselves to applications which are more or less immediate
corollaries of our present analysis.

New guarantees for sampling from smooth potentials. When the potential 𝑉 is
𝛽-smooth, as discussed in Section 8.1, the RGO can be implemented via rejection sampling.
We obtain the following corollaries.

Corollary 8.6.1. Let 𝜋𝑋 ∝ exp(−𝑉 ), where𝑉 is 𝛽-smooth. Take ℎ = 1
𝛽𝑑

and assume we
have an oracle to 𝑉 which evaluates 𝑉 and the proximal operator for 𝑉 . Let 𝜇𝑋

𝑁
denote

the law of the 𝑁 -th iterate of the proximal sampler, in which the RGO is implemented
via rejection sampling.
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1. (Theorem 8.2.1) If in addition 𝑉 is 𝛼-strongly convex with 𝛼 > 0, then writing

𝜅 B 𝛽/𝛼 we obtain
√
𝛼𝑊2(𝜇𝑋𝑁 , 𝜋

𝑋 ) ≤ 𝜀 using 𝑂 (𝜅𝑑 log 𝑊2 (𝜇𝑋0 ,𝜋𝑋 )
𝜀
) queries to the

oracle in expectation.

2. (Theorem 8.4.1) If 𝑉 is convex, we obtain the guarantee
√︃

KL(𝜇𝑋
𝑁
∥ 𝜋𝑋 ) ≤ 𝜀 using

𝑂 ( 𝛽𝑑𝑊
2
2 (𝜇𝑋0 ,𝜋𝑋 )
𝜀2 ) queries to the oracle in expectation.

3. (Theorem 8.5.1) If𝑉 satisfies a Poincaré inequality with constant𝐶PI, we obtain the

guarantee
√︃
𝜒2(𝜇𝑋

𝑁
∥ 𝜋𝑋 ) ≤ 𝜀 using 𝑂 (𝐶PI𝛽𝑑 log 𝜒2 (𝜇𝑋0 ∥𝜋)

𝜀2 ) queries to the oracle
in expectation.

4. (Theorem 8.5.2) If𝑉 satisfies a log-Sobolev inequality with constant𝐶LSI, we obtain

the guarantee
√︃

KL(𝜇𝑋
𝑁
∥ 𝜋𝑋 ) ≤ 𝜀 using 𝑂 (𝐶LSI𝛽𝑑 log KL(𝜇𝑋0 ∥𝜋)

𝜀2 ) queries to the
oracle in expectation.

Note that for the strongly log-concave case, these results are competitive with the
state-of-the-art results for MALA under a feasible start (Theorem 7.3.4)!

Improving the condition number dependence of high-accuracy samplers. The
next application we present is the original use of the proximal sampler in [LST21c]. Namely,
suppose that 𝜋𝑋 ∝ exp(−𝑉 ) is such that 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 with condition number
𝜅 B 𝛽/𝛼 . Suppose we have a high-accuracy sampler which, given any target satisfying
these assumptions, outputs a sample from a probability measure 𝜇 with ∥𝜇 − 𝜋𝑋 ∥TV ≤ 𝜀
using 𝑂 (𝑓 (𝜅) 𝑑𝑐 polylog(1/𝜀)) queries, where 𝑓 : R+ → R+ is some increasing function.
Then, by combining this high-accuracy sampler with the proximal sampler, we can obtain
a new sampler whose complexity is only 𝑂 (𝜅𝑑𝑐 polylog(𝜅/𝜀)), i.e., we have improved the
dependence on the condition number to near linear.

To see how this works, observe that if we choose the step size ℎ = 1
𝛽

for the proximal
sampler, then the RGO 𝜋𝑋 |𝑌=𝑦 has condition number 𝑂 (1). Thus, the high-accuracy
sampler can obtain a 𝛿-approximate sample from the RGO using 𝑂 (𝑑𝑐 polylog(1/𝛿))
queries. On the other hand, with this choice of step size, we know from Theorem 8.5.2
that with a perfect implementation of the RGO the number of iterations required for the
proximal sampler to output 𝜇𝑋

𝑁
with ∥𝜇𝑋

𝑁
− 𝜋 ∥TV ≤ 𝜀 is 𝑂 (𝜅 log(𝑑/𝜀2)). To complete the

analysis, we need to analyze how the error propagates due to the imperfect implementation
of the RGO. This is handled via a coupling argument (Exercise 8.8).



268 CHAPTER 8. THE PROXIMAL SAMPLER

Lemma 8.6.2. Let 𝜇𝑋
𝑁

denote the law of the 𝑁 -th iterate of the proximal sampler with
perfect implementation of the RGO. Suppose that instead, in each step of the proximal
sampler, we use a sample from a distribution which is 𝛿-close to the RGO in total variation
distance; let 𝜇𝑋

𝑁
denote the law of the 𝑁 -th iterate of the proximal sampler with imperfect

implementation of the RGO. Then,

∥𝜇𝑋𝑁 − 𝜇
𝑋
𝑁 ∥TV ≤ 𝑁𝛿 .

Since 𝑁 = 𝑂 (𝜅 log(𝑑/𝜀2)), we can take 𝛿 ≍ 𝜀/𝑁 . The total complexity of the prox-
imal sampler (the number of iterations 𝑁 of the proximal sampler multiplied by the
cost of approximately implementing the RGO with the high-accuracy sampler) is then
𝑂 (𝜅𝑑𝑐 polylog(1/𝜀)) as claimed.

In particular, applying this to the Metropolized random walk (MRW) algorithm (Theo-
rem 7.3.4) improves the complexity from 𝑂 (𝜅2𝑑 polylog(1/𝜀)) to 𝑂 (𝜅𝑑 polylog(1/𝜀)).

Zeroth-order algorithms for sampling. The example above shows that boosting
the MRW algorithm with the proximal sampler leads to an algorithm whose complexity
is competitive with that of MALA. Moreover, unlike MALA, the algorithm based on
MRW only uses zeroth-order information, which is crucial for certain applications such
as Bayesian inverse problems in which gradient information is prohibitively expensive.

Similarly, implementing the RGO using rejection sampling only uses zeroth-order
information, except possibly for computing the minimizer of the potential 𝑉𝑦 .

Lack of discretization analysis. Finally, we mention that the results in Corollary 8.6.1
are state-of-the-art under the various assumptions. A key reason why the proximal
sampler yields powerful complexity guarantees is because there is no “discretization
analysis”. For example, consider the sampling from a target distribution satisfying a
Poincaré inequality. Since a Poincaré inequality implies convergence in chi-squared
divergence, it is natural to perform a 𝜒2 analysis of LMC, but this leads to substantial
new technical hurdles (see Chapter 6). Moreover, under a Poincaré inequality it becomes
non-trivial even to prove moment bounds for the LMC iterates. All of this is handled via
a careful analysis in [Che+21a], but the results there have worse dependence on 𝑑 , 𝐶PI𝛽 ,
and 𝜀−1. In contrast, Corollary 8.6.1 bypasses all of these difficulties because the proximal
sampler reduces the task of sampling from distributions satisfying a Poincaré inequality
to the task of sampling from strongly log-concave distributions for the implementation of
the RGO, and even this is made straightforward via rejection sampling provided that we
take a small enough step size for the proximal sampler.
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Bibliographical Notes
The reader is encouraged to read the original paper [LST21b] on the proximal sampler,
which contains applications to sampling from composite densities 𝜋 ∝ exp(−(𝑓 + 𝑔)),
where 𝑓 is well-conditioned and 𝑔 admits an implementable RGO, as well as to sampling
from log-concave finite sums 𝜋 ∝ exp(−𝐹 ) where 𝐹 B 𝑛−1 ∑𝑛

𝑖=1 𝑓𝑖 is well-conditioned
and the complexity is measured via the number of oracle calls to the individual functions
(𝑓𝑖)𝑖∈[𝑛] . The proximal sampler has also been used to sample from weakly smooth and non-
smooth potentials [LC22a; LC22b], and it has been applied to the problem of differentially
private convex optimization [GLL22].

The optimization results in Exercise 8.2 obtained in analogy with the proximal sampler
are given in [Che+22a].

Exercises
Introduction to the Proximal Sampler

⊵ Exercise 8.1 (RGO as a proximal operator on the Wasserstein space)
Given a functional F : P2(R𝑑) → R∪{∞}, the proximal operator for F on the Wasserstein
space is defined via

proxF (𝜇) B arg min
𝜇′∈P2 (R𝑑 )

{
F(𝜇′) + 1

2𝑊
2

2 (𝜇, 𝜇′)
}
.

The proximal operator was used in the seminal work [JKO98] in order to rigorously make
sense of gradient flows on the Wasserstein space. Prove that the RGO satisfies

𝜋𝑋 |𝑌=𝑦 = proxℎ KL(·∥𝜋) (𝛿𝑦) .

Hence, the assumption that we can implement the RGO is the same as assuming that we
can evaluate the proximal operator for the KL divergence on any Dirac measure.

Convergence under Strong Log-Concavity

⊵ Exercise 8.2 (comparison with optimization results)
This exercise compares the results for the proximal sampler with the proximal point
method in optimization.

1. Suppose that 𝑉 is 𝛼-strongly convex. Prove that proxℎ𝑉 is 1
1+𝛼ℎ -Lipschitz.

Hint: Show that proxℎ𝑉 = (id + ℎ∇𝑉 )−1. Argue via convex duality by considering
the convex conjugate ( ∥·∥

2

2 + ℎ𝑉 )
∗.
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2. Suppose that 𝑉 is 𝛼-strongly convex. Translate both of the proofs in Section 8.2 to
Euclidean optimization.

3. Suppose that 𝑉 satisfies the gradient domination condition

∥∇𝑉 (𝑥)∥2 ≥ 2𝛼 {𝑉 (𝑥) − inf 𝑉 } , for all 𝑥 ∈ R𝑑 .

Also, let 𝑥′ B proxℎ𝑉 (𝑥). Inspired by Theorem 8.5.2, we can ask whether or not it
holds that

𝑉 (𝑥′) − inf 𝑉 ≤ 1
(1 + 𝛼ℎ)2

{𝑉 (𝑥) − inf 𝑉 } .

Prove that this is indeed the case.
Hint: Define𝑉𝑡,𝑥 (𝑧) B 𝑉 (𝑧)+ 1

2𝑡 ∥𝑧−𝑥 ∥
2 and let 𝑥𝑡 B arg min𝑉𝑡,𝑥 ; then, differentiate

𝑡 ↦→ 𝑉𝑡,𝑥 (𝑥𝑡 ).

⊵ Exercise 8.3 (first coupling lemma)
Prove Lemma 8.2.2.

Simultaneous Heat Flow and Time Reversal

⊵ Exercise 8.4 (non-negativity of the dissipation functional)
By the data-processing inequality, the 𝑓 -divergence to the target is always decreasing
along the Langevin diffusion and hence the functional J𝑓 defined in (8.3.2) is always
non-negative. Prove this more directly from the expression for J𝑓 .

⊵ Exercise 8.5 (convergence under LSI)
Verify that the result under LSI (Theorem 8.5.2) holds.

⊵ Exercise 8.6 (convergence in Rényi divergence)
In [VW19], Vempala and Wibisono showed convergence of the Langevin diffusion in Rényi
divergence under a Poincaré or log-Sobolev inequality (see Theorem 2.2.15). Similarly,
extend Theorem 8.5.1 and Theorem 8.5.2 to provide Rényi divergence guarantees.

⊵ Exercise 8.7 (Gaussian case)
In this exercise, we consider the Gaussian case for intuition.

1. Suppose that 𝜋𝑋 = normal(0, 𝐼𝑑) and 𝜇𝑋0 = normal(0, 𝜎2
0 𝐼𝑑). Show that the iterates

of the proximal sampler all have Gaussian distributions, and explicitly compute the
variances. Use this to show that the contraction factors in Theorem 8.2.1 and Theo-
rem 8.5.2 are sharp.
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2. Next, suppose that 𝜋𝑋 = normal(0, Σ) and that 𝜇𝑋0 = normal(𝑚0, Σ0). Show that
the next iterate of the proximal sampler is 𝜇𝑋1 = normal(𝑚1, Σ1), where the mean
satisfies𝑚1 = proxℎ𝑉 (𝑚0) and 𝑉 (𝑥) B 1

2 ⟨𝑥, Σ
−1 𝑥⟩. In other words, the mean of

the iterate of the proximal sampler evolves according to the proximal point method.

Applications

⊵ Exercise 8.8 (second coupling lemma)
Prove Lemma 8.6.2.
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CHAPTER 9

Lower Bounds for Sampling

In order to determine if our sampling guarantees are optimal, we need to pair them with
lower bounds. However, the problem of establishing query complexity lower bounds
for sampling is challenging and the work on this topic is nascent. Here, we will give an
overview of the current progress in this direction.

9.1 A Query Complexity Result in One Dimension
In this section, we follow [Che+22b], which established a sharp query complexity result
for sampling strongly log-concave distributions in one dimension. Define the class

Π𝜅 B {𝜋 ∈ Pac(R) | 𝜋 ∝ exp(−𝑉 ), 1 ≤ 𝑉 ′′ ≤ 𝜅, 𝑉 ′(0) = 0} .
In applications of sampling, one may first need to use an optimization algorithm to find
the minimizer of 𝑉 before applying the sampling algorithm. In our definition of Π𝜅 ,
however, we have enforced the requirement 𝑉 ′(0) = 0 in order to cleanly separate out
the complexity of optimization (finding the minimizer of 𝑉 ) from the intrinsic complexity
of sampling. Our goal is to understand the minimum number of queries required by an
algorithm to output an approximate sample from any target 𝜋 ∈ Π𝜅 .

Theorem 9.1.1 ([Che+22b]). The query complexity of outputting a sample which is 1
64

close in total variation distance to the target 𝜋 , uniformly over the choice of 𝜋 ∈ Π𝜅 , is

273
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Θ(log log𝜅).

In what follows, we will make this theorem more precise and give a proof.

Lower bound. The lower bound will hold for any local oracle. Loosely speaking, a local
oracle accepts as an input a point 𝑥 ∈ R and outputs some information about the target 𝜋
such that if 𝜋 is another possible target and 𝜋 ∝ 𝜋 in some neighborhood of 𝑥 , then the
output of the oracle is the same for both 𝜋 and 𝜋 . This just formalizes the idea that the
oracle only outputs information about 𝜋 “near the point 𝑥”. To simplify the discussion,
however, we will suppose for concreteness that we have access to a second-order oracle:
given 𝑥 ∈ R𝑑 , it outputs the triple (𝑉 (𝑥),𝑉 ′(𝑥),𝑉 ′′(𝑥)), where we recall that 𝑉 is only
specified up to an additive constant. (If this is confusing, you may instead suppose that
the oracle outputs the triple (𝑉 (𝑥) −𝑉 (0),𝑉 ′(𝑥),𝑉 ′′(𝑥)) where 𝜋 = exp(−𝑉 ).)

The lower bound will proceed in two stages.

1. First, we reduce the sampling problem to a statistical testing problem. Namely,
we will construct a family 𝜋1, . . . , 𝜋𝑚 ∈ Π𝜅 , and suppose that 𝒊 ∼ uniform( [𝑚]) is
drawn randomly. The statistical testing problem is defined as follows: given query
access to 𝜋𝑖 (through the oracle), guess the value of 𝒊.
We will show that an algorithm to sample from 𝜋 𝒊 can be used to solve the statistical
testing problem; thus, “sampling is harder than testing”.

2. Next, we will prove a lower bound on the number of queries required to solve the
statistical testing problem: “testing is hard”. This relies on standard information-
theoretic techniques for proving minimax lower bounds for statistical problems.
The main difference between this problem and the usual statistical setting is that
rather than having i.i.d. samples from some data distribution, we instead have query
access and the algorithm is allowed to be adaptive.

Combining the two steps then yields our query complexity lower bound for sampling. We
begin with the construction of 𝜋1, . . . , 𝜋𝑚 , which is slightly tricky.

Let𝑚 be the largest integer such that exp(−22𝑚−2

2𝜅 ) ≥
1
2 (and note that𝑚 = Θ(log𝜅)).

We define two auxiliary functions

𝜙 (𝑥) B


𝜅 , 1

2 ≤ 𝑥 < 1 ,
1 , 1 ≤ 𝑥 < 2 ,
𝜅 , 2 ≤ 𝑥 < 5

2 ,

0 , otherwise ,

𝜓 (𝑥) B


1 , 5

2 ≤ 𝑥 < 4 ,
𝜅 , 4 ≤ 𝑥 < 5 ,
0 , otherwise .
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We define a family (𝑉𝑖)𝑖∈[𝑚] of 1-strongly convex and 𝜅-smooth potentials as follows. We
require that 𝑉𝑖 (0) = 𝑉 ′𝑖 (0) = 0 and that 𝑉𝑖 be an even function, so it suffices to specify 𝑉 ′′𝑖
on R+. The second derivative is given by

𝑉 ′′𝑖 (𝑥) B 1{𝑥 ≤ 𝜅− 1
2 2𝑖−1} + 𝜙

( 𝑥

𝜅−
1
2 2𝑖

)
+
𝑚−1∑︁
𝑗=𝑖

𝜓
( 𝑥

𝜅−
1
2 2 𝑗

)
+ 1{𝑥 ≥ 5𝜅−

1
2 2𝑚−1} , 𝑥 ≥ 0 .

Observe that all of the terms in the above summation have disjoint supports. Although
the construction seems complicated, the basic idea is to make 𝑉 ′′𝑖 oscillate between its
minimum and maximum allowable values 1 and 𝜅; see Figure 9.1 for a visual.

𝑥

𝑉 ′′𝑖 (𝑥/
√
𝜅)

1

𝜅

2𝑖−1 2𝑖 2𝑖+1 5
4 2𝑖+1 2𝑖+2 5

4 2𝑖+2 . . . 5
4 2𝑚+2

Figure 9.1: The dashed lines correspond to 𝜙 and the dotted lines correspond to𝜓 . Here,
the horizontal axis is distorted for clarity.

There are two key properties of this construction. First, we will show in Lemma 9.1.2
that each 𝜋𝑖 places a substantial amount of mass on the interval (𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]. This

implies that if we can sample from 𝜋𝑖 , it is likely that the sample will land in this interval,
which is used to reduce the sampling task to the statistical testing task. Then, we will
show in Lemma 9.1.4 that 𝑉𝑖 and 𝑉𝑖+1 agree exactly outside of a small interval which is
approximately located at 𝜅− 1

2 2𝑖 . This implies that for any given value 𝑥 ∈ R𝑑 , there are
only 𝑂 (1) possible values of (𝑉𝑖 (𝑥),𝑉 ′𝑖 (𝑥),𝑉 ′′𝑖 (𝑥)) as 𝑖 ranges in [𝑚], which in turn will
be used to show that the oracle is not very informative (and hence prove a lower bound
for the statistical testing task).

The intuition behind the following lemma is that at 𝜅− 1
2 2𝑖−1, 𝑉 ′′𝑖 = 𝜅 for the first time

and so the density 𝜋𝑖 drops off rapidly after this point.
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Lemma 9.1.2. For each 𝑖 ∈ [𝑚],

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
≥ 1

32 .

Proof. According to the definition of 𝜋𝑖 , we have

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
=

∫ 𝜅− 1
2 2𝑖−1

𝜅
− 1

2 2𝑖−2 exp(−𝑥2/2) d𝑥
𝑍𝜋𝑖

, 𝑍𝜋𝑖 B

∫
exp(−𝑉𝑖) .

Recalling that𝑚 is chosen so that exp(−𝑥2/2) ≥ 1/2 whenever |𝑥 | ≤ 𝜅− 1
2 2𝑚−1,∫ 𝜅

− 1
2 2𝑖−1

𝜅
− 1

2 2𝑖−2
exp

(
−𝑥

2

2
)

d𝑥 ≥ 1
2 𝜅
− 1

2 2𝑖−2 .

For the normalizing constant, observe that∫ ∞

0
exp(−𝑉𝑖) =

∫ 𝜅
− 1

2 2𝑖

0
exp(−𝑉𝑖) +

∫ ∞

𝜅
− 1

2 2𝑖
exp(−𝑉𝑖) ≤ 𝜅−

1
2 2𝑖 +

∫ ∞

𝜅
− 1

2 2𝑖
exp(−𝑉𝑖) .

Since 𝑉 ′′𝑖 = 𝜅 on [𝜅− 1
2 2𝑖−1, 𝜅−

1
2 2𝑖], it follows that 𝑉 ′𝑖 (𝜅−

1
2 2𝑖) ≥ 𝜅− 1

2 2𝑖−1, and so

𝑉𝑖 (𝑥) ≥ 𝜅−
1
2 2𝑖−1 (𝑥 − 𝜅− 1

2 2𝑖) + (𝑥 − 𝜅
− 1

2 2𝑖)
2

2 , 𝑥 ≥ 𝜅− 1
2 2𝑖 .

Therefore,∫ ∞

𝜅
− 1

2 2𝑖
exp(−𝑉𝑖) ≤

∫ ∞

𝜅
− 1

2 2𝑖
exp

(
−𝜅− 1

2 2𝑖−1 (𝑥 − 𝜅− 1
2 2𝑖) − (𝑥 − 𝜅

− 1
2 2𝑖)

2

2

)
d𝑥

≤ 1
𝜅−

1
2 2𝑖−1

≤ 1
√
𝜅
,

where we applied a standard tail estimate for Gaussian densities (Lemma 9.1.3). Then,

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
≥ 2𝑖−3

2 (2𝑖 + 1) ≥
1
32 ,

which proves the result. □

In the above proof, we used the following lemma (see Exercise 9.1).
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Lemma 9.1.3. Let 𝑎, 𝑥0 > 0. Then,∫ ∞

𝑥0

exp
(
−𝑎 (𝑥 − 𝑥0) −

1
2 (𝑥 − 𝑥0)2

)
d𝑥 ≤ 1

𝑎
.

The next lemma is the main reason why we used an oscillating construction for 𝑉 ′′𝑖 .

Lemma 9.1.4. We have the equalities

𝑉𝑖 = 𝑉𝑖+1 , 𝑉 ′𝑖 = 𝑉 ′𝑖+1 , 𝑉 ′′𝑖 = 𝑉 ′′𝑖+1 ,

outside of the set {𝑥 ∈ R : 𝜅− 1
2 2𝑖−1 ≤ |𝑥 | ≤ 5

4 𝜅
− 1

2 2𝑖+1}.

𝑥

1

𝜅

2𝑖−1 2𝑖 2𝑖+1 5
4 2𝑖+1 2𝑖+2 5

4 2𝑖+2

Figure 9.2: We plot𝑉 ′′𝑖 (𝑥) (in blue) and𝑉 ′′𝑖+1(𝑥) (in orange). In this figure, we do not distort
the horizontal axis lengths to make it easier to visually compare the relative lengths of
intervals on which the second derivatives are constant.

Proof. Refer to Figure 9.2 for a visual aid for the proof.
Clearly the potentials and derivatives match when |𝑥 | ≤ 𝜅− 1

2 2𝑖−1. Since the second
derivatives match when |𝑥 | ≥ 5

4 𝜅
− 1

2 2𝑖+1, it suffices to show that

𝑉 ′𝑖
(5
4 𝜅
− 1

2 2𝑖+1
)
= 𝑉 ′𝑖+1

(5
4 𝜅
− 1

2 2𝑖+1) and 𝑉𝑖
(5
4 𝜅
− 1

2 2𝑖+1
)
= 𝑉𝑖+1

(5
4 𝜅
− 1

2 2𝑖+1
)
.

To that end, note that for 𝑥 ≥ 0,

𝑉 ′′𝑖+1(𝑥) −𝑉 ′′𝑖 (𝑥) = 1{𝜅− 1
2 2𝑖−1 < 𝑥 ≤ 𝜅− 1

2 2𝑖} − 𝜙
( 𝑥

𝜅−
1
2 2𝑖

)
+ 𝜙

( 𝑥

𝜅−
1
2 2𝑖+1

)
−𝜓

( 𝑥

𝜅−
1
2 2𝑖

)
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=


−(𝜅 − 1) , 𝜅−

1
2 2𝑖−1 ≤ 𝑥 ≤ 𝜅− 1

2 2𝑖 ,
+(𝜅 − 1) , 𝜅−

1
2 2𝑖 ≤ 𝑥 ≤ 𝜅− 1

2 2𝑖+1 ,
−(𝜅 − 1) , 𝜅−

1
2 2𝑖+1 ≤ 𝑥 ≤ 5

4 𝜅
− 1

2 2𝑖+1 ,
0 , otherwise .

A little algebra shows that the above expression integrates to zero, hence we deduce the
equality 𝑉 ′𝑖 ( 54 𝜅

− 1
2 2𝑖+1) = 𝑉 ′𝑖+1( 54 𝜅

− 1
2 2𝑖+1). Also, by integrating this expression twice,

𝑉𝑖+1
(5
4 𝜅
− 1

2 2𝑖+1
)
−𝑉𝑖

(5
4 𝜅
− 1

2 2𝑖+1
)
= −𝜅 − 1

2 (𝜅− 1
2 2𝑖−1)2︸                 ︷︷                 ︸

integral on [𝜅−
1
2 2𝑖−1, 𝜅−

1
2 2𝑖 ]

− (𝜅 − 1) 𝜅− 1
2 2𝑖−1 𝜅−

1
2 2𝑖 + 𝜅 − 1

2 (𝜅− 1
2 2𝑖)2︸                                                  ︷︷                                                  ︸

integral on [𝜅−
1
2 2𝑖 , 𝜅−

1
2 2𝑖+1]

+ (𝜅 − 1) 𝜅− 1
2 2𝑖−1 1

4 𝜅
− 1

2 2𝑖+1 − 𝜅 − 1
2

(1
4 𝜅
− 1

2 2𝑖+1
)2︸                                                             ︷︷                                                             ︸

integral on [𝜅−
1
2 2𝑖+1, 5

4 𝜅
− 1

2 2𝑖+1]

=
𝜅 − 1
𝜅
{−22𝑖−3 − 22𝑖−1 + 22𝑖−1 + 22𝑖−2 − 22𝑖−3}

= 0 . □

We need one final ingredient: Fano’s inequality, which is the standard tool for
establishing information-theoretic lower bounds.

Theorem 9.1.5 (Fano’s inequality). Let 𝒊 ∼ uniform( [𝑚]). Then, for any estimator 𝒊̂ of
𝒊, where 𝒊̂ is measurable with respect to some data 𝑌 ,

P
{
𝒊̂ ≠ 𝒊

}
≥ 1 − I( 𝒊;𝑌 ) + ln 2

ln𝑚 ,

where I is the mutual information I( 𝒊;𝑌 ) B KL(law( 𝒊, 𝑌 ) ∥ law( 𝒊) ⊗ law(𝑌 )).

Proof. Let H(·) denote the entropy of a discrete random variable, i.e., if 𝑋 has law 𝑝 on a
discrete alphabet X, then H(𝑋 ) = ∑

𝑥∈X 𝑝 (𝑥) ln(1/𝑝 (𝑥)). We refer to [CT06, Chapter 2]
for the basic properties of entropy (and related quantities).
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Let 𝐸 B 1{ 𝒊̂ ≠ 𝒊 } denote the indicator of an error. Using the chain rule for entropy in
two different ways,

H( 𝒊, 𝐸 | 𝒊̂ ) = H( 𝒊 | 𝒊̂ ) + H( 𝐸 | 𝒊, 𝒊̂ )︸      ︷︷      ︸
=0

= H( 𝐸 | 𝒊̂ ) + H( 𝒊 | 𝐸, 𝒊̂ ) .

Since conditioning reduces entropy, H( 𝐸 | 𝒊̂ ) ≤ H( 𝐸 ) ≤ ln 2. Also,

H( 𝒊 | 𝐸, 𝒊̂ ) = P{ 𝒊̂ = 𝒊 } H( 𝒊 | 𝒊̂, 𝐸 = 0 )︸            ︷︷            ︸
=0

+ P{ 𝒊̂ ≠ 𝒊 }H( 𝒊 | 𝒊̂, 𝐸 = 1 ) ≤ P{ 𝒊̂ ≠ 𝒊 } ln𝑚 .

Hence,

P{ 𝒊̂ ≠ 𝒊 } ln𝑚 + ln 2 ≥ H( 𝒊 | 𝒊̂ ) = H( 𝒊 ) − I( 𝒊 ; 𝒊̂ ) ≥ ln𝑚 − I( 𝒊 ; 𝑌 )

where the last inequality is the data-processing inequality. Rearranging the inequality
completes the proof of Fano’s inequality. □

Proof of Theorem 9.1.1, lower bound. We follow the general outline described above.
1. Reduction to statistical testing. Let 𝒊 ∼ uniform( [𝑚]) and suppose that for each

𝑖 ∈ [𝑚], 𝜋𝑖 is a distribution with ∥𝜋𝑖 − 𝜋𝑖 ∥TV ≤ 1
64 . Suppose that we have a sample

𝑋 ∼ 𝜋 𝒊 (more precisely, this means that conditioned on 𝒊 = 𝑖 , we have 𝑋 ∼ 𝜋𝑖 ). In light
of Lemma 9.1.2, a good candidate estimator 𝒊̂ for 𝒊 is

𝒊̂ B 𝑖 ∈ N such that 𝑋 ∈ (𝜅− 1
2 2𝑖−2, 𝜅−

1
2 2𝑖−1] if such an 𝑖 exists .

The probability that the estimator is correct is at least

P
{
𝒊̂ = 𝒊

}
=

1
𝑚

𝑚∑︁
𝑖=1
P
{
𝒊̂ = 𝑖

�� 𝒊 = 𝑖 } =
1
𝑚

𝑚∑︁
𝑖=1
P
{
𝑋 ∈ (𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

�� 𝒊 = 𝑖 }
=

1
𝑚

𝑚∑︁
𝑖=1

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
≥ 1
𝑚

𝑚∑︁
𝑖=1

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
− 1

64 ≥
1
64 .

(9.1.6)

Hence, a sampling can be used to solve the statistical testing problem.
2. A lower bound for the statistical testing problem. Next, we want to show for

any algorithm which uses 𝑛 queries to the oracle for 𝜋 𝒊 and outputs an estimator 𝒊̂ of 𝒊,
there is a lower bound for the probability of error P{ 𝒊̂ ≠ 𝒊 }.
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First, suppose that the algorithm is deterministic, i.e., we assume that each query point
𝑥 𝑗 of the algorithm is a deterministic function of the previous query points and query
values. Let 𝒪𝑖 (𝑥) B (𝑉𝑖 (𝑥),𝑉 ′𝑖 (𝑥),𝑉 ′′𝑖 (𝑥)) denote the output of the oracle on input 𝑥
when the target is 𝜋𝑖 . Since the estimator 𝒊̂ is a function of {𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗 )} 𝑗∈[𝑛] , then Fano’s
inequality (Theorem 9.1.5) yields

P
{
𝒊̂ ≠ 𝒊

}
≥ 1 −

I( 𝒊; {𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗 )} 𝑗∈[𝑛]) + ln 2
ln𝑚 .

By the chain rule for mutual information,

I
(
𝒊; {𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗 )} 𝑗∈[𝑛]

)
=

𝑛∑︁
𝑗=1

I
(
𝒊;𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗 )

�� {𝑥 𝑗 ′,𝒪𝒊 (𝑥 𝑗 ′)} 𝑗 ′∈[ 𝑗−1]
)
. (9.1.7)

By our assumption, conditioned on {𝑥 𝑗 ′,𝒪𝒊 (𝑥 𝑗 ′)} 𝑗 ′∈[ 𝑗−1] , the query point 𝑥 𝑗 is deterministic.
Also, for a fixed point 𝑥 𝑗 , Lemma 9.1.4 implies that 𝒪𝑖 (𝑥 𝑗 ) can only take on a constant
number of possible values as 𝑖 ranges over [𝑚] (the careful reader can check that the
number of possible values for 𝒪𝑖 (𝑥 𝑗 ) is at most 5). Together with (9.1.7),

I
(
𝒊; {𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗 )} 𝑗∈[𝑛]

)
≤ 𝑛 ln 5 .

Fano’s inequality then yields

P
{
𝒊̂ ≠ 𝒊

}
≥ 1 − 𝑛 ln 5 + ln 2

ln𝑚 . (9.1.8)

In general, for a possibly randomized algorithm, we can still deduce (9.1.8) by apply-
ing the previous argument conditioned on the random seed of the algorithm (which is
independent of 𝒊).

3. Finishing the argument. By combining together (9.1.6) and (9.1.8), and recalling
that𝑚 = Θ(log𝜅), we have shown that 𝑛 ≳ log log𝜅. □

The argument above makes rigorous the following intuition: since there are𝑚 distri-
butions in our lower bound construction, there are log2𝑚 bits of information to learn.
On the other hand, Lemma 9.1.4 implies that each oracle query only reveals 𝑂 (1) bits of
information. Hence, the number of queries required is at least Ω(log𝑚) = Ω(log log𝜅).

Upper bound. To show that the lower bound is tight, we exhibit an algorithm, based
on rejection sampling, which achieves the lower complexity bound. As per our discussion
in Section 7.1, to implement rejection sampling we must specify the construction of an
upper envelope 𝜇̃ ≥ 𝜋 , where 𝜋 ∈ Π𝜅 .
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Without loss of generality, we assume that𝑉 (0) = 0 (if not, replace the output𝑉 (𝑥) of
an oracle query with𝑉 (𝑥)−𝑉 (0)). The upper bound algorithm only requires a zeroth-order
oracle, and it is as follows.

1. Find the first index 𝑖− ∈ {0, 1, . . . , ⌈12 log2 𝜅⌉} such that 𝑉 (−2𝑖−/
√
𝜅) ≥ 1

2 .

2. Find the first index 𝑖+ ∈ {0, 1, . . . , ⌈12 log2 𝜅⌉} such that 𝑉 (+2𝑖+/
√
𝜅) ≥ 1

2 .

3. Set 𝑥− B −2𝑖−/
√
𝜅 and 𝑥+ B +2𝑖+/

√
𝜅; then, set

𝜇̃ (𝑥) B


exp

(
−𝑥 − 𝑥−2𝑥−

− (𝑥 − 𝑥−)
2

2

)
, 𝑥 ≤ 𝑥− ,

1 , 𝑥− ≤ 𝑥 ≤ 𝑥+ ,

exp
(
−𝑥 − 𝑥+2𝑥+

− (𝑥 − 𝑥+)
2

2

)
, 𝑥 ≥ 𝑥+ .

To see why 𝑖− and 𝑖+ exist, from 𝑉 ′′ ≥ 1 and 𝑉 (0) = 𝑉 ′(0) = 0 we have 𝑉 (𝑥) ≥ 𝑥2/2.
Hence, if |𝑥 | = 2𝑖/

√
𝜅 where 𝑖 ≥ 1

2 ln𝜅, we have 𝑉 (𝑥) ≥ 1/2.
Since 𝑉 is decreasing (resp. increasing) on R− (resp. R+), the first two steps can be

implemented by running binary search over arrays of size 𝑂 (log𝜅), which therefore
only requires 𝑂 (log log𝜅) queries. We will prove that 𝜇̃ is a valid upper envelope for the
unnormalized target 𝜋 B exp(−𝑉 ), and that 𝑍𝜇/𝑍𝜋 ≲ 1. In turn, Theorem 7.1.1 shows
that once 𝜇̃ is constructed, an exact sample can be drawn from 𝜋 using 𝑂 (1) additional
queries in expectation.

Alternatively, if we require that the algorithm use a fixed (non-random) number of
iterations, then note that in order to make the failure probability (the probability that
rejection sampling fails to terminate within the allotted number of iterations) at most 𝜀,
it suffices to run rejection sampling for 𝑂 (log(1/𝜀)) steps. Combining this with the cost
of constructing 𝜇̃, we conclude that we can output a sample whose law is 𝜀-close to 𝜋 in
total variation distance using 𝑂 (log log𝜅 + log(1/𝜀)) queries.

Proof of Theorem 9.1.1, upper bound. First, we prove that 𝜇̃ is a valid upper envelope. Since
𝜋 is decreasing on R+ with 𝜋 (0) = exp(−𝑉 (0)) = 1, then 𝜋 ≤ 1 ≤ 𝜇̃ on [0, 𝑥+]. Next, since
𝑉 (𝑥+) ≥ 1/2 (by the definition of 𝑥+), convexity of 𝑉 yields

𝑉 ′(𝑥+) ≥
𝑉 (𝑥+) −𝑉 (0)

𝑥+
≥ 1

2𝑥+
.

Thus, for 𝑥 ≥ 𝑥+,

𝑉 (𝑥) ≥ 𝑉 (𝑥+) +𝑉 ′(𝑥+) (𝑥 − 𝑥+) +
1
2 (𝑥 − 𝑥+)

2 ≥ 1
2𝑥+
(𝑥 − 𝑥+) +

1
2 (𝑥 − 𝑥+)

2 ,



282 CHAPTER 9. LOWER BOUNDS FOR SAMPLING

which shows that 𝜋 (𝑥) ≤ 𝜇̃ (𝑥). By a symmetric argument on R−, we conclude that 𝜋 ≤ 𝜇̃.
By Theorem 7.1.1, it suffices to bound 𝑍𝜇/𝑍𝜋 . First, we claim that

∫ 𝑥+
0 𝜇̃ ≳ 𝑥+. When

𝑖+ = 0, this holds∫ 𝑥+

0
𝜇̃ =

∫ 1/
√
𝜅

0
exp(−𝑉 ) ≥

∫ 1/
√
𝜅

0
exp

(
−𝜅𝑥

2

2
)

d𝑥 ≥ 1
3
√
𝜅
=
𝑥+
3 .

When 𝑖+ > 0, then by the definition of 𝑖+ we have 𝑉 (𝑥+/2) ≤ 1/2, so∫ 𝑥+

0
𝜇̃ ≥

∫ 𝑥+/2

0
exp(−𝑉 ) ≥ 𝑥+4 .

On the other hand, by Lemma 9.1.3,∫
R+

𝜇̃ =

∫ 𝑥+

0
𝜇̃ +

∫ ∞

𝑥+

𝜇̃ ≤ 𝑥+ +
∫ ∞

𝑥+

exp
(
− 1

2𝑥+
(𝑥 − 𝑥+) −

1
2 (𝑥 − 𝑥+)

2) d𝑥 ≤ 3𝑥+ .

Hence,
∫
R+
𝜇̃ ≤ 3𝑥+ ≤ 12

∫
R+
𝜋 , and similarly

∫
R−
𝜇̃ ≤ 12

∫
R−
𝜋 . Therefore, 𝑍𝜇/𝑍𝜋 ≤ 12. □

Discussion. Although this query complexity result only pertains to one-dimensional
targets, there are still some useful takeaways. For instance, the lower bound proof shows
that information theoretic arguments can indeed be adapted to the context of sampling,
and it may serve as a template for further results in this direction.

The obtained complexity Θ(log log𝜅) is surprisingly small; in particular, the upper
bound uses a tailor-made algorithm based on rejection sampling, rather than any of the
other existing algorithms (such as those based on Langevin dynamics). This is perhaps the
best case scenario for a lower bound: it helps us to determine if our existing algorithms
are optimal, and if not, it gives guidance on how to design a better one. On the other hand,
the specific complexity is likely due to the one-dimensional structure; in high dimension,
it is conjectured that the dependence on the condition number is polynomial.

9.2 Other Approaches
In this section, we discuss alternative approaches and partial progress towards obtaining
lower bounds for sampling.

Lower bounds for particular algorithms. As already discussed in Section 7.3, the
works [Che+21b; LST21a; WSC21] obtain lower bounds for the complexity of MALA,
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culminating in a precise understanding of the runtime of MALA both from feasible and
warm start initializations.

The paper [CLW21] provides an approach to proving lower bounds for discretization
schemes. In their setup, there is a stochastic process (𝑍𝑡 )𝑡≥0, driven by some underlying
Brownian motion (𝐵𝑡 )𝑡≥0; for example, the process (𝑍𝑡 )𝑡≥0 could be the Langevin diffusion
or the underdamped Langevin diffusion (Section 5.3). The algorithm is allowed to make
queries to the potential 𝑉 , as well as certain queries to the driving Brownian motion
(𝐵𝑡 )𝑡≥0, and the goal of the algorithm is to output a point 𝑍𝑇 which is close to 𝑍𝑇 in
mean squared error: E[∥𝑍𝑇 − 𝑍𝑇 ∥2] ≤ 𝜀2. Within this framework, they prove that the
randomized midpoint discretization (introduced in Section 5.1) is optimal for simulating
the underdamped Langevin dynamics (see Theorem 5.3.11 for the upper bound).

Estimating the normalizing constant. In [RV08], the authors consider the number
of membership queries needed to estimate the volume of a convex body 𝐾 ⊆ R𝑑 such that
B(0, 1) ⊆ 𝐾 ⊆ B(0,𝑂 (𝑑8)) to within a small multiplicative constant; their lower bound
for this problem is Ω̃(𝑑2). In comparison, the state-of-the-art upper bound for volume
computation is 𝑂 (𝑑3) (see [CV18; Jia+21]).

In [GLL20], the authors consider the problem of estimating the normalizing constant
𝑍𝜋 B

∫
𝜋 from queries to the unnormalized density 𝜋 . Based on a multilevel Monte Carlo

scheme, they show that sampling algorithms can be turned into approximation algorithms
for the normalizing constant, with the cost of an extra 𝑂 (𝑑) dimension dependence in
the reduction. By combining this with the randomized midpoint discretization of the
underdamped Langevin diffusion (Theorem 5.3.11), they show that a 1 ± 𝜀 multiplicative
approximation to𝑍𝜋 can be obtained using𝑂 ((𝑑4/3𝜅+𝑑7/6𝜅7/6)/𝜀2) queries (in the strongly
log-concave case).

They then prove that Ω(𝑑1−𝑜 (1)/𝜀2−𝑜 (1)) queries are necessary to obtain a 1 ± 𝜀 multi-
plicative approximation to 𝑍𝜋 . Unfortunately, due to the 𝑂 (𝑑) loss in the reduction from
estimating the normalizing constant to sampling, this does not imply a non-trivial lower
bound for the task of sampling.

Lower bound for a stochastic oracle. In [CBL22], the authors obtain a lower bound
on the complexity of sampling using a stochastic oracle. Namely, in order to output an
𝜀-approximate sample (in TV distance) from an 𝛼-strongly log-concave and 𝛽-log-smooth
distribution whose mean lies in the ball B(0, 1/𝛼), with an oracle that given 𝑥 ∈ R𝑑
outputs ∇𝑉 (𝑥) + 𝜉 with 𝜉 ∼ normal(0, Σ) and tr Σ ≤ 𝜎2𝑑 , the number of queries required
is at least Ω(𝜎2𝑑/𝜀2). On the other hand, when 𝛼, 𝜎 ≍ 1, this complexity is achieved via
stochastic gradient Langevin Monte Carlo.
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Bibliographical Notes
Since the theory of lower bounds for sampling is still early in its development, there are
not too many works yet in this direction. Section 9.2 contains a brief survey.

Recently, the paper [GLL22] obtains a query complexity bound for the following class
of target distributions:

Π𝛼,𝐿 B
{
𝜋 ∈ Pac

(
B(0, 1)

) ��� 𝜋 ∝ exp
(
−
∞∑︁
𝑖=1

𝑓𝑖 −
𝛼

2 ∥·∥
2
)
, 𝑓𝑖 : B(0, 1) → R is 𝐿-Lipschitz

}
.

They show that the minimum number of queries to the individual functions (𝑓𝑖)∞𝑖=1 required
to obtain a sample which is 𝜀-close to a target 𝜋 ∈ Π𝛼,𝐿 is, in the regime 𝑑 ≪ 𝐿2/𝛼 , of the
order Θ̃(𝐿2/𝛼). The upper bound is based on the proximal sampler (Section 8.1), whereas
the lower bound, which in this context reduces sampling to an optimization task, relies
on information-theoretic arguments.

Exercises
A Query Complexity Result in One Dimension

⊵ Exercise 9.1 (Gaussian tail bound)
For 𝑥 > 0, show that

∫ ∞
𝑥

exp(−𝑡2/2) d𝑡 ≤ 𝑥−1 exp(−𝑥2/2). Use this to prove Lemma 9.1.3.
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Structured Sampling

So far, we have only considered sampling within the black-box model, in which we only
have access to oracle queries to the potential and its gradient. We will now consider
several new sampling algorithms which go beyond the black-box model.

10.1 Coordinate Langevin

10.2 Mirror Langevin
The mirror descent method in optimization changes the geometry of the algorithm via
the use of a mirror map 𝜙 : R𝑑 → R ∪ {∞}. Here, 𝜙 is a convex function and we denote
X B int dom𝜙 ; we assume that X ≠ ∅, that 𝜙 is strictly convex and differentiable on
X, and that 𝜙 is a barrier for X in the sense that ∥∇𝜙 (𝑥𝑘)∥ → ∞ whenever (𝑥𝑘)𝑘∈N ⊆ X

converges to a point on 𝜕X. Then, rather than following the gradient descent iteration

𝑥𝑘+1 B 𝑥𝑘 − ℎ ∇𝑉 (𝑥𝑘) , 𝑘 = 0, 1, 2, . . . (10.2.1)

we can instead consider the mirror descent iteration

∇𝜙 (𝑥𝑘+1) B ∇𝜙 (𝑥𝑘) − ℎ ∇𝑉 (𝑥𝑘) , 𝑘 = 0, 1, 2, . . . (10.2.2)

The assumptions on the mirror map 𝜙 ensure that the iteration (10.2.2) is well-defined.
When 𝜙 =

∥·∥2
2 , then mirror descent coincides with gradient descent.

285
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Historically, mirror descent was introduced by Nemirovsky and Yudin [NY83] with the
following intuition. Suppose we are optimizing a function𝑉 which is not defined over the
Euclidean space R𝑑 , but rather over a Banach space B. Then, the gradient of 𝑉 is not an
element of B but rather of the dual space B∗, and so the gradient descent iteration (10.2.1)
does not even make sense. On the other hand, the mirror descent iteration (10.2.2) works
because the primal point 𝑥𝑘 ∈ B is first mapped to the dual space B∗ via the mapping ∇𝜙 .
This reasoning is not so esoteric as it may seem, because even for a function 𝑉 defined
over R𝑑 its natural geometry may correspond to a different norm (e.g., the ℓ1 norm), in
which case R𝑑 is better viewed as a Banach space.

Our aim is to understand the sampling analogue of mirror descent, known as mirror
Langevin. We will keep in mind the key example of constrained sampling. Here, the
potential 𝑉 : R𝑑 → R ∪ {∞} has domain X ⊊ R𝑑 . In this case, the standard Langevin
algorithm leaves the constraint set X which is undesirable; in particular, it is not possible
to obtain guarantees in metrics such as KL divergence because the law of the iterate of the
algorithm is not absolutely continuous with respect to the target. Projecting the iterates
onto X does not solve this issue because the law of the iterate will then have positive mass
on the boundary 𝜕X. Besides, projection may not adapt well to the shape of the constraint
set X. Instead, the use of a mirror map 𝜙 which is a barrier for X can automatically enforce
the constraint.

10.2.1 Continuous-Time Considerations
In continuous time, the mirror Langevin diffusion (𝑍𝑡 )𝑡≥0 is the solution to the stochastic
differential equation

𝑍 ∗𝑡 = ∇𝜙 (𝑍𝑡 ) , d𝑍 ∗𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡 +
√

2 [∇2𝜙 (𝑍𝑡 )]
1/2 d𝐵𝑡 . (10.2.3)

Here, the diffusion term is no longer an isotropic Brownian motion but rather involves the
matrix [∇2𝜙 (𝑍𝑡 )]1/2; this is necessary in order to ensure that the stationary distribution
is 𝜋 . Also, we have given the SDE in the dual space. Using Itô’s formula (Theorem 1.1.18),
one can write down an SDE for (𝑍𝑡 )𝑡≥0 in the primal space, but it is more complicated,
involving the third derivative tensor of 𝜙 (see Exercise 10.1), and as such we prefer to
work with the representation (10.2.3).

Using (10.2.3), we can compute the generator ℒ, the carré du champ Γ, and the
Dirichlet energy ℰ of the mirror Langevin diffusion (see Section 1.2 and Exercise 10.2):

Γ(𝑓 , 𝑔) = ⟨∇𝑓 , [∇2𝜙]−1 ∇𝑔⟩ , ℰ(𝑓 , 𝑔) =
∫
⟨∇𝑓 , [∇2𝜙]−1 ∇𝑔⟩ d𝜋 . (10.2.4)
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The expression shows that the mirror Langevin diffusion is reversible with respect to 𝜋 .
Also, if 𝜋𝑡 denotes the law of 𝑍𝑡 , then∫

𝑓 𝜕𝑡𝜋𝑡 = 𝜕𝑡

∫
𝑓 d𝜋𝑡 =

∫
ℒ𝑓

𝜋𝑡

𝜋
d𝜋 = −

∫ 〈
∇𝑓 , [∇2𝜙]−1 ∇𝜋𝑡

𝜋

〉
d𝜋 (10.2.5)

= −
∫ 〈
∇𝑓 , [∇2𝜙]−1 ∇ ln 𝜋𝑡

𝜋

〉
d𝜋𝑡 =

∫
𝑓 div

(
𝜋𝑡 [∇2𝜙]−1∇ ln 𝜋𝑡

𝜋

)
(10.2.6)

from which we deduce the Fokker–Planck equation

𝜕𝑡𝜋𝑡 = div
(
𝜋𝑡 [∇2𝜙]−1 ∇ ln 𝜋𝑡

𝜋

)
.

From the interpretation as a continuity equation (see Theorem 1.3.17), we deduce that
(𝜋𝑡 )𝑡≥0 describes the evolution of a particle which travels according to the family of vector
fields 𝑡 ↦→ −[∇2𝜙]−1 ∇ ln(𝜋𝑡/𝜋). Recalling that ∇ ln(𝜋𝑡/𝜋) is the Wasserstein gradient of
KL(· ∥ 𝜋) at 𝜋𝑡 , we can interpret the mirror Langevin diffusion as a “mirror flow” of the
KL divergence in Wasserstein space.

Alternatively, we can equip X with the Riemannian metric induced by ∇2𝜙 , i.e., we
set ⟨𝑢, 𝑣⟩𝑥 B ⟨𝑢,∇2𝜙 (𝑥) 𝑣⟩. Then, the mirror Langevin diffusion becomes the Wasserstein
gradient flow of the KL divergence over the Riemannian manifold X (see Section 2.6.1).

The Newton Langevin diffusion. In the special case when the mirror map 𝜙 is chosen
to be the same as the potential𝑉 , we arrive at a sampling analogue of Newton’s algorithm,
and hence we call it the Newton Langevin diffusion. The equation for the Newton
Langevin diffusion can be written (in the dual space) as

d𝑍 ∗𝑡 = −𝑍 ∗𝑡 d𝑡 +
√

2 [∇2𝑉 ∗(𝑍 ∗𝑡 )]
−1/2 d𝐵𝑡 , (10.2.7)

see Exercise 10.3.

Convergence in continuous time. In optimization, Newton’s algorithm has many
favorable properties. For example, at least locally, it is known that Newton’s algorithm
converges quadratically rather than linearly, which means that the error at iteration 𝑘
scales as exp(−𝑐1 exp(𝑐2𝑘)) for constants 𝑐1, 𝑐2 > 0. Also, Newton’s algorithm is affine-
invariant, meaning that if 𝐴 is any invertible matrix and we instead apply Newton’s
algorithm to the function 𝑉 (𝑥) B 𝑉 (𝐴𝑥), then the iterates (𝑥𝑘)𝑘∈N are related to the
iterates (𝑥𝑘)𝑘∈N of Newton’s algorithm on the original function 𝑉 via the transformation
𝑥𝑘 = 𝐴

−1𝑥𝑘 (Exercise 10.4). Consequently, the convergence speed of Newton’s algorithm
should not be badly affected by poor conditioning of 𝑉 .
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Can we expect similar properties to hold for the Newton Langevin diffusion? At
least for the property of affine invariance, we have the Brascamp–Lieb inequality
(Theorem 2.2.8): if 𝜋 ∝ exp(−𝑉 ) is strictly log-concave, then for all 𝑓 : R𝑑 → R,

var𝜋 (𝑓 ) ≤ E𝜋 ⟨∇𝑓 , [∇2𝑉 ]−1 ∇𝑓 ⟩ .

Below, we will also give an alternative proof of the Bregman transport inequality (The-
orem 2.2.10) based on Wasserstein calculus, which implies the Brascamp–Lieb inequality.
Note that in the strongly convex case ∇2𝑉 ⪰ 𝛼𝐼𝑑 , it implies a Poincaré inequality (in the
sense of Example 1.2.22) for 𝜋 with constant 1/𝛼 . However, in our present context with
Dirichlet energy given by (10.2.4), we instead interpret the Brascamp–Lieb inequality as a
Poincaré inequality (in the sense of Definition 1.2.19) for the Newton–Langevin diffusion.
Then, the Poincaré constant is 1, independent of the strong convexity of 𝑉 .

We also obtain a Poincaré inequality for the mirror Langevin diffusion under the
condition of relative strong convexity.

Definition 10.2.8. Let 𝜙,𝑉 : R𝑑 → R ∪ {∞} be convex functions, and assume that
X = int dom𝜙 = int dom𝑉 . Then:

1. 𝑉 is 𝛼-relatively convex (w.r.t. 𝜙) if for all 𝑥 ∈ X,

∇2𝑉 (𝑥) ⪰ 𝛼 ∇2𝜙 (𝑥) .

2. 𝑉 is 𝛽-relatively smooth (w.r.t. 𝜙) if for all 𝑥 ∈ X,

∇2𝑉 (𝑥) ⪯ 𝛽 ∇2𝜙 (𝑥) .

Observe that when 𝜙 =
∥·∥2

2 , these definitions reduce to the usual definitions of strong
convexity and smoothness. Recall from Definition 2.2.9 that the Bregman divergence 𝐷𝜙
associated with 𝜙 is the mapping 𝐷𝜙 (·, ·) : X × X→ R given by

𝐷𝜙 (𝑥,𝑦) B 𝜙 (𝑥) − 𝜙 (𝑦) − ⟨∇𝜙 (𝑦), 𝑥 − 𝑦⟩ .

The Bregman divergence plays an important role in the analysis of mirror Langevin
because it is the correct substitute for the Euclidean distance (𝑥,𝑦) ↦→ 1

2 ∥𝑥 − 𝑦∥
2 in this

context. Note the following observations: (1) 𝐷𝜙 is non-negative due to convexity of
𝜙 , and if 𝜙 is strictly convex then it equals 0 if and only if its two arguments are equal;
(2) since 𝐷𝜙 (𝑥,𝑦) is defined by subtracting the first-order Taylor expansion of 𝜙 at 𝑦, it
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behaves infinitesimally like a squared distance; in particular,

𝐷𝜙 (𝑥,𝑦) ∼
1
2 ⟨𝑦 − 𝑥,∇

2𝜙 (𝑥) (𝑦 − 𝑥)⟩ as 𝑦 → 𝑥 ;

(3) when 𝜙 =
∥·∥2

2 , then 𝐷𝜙 is precisely one-half times the squared Euclidean distance.
Using this definition, we have the following reformulations of relative convexity and

relative smoothness (Exercise 10.5).

Lemma 10.2.9. 𝑉 is 𝛼-relatively convex w.r.t. 𝜙 if and only if

𝐷𝑉 ≥ 𝛼 𝐷𝜙 .

Similarly, 𝑉 is 𝛽-relatively smooth w.r.t. 𝜙 if and only if

𝐷𝑉 ≤ 𝛽 𝐷𝜙 .

Returning to the mirror Langevin diffusion, the following corollary is an immediate
consequence of the Brascamp–Lieb inequality and the definition of relative convexity.

Corollary 10.2.10 (mirror Poincaré inequality, [Che+20b]). Suppose that the potential
𝑉 is𝛼-relatively convex w.r.t.𝜙 . Then, the mirror Langevin diffusion satisfies the following
Poincaré inequality: for all 𝑓 : R𝑑 → R,

var𝜋 𝑓 ≤
1
𝛼
E𝜋 ⟨∇𝑓 , [∇2𝜙]−1 ∇𝑓 ⟩ = 1

𝛼
ℰ(𝑓 , 𝑓 ) .

So far so good: we have defined relative convexity, which is a natural generalization
of strong convexity and well-studied in the optimization literature; and we have shown
that it implies a Poincaré inequality for the mirror Langevin diffusion.

However, the analogies with the standard Langevin diffusion stop here. There are
counterexamples which show that relative convexity does not imply a log-Sobolev in-
equality for the mirror Langevin diffusion. This may seem to contradict the Bakry–Émery
theorem (Theorem 1.2.29), which holds for any Markov diffusion. The issue here is that
the assumption of relative convexity is not a curvature-dimension condition. Indeed, in
order to properly formulate a curvature-dimension condition for the Hessian manifold X

equipped with the Riemannian metric 𝔤 induced by ∇2𝜙 , one must check the CD(𝛼,∞)
condition ∇2𝑉 +Ric ⪰ 𝛼 . Here, ∇2 denotes the Riemannian Hessian and𝑉 is the potential
corresponding to the relative density of 𝜋 w.r.t. the Riemannian volume measure on (X, 𝔤);
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see Section 2.6. Such a calculation was performed in, e.g., [Kol14], which implies that if
(∇𝜙)#𝜋 is log-concave, then the Newton Langevin diffusion satisfies CD( 12 ,∞). However,
it is not clear under what conditions (∇𝜙)#𝜋 is log-concave.

Here is another consequence of the fact that relative convexity is not a curvature-
dimension condition: relative convexity (apparently) does not seem to imply contraction
properties for the mirror Langevin diffusion with respect to an appropriately defined
Wasserstein metric.

To summarize: either we can assume the curvature-dimension condition CD(𝛼,∞),
which imposes complicated conditions on 𝜙 and 𝑉 , or we can adopt the more inter-
pretable relative convexity assumption, which in turn only implies a Poincaré inequality
(Corollary 10.2.10). We will follow the latter approach.

Upon reflection, the curvature-dimension approach for studying the mirror Langevin
diffusion is arguably the less natural one. Indeed, the curvature-dimension approach is
based on viewing the mirror Langevin diffusion from the lens of Riemannian geometry,
but the mirror descent algorithm in optimization is not typically studied via Riemannian
geometry. Instead, the study of mirror descent is based on ideas from convex analysis,
centered around the Bregman divergence. So it seems prudent at this stage to abandon
the Riemannian interpretation of mirror Langevin in favor of convex analysis tools, and
this is indeed how our discretization proof will go. In fact, in lieu of using the Poincaré
inequality in Corollary 10.2.10, we will directly use relative convexity.

10.2.2 Discretization Preliminaries

Following [AC21], we consider the following discretization of (10.2.3).

∇𝜙 (𝑋 +
𝑘ℎ
) B ∇𝜙 (𝑋𝑘ℎ) − ℎ ∇𝑉 (𝑋𝑘ℎ) ,

𝑋(𝑘+1)ℎ B ∇𝜙∗(𝑋 ∗(𝑘+1)ℎ) ,
(MLMC)

where

𝑋 ∗𝑡 = ∇𝜙 (𝑋 +
𝑘ℎ
) +
√

2
∫ 𝑡

𝑘ℎ

[∇2𝜙∗(𝑋 ∗𝑠 )]
−1/2 d𝐵𝑠 for 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] . (10.2.11)

Note that when 𝜙 =
∥·∥2

2 , this reduces to the standard LMC algorithm. When generalizing
LMC to different mirror maps, this discretization is chosen to preserve the “forward-flow”
interpretation of [Wib18] (see Section 4.3). In particular, the update from 𝑋𝑘ℎ to 𝑋 +

𝑘ℎ
is a

mirror descent step, while the update from 𝑋 +
𝑘ℎ

to 𝑋(𝑘+1)ℎ follows a “Wasserstein mirror
flow” of the (negative) entropy.
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However, implementing MLMC requires the exact simulation of a diffusion process,
so is it truly a “discretization”? To address this, note that simulating the mirror diffu-
sion (10.2.11) does not require additional queries to the potential 𝑉 , since it only depends
on the mirror map 𝜙 (except for the initialization). To an extent, any algorithm based
on mirror maps requires the implementation of certain primitive operations involving
𝜙 , such as computation of ∇𝜙 or inversion of ∇𝜙 ; in practice, this requires 𝜙 to have a
“simple” structure such that these operations have closed-form expressions, or are at least
cheap enough to be negligible relative to the cost of computing the gradient of 𝑉 . In our
consideration of MLMC, we take the diffusion (10.2.11) to be another primitive operation
associated with the mirror map 𝜙 . This is indeed appropriate for many applications, e.g.,
when 𝜙 is a separable function 𝜙 (𝑥) = ∑𝑑

𝑖=1 𝜙𝑖 (𝑥𝑖), and it will streamline our technical
analysis. Nevertheless, implementation of MLMC remains a key obstacle to its practicality
and necessitates further research in this direction.

Our approach to studying MLMC is to adapt the convex optimization approach intro-
duced in Section 4.3.

Key technical results. We now establish the analogues of the various facts that we
invoked in the study of LMC.

First, in the standard gradient descent analysis, if 𝑥+ B 𝑥 − ℎ ∇𝑉 (𝑥), then we have
the key inequality

⟨∇𝑉 (𝑥), 𝑥+ − 𝑧⟩ = 1
2ℎ {∥𝑥 − 𝑧∥

2 − ∥𝑥+ − 𝑧∥2 − ∥𝑥+ − 𝑥 ∥2} for all 𝑧 ∈ R𝑑 .

Remarkably, there is an analogue of this fact for mirror descent, which follows from the
following identity (which can be checked by simple algebra, see Exercise 10.5):

⟨∇𝜙 (𝑥) − ∇𝜙 (𝑥), 𝑥 − 𝑧⟩ = 𝐷𝜙 (𝑥, 𝑥) + 𝐷𝜙 (𝑧, 𝑥) − 𝐷𝜙 (𝑧, 𝑥) , for all 𝑥, 𝑥, 𝑧 ∈ X .
(10.2.12)

Lemma 10.2.13 (Bregman proximal lemma, [CT93]). For 𝑥 ∈ X, let 𝑥+ be defined via
∇𝜙 (𝑥+) = ∇𝜙 (𝑥) − ℎ ∇𝑉 (𝑥). Then, for all 𝑧 ∈ X,

⟨∇𝑉 (𝑥), 𝑥+ − 𝑧⟩ = 1
ℎ
{𝐷𝜙 (𝑧, 𝑥) − 𝐷𝜙 (𝑧, 𝑥+) − 𝐷𝜙 (𝑥+, 𝑥)} .

Proof. Note that

⟨∇𝑉 (𝑥), 𝑥+ − 𝑧⟩ = −1
ℎ
⟨∇𝜙 (𝑥+) − ∇𝜙 (𝑥), 𝑥+ − 𝑧⟩ .
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Substituting the identity (10.2.12) into the above equation proves the result. □

Unlike the case of LMC, the presence of a non-constant diffusion matrix involving ∇2𝜙
introduces another source of discretization error. To address this, we introduce a condition
on the third derivative of 𝜙 . Note however that a uniform bound on the operator norm
of ∇3𝜙 is not compatible with the assumption that 𝜙 tends to +∞ on 𝜕X. The solution to
this issue was discovered by Nesterov and Nemirovsky [NN94]: we can ask that ∇3𝜙 is
bounded with respect to the geometry induced by 𝜙 . This approach also has the benefit of
being consistent with the affine invariance of Newton’s method. The precise definition of
the third derivative condition is as follows.

Definition 10.2.14 (self-concordance). The mirror map 𝜙 is said to be 𝑀𝜙-self-
concordant if for all 𝑥 ∈ X and all 𝑣 ∈ R𝑑 ,

∇3𝜙 (𝑥) [𝑣, 𝑣, 𝑣] ≤ 2𝑀𝜙 ∥𝑣 ∥3∇2𝜙 (𝑥) B 2𝑀𝜙 ⟨𝑣,∇2𝜙 (𝑥) 𝑣⟩3/2 .

The norm ∥𝑣 ∥∇2𝜙 (𝑥) B
√︁
⟨𝑣,∇2𝜙 (𝑥) 𝑣⟩ is called the local norm, and it is the tangent

space norm for the Riemannian metric induced by 𝜙 .
The definition implies the following result, stated without proof:1

Lemma 10.2.15 ([Nes18, Corollary 5.1.1]). Suppose that 𝜙 is𝑀𝜙 -self-concordant. Then,
for all 𝑥 ∈ X and 𝑢 ∈ R𝑑 ,

∇3𝜙 (𝑥) 𝑢 ⪯ 2𝑀𝜙 ∥𝑢∥∇2𝜙 (𝑥) ∇2𝜙 (𝑥) .

Self-concordant functions are well-studied due to their central role in the theory of
interior-point methods for optimization, see the monograph [NN94]. A key example of a
self-concordant mirror map is when the constraint set is a polytope,

X = {𝑥 ∈ R𝑑 : ⟨𝑎𝑖, 𝑥⟩ < 𝑏𝑖 for all 𝑖 ∈ [𝑁 ]} ,

in which case 𝜙 (𝑥) = ln(1/∑𝑁
𝑖=1(𝑏𝑖 − ⟨𝑎𝑖, 𝑥⟩)) is self-concordant with 𝑀𝜙 = 1.

Finally, a key step in our analysis of LMC was to use the convexity of the entropy
functional along𝑊2 geodesics. In our analysis of MLMC, we will replace the𝑊2 distance
with the Bregman transport cost D𝑉 (recall Definition 2.2.9). To study these costs, we first
state an analogue of Brenier’s theorem (Theorem 1.3.8).

1The proof is surprisingly difficult. The reader can try to prove the result with a worse constant factor.
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Theorem 10.2.16 (Brenier’s theorem for the Bregman transport cost). Suppose that
𝜇, 𝜈 ∈ P(R𝑑). Then, the unique optimal Bregman transport coupling (𝑋,𝑌 ) for 𝜇 and 𝜈
is of the form

∇𝜙 (𝑌 ) = ∇𝜙 (𝑋 ) − ∇ℎ(𝑋 ) ,

where ℎ : R𝑑 → R ∪ {−∞} is such that 𝜙 − ℎ is convex.

Proof sketch. We need facts about optimal transport with general costs 𝑐 (Exercise 1.12).
Namely, the optimal pair of dual potentials (𝑓 ★, 𝑔★) are 𝑐-conjugates, meaning that

𝑓 ★(𝑥) = inf
𝑦∈R𝑑
{𝑐 (𝑥,𝑦) − 𝑔★(𝑦)} ,

𝑔★(𝑦) = inf
𝑥∈R𝑑
{𝑐 (𝑥,𝑦) − 𝑓 ★(𝑥)} .

For 𝛾★-a.e. (𝑥,𝑦), it holds that 𝑓 ★(𝑥) + 𝑔★(𝑦) = 𝑐 (𝑥,𝑦). If 𝑐 is smooth and such that
∇𝑥𝑐 (𝑥, ·) is injective for all 𝑥 ∈ R𝑑 , then from the definition of 𝑔★ it suggests that we have
∇𝑥𝑐 (𝑥,𝑦) = ∇𝑓 ★(𝑥) for 𝛾★-a.e. (𝑥,𝑦). See [Vil09b, Theorem 10.28] for a rigorous statement
and proof of these results.

Applying this to our cost function 𝑐 = 𝐷𝜙 , it yields the existence of 𝐷𝜙 -conjugates
ℎ, ℎ̃ : R𝑑 → R ∪ {−∞} such that ∇𝑥𝐷𝜙 (𝑥,𝑦) = ∇ℎ(𝑥) under the optimal plan 𝛾★. Hence,

∇𝜙 (𝑦) = ∇𝜙 (𝑥) − ∇ℎ(𝑥) , for 𝛾★-a.e. (𝑥,𝑦)

and

ℎ(𝑥) = inf
𝑦∈R𝑑
{𝐷𝜙 (𝑥,𝑦) − ℎ̃(𝑦)} .

By expanding out the definition of 𝐷𝜙 , we rewrite this as

𝜙 (𝑥) − ℎ(𝑥) = sup
𝑦∈X
{⟨∇𝜙 (𝑦), 𝑥 − 𝑦⟩ + ℎ̃(𝑦) + 𝜙 (𝑦)} .

As a supremum of affine functions, it follows that 𝜙 − ℎ is convex. □

Recall that the usual𝑊2 geodesic from 𝜇0 to 𝜇1 is given as follows: there is a convex
function 𝜑 : R𝑑 → R ∪ {∞} such that for 𝑋0 ∼ 𝜇0, the pair (𝑋0, 𝑋1) B (𝑋0,∇𝜑 (𝑋0)) is an
optimal coupling. By taking the linear interpolation 𝑋𝑡 B (1 − 𝑡)𝑋0 + 𝑡 𝑋1 and setting
𝜇𝑡 B law(𝑋𝑡 ), we obtain the𝑊2 geodesic.
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Now consider the above theorem. If we let𝑊 B ∇𝜙 (𝑌 ) = ∇𝜙 (𝑋 ) − ∇ℎ(𝑋 ), then
we have the coupling (𝑋0, 𝑋1) B (∇(𝜙 − ℎ)∗(𝑊 ),∇𝜙∗(𝑊 )) of 𝜇0 B 𝜇 and 𝜇1 B 𝜈 . Then,
we can interpolate by setting 𝑋𝑡 B (1 − 𝑡)𝑋0 + 𝑡 𝑋1 and 𝜇𝑡 B law(𝑋𝑡 ), which defines
an alternative path joining 𝜇0 to 𝜇1. Note that (𝑋0,𝑊 ) and (𝑋1,𝑊 ) are both optimally
coupled for the𝑊2 distance (since 𝜙 − ℎ is convex). This is a special case of the following.

Definition 10.2.17. A curve (𝜇𝑡 )𝑡∈[0,1] ⊆ P2(R𝑑) is a generalized geodesic if there
exists another measure 𝜌 ∈ P2(R𝑑) such that

𝜇𝑡 = law(𝑋𝑡 ) , 𝑋𝑡 B (1 − 𝑡)𝑋0 + 𝑡 𝑋1 ,

and (𝑋0,𝑊 ), (𝑋1,𝑊 ) are both optimally coupled for the𝑊2 metric, where𝑊 ∼ 𝜌 .

It is left as Exercise 10.6 to check that the entropy functional is also convex along
generalized geodesics.

Theorem 10.2.18. Let H(𝜇) B
∫
𝜇 ln 𝜇. Then, for any generalized geodesic (𝜇𝑡 )𝑡∈[0,1] ,

𝑡 ↦→ H(𝜇𝑡 ) is convex .

In our context, it implies that if 𝜇, 𝜈 ∈ P(R𝑑) and (𝑋,𝑌 ) is an optimal coupling for the
Bregman cost D𝜙 (𝜇, 𝜈), then

H(𝜈) ≥ H(𝜇) + E⟨∇ ln 𝜇 (𝑋 ), 𝑌 − 𝑋 ⟩ . (10.2.19)

As an aside, we remark that this observation leads to another proof of the Bregman
transport inequality.

Proof of the Bregman transport inequality (Theorem 2.2.10). Let 𝜋 = exp(−𝑉 ), where 𝑉 is
strictly convex, and let 𝜇 ∈ P(R𝑑). Let 𝑋 ∼ 𝜇, 𝑍 ∼ 𝜋 be optimally coupled for the
Bregman transport cost. Then,

KL(𝜇 ∥ 𝜋) = E𝑉 (𝑋 ) +H(𝜇) .

For the first term, by the definition of 𝐷𝑉 ,

E𝑉 (𝑋 ) = E𝑉 (𝑍 ) + E𝐷𝑉 (𝑋,𝑍 ) + E⟨∇𝑉 (𝑍 ), 𝑋 − 𝑍 ⟩ .

For the second term, (10.2.19) implies

H(𝜇) ≥ H(𝜋) + E⟨∇ ln𝜋 (𝑍 ), 𝑋 − 𝑍 ⟩ .
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Hence,
KL(𝜇 ∥ 𝜋) ≥ E𝑉 (𝑍 ) +H(𝜋)︸             ︷︷             ︸

=KL(𝜋 ∥𝜋)=0

+E⟨∇𝑉 (𝑍 ) + ∇ ln𝜋 (𝑍 )︸                  ︷︷                  ︸
=0

, 𝑋 − 𝑍 ⟩ + E𝐷𝑉 (𝑋,𝑍 )

= D𝑉 (𝜇 ∥ 𝜋) ,
which is what we wanted to show. □

10.2.3 Discretization Analysis
Analysis for the smooth case. We now prove the following result.

Theorem 10.2.20 ([AC21]). Suppose that 𝜋 = exp(−𝑉 ) is the target distribution and
that 𝜙 is the mirror map. Assume:

• 𝑉 is 𝛼-relatively convex and 𝛽-relatively smooth w.r.t. 𝜙 .

• 𝜙 is 𝑀𝜙 -self-concordant.

• 𝑉 is 𝐿-relatively Lipschitz w.r.t. 𝜙 , i.e., ∥∇𝑉 (𝑥)∥ [∇2𝜙 (𝑥)]−1 ≤ 𝐿 for all 𝑥 ∈ X.

Let (𝜇𝑘ℎ)𝑘∈N denote the law of MLMC and let 𝛽′ B 𝛽 + 2𝐿𝑀𝜙 .

1. (weakly convex case) Suppose that 𝛼 = 0. For any 𝜀 ∈ [0,
√
𝑑], if we take step

size ℎ ≍ 𝜀2

𝛽′𝑑 , then for the mixture distribution 𝜇𝑁ℎ B 𝑁 −1 ∑𝑁
𝑘=1 𝜇𝑘ℎ it holds that√︁

KL(𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝛽′𝑑D𝜙 (𝜋, 𝜇0)
𝜀4

)
iterations .

2. (strongly convex case) Suppose that 𝛼 > 0 and let 𝜅 B 𝛽′/𝛼 denote the “con-
dition number”. Then, for any 𝜀 ∈ [0,

√
𝑑], with step size ℎ ≍ 𝛼𝜀2

𝛽′𝑑 we obtain
√
𝛼 D𝜙 (𝜋, 𝜇𝑁ℎ) ≤ 𝜀 and

√︁
KL(𝜇𝑁ℎ,2𝑁ℎ ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝜅𝑑
𝜀2 log

𝛼 D𝜙 (𝜋, 𝜇0)
𝜀2

)
iterations ,

where 𝜇𝑁ℎ,2𝑁ℎ B 𝑁 −1 ∑2𝑁
𝑘=𝑁+1 𝜇𝑘ℎ .

Similarly to Theorem 4.3.6, the theorem follows from a key recursion.
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Lemma 10.2.21. Under the assumptions of Theorem 10.2.20, if ℎ ∈ [0, 1
𝛽
], then

ℎ KL(𝜇(𝑘+1)ℎ ∥ 𝜋) ≤ (1 − 𝛼ℎ)D𝜙 (𝜋, 𝜇𝑘ℎ) −D𝜙 (𝜋, 𝜇(𝑘+1)ℎ) + 𝛽′𝑑ℎ2 .

We proceed to prove the lemma.

Proof. We follow the proof of Theorem 4.3.6, indicating the changes necessary to adapt
the proof to MLMC. Recall that E(𝜇) B

∫
𝑉 d𝜇.

1. The forward step dissipates the energy. Let 𝑍 ∼ 𝜋 be optimally coupled to 𝑋𝑘ℎ .
Then, applying the relative convexity and relative smoothness of 𝑉 ,

E(𝜇+
𝑘ℎ
) − E(𝜋) = E[𝑉 (𝑋 +

𝑘ℎ
) −𝑉 (𝑋𝑘ℎ) +𝑉 (𝑋𝑘ℎ) −𝑉 (𝑍 )]

≤ E
[
⟨∇𝑉 (𝑋𝑘ℎ), 𝑋 +𝑘ℎ − 𝑋𝑘ℎ⟩ + 𝛽 𝐷𝜙 (𝑋

+
𝑘ℎ
, 𝑋𝑘ℎ)

+ ⟨∇𝑉 (𝑋𝑘ℎ), 𝑋𝑘ℎ − 𝑍 ⟩ − 𝛼 𝐷𝜙 (𝑍,𝑋𝑘ℎ)
]

= E
[
⟨∇𝑉 (𝑋𝑘ℎ), 𝑋 +𝑘ℎ − 𝑍 ⟩ + 𝛽 𝐷𝜙 (𝑋

+
𝑘ℎ
, 𝑋𝑘ℎ) − 𝛼 𝐷𝜙 (𝑍,𝑋𝑘ℎ)

]
. (10.2.22)

Next, by the Bregman proximal lemma (Lemma 10.2.13),

⟨∇𝑉 (𝑋𝑘ℎ), 𝑋 +𝑘ℎ − 𝑍 ⟩ =
1
ℎ
{𝐷𝜙 (𝑍,𝑋𝑘ℎ) − 𝐷𝜙 (𝑍,𝑋 +𝑘ℎ) − 𝐷𝜙 (𝑋

+
𝑘ℎ
, 𝑋𝑘ℎ)} .

Substituting this into (10.2.22) and using ℎ ≤ 1
𝛽
, it yields

E(𝜇+
𝑘ℎ
) − E(𝜋) ≤ 1

ℎ
{(1 − 𝛼ℎ)D𝜙 (𝜇𝑘ℎ, 𝜋) −D𝜙 (𝜇+𝑘ℎ, 𝜋)} . (10.2.23)

2. The flow step does not substantially increase the energy. We write

E(𝜇(𝑘+1)ℎ) − E(𝜇+𝑘ℎ) = E
[
𝑉
(
∇𝜙∗(𝑋 ∗(𝑘+1)ℎ)

)
−𝑉

(
∇𝜙∗(𝑋 ∗

𝑘ℎ
)
) ]
.

Let 𝑓 (𝑥) B 𝑉 (∇𝜙∗(𝑥)) and apply Itô’s formula. Note that

∇𝑓 (𝑥) = ∇𝑉 (∇𝜙∗(𝑥))T∇2𝜙∗(𝑥) = ∇𝑉 (∇𝜙∗(𝑥))T [∇2𝜙 (∇𝜙∗(𝑥))]−1
,

∇2𝑓 (𝑥) = [∇2𝑉 (∇𝜙∗(𝑥))] [∇2𝜙 (∇𝜙∗(𝑥))]−1 [∇2𝜙∗(𝑥)]
+ ∇𝑉 (∇𝜙∗(𝑥))T [∇2𝜙 (∇𝜙∗(𝑥))]−1 [∇3𝜙 (∇𝜙∗(𝑥))] [∇2𝜙 (∇𝜙∗(𝑥))]−2

.

Itô’s formula decomposes 𝑓 (𝑋 ∗(𝑘+1)ℎ) − 𝑓 (𝑋
∗
𝑘ℎ
) into the sum of an integral and a stochastic

integral; since the latter has mean zero, we focus on the first term.

E[𝑓 (𝑋 ∗(𝑘+1)ℎ) − 𝑓 (𝑋
∗
𝑘ℎ
)]
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= E

∫ (𝑘+1)ℎ

𝑘ℎ

〈
∇2𝑉 (𝑋𝑡 ) [∇2𝜙 (𝑋𝑡 )]

−2
,∇2𝜙 (𝑋𝑡 )

〉
d𝑡

+ E
∫ (𝑘+1)ℎ

𝑘ℎ

〈
∇𝑉 (𝑋𝑡 )T [∇2𝜙 (𝑋𝑡 )]

−1 [∇3𝜙 (𝑋𝑡 )] [∇2𝜙 (𝑋𝑡 )]
−2
,∇2𝜙 (𝑋𝑡 )

〉
d𝑡

= E

∫ (𝑘+1)ℎ

𝑘ℎ

〈
∇2𝑉 (𝑋𝑡 ), [∇2𝜙 (𝑋𝑡 )]

−1〉 d𝑡 (10.2.24)

+ E
∫ (𝑘+1)ℎ

𝑘ℎ

tr
(
∇𝑉 (𝑋𝑡 )T [∇2𝜙 (𝑋𝑡 )]

−1 [∇3𝜙 (𝑋𝑡 )] [∇2𝜙 (𝑋𝑡 )]
−1) d𝑡 . (10.2.25)

By relative smoothness, since ∇2𝑉 ⪯ 𝛽 ∇2𝜙 ,

(10.2.24) ≤ 𝛽𝑑ℎ .

For (10.2.25), we use Lemma 10.2.15, which implies

(10.2.25) ≤ 2𝑀𝜙

∫ (𝑘+1)ℎ

𝑘ℎ

E
[

[∇2𝜙 (𝑋𝑡 )]

−1 ∇𝑉 (𝑋𝑡 )



∇2𝜙 (𝑋𝑡 ) tr

(
[∇2𝜙 (𝑋𝑡 )] [∇2𝜙 (𝑋𝑡 )]

−1) ] d𝑡

≤ 2𝑀𝜙𝑑

∫ (𝑘+1)ℎ

𝑘ℎ

E
[
∥∇𝑉 (𝑋𝑡 )∥ [∇2𝜙 (𝑋𝑡 )]−1

]
d𝑡 ≤ 2𝐿𝑀𝜙𝑑ℎ .

Hence, we have proven

E(𝜇(𝑘+1)ℎ) − E(𝜇+𝑘ℎ) ≤ 𝛽
′𝑑ℎ . (10.2.26)

3. The flow step dissipates the entropy. Let 𝜇𝑡 B law(𝑋𝑡 ) = law(∇𝜙∗(𝑋 ∗𝑡 )). The
mirror diffusion (10.2.11) evolves according to the vector field −[∇2𝜙]−1 ∇ ln 𝜇𝑡 . Also, note
that ∇𝑦𝐷𝜙 (𝑥,𝑦) = −∇2𝜙 (𝑥) (𝑦 − 𝑥). Using these, one can show that

𝜕𝑡D𝜙 (𝜋, 𝜇𝑡 ) ≤ E⟨[∇2𝜙 (𝑋𝑡 )]
−1 ∇ ln 𝜇 (𝑋𝑡 ), [∇2𝜙 (𝑋𝑡 )] (𝑍 − 𝑋𝑡 )⟩ = E⟨∇ ln 𝜇 (𝑋𝑡 ), (𝑍 − 𝑋𝑡 )⟩ ,

where (𝑍,𝑋𝑡 ) is an optimal coupling for D𝜙 (𝜋, 𝜇𝑡 ). Using the convexity of H along
generalized geodesics (Theorem 10.2.18),

H(𝜋) −H(𝜇𝑡 ) ≥ E⟨∇ ln 𝜇 (𝑋𝑡 ), (𝑍 − 𝑋𝑡 )⟩ .

Using the fact that 𝑡 ↦→ H(𝜇𝑡 ) is decreasing (prove this from the Fokker–Planck equation
for the mirror diffusion!), we then have

D𝜙 (𝜋, 𝜇(𝑘+1)ℎ) −D𝜙 (𝜋, 𝜇+𝑘ℎ) ≤ ℎ {H(𝜋) −H(𝜇(𝑘+1)ℎ)} . (10.2.27)

Concluding the proof. Combine (10.2.23), (10.2.26), and (10.2.27) to conclude. □
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To apply Theorem 10.2.20 to the problem of constrained sampling, we can choose 𝜙 to
be a logarithmic barrier for X, which is self-concordant. In the special case when 𝑉 = 𝜙 ,
the condition that 𝜙 is 𝐿-relatively Lipschitz with respect to itself is commonly expressed
as saying that 𝜙 is a self-concordant barrier with parameters (𝐿,𝑀𝜙 ). Self-concordant
barriers are also a core part of the theory of interior point methods; in particular, it is
known that every convex body in R𝑑 admits a (𝑑, 2)-self-concordant barrier, and that this
is optimal (see [Che21b; LY21]). However, this situation is “cheating” because if we want
to sample from 𝜋 ∝ exp(−𝜙), it does not make sense to assume we can exactly simulate
the mirror diffusion associated with 𝜙 .

Result for the non-smooth case. Although the preceding result applies when 𝜙 is a
logarithmic barrier, it does not apply to perhaps one of the most classical applications
of mirror descent: namely, X is the probability simplex in R𝑑 and 𝜙 (𝑥) B ∑𝑑

𝑖=1 𝑥𝑖 ln𝑥𝑖 is
the entropy. The next result we formulate adopts assumptions which precisely match the
usual ones for mirror descent in this context.

Theorem 10.2.28 ([AC21]). Suppose that 𝜋 = exp(−𝑉 ) is the target distribution and
that 𝜙 is the mirror map. Let |||·||| be a norm on R𝑑 . Assume:

• 𝑉 is convex and 𝐿-Lipschitz w.r.t. the dual norm |||·|||∗, in the sense that

|||∇𝑉 (𝑥) |||∗ ≤ 𝐿 for all 𝑥 ∈ X .

• 𝜙 is 1-strongly convex w.r.t. |||·|||.

Let (𝜇𝑘ℎ)𝑘∈N denote the law of MLMC. For any 𝜀 > 0, if we take step size ℎ ≍ 𝜀2

𝐿2 , then
for the mixture 𝜇𝑁ℎ B 𝑁 −1 ∑𝑁

𝑘=1 𝜇𝑘ℎ it holds that
√︁

KL(𝜇𝑁ℎ ∥ 𝜋) ≤ 𝜀 after

𝑁 = 𝑂

(𝐿2 D𝜙 (𝜋, 𝜇+0 )
𝜀4

)
iterations .

For example, it is a classical fact that the entropy is strongly convex w.r.t. the ℓ1 norm.
We leave the proof of the non-smooth case as Exercise 10.7.
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10.3 Proximal Langevin

10.4 Stochastic Gradient Langevin

Bibliographical Notes

In the context of optimization, self-concordant barriers play a key role in interior point
methods for constrained optimization [NN94; Bub15; Nes18]. Relative convexity and
relative smoothness were introduced in [BBT17; LFN18].

The first use of mirror maps with the Langevin diffusion was via the mirrored Langevin
algorithm (which is different from the mirror Langevin diffusion) in [Hsi+18]. The mirror
Langevin diffusion was introduced in an earlier draft of [Hsi+18], as well as in [Zha+20].
In [Zha+20], Zhang et al. also studied the Euler–Maruyama discretization of the mirror
Langevin diffusion (which differs from MLMC in that it discretizes the diffusion step
as well), but they were unable to prove convergence of the algorithm; they were only
able to prove convergence to a Wasserstein ball of non-vanishing radius around 𝜋 , even
as the step size tends to zero. They also conjectured that the non-vanishing bias of the
algorithm is unavoidable. Subsequently, [Che+20b] studied the mirror Langevin diffusion
in continuous time, and [AC21] introduced and studied the MLMC discretization, which
does lead to vanishing bias (as ℎ ↘ 0).

Since then, there have been further studying the non-vanishing bias issue: [Jia21]
studied both the Euler–Maruyama and MLMC discretizations under a “mirror log-Sobolev
inequality” and was only able to prove vanishing bias for the later discretization; [Li+22]
showed that the Euler–Maruyama discretization has vanishing bias under stronger as-
sumptions; and [GV22] studied MLMC as a special case of more general Riemannian
Langevin algorithms. The bias issue is still not settled, and it is certainly of interest to
obtain guarantees for fully discretized algorithms. Nevertheless, in our presentation, we
have stuck with the analysis of [AC21] because it is the cleanest, and because it relies on
assumptions which are well-motivated from convex optimization.

Exercises

Mirror Langevin

⊵ Exercise 10.1 (the mirror Langevin diffusion in the primal space)
Use Itô’s formula (Theorem 1.1.18) to show that the mirror Langevin diffusion (10.2.3) in
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the primal space solves the SDE

d𝑍𝑡 = {−[∇2𝜙 (𝑍𝑡 )]
−1 ∇𝑉 (𝑍𝑡 ) − [∇2𝜙 (𝑍𝑡 )]

−1 ∇3𝜙 (𝑍𝑡 ) [∇2𝜙 (𝑍𝑡 )]
−1} d𝑡

+
√

2 [∇2𝜙 (𝑍𝑡 )]
−1/2 d𝐵𝑡 .

⊵ Exercise 10.2 (Markov semigroup theory for the mirror Langevin diffusion)
Here, we introduce the Markov semigroup perspective on the mirror Langevin diffusion.

1. Compute the generator of the mirror Langevin diffusion. Use this to show that 𝜋 is
stationary for the diffusion, and verify the equations (10.2.4) for the carré du champ
and Dirichlet energy.

2. Let ℒdual denote the generator for (𝑍 ∗𝑡 )𝑡≥0 (we write ℒdual instead of ℒ∗ to avoid
confusion with the adjoint of ℒ). By computing 𝜕𝑡 E 𝑓 (𝑍 ∗𝑡 ), show that

ℒdual𝑓 = ℒ(𝑓 ◦ ∇𝜙) .

Then, via a similar calculation to (10.2.5) and (10.2.6), show that the Dirichlet energy
for (𝑍 ∗𝑡 )𝑡≥0 can be expressed as

ℰdual(𝑓 , 𝑔) =
∫
⟨∇𝑓 , [∇2𝜙∗]−1 ∇𝑔⟩ d𝜋∗ ,

where 𝜋∗ B (∇𝜙)#𝜋 is the stationary distribution of (𝑍 ∗𝑡 )𝑡≥0.

3. Show that the mirror Poincaré inequality in Corollary 10.2.10 implies the following
Poincaré inequality in the dual space: for all 𝑓 : R𝑑 → R,

var𝜋∗ 𝑓 ≤
1
𝛼
E𝜋∗ ⟨∇𝑓 , [∇2𝜙∗]−1 ∇𝑓 ⟩ = 1

𝛼
ℰdual(𝑓 , 𝑓 ) .

⊵ Exercise 10.3 (Newton Langevin diffusion)
Verify the SDE (10.2.7) for the Newton Langevin diffusion. What happens to the mirror
descent iteration (10.2.2) when 𝜙 = 𝑉 ?

⊵ Exercise 10.4 (affine invariance of Newton’s method)
Verify the affine invariance of Newton’s algorithm.

⊵ Exercise 10.5 (properties of the Bregman divergence)
In this exercise, we check basic properties of the Bregman divergence.

1. Prove the alternative definition of relative convexity/smoothness (Lemma 10.2.9).
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2. If 𝜙∗ is the convex conjugate of 𝜙 , prove that 𝐷𝜙 (𝑥, 𝑥′) = 𝐷𝜙∗ (∇𝜙 (𝑥′),∇𝜙 (𝑥)).

3. Check the identity (10.2.12).

⊵ Exercise 10.6 (generalized geodesic convexity of the entropy)
Generalize the proof of (1.4.3) to prove the convexity of entropy along generalized
geodesics (Theorem 10.2.18).

⊵ Exercise 10.7 (non-smooth guarantee for MLMC)
Adapt the proof of Theorem 4.3.11 using the techniques of this chapter to prove the
non-smooth guarantee for MLMC (Theorem 10.2.28).
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CHAPTER 11

Non-Log-Concave Sampling

In this chapter, we study the problem of sampling from a smooth but non-log-concave
target. Although some results from previous chapters also cover some non-log-concave
targets (such as targets satisfying a Poincaré or log-Sobolev inequality), these results do
not encompass the full breadth of the non-log-concave sampling problem.

In general, one cannot hope for polynomial-time guarantees from sampling from
non-log-concave targets in usual metrics such as total variation distance. Instead, taking
inspiration from the literature on non-convex optimization, we will develop a notion of
approximate first-order stationarity for sampling, and show that this goal can achieved
via an averaged version of the LMC algorithm. This is based on the work [Bal+22].

11.1 Approximate First-Order Stationarity via Fisher
Information

Suppose that 𝑉 is smooth, but non-convex. In general, optimization lower bounds show
that finding an approximate global minimizer of 𝑉 is computationally intractable, i.e., the
oracle complexity scales exponentially in the dimension 𝑑 . To circumvent this, the notion
of approximate first-order stationarity has arisen as the performance metric of choice in
the non-convex optimization literature. Under this metric, we seek to find the minimal
number of queries required to output a point 𝑥 such that ∥∇𝑉 (𝑥)∥ ≤ 𝜀.

Of course, in practice we may desire stronger guarantees, but first-order stationarity

303
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is often a useful first step towards more detailed analysis, and it has the advantage that we
can develop a general theory surrounding this notion. Note that in the convex case, finding
a global minimizer is equivalent to finding a first-order stationarity point, so stationary
point analysis can be viewed as a natural generalization of the convex optimization
analysis to non-convex settings.

To develop a sampling analogue of this concept, we recall that the Langevin diffusion
is the gradient flow of the KL divergence KL(· ∥ 𝜋) w.r.t. the Wasserstein geometry
(Section 1.4). Moreover, the gradient of the KL divergence at 𝜇 is ∇ ln(𝜇/𝜋), and the
squared norm of the gradient is the Fisher information FI(𝜇 ∥ 𝜋) = E𝜇 [∥∇ ln(𝜇/𝜋)∥2].
Hence, a reasonable definition of finding an approximate first-order stationary point in
sampling is to output a sample from 𝜇 satisfying

√︁
FI(𝜇 ∥ 𝜋) ≤ 𝜀. We will show shortly

that it is indeed possible to achieve this goal in polynomially many queries to ∇𝑉 as
soon as ∇𝑉 is Lipschitz, thereby establishing a framework for stationarity analysis in
non-log-concave sampling. Before doing so, however, we pause to gain intuition for this
solution concept.

Lack of spurious stationary points. An interesting feature of the Fisher information
is that, unlike for general non-convex optimization, if 𝜋 satisfies some mild regularity
conditions (e.g., 𝜋 has a smooth and positive density on R𝑑 ), then there are no spurious
stationary points: FI(𝜇 ∥ 𝜋) = 0 implies 𝜇 = 𝜋 . This is a specific feature of the sampling
problem.1 The intuition behind the proof is straightforward: if FI(𝜇 ∥ 𝜋) = 0, then
∇ ln(𝜇/𝜋) = 0 (𝜋-a.e.), so the density 𝜇 is proportional to 𝜋 . Since 𝜇 is a probability
measure, then 𝜇 must equal 𝜋 . (See however the technical remark below.)

This might suggest that our goal of obtaining
√︁

FI(𝜇 ∥ 𝜋) ≤ 𝜀 is too ambitious, because
obtaining a small value of the Fisher information would solve the general problem of
non-log-concave sampling. This is in fact not the case, and the devil is in the details: it is
true that a small value of FI(𝜇 ∥ 𝜋) implies 𝜇 is close to 𝜋 , but how small must FI(𝜇 ∥ 𝜋)
be? For highly non-log-concave targets 𝜋 , typically the Fisher information should be
exponentially small in order for 𝜇 to be close to 𝜋 in total variation distance.

We illustrate this point with an example: suppose that the target distribution 𝜋 is a
mixture of Gaussians in one dimension, 𝜋 = 1

2 𝜋−+
1
2 𝜋+, where 𝜋∓ B normal(∓𝑚, 1). Also,

suppose that 𝜇 is a mixture of the same two Gaussians, but with the wrong mixing weights:
𝜇 = 3

4 𝜋− +
1
4 𝜋+. Then, we leave the following computation to the reader (Exercise 11.1).

1In fact, the KL divergence KL(· ∥𝜋) is always strictly convex with respect to taking convex combinations
of measures, and hence always has a unique global minimum.
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Proposition 11.1.1. Let𝑚 > 0 and let 𝜋∓ B normal(∓𝑚, 1). Let 𝜇 B 3
4 𝜋− +

1
4 𝜋+ and

𝜋 B 1
2 𝜋− +

1
2 𝜋+. Then, it holds that

lim inf
𝑚→∞

∥𝜇 − 𝜋 ∥TV > 0

whereas

FI(𝜇 ∥ 𝜋) ≲ 𝑚2 exp
(
−𝑚

2

2
)
→ 0 as𝑚 →∞ .

Metastability. The example in Proposition 11.1.1 also provides an interpretation of the
Fisher information. If we try to sample from the mixture of Gaussians 𝜋 , then for𝑚 ≫ 1
it takes an exponentially long time for the Langevin diffusion to jump to one mode from
the other; this is the main reason behind the slow mixing of Langevin. Since it is hard to
jump between the modes, it is difficult for the Langevin diffusion to “learn” the global
mixing weights ( 12 ,

1
2 ) of 𝜋 . On the other hand, Proposition 11.1.1 shows that even with

the wrong mixing weights ( 34 ,
1
4 ), the Fisher information FI(𝜇 ∥ 𝜋) is small, demonstrating

that the Fisher information is insensitive to the global weights.
The example in Proposition 11.1.1 therefore paints a cartoon picture of the behavior

of the Langevin diffusion with target 𝜋 , initialized at 3
4 𝛿−𝑚 +

1
4 𝛿+𝑚: we expect that the

Langevin diffusion quickly explores and captures the local structure of the modes but fails
to jump between the modes, arriving at a distribution which resembles 𝜇; it is this local
mixing that a Fisher information bound captures. Meanwhile, the Langevin diffusion only
obtains the correct global weights after an exponentially long waiting time.

The state 𝜇 is not truly stable for the Langevin diffusion: given enough time, the
diffusion will eventually move away from 𝜇 and reach 𝜋 . However, since states like 𝜇
persist for a very long period of time, they are usually called metastable in the statistical
physics literature. A Fisher information bound can be interpreted as a way of quantitatively
measuring the metastability phenomenon.

Technical remark. One has to be slightly careful with the definition of the Fisher
information. For example, suppose that 𝜋 is the standard Gaussian, and suppose that 𝜇 is
the Gaussian restricted to the unit ball. Then, it is tempting to argue that the density of 𝜇
is proportional to that of 𝜋 on the unit ball, and hence ∇ ln(𝜇/𝜋) = 0 (𝜇-a.e.); from the
expression FI(𝜇 ∥ 𝜋) = E𝜇 [∥∇ ln(𝜇/𝜋)∥2], it suggests that FI(𝜇 ∥ 𝜋) = 0, and in particular
𝜇 is a spurious stationary point. However, this argument is not correct.

The reason is that 𝜇 does not have enough regularity w.r.t. 𝜋 in order to apply the
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formula FI(𝜇 ∥ 𝜋) = E𝜇 [∥∇ ln(𝜇/𝜋)∥2]. Indeed, in order to apply the formula, we must
require that the density d𝜇

d𝜋 lie in an appropriate Sobolev space w.r.t. 𝜋 (more precisely,√︃
d𝜇
d𝜋 should lie in the domain of the Dirichlet energy functional). If this does not hold,

then we define the Fisher information to be infinite: FI(𝜇 ∥ 𝜋) = ∞.
In our theorem below, the Fisher information bound should be interpreted as follows:√︁

FI(𝜇 ∥ 𝜋) ≤ 𝜀 means that 𝜇 has enough regularity w.r.t. 𝜋 and E𝜇 [∥∇ ln(𝜇/𝜋)∥2] ≤ 𝜀2.

11.2 Fisher Information Bound
As before, we consider the interpolation of LMC,

𝑋𝑡 = 𝑋𝑘ℎ − (𝑡 − 𝑘ℎ) ∇𝑉 (𝑋𝑘ℎ) +
√

2 (𝐵𝑡 − 𝐵𝑘ℎ) , 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] .

The Fisher information bound in the next theorem will be proven using the interpolation
technique (§4.2).

Theorem 11.2.1 ([Bal+22]). Let (𝜇𝑡 )𝑡≥0 denote the law of the interpolation of LMC
with step size ℎ > 0. Assume that 𝜋 ∝ exp(−𝑉 ) where ∇𝑉 is 𝛽-Lipschitz. Then, for any
step size 0 < ℎ ≤ 1

4𝛽 , for all 𝑁 ∈ N,

1
𝑁ℎ

∫ 𝑁ℎ

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 ≤

2 KL(𝜇0 ∥ 𝜋)
𝑁ℎ

+ 6𝛽2𝑑ℎ .

In particular, if KL(𝜇0 ∥ 𝜋) ≤ 𝐾0 and we choose ℎ =
√
𝐾0/(2𝛽

√
𝑑𝑁 ), then provided that

𝑁 ≥ 9𝐾0/𝑑 ,

1
𝑁ℎ

∫ 𝑁ℎ

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 ≤

8𝛽
√
𝑑𝐾0√
𝑁

.

In order to translate the result into a more useful form, we recall that the Fisher
information is convex in its first argument.

Lemma 11.2.2. The Fisher information functional FI(· ∥ 𝜋) is convex.

Proof. Let 𝜇0, 𝜇1 ∈ P(R𝑑) be such that FI(𝜇0 ∥ 𝜋) ∨ FI(𝜇1 ∥ 𝜋) < ∞. For 𝑡 ∈ (0, 1), let
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𝜇𝑡 B (1 − 𝑡) 𝜇0 + 𝑡 𝜇1, and write 𝑓𝑡 B d𝜇𝑡
d𝜋 = (1 − 𝑡) 𝑓0 + 𝑡 𝑓1. Then,

FI(𝜇𝑡 ∥ 𝜋) =
∫ ∥∇𝑓𝑡 ∥2

𝑓𝑡
d𝜋 ≤ (1 − 𝑡)

∫ ∥∇𝑓0∥2
𝑓0

d𝜋 + 𝑡
∫ ∥∇𝑓1∥2

𝑓1
d𝜋

= (1 − 𝑡) FI(𝜇0 ∥ 𝜋) + 𝑡 FI(𝜇1 ∥ 𝜋)

follows from the joint convexity of (𝑎, 𝑏) ↦→ ∥𝑎∥2/𝑏 on R𝑑 × R>0. □

Hence, for the averaged measure 𝜇𝑁ℎ B 1
𝑁ℎ

∫ 𝑁ℎ

0 𝜇𝑡 d𝑡 , we have

FI(𝜇𝑁ℎ ∥ 𝜋) ≤
1
𝑁ℎ

∫
FI(𝜇𝑡 ∥ 𝜋) d𝑡 (11.2.3)

and the guarantees of the theorem translate into guarantees for 𝜇𝑁ℎ . Moreover, we can
output a sample from 𝜇𝑁ℎ via the following procedure:

1. Pick a time 𝑡 ∈ [0, 𝑁ℎ] uniformly at random.

2. Let 𝑘 be the largest integer such that 𝑘ℎ ≤ 𝑡 , and let 𝑋𝑘ℎ denote the 𝑘-th iterate of
the LMC algorithm.

3. Perform a partial LMC update

𝑋𝑡 = 𝑋𝑘ℎ − (𝑡 − 𝑘ℎ) ∇𝑉 (𝑋𝑘ℎ) +
√

2 (𝐵𝑡 − 𝐵𝑘ℎ)

and output 𝑋𝑡 .

Combined with Theorem 11.2.1 and (11.2.3), and assuming that KL(𝜇0 ∥ 𝜋) = 𝑂 (𝑑),
we conclude that it is possible to algorithmically obtain a sample from a measure 𝜇 with√︁

FI(𝜇 ∥ 𝜋) ≤ 𝜀 using 𝑂 (𝛽2𝑑2/𝜀4) queries to ∇𝑉 .
We now give the proof of Theorem 11.2.1, which combines the usual stationary point

analysis in non-convex optimization with the interpolation argument.

Proof of Theorem 11.2.1. Recall from the proof of Theorem 4.2.6 that

𝜕𝑡 KL(𝜇𝑡 ∥ 𝜋) ≤ −
1
2 FI(𝜇𝑡 ∥ 𝜋) + 6𝛽2𝑑 (𝑡 − 𝑘ℎ) .

This inequality was obtained under the sole assumption that ∇𝑉 is 𝛽-Lipschitz. In The-
orem 4.2.6, we proceeded to apply a log-Sobolev inequality, but here we will instead
telescope this inequality. By integrating over 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ],

KL(𝜇(𝑘+1)ℎ ∥ 𝜋) − KL(𝜇𝑘ℎ ∥ 𝜋) ≤ −
1
2

∫ (𝑘+1)ℎ

𝑘ℎ

FI(𝜇𝑡 ∥ 𝜋) d𝑡 + 3𝛽2𝑑ℎ2 .
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Summing over 𝑘 = 0, 1, . . . , 𝑁 − 1 and dividing by 𝑁ℎ,

1
𝑁ℎ

∫ 𝑁ℎ

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 ≤

2 KL(𝜇0 ∥ 𝜋)
𝑁ℎ

+ 6𝛽2𝑑ℎ .

This proves the first statement; the second statement is obtained by optimizing over the
choice of ℎ. □

11.3 Applications of the Fisher Information Bound
Asymptotic convergence of averaged LMC. Since Theorem 11.2.1 holds under very
weak assumptions (only smoothness of 𝑉 ) and implies that the Fisher information can
be driven to zero, and FI(𝜇 ∥ 𝜋) = 0 implies that 𝜇 = 𝜋 , then putting these facts together
leads to a straightforward proof of the asymptotic convergence of averaged LMC.

For a sequence of positive step sizes (ℎ𝑘)𝑘∈N+ , let 𝜏𝑛 B
∑𝑛
𝑘=1 ℎ𝑘 and consider the

interpolation

𝑋𝑡 = 𝑋𝜏𝑛−1 − (𝑡 − 𝜏𝑛−1) ∇𝑉 (𝑋𝜏𝑛−1) +
√

2 (𝐵𝑡 − 𝐵𝜏𝑛−1) , 𝑡 ∈ [𝜏𝑛−1, 𝜏𝑛] . (11.3.1)

Theorem 11.3.2. Let (𝜇𝑡 )𝑡≥0 denote the law of the interpolation (11.3.1) of LMC, and
suppose that the target is 𝜋 ∝ exp(−𝑉 ) where ∇𝑉 is 𝛽-Lipschitz. Suppose that LMC is
initialized at a measure 𝜇0 with KL(𝜇0 ∥ 𝜋) < ∞, and that the sequence of step sizes
satisfies 0 < ℎ𝑘 < 1

4𝛽 for all 𝑘 ∈ N+ together with the conditions

∞∑︁
𝑘=1

ℎ𝑘 = ∞ , and
∞∑︁
𝑘=1

ℎ2
𝑘
< ∞ .

Write 𝜇𝜏𝑛 B
1
𝜏𝑛

∫ 𝜏𝑛
0 𝜇𝑡 d𝑡 . Then, 𝜇𝜏𝑛 → 𝜋 weakly.

Proof. By repeating the proof of Theorem 11.2.1 but incorporating time-varying step sizes,
we obtain for 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1]

𝜕𝑡 KL(𝜇𝑡 ∥ 𝜋) ≤ −
1
2 FI(𝜇𝑡 ∥ 𝜋) + 6𝛽2𝑑 (𝑡 − 𝜏𝑛) . (11.3.3)

By integrating this inequality and summing,

KL(𝜇𝜏𝑛 ∥ 𝜋) ≤ KL(𝜇0 ∥ 𝜋) −
1
2

∫ 𝜏𝑛

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 + 3𝛽2𝑑

𝑛∑︁
𝑘=1

ℎ2
𝑘
. (11.3.4)
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Rearranging and using the convexity of the Fisher information, it yields

FI(𝜇𝜏𝑛 ∥ 𝜋) ≤
1
𝜏𝑛

∫ 𝜏𝑛

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 ≤

2 KL(𝜇0 ∥ 𝜋)
𝜏𝑛

+ 6𝛽2𝑑

𝜏𝑛

∞∑︁
𝑘=1

ℎ2
𝑘
. (11.3.5)

On the other hand, if 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1], then integrating (11.3.3) and combining with (11.3.4)
yields

KL(𝜇𝑡 ∥ 𝜋) ≤ KL(𝜇𝜏𝑛 ∥ 𝜋) + 3𝛽2𝑑 (𝑡 − 𝜏𝑛)2 ≤ KL(𝜇0 ∥ 𝜋) + 6𝛽2𝑑
∞∑︁
𝑘=1

ℎ2
𝑘
< ∞ .

Therefore, {KL(𝜇𝑡 ∥ 𝜋) | 𝑡 ≥ 0} is bounded, and the convexity of the KL divergence implies
that {KL(𝜇𝜏𝑛 ∥ 𝜋) | 𝑛 ∈ N+} is bounded. Since the sublevel sets of KL(· ∥ 𝜋) are compact,
to prove the theorem it suffices to show that every weak limit of (𝜇𝜏𝑛 )𝑛∈N+ is equal to 𝜋 .
Consider a subsequence of (𝜇𝜏𝑛 )𝑛∈N+ converging to a weak limit 𝜇.

Taking 𝑛 →∞ in (11.3.5) and noting that 𝜏𝑛 →∞, we have FI(𝜇𝜏𝑛 ∥ 𝜋) → 0 and thus
along the subsequence as well. It is known that FI(· ∥ 𝜋) is weakly lower semicontinuous,
so FI(𝜇 ∥ 𝜋) = 0. However, since ∇𝑉 is Lipschitz, then 𝜋 has a continuous and strictly
positive density on R𝑑 , so FI(𝜇 ∥ 𝜋) = 0 entails 𝜇 = 𝜋 as desired. □

Convergence in total variation distance under a Poincaré inequality. As the
example in Proposition 11.1.1 shows, for general non-log-concave targets a Fisher infor-
mation bound does not translate into guarantees in other metrics. However, this can be
carried out if 𝜋 satisfies appropriate functional inequalities. For example, by a definition a
log-Sobolev inequality for 𝜋 states that

KL(𝜇 ∥ 𝜋) ≲ FI(𝜇 ∥ 𝜋) for all 𝜇 ∈ P(R𝑑) ,

and in this case a Fisher information guarantee readily translates into a KL divergence
guarantee; however, this is not very interesting because we have obtained a sharper KL
divergence guarantee for targets 𝜋 satisfying a log-Sobolev inequality in Theorem 4.2.6.
Instead, we will show that under the weaker assumption of a Poincaré inequality, a Fisher
information guarantee implies a total variation guarantee.

The key observation is the following implication of a Poincaré inequality.

Proposition 11.3.6. Suppose that 𝜋 satisfies a Poincaré inequality with constant 𝐶PI.
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Then, for all 𝜇 ∈ P(R𝑑),

∥𝜇 − 𝜋 ∥2TV ≤
𝐶PI

4 FI(𝜇 ∥ 𝜋) .

Proof. We can assume 𝜇 ≪ 𝜋 ; let 𝑓 B d𝜇
d𝜋 . The total variation distance has the expressions

∥𝜇 − 𝜋 ∥TV =
1
2

∫
|𝑓 − 1| d𝜋 =

1
2

∫
{(𝑓 ∨ 1) − (𝑓 ∧ 1)} d𝜋

which yields
∫
(𝑓 ∧ 1) d𝜋 = 1 − ∥𝜇 − 𝜋 ∥TV and

∫
(𝑓 ∨ 1) d𝜋 = 1 + ∥𝜇 − 𝜋 ∥TV. Using this,

∫ √︁
𝑓 d𝜋 =

∫ √︁
(𝑓 ∧ 1) (𝑓 ∨ 1) d𝜋 ≤

√︄∫
(𝑓 ∧ 1) d𝜋

∫
(𝑓 ∨ 1) d𝜋

=
√︁
(1 − ∥𝜇 − 𝜋 ∥TV) (1 + ∥𝜇 − 𝜋 ∥TV) =

√︃
1 − ∥𝜇 − 𝜋 ∥2TV .

Therefore,

∥𝜇 − 𝜋 ∥2TV ≤ 1 −
(∫ √︁

𝑓 d𝜋
)2

= var𝜋
√︁
𝑓 .

This is sometimes called Le Cam’s inequality; in statistics, the right-hand side is often
written as 𝐻 2(𝜇, 𝜋) (1 − 1

4 𝐻
2(𝜇, 𝜋)), where 𝐻 2 denotes the squared Hellinger distance.

Applying the Poincaré inequality,

∥𝜇 − 𝜋 ∥2TV ≤ 𝐶PI E𝜋 [∥∇
√︁
𝑓 ∥2] = 𝐶PI

4 FI(𝜇 ∥ 𝜋) . □

Corollary 11.3.7. Let (𝜇𝑡 )𝑡≥0 denote the law of the interpolation of LMC with step
size ℎ > 0. Assume that 𝜋 ∝ exp(−𝑉 ), where ∇𝑉 is 𝛽-Lipschitz and 𝜋 satisfies the
Poincaré inequality with constant 𝐶PI. Then, if KL(𝜇0 ∥ 𝜋) ≤ 𝐾0 and we choose step size
ℎ =
√
𝐾0/(2𝛽

√
𝑑𝑁 ), then

∥𝜇𝑁ℎ − 𝜋 ∥2TV B



 1
𝑁ℎ

∫ 𝑡

0
𝜇𝑡 d𝑡 − 𝜋




2

TV
≤ 2𝐶PI𝛽

√
𝑑𝐾0√

𝑁
.



11.3. APPLICATIONS OF THE FISHER INFORMATION BOUND 311

Bibliographical Notes

Exercises
⊵ Exercise 11.1 (Fisher information for mixtures of Gaussians)
Prove Proposition 11.1.1.
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dimension condition and Riemannian Ricci curvature bounds”. In: Ann.
Probab. 43.1 (2015), pp. 339–404.

313



314 BIBLIOGRAPHY

[BGL14] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of
Markov diffusion operators. Vol. 348. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer,
Cham, 2014, pp. xx+552.

[Bal+22] Krishna Balasubramanian, Sinho Chewi, Murat A. Erdogdu, Adil Salim, and
Matthew Zhang. “Towards a theory of non-log-concave sampling: first-
order stationarity guarantees for Langevin Monte Carlo”. In: Proceedings of
Thirty Fifth Conference on Learning Theory. Ed. by Po-Ling Loh and Maxim
Raginsky. Vol. 178. Proceedings of Machine Learning Research. PMLR, Feb.
2022, pp. 2896–2923.

[Bar+18] Jean-Baptiste Bardet, Nathaël Gozlan, Florent Malrieu, and Pierre-André Zitt.
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[DM19] Alain Durmus and Éric Moulines. “High-dimensional Bayesian inference via
the unadjusted Langevin algorithm”. In: Bernoulli 25.4A (2019), pp. 2854–
2882.

[Dwi+19] Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. “Log-concave
sampling: Metropolis–Hastings algorithms are fast”. In: Journal of Machine
Learning Research 20.183 (2019), pp. 1–42.

[Ebe11] Andreas Eberle. “Reflection coupling and Wasserstein contractivity without
convexity”. In: C. R. Math. Acad. Sci. Paris 349.19-20 (2011), pp. 1101–1104.

[Ebe16] Andreas Eberle. “Reflection couplings and contraction rates for diffusions”.
In: Probab. Theory Related Fields 166.3-4 (2016), pp. 851–886.

[EGZ19] Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. “Couplings and quan-
titative contraction rates for Langevin dynamics”. In: Ann. Probab. 47.4 (2019),
pp. 1982–2010.

[Eld13] Ronen Eldan. “Thin shell implies spectral gap up to polylog via a stochastic
localization scheme”. In: Geom. Funct. Anal. 23.2 (2013), pp. 532–569.

[Eld15] Ronen Eldan. “A two-sided estimate for the Gaussian noise stability deficit”.
In: Invent. Math. 201.2 (2015), pp. 561–624.

[EM12] Matthias Erbar and Jan Maas. “Ricci curvature of finite Markov chains via
convexity of the entropy”. In: Arch. Ration. Mech. Anal. 206.3 (2012), pp. 997–
1038.

[EHZ22] Murat A. Erdogdu, Rasa Hosseinzadeh, and Shunshi Zhang. “Convergence of
Langevin Monte Carlo in chi-squared and Rényi divergence”. In: Proceedings
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[KLM06] Ravi Kannan, László Lovász, and Ravi Montenegro. “Blocking conductance
and mixing in random walks”. In: Combin. Probab. Comput. 15.4 (2006),
pp. 541–570.
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