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Preface

What This Book Contains
As discussed in the next section, a large portion of this book is dedicated to a systematic and unified
treatment of recent developments in the complexity theory for log-concave sampling, with a particular
emphasis on connections with the field of optimization. Many of these developments appear here in
textbook form for the first time. Although this is still an active area of research, at this time there is
enough elegant mathematics and canonical theory that it seemed a shame not to have available an
exposition which is accessible to an ambitious graduate student.

From a broader view, however, it is not the specific applications to log-concave sampling, but
rather the general perspective and techniques used, that will have the largest impact on the reader.
With this in mind, the book includes several topics which are not directly related to sampling, but
loosely illustrate the general theme of “modern applications of stochastic analysis to probability
and statistics”. The applications range from classical mathematical questions, such as concentration
of measure and geometry, to instances in which the philosophy of diffusion processes has inspired
recent algorithms for machine learning tasks. Although tastes change, the overall importance of this
perspective only seems to grow with time. Due to space limitations, some of these additional topics
appear as supplements on my website (chewisinho.github.io).

The subject matter of this book touches upon many fields, such as geometry, PDE, stochastic
calculus, etc., and a primary goal of the exposition here is to make the material accessible without
extensive background knowledge in these topics. This means that at several places we have sacrificed
full mathematical rigor in favor of (hopefully) more lucid explanations, referring to the original sources
for details. As such, these subjects are not prerequisites for this book, although more background
knowledge on the reader’s part naturally translates into an healthier understanding of the context of
the material. The main exceptions to this statement are: (1) we assume that the reader is familiar
with graduate-level analysis and probability; (2) since much of the theory of sampling is inspired by
ideas from optimization, we highly recommend that the reader is familiar with the latter, as treated in,
e.g., Bubeck (2015); Nesterov (2018); Chewi (2025).

The Complexity of Sampling
In this book, we consider the following canonical sampling problem:

vi
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Given query access to a smooth function 𝑉 : R𝑑 → R, what is the minimum number of queries
required to output an approximate sample from the probability density 𝜋 ∝ exp(−𝑉) on R𝑑?

The problem formulation is chosen due to the following considerations. In many applications
(some described below), we wish to sample from a probability density 𝜋, and we have an explicit
function 𝑉 : R𝑑 → R such that 𝜋 ∝ exp(−𝑉). In other words, since 𝜋 is a probability density, then
𝜋 = 1

𝑍
exp(−𝑉), where 𝑍 B

∫
exp(−𝑉) is called the normalizing factor (or the partition function

in statistical physics). Although 𝑍 (and thus 𝜋) are explicitly given in terms of the known function
𝑉 , a naı̈ve evaluation of 𝑍 as a high-dimensional integral is intractable. Indeed, the usual approach
of approximating an integral by a sum requires discretizing space via a fine grid whose size scales
exponentially in the dimension 𝑑. Moreover, even if we had access to 𝑍 , it is still not clear how
we could use this to sample from 𝜋. Therefore, the focus here is to develop direct methods for the
sampling task which bypass the computation of 𝑍 .1

Not only do we want to develop fast algorithms, we also want to understand the inherent complexity
of the sampling task, which in turn allows us to identify optimal algorithms. By complexity, we
do not mean computational complexity, since proving lower bounds in that context is out of reach
(besides, we would have to spend too much time worrying about the bit representation of 𝑉). Instead,
following the well-trodden path of optimization, we adopt a model in which we only have access to
𝑉 through queries made to an oracle, and our notion of complexity is the number of queries made.
This is known as oracle complexity or query complexity; see Nemirovsky and Yudin (1983, §1) for
a detailed discussion. We usually consider a first-order oracle, i.e. given a point 𝑥 ∈ R𝑑, the oracle
returns (𝑉 (𝑥),∇𝑉 (𝑥)). Since 𝑉 is only well-defined up to an additive constant, we can equivalently
imagine that the oracle returns (𝑉 (𝑥) −𝑉 (0),∇𝑉 (𝑥)).

Before considering the problem further, here are some important applications.

1 (Bayesian statistics and uncertainty quantification.) Suppose that we wish to make inferences
about a parameter 𝜗 of interest, which lies in a space Θ ⊆ R𝑑. As a Bayesian, we have a prior
density 𝑝𝜗 over Θ which encodes our subjective beliefs about the value of 𝜗 prior to seeing any
data. Next, we collect some data 𝑋 which, conditionally on the value of 𝜗, is drawn from a density
𝑝𝑋 |𝜗 (· | 𝜗). According to Bayesian statistics, we should then compute the posterior distribution

𝑝𝜗 |𝑋 (𝜃 | 𝑋) ∝
𝑝𝜗 (𝜃) 𝑝𝑋 |𝜗 (𝑋 | 𝜃)∫

Θ
𝑝𝜗 (d𝜃′) 𝑝𝑋 |𝜗 (𝑋 | 𝜃′)

,

which encodes our new beliefs about 𝜗 after seeing the data.
Typically, we have access to the functional forms of 𝑝𝜗 and {𝑝𝑋 |𝜗 (· | 𝜃)}𝜃∈Θ, so we can

evaluate these densities and compute gradients. However, the denominator of 𝑝𝜗 |𝑋 is precisely the
normalizing constant described previously and cannot be easily evaluated. Moreover, even if we had
the functional form of 𝑝𝜗 |𝑋 (· | 𝑋), we would still not be able to compute expectations E[𝜑(𝜗) | 𝑋]
of test functions w.r.t. the posterior without evaluating another high-dimensional integral. Instead,
the sampling methods we discuss in this book can output random variables 𝜗1, . . . , 𝜗𝑛 whose
distributions are approximately 𝑝𝜗 |𝑋 (· | 𝑋), and the expectation can be approximated to arbitrary
accuracy via the Monte Carlo averages 𝑚−1 ∑𝑚

𝑖=1 𝜑(𝜗𝑖).
2 (High-dimensional integration.) More generally, computing integrals of functions against a known

density 𝜋 is a fundamental task in scientific computing. In many high-dimensional applications, the
1 In fact, it goes the other way around: state-of-the-art methods for approximately computing 𝑍 are based on the sampling

methods we develop here.
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strategy of drawing samples from 𝜋 and then approximating integrals via Monte Carlo averages is
in fact the only known way to efficiently tackle this problem.

3 (Model aggregation, randomized algorithms, etc.) Consider the following regression model: we
observe i.i.d. pairs {(𝑋𝑖, 𝑌𝑖)}𝑖∈[𝑛] , assumed to be drawn according to 𝑌𝑖 = 𝑓𝜗 (𝑋𝑖) + 𝜉𝑖 for some
parameter 𝜗 ∈ Θ and noise variables 𝜉𝑖, 𝑖 ∈ [𝑛]. Given a “prior” 𝑝𝜗 over Θ, the exponentially
weighted aggregate (EWA) estimator with parameter 𝛽 > 0 is the following weighted average:

�̂� B

∫
𝑓𝜃 𝑝𝛽,𝜗 (d𝜃) , where 𝑝𝛽,𝜗 (d𝜃) ∝ exp

(
−𝛽

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑓𝜃 (𝑋𝑖))2
)
𝑝𝜗 (d𝜃) .

Note the similarity with the Bayesian setting; indeed, 𝑝𝛽,𝜗 can be interpreted as a posterior. The
estimator �̂� , however, can be regarded from a purely frequentist lens, as an average over “models”
𝜃 ∈ Θ which downweights those which incur large empirical risk. This procedure is known generally
as model aggregation, and the risk bound developed for the EWA estimator in Dalalyan (2017b)
is closely related to PAC–Bayes theory (Alquier, 2024). Similar weighted averages appear in the
field of online learning, under various names such as learning with expert advice or multiplicative
weights. Computation of these estimators can again be handled via sampling methods.

4 (Privacy.) As machine learning algorithms are continually deployed in application domains with
personal and sensitive information, there is growing concern about maintaining the privacy of
the data on which the machine learning models are trained. One way to address this issue is to
require that the algorithm be differentially private, which loosely speaking requires the output of
the model to not depend too much on the presence or absence of a single data point. The most
common method to achieve this goal is via the careful addition of noise to the algorithm. Readers
who are interested in the mathematics of privacy should benefit from a healthy understanding of
the analysis of sampling algorithms, and vice versa.

5 (Statistical physics.) In a physical system, 𝑉 (𝑥) represents the energy of a state 𝑥. In this situation,
thermodynamics predicts that the equilibrium distribution over states is the Boltzmann (or Gibbs)
distribution whose density is proportional to exp(−𝑉/𝑇) (where 𝑇 is the temperature of the system).
Naturally, sampling provides a method for probing properties of the equilibrium distribution. More
subtly, the mixing time of specific sampling algorithms also provides information about the system
such as metastability phenomena; we revisit this in Chapter 11.

Due to this physical interpretation, we often refer to 𝑉 as the potential energy.

Besides these examples, it is no surprise that sampling arises in many other applications, since
sampling is a fundamental algorithmic primitive. As such, sampling methods are employed daily in
applied domains such as biology, climatology, and cosmology.
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Example 0.0.1 (Bayesian logistic regression). For concreteness, let us consider the application
of sampling to a Bayesian logistic regression problem. Suppose we have collected data in the
form of pairs (𝑋𝑖, 𝑌𝑖), 𝑖 ∈ [𝑛], where 𝑋𝑖 ∈ R𝑑 is a vector of covariates and 𝑌𝑖 ∈ {0, 1} is a binary
outcome. For example, 𝑌𝑖 might represent whether or not a certain drug is effective on the 𝑖-th
patient in a clinical study. Here, we regard the covariates {𝑋𝑖, 𝑖 ∈ [𝑛]} to be deterministic and
fixed, and we posit that the outcomes {𝑌𝑖, 𝑖 ∈ [𝑛]} are independent with distributions

𝑌𝑖 ∼ Bernoulli
( exp ⟨𝜗, 𝑋𝑖⟩
1 + exp ⟨𝜗, 𝑋𝑖⟩

)
.

Moreover, we take a Gaussian prior normal(0, 𝜆−1𝐼𝑑) for 𝜗, where 𝜆 > 0. The likelihood is

𝑝𝑌𝑖 |𝜗 (𝑦𝑖 | 𝜃) =
( 1
1 + exp ⟨𝜃, 𝑋𝑖⟩

)1−𝑦𝑖 ( exp ⟨𝜃, 𝑋𝑖⟩
1 + exp ⟨𝜃, 𝑋𝑖⟩

) 𝑦𝑖
, 𝑦𝑖 ∈ {0, 1} ,

and by independence, 𝑝𝑌1 ,...,𝑌𝑛 |𝜗 (𝑦1, . . . , 𝑦𝑛 | 𝜃) =
∏𝑛
𝑖=1 𝑝𝑌𝑖 |𝜗 (𝑦𝑖 | 𝜃). A Bayes rule computation

yields the posterior 𝑝𝜗 |𝑌1 ,...,𝑌𝑛 ∝ exp(−𝑉), where

𝑉 (𝜃) =
𝑛∑︁
𝑖=1

(
log(1 + exp ⟨𝜃, 𝑋𝑖⟩) − 𝑌𝑖 ⟨𝜃, 𝑋𝑖⟩

)
+ 𝜆

2
∥𝜃∥2 .

Note that 𝑉 is 𝜆-strongly convex. It is straightforward to find the minimizer of 𝑉 via standard
optimization methods (e.g., gradient descent), and this corresponds to finding the mode or
maximum a posteriori (MAP) estimate of the parameter 𝜗. On the other hand, it is less obvious
how to obtain (approximate) samples from the posterior. In this book, we study algorithms which
can solve this task accompanied with non-asymptotic complexity estimates.

Next, we turn towards the how rather than the why. A key theme of this book is the surprising
and close connection between methods in optimization and methods in sampling. To illustrate, we
introduce our first sampling method, which is the sampling analogue of the well-known gradient
descent algorithm from optimization. The Langevin diffusion is the solution (𝑋𝑡 )𝑡⩾0 to the stochastic
differential equation (SDE)

d𝑋𝑡 = −∇𝑉 (𝑋𝑡 ) d𝑡︸        ︷︷        ︸
gradient flow

+
√

2 d𝐵𝑡︸  ︷︷  ︸
Brownian motion

.

With a pure gradient flow d𝑋𝑡 = −∇𝑉 (𝑋𝑡 ) d𝑡, we would expect the dynamics to converge to stationary
points of 𝑉 . The Brownian motion ensures that we fully explore the distribution 𝜋, as is required in
sampling. Under mild conditions, the unique stationary distribution of the Langevin diffusion is indeed
𝜋 ∝ exp(−𝑉), which makes this diffusion a good candidate upon which to base a sampling algorithm.

Since the Langevin diffusion is “a gradient flow + noise”, it is no wonder that researchers have drawn
parallels between this diffusion and the gradient flow from optimization. However, the connection
actually lies much deeper than this superficial observation would suggest. There is a natural geometry
on the space of probability measures with finite second moment, P2(R𝑑), namely the 2-Wasserstein
distance𝑊2 from the theory of optimal transport. The space (P2(R𝑑),𝑊2) turns out to be much richer
than a metric space; in fact, it is almost a Riemannian manifold. In turn, the Riemannian structure
allows us to define gradient flows on this space. The punchline here is that if 𝜋𝑡 denotes the law of
𝑋𝑡 , then the curve of measures 𝑡 ↦→ 𝜋𝑡 is the gradient flow of the Kullback–Leibler (KL) divergence
KL(· ∥ 𝜋) with respect to the𝑊2 geometry. Hence, at the level of the trajectory (𝑋𝑡 )𝑡⩾0, the Langevin
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diffusion is a noisy gradient flow, but at the level of measures (𝜋𝑡 )𝑡⩾0, it is precisely a gradient
flow! This remarkable connection was introduced in the seminal work of Jordan, Kinderlehrer, and
Otto (Jordan et al., 1998).

This perspective suggests that we can study the convergence of the Langevin diffusion using tools
from optimization. For example, a standard assumption in the optimization literature which allows
for fast rates of convergence is that of strong convexity of the objective function. Hence, we can ask
under what conditions the functional KL(· ∥ 𝜋) on the space of measures is strongly convex along𝑊2
geodesics. Quite pleasingly, this is equivalent to the (Euclidean) strong convexity of the potential 𝑉 .
Consequently, the assumption of strong convexity of 𝑉 , which is natural in optimization for studying
gradient flows, turns out to be natural in the sampling context as well.

Much of this book is devoted to the case when 𝑉 is strongly convex; we refer to 𝜋 as being strongly
log-concave. Besides its naturality and simplicity, it is sometimes a practical assumption. For example,
in the application to Bayesian statistics, the Bernstein–von Mises theorem states that as the number
of data points tends to infinity, the posterior distribution closely resembles a Gaussian distribution
and is thus (almost) strongly log-concave, a fact which has already been exploited to give sampling
guarantees in the context of Bayesian inverse problems (see, e.g., Nickl and Wang, 2024). However,
some of the results also apply to restricted classes of non-log-concave measures, and in Chapter 11
we shall see what can be said about non-log-concave sampling in general.

Before using the Langevin diffusion for sampling, however, it is first necessary to discretize the
process in time. The simplest discretization, known as the Euler–Maruyama discretization, proceeds
by fixing a step size ℎ > 0 and following the iteration

𝑋(𝑛+1)ℎ B 𝑋𝑛ℎ − ℎ∇𝑉 (𝑋𝑛ℎ) +
√

2 (𝐵 (𝑛+1)ℎ − 𝐵𝑛ℎ) .

Since the Brownian increment 𝐵 (𝑛+1)ℎ − 𝐵𝑛ℎ has the normal(0, ℎ𝐼𝑑) distribution, this iteration can be
easily implemented once we have access to a gradient oracle for 𝑉 and the ability to draw standard
Gaussian variables. This iteration is commonly known as the Langevin Monte Carlo (LMC) algorithm,
or the unadjusted Langevin algorithm (ULA); in this book, we stick to the former acronym.

The LMC algorithm is the starting point of our study. As a result of research in the last decade, we
now have the following guarantee. For any of the common divergences d between probability measures,
e.g., d(𝜇, 𝜋) = 𝑊2(𝜇, 𝜋) or d(𝜇, 𝜋) =

√︁
KL(𝜇 ∥ 𝜋), and with an appropriate choice of initialization

and step size, the law 𝜇𝑁ℎ of the 𝑁-th iterate of LMC satisfies d(𝜇𝑁ℎ, 𝜋) ⩽ 𝜀 with a number of
iterations 𝑁 which is polynomial in the problem parameters (the dimension 𝑑, the condition number 𝜅
of 𝑉 , and the inverse accuracy 1/𝜀). For example, when d =

√
KL, the state-of-the-art guarantee reads

𝑁 = 𝑂 (𝜅𝑑/𝜀2). Whereas the convergence of the continuous-time diffusion is classical and typically
proven via abstract calculus, the quantitative non-asymptotic convergence of the discretized algorithm
necessitates the development of a new toolbox of analysis techniques. A primary goal of this book to
make this toolbox more accessible to researchers who are not yet acquainted with the field.

Beyond the standard LMC algorithm, there is now a rich arsenal of algorithms in the sampling
literature. Some algorithms are directly inspired by other optimization algorithms (e.g., mirror descent),
whereas other algorithms have their roots in the classical theory of Markov processes (e.g., the use of
a Metropolis–Hastings filter). We also explore some of these more sophisticated algorithms in detail,
as in many cases they represent substantial improvements over standard LMC.

Finally, although we began this introduction by discussing the goal of understanding the complexity
of sampling, in fact the complexity is not yet fully understood. The issue here is that there are currently
very few lower bounds on the complexity of sampling. This is in contrast with the field of optimization,
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in which oracle complexity lower bounds have in most situations identified nearly optimal algorithms
for optimizing various function classes. In Chapter 9, we will explain the current progress towards
achieving this goal for sampling, but much work remains to be done.

For example, here is the precise statement for a fundamental open question about the complexity of
log-concave sampling.

Let 𝜋 ∝ exp(−𝑉) be a probability density on R𝑑. Determine, up to a universal constant, the
minimum number of queries to a first-order oracle for𝑉 required to output a sample whose law 𝜇

satisfies ∥𝜇 − 𝜋∥TV ⩽ 𝜀, uniformly over the following class of potentials: 𝑉 is twice continuously
differentiable, satisfying the conditions 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and ∇𝑉 (0) = 0.

What This Book Does Not Contain
Here, we point out a few egregious exclusions from our selection of topics. First, as mentioned
previously, the price we paid for a succinct exposition of a variety of fields is a lack of rigorous
development of the fundamentals of said fields, which we leave to the reader to pursue more thoroughly.

The field of sampling has a rich literature spanning decades, and although we have made an effort
to cite the works most relevant to the modern perspective, it was not possible to cite even a vanishing
fraction of the applied and/or classical literature. This extends to even recent theoretical works on
log-concave sampling, for which we have omitted discussion of sampling from convex bodies or
polytopes. Although these works constitute fundamental developments in the field, here we chose to
limit our focus to the part of the literature which is more strongly inspired by optimization algorithms.

Naturally, the other topics we explore in the book are far from comprehensive.

Notational Conventions
The symbols ∧ and ∨ mean “minimum” and “maximum” respectively. We write 𝑎 ≲ 𝑏 or 𝑎 = 𝑂 (𝑏)
to mean that 𝑎 ⩽ 𝐶𝑏 for a universal constant 𝐶 > 0. Similarly, 𝑎 ≳ 𝑏 or 𝑎 = Ω(𝑏) mean that 𝑎 ⩾ 𝑐𝑏
for a universal constant 𝑐 > 0, and 𝑎 ≍ 𝑏 or 𝑎 = Θ(𝑏) mean that both 𝑎 ≲ 𝑏 and 𝑎 ≳ 𝑏. We write
𝑎 = 𝑂 (𝑏) to mean that 𝑎 = 𝑂 (𝑏 log𝑂 (1) 𝑏), i.e., we suppress polylogarithmic factors, and we similarly
use the notation Ω̃ and Θ̃. If a theorem holds under the condition “𝑎 ≪ 𝑏”, it means that it holds
provided that 𝑎 is smaller than 𝑏 by a sufficiently small universal constant, and “𝑎 ≪log 𝑏” has a
similar meaning except that polylogarithmic factors are also ignored.

For a function 𝑓 : R𝑑 → R, we write 𝜕𝑖 𝑓 to denote the 𝑖-th partial derivative of 𝑓 . The gradient ∇ 𝑓
is the vector of partial derivatives (𝜕1 𝑓 , . . . , 𝜕𝑑 𝑓 ), and the Hessian ∇2 𝑓 is the matrix (𝜕𝑖𝜕𝑗 𝑓 )𝑖, 𝑗∈[𝑑 ] .
For a vector field 𝑣 : R𝑑 → R𝑑, we also use the notation ∇𝑣 to denote the Jacobian matrix of
𝑣. The divergence of a vector field 𝑣 is div 𝑣 = ∇ · 𝑣 =

∑𝑑
𝑖=1 𝜕𝑖𝑣𝑖, and the Laplacian of 𝑓 is

Δ 𝑓 = tr∇2 𝑓 =
∑𝑑
𝑖=1 𝜕

2
𝑖 𝑓 .

Finally, we sometimes use 𝑡− to denote ⌊𝑡/ℎ⌋ ℎ, the largest multiple of the step size ℎ which is
smaller than 𝑡. This is not to be confused with the negative part of 𝑡.
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Diffusions in Continuous Time
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CHAPTER 1

The Langevin Diffusion in Continuous Time

In this chapter, we study the continuous-time Langevin diffusion with potential 𝑉 , which is the
solution to the following stochastic differential equation (SDE):

d𝑋𝑡 = −∇𝑉 (𝑋𝑡 ) d𝑡 +
√

2 d𝐵𝑡 . (1.0.1)

We begin with a brief primer on stochastic calculus in order to make sense of this equation. Then, we
introduce two powerful frameworks for analyzing the Langevin diffusion: Markov semigroup theory,
and the calculus of optimal transport. These frameworks are two perspectives on the same diffusion,
and the abstract calculus rules we develop within each framework streamline important computations.

A rigorous mathematical treatment of the theory in this chapter requires addressing substantial
analytical technicalities, such as checking that the various partial differential equations (PDEs) are
well-posed and that the calculations are carefully justified. We do not attempt to do so here and instead
refer to bibliography for detailed treatments. In particular, the “proofs” in this section are more like
“proof sketches” which are meant to convey the main intuition.

1.1 A Primer on Stochastic Calculus
In the spirit of rapidly progressing to the study of sampling, the goal of this section is to familiarize
the reader with the basic language of stochastic calculus, without delving into technical details. The
mechanics of how to perform computations can be picked up through derivations in subsequent
chapters. See Steele (2001); Le Gall (2016) for mathematical expositions. We treat further topics in
stochastic calculus in Chapter 3.

1.1.1 The Itô Integral
In 1828, Robert Brown observed the curious jittery motion of particles of pollen in water. Subsequent
study by mathematicians and physicists clarified the nature of the so-called “Brownian motion” as
arising from collision with surrounding molecules. The mathematical theory for this phenomenon

3
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was initiated by the mathematician Louis Bachelier, as well as the physicist Albert Einstein in one of
his breakthrough 1905 papers.

Since its inception, Brownian motion has been used to model the flow of heat, to price options at
the financial market, to solve partial differential equations, to tease out the geometry of manifolds, and
of course, to sample from probability distributions. It is perhaps not clear at first sight that such a
process even exists,1 but it would take us too far afield to give a construction here.

Definition 1.1.1. (Standard) Brownian motion is a stochastic process (𝐵𝑡 )𝑡⩾0 in R𝑑 satisfying
the following properties:

1 𝐵0 = 0.
2 (Independence of increments) For all positive integers 𝑘 and all 0 < 𝑡1 < · · · < 𝑡𝑘 , the random

variables (𝐵𝑡1 , 𝐵𝑡2 − 𝐵𝑡1 , . . . , 𝐵𝑡𝑘 − 𝐵𝑡𝑘−1) are mutually independent.
3 (Law of the increments) For all 0 ⩽ 𝑠 < 𝑡 < ∞,

𝐵𝑡 − 𝐵𝑠 ∼ normal(0, (𝑡 − 𝑠) 𝐼𝑑) .

4 (Continuity of the paths) Almost surely, 𝑡 ↦→ 𝐵𝑡 is continuous.

Our immediate goal is to develop the language of stochastic calculus, and in particular to define
integrals involving Brownian motion: given a stochastic process (𝜂𝑡 )𝑡⩾0 in R, how do we make sense of
an expression such as

∫ 𝑇
0 𝜂𝑡 d𝐵𝑡? Once we have stochastic integration in hand, we can then formulate

and solve stochastic differential equations.
The main technical difficulty in defining the stochastic integral is the irregularity of Brownian

motion: by definition, 𝐵𝑡 ∼ normal(0, 𝑡), so that |𝐵𝑡 | is typically of size ≍
√
𝑡 for small 𝑡 > 0. In

particular, this means that Brownian motion is not differentiable at 0, or indeed, anywhere. Nevertheless,
the stochastic integral can be meaningfully defined, and we summarize the main steps.

The standard measure-theoretic formalism works over a probability space (Ω,ℱ, P) which is
complete, filtered, and right-continuous, meaning that there is an increasing family (ℱ𝑡 )𝑡⩾0 of 𝜎-
algebras with

⋃∞
𝑡=0 ℱ𝑡 ⊆ ℱ, with

⋂
𝑡>𝑠ℱ𝑡 = ℱ𝑠 for all 𝑠 ⩾ 0, and such that ℱ0 contains all subsets

of null sets. We assume that Brownian motion is adapted to the filtration: 𝐵𝑡 is ℱ𝑡 -measurable for
each 𝑡 ⩾ 0. Although we make use of this formalism in this section to define the Itô integral, it is not
important for the remainder of the book.

Defining the Itô integral at a single time 𝑇 .
The procedure for defining the Itô integral is to work our way up, starting with simple processes and
then extending the definition to richer ones. The simplest type of process is a piecewise constant one:
(𝜂𝑡 )𝑡⩾0 is of the form

𝜂𝑡 =

𝑘−1∑︁
𝑖=0

𝐻𝑖 1{𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1]} (1.1.2)

1 Existence was established by Norbert Wiener, and hence the process is often called the Wiener process.
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for some 0 ⩽ 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 , where 𝐻𝑖 is bounded and ℱ𝑡𝑖 -measurable. We call 𝜂 an elementary
process. In this case, perhaps the only reasonable definition of the stochastic integral is to take∫ 𝑇

0
𝜂𝑡 d𝐵𝑡 B

𝑘−1∑︁
𝑖=0

𝐻𝑖 (𝐵𝑡𝑖+1∧𝑇 − 𝐵𝑡𝑖∧𝑇 ) . (1.1.3)

This is indeed what we shall do, but for the moment we refrain from using the integral symbol and
write this as I[0,𝑇 ] (𝜂) to avoid confusion.

We record two key properties of the stochastic integral. The first is that 𝑡 ↦→ I[0,𝑡 ] (𝜂) is a continuous
martingale, i.e., it is continuous and satisfies the following definition.

Definition 1.1.4. A process (𝑀𝑡 )𝑡⩾0 is a martingale w.r.t. the filtration (ℱ𝑡 )𝑡⩾0 if for all 𝑡 ⩾ 0,
𝑀𝑡 is ℱ𝑡 -measurable and absolutely integrable, and

E[𝑀𝑡 | ℱ𝑠] = 𝑀𝑠 , for all 0 ⩽ 𝑠 < 𝑡 .

Indeed, we deduce that (I[0,𝑡 ] (𝜂))𝑡⩾0 is a martingale from two facts: (1) 𝐻𝑖 is ℱ𝑡𝑖 -measurable for
each 𝑖, and (2) (𝐵𝑡 )𝑡⩾0 is a martingale.

The second key property is that we can compute the variance:

E[I[0,𝑇 ] (𝜂)2] = E
[���𝑘−1∑︁
𝑖=0

𝐻𝑖 (𝐵𝑡𝑖+1∧𝑇 − 𝐵𝑡𝑖∧𝑇 )
���2] = 𝑘−1∑︁

𝑖=0

E[|𝐻𝑖 (𝐵𝑡𝑖+1∧𝑇 − 𝐵𝑡𝑖∧𝑇 ) |2] (1.1.5)

=

𝑘−1∑︁
𝑖=0

E[𝐻2
𝑖 ]

(
(𝑡𝑖+1 ∧ 𝑇) − (𝑡𝑖 ∧ 𝑇)

)
= E

∫ 𝑇

0
𝜂2
𝑡 d𝑡 . (1.1.6)

Here, we used the basic properties listed in the definition of Brownian motion, such as independence of
increments. This equation shows that if P𝑇 B P ⊗ 𝔪 | [0,𝑇 ] , where 𝔪 | [0,𝑇 ] is the Lebesgue measure on
[0, 𝑇], then the mapping 𝜂 ↦→ I[0,𝑇 ] (𝜂) is an isometry from 𝐿2(P𝑇 ) to 𝐿2(P). Through this isometry,
we can extend the definition of the stochastic integral to the closure of the elementary processes.

The closure turns out to consist of processes (𝜂𝑡 )𝑡⩾0 that are progressive2 and satisfies the
integrability condition

∥𝜂∥2
𝐿2 (P𝑇 ) = E

∫ 𝑇

0
𝜂2
𝑡 d𝑡 < ∞ . (1.1.7)

This means that (𝜂𝑡 )𝑡⩾0 can be approximated by elementary processes {(𝜂 (𝑘 )𝑡 )𝑡⩾0 : 𝑘 ∈ N} of the
form (1.1.2) in the 𝐿2(P𝑇 ) norm. For each 𝑘 , the stochastic integral I[0,𝑇 ] (𝜂 (𝑘 ) ) is defined via (1.1.3),
and lim𝑘→∞ I[0,𝑇 ] (𝜂 (𝑘 ) ) exists in 𝐿2(P) thanks to the isometry. We can then take the limit to be the
definition of the stochastic integral I[0,𝑇 ] (𝜂).

Defining the Itô integral as a stochastic process.
Although the procedure above successfully defines I[0,𝑡 ] (𝜂) for a fixed time 𝑡 > 0, there is no guarantee
of coherence between different times 𝑡. The trouble arises because I[0,𝑡 ] (𝜂) is defined as a limit, but
this limit is only well-specified up to an event of measure zero, and these measure zero events for
different times 𝑡 might conceivably accumulate into something more. This is undesirable because

2The process (𝜂𝑡 ) 𝑡⩾0 is progressive if for all 𝑇 ⩾ 0, the mapping (𝜔, 𝑡 ) ↦→ 𝜂𝑡 (𝜔) is measurable w.r.t. ℱ𝑇 ⊗ℬ[0,𝑇 ] ,
where ℬ[0,𝑇 ] is the Borel 𝜎-algebra on [0, 𝑇 ].
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the true power of stochastic calculus comes from viewing the stochastic integral as a time-indexed
stochastic process in its own right.

The key insight, due to Kiyosi Itô, is to go back to the approximating sequence {(𝜂 (𝑘 )𝑡 )𝑡⩾0 : 𝑘 ∈ N}.
For each 𝑘 , the Itô integral is defined as an entire process 𝑡 ↦→ I[0,𝑡 ] (𝜂 (𝑘 ) ) via (1.1.3), and moreover this
process is a continuous martingale. One can then apply powerful results on martingale convergence,
leading to the following theorem.

Theorem 1.1.8 (Definition of the Itô integral; Itô isometry). Suppose that (𝜂𝑡 )𝑡⩾0 is progressive
and satisfies E

∫ 𝑇
0 𝜂2

𝑡 d𝑡 < ∞. Then, there exists a continuous martingale, denoted (
∫ 𝑡

0 𝜂𝑠 d𝐵𝑠)𝑡⩾0,
which is adapted to (ℱ𝑡 )𝑡⩾0 and satisfies

E
[���∫ 𝑡

0
𝜂𝑠 d𝐵𝑠

���2] = E∫ 𝑡

0
𝜂2
𝑠 d𝑠 , for all 𝑡 ∈ [0, 𝑇] . (1.1.9)

The formula (1.1.9) is called the Itô isometry.
Also, for each 𝑡 ∈ [0, 𝑇], it holds that

∫ 𝑡
0 𝜂𝑠 d𝐵𝑠 = I[0,𝑡 ] (𝜂) a.s.

Extending the definition via localization.
There is one final step which is typically taken, namely to expand the class of allowable integrands to
progressive processes 𝜂 with ∫ 𝑇

0
𝜂2
𝑠 d𝑠 < ∞ almost surely . (1.1.10)

Note that this condition is weaker than the condition E
∫ 𝑇

0 𝜂2
𝑠 d𝑠 < ∞. Such an extension is evidently

mathematically interesting, as we would like our definitions to be as broad as possible. However,
equally important is that it introduces the device of localization. On the whole, localization actually
serves to reduce the number of technicalities in the subject: once introduced, it allows us to always work
with a stopping time up to which the process is as nice as one desires (e.g., bounded). Localization is
also needed to state the most useful version of Itô’s formula in Theorem 1.1.19. However, this is not
the focus of the book, and in what follows we usually brush over such localization arguments. For
now, we simply introduce the definitions in order to convey that the idea is not too complicated.

Definition 1.1.11. A stopping time 𝜏 is a random variable such that for each 𝑡 ⩾ 0, the event
{𝜏 ⩽ 𝑡} is ℱ𝑡 -measurable.

Definition 1.1.12. An increasing sequence of stopping times (𝜏𝑛)𝑛∈N is called a localizing
sequence for 𝜂 on [0, 𝑇] if:

1 for all 𝑛 ∈ N, (𝜂𝑡 1{𝑡 ⩽ 𝜏𝑛})𝑡⩾0 has finite ∥·∥𝐿2 (P𝑇 ) norm, and
2 𝜏𝑛 → 𝑇 almost surely.

The good news is that localizing sequences are easy to find, and the following proposition barely
needs a proof (and so we omit it).
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Proposition 1.1.13. If 𝜂 is a progressive process satisfying the condition (1.1.10), then the
sequence (𝜏𝑛)𝑛∈N defined by

𝜏𝑛 B inf
{
𝑡 ⩾ 0

��� ∫ 𝑡

0
𝜂2
𝑠 d𝑠 ⩾ 𝑛

}
∧ 𝑇

is a localizing sequence for 𝜂 on [0, 𝑇].

The idea now is straightforward, even if the execution is not: for each progressive process 𝜂
satisfying (1.1.10), let (𝜏𝑛)𝑛∈N be a localizing sequence for 𝜂 on [0, 𝑇]. For each 𝑛 ∈ N, by the
definition of a localizing sequence, we can apply our existing definition of the Itô integral to the
stopped process (𝜂𝑡∧𝜏𝑛 )𝑡⩾0, which gives us a continuous martingale

𝑡 ↦→
∫ 𝑡

0
𝜂𝑠 1{𝑠 ⩽ 𝜏𝑛} d𝐵𝑠 . (1.1.14)

Then, we can define the Itô integral of 𝜂 to be a limit of the processes (1.1.14). The details are
technical, and omitted.

We can also define an analogue of martingales using localizing sequences; these are almost
martingales, but lack the required integrability.

Definition 1.1.15. A process (𝑀𝑡 )𝑡⩾0 is a local martingale if it is adapted to the filtration
(ℱ𝑡 )𝑡⩾0 and there is an increasing sequence (𝜏𝑛)𝑛∈N of stopping times such that 𝜏𝑛 →∞ and for
each 𝑛, the process 𝑡 ↦→ 𝑀𝑡∧𝜏𝑛 − 𝑀0 is a martingale w.r.t. (ℱ𝑡 )𝑡⩾0.

Proposition 1.1.16. If 𝜂 is a progressive process satisfying (1.1.10), then the Itô integral
𝑡 ↦→

∫ 𝑡
0 𝜂𝑠 d𝐵𝑠 is a continuous local martingale.

As an example, consider 𝜂𝑡 = exp(𝐵2
𝑡 ) for 𝑡 ⩾ 0. For large 𝑇 ⩾ 0, this does not satisfy the

condition (1.1.7), but we can still define the Itô integral
∫ 𝑇

0 𝜂𝑡 d𝐵𝑡 using localizing sequences. In
general, the key advantage of localization is that we do not have to check conditions such as (1.1.7) a
priori in order to make sense of our computations.

Looking forward.
The construction of the Itô integral may seem rather abstract, and we are sorely lacking in examples.
At this juncture, it is common to work out simple exercises such as computing

∫ 𝑡
0 𝐵𝑠 d𝐵𝑠, and while

this is pedagogically natural, it is also liable to mislead the reader into thinking that the main use of Itô
integration is to solve synthetic problems with no apparent purpose. Although counterintuitive, our
answer to the heavy amount of abstraction is more abstraction. In the next subsection, we develop the
single most important computation rule in stochastic calculus (along with the Itô isometry (1.1.9)),
called Itô’s formula, after which we hardly need to return to the definition of a stochastic integral
ever again. And even Itô’s formula will be abstracted out into the language of Markov semigroups in
Section 1.2. The upshot is that we introduced the Itô integral because it is the foundation of our field,
but the details of what we have developed thus far are not needed for the remainder of the book.



8 The Langevin Diffusion in Continuous Time

1.1.2 Itô’s Formula
With the Itô integral in hand, we consider the following class of processes.

Definition 1.1.17. A stochastic process (𝑋𝑡 )𝑡⩾0 is an Itô process if it is of the form

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏𝑠 d𝑠 +

∫ 𝑡

0
𝜎𝑠 d𝐵𝑠 , for 𝑡 ⩾ 0 ,

where (𝑏𝑡 )𝑡⩾0 takes values inR𝑑 , (𝜎𝑡 )𝑡⩾0 takes values inR𝑑×𝑁 , and (𝐵𝑡 )𝑡⩾0 is a standard Brownian
motion in R𝑁 .

Implicit in the above definition is that the process should be well-defined: the coefficients (𝑏𝑡 )𝑡⩾0 and
(𝜎𝑡 )𝑡⩾0 should be progressive processes for which the integrals exist. In other words,

∫ 𝑡
0 ∥𝑏𝑠 ∥ d𝑠 < ∞

and
∫ 𝑡

0 ∥𝜎𝑠 ∥
2
HS d𝑠 < ∞ almost surely, where we write ∥𝑀 ∥HS for the Hilbert–Schmidt (or Frobenius)

norm of 𝑀 , given by

∥𝑀 ∥2HS B tr(𝑀𝑀T) = tr(𝑀T𝑀) .

Also, the random variable 𝑋0 should beℱ0-measurable, and then the process (𝑋𝑡 )𝑡⩾0 is also progressive.
We refer to (𝑏𝑡 )𝑡⩾0 as the drift coefficient and (𝜎𝑡 )𝑡⩾0 as the diffusion coefficient. When the drift

coefficient is zero, then (𝑋𝑡 )𝑡⩾0 is simply an Itô integral, and thus a continuous local martingale
(Proposition 1.1.16). Otherwise, for a non-zero drift coefficient, the process (𝑋𝑡 )𝑡⩾0 is no longer
necessarily a local martingale. As a shorthand, we often write the Itô process in differential form:

d𝑋𝑡 = 𝑏𝑡 d𝑡 + 𝜎𝑡 d𝐵𝑡 . (1.1.18)

Our goal is to understand how the Itô process transforms when we compose it with a smooth
function 𝑓 : R𝑑 → R. This leads to Itô’s formula, which is the main engine of stochastic calculus.

Although the notation (1.1.18) is informal, it conveys the main intuition. For ℎ > 0 small, we can
approximate 𝑋𝑡+ℎ ≈ 𝑋𝑡 + ℎ 𝑏𝑡 +

√
ℎ 𝜎𝑡𝜉, where 𝜉 ∼ normal(0, 𝐼𝑁 ). Note that the

√
ℎ scaling comes

from the fact that the Brownian increment 𝐵𝑡+ℎ−𝐵𝑡 has the normal(0, ℎ𝐼𝑁 ) distribution. Now suppose
that 𝑓 : R𝑑 → R is twice continuously differentiable. Normally, to compute 𝑓 (𝑋𝑡+ℎ) − 𝑓 (𝑋𝑡 ) up to
order 𝑜(ℎ), a first-order Taylor expansion of 𝑓 suffices, but in stochastic calculus this would miss
important terms arising from the Brownian motion: indeed, second-order terms in 𝐵𝑡+ℎ − 𝐵𝑡 are of
order ℎ and hence not negligible.

Therefore, we carry out the Taylor expansion to an extra term:

𝑓 (𝑋𝑡+ℎ) − 𝑓 (𝑋𝑡 ) ≈ ⟨∇ 𝑓 (𝑋𝑡 ), ℎ 𝑏𝑡 +
√
ℎ 𝜎𝑡𝜉⟩ +

1
2
⟨ℎ 𝑏𝑡 +

√
ℎ 𝜎𝑡𝜉,∇2 𝑓 (𝑋𝑡 ) (ℎ 𝑏𝑡 +

√
ℎ 𝜎𝑡𝜉)⟩

= ℎ
{
⟨∇ 𝑓 (𝑋𝑡 ), 𝑏𝑡⟩ +

1
2
⟨𝜎𝑡𝜉,∇2 𝑓 (𝑋𝑡 ) 𝜎𝑡𝜉⟩

}
+
√
ℎ ⟨𝜎T

𝑡 ∇ 𝑓 (𝑋𝑡 ), 𝜉⟩ + 𝑜(ℎ) .

This expression suggests that ( 𝑓 (𝑋𝑡 ))𝑡⩾0 is also an Itô process. The third term, which is of order√
ℎ, turns into an Itô integral once integrated. Perhaps the most interesting term is the second term,

ℎ

2 ⟨𝜎
T
𝑡 ∇2 𝑓 (𝑋𝑡 ) 𝜎𝑡 , 𝜉𝜉T⟩, which is a genuinely new feature of stochastic calculus. If we sum up many

of these increments, we end up with an expression like 1
2
∑𝐾
𝑘=0 ⟨𝜎T

𝑡+𝑘ℎ ∇2 𝑓 (𝑋𝑡+𝑘ℎ) 𝜎𝑡+𝑘ℎ, ℎ 𝜉𝑘𝜉T
𝑘
⟩. If

we replace each ℎ 𝜉𝑘𝜉T
𝑘

by its expectation ℎ 𝐼𝑁 (which must be carefully justified; see the calculation
of quadratic variation in Section 3.1), then this resembles a Riemann sum, which converges to the
integral of 1

2 ⟨∇
2 𝑓 (𝑋𝑡 ), 𝜎𝑡𝜎T

𝑡 ⟩. This is formalized in the following theorem.
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Theorem 1.1.19 (Itô’s formula). Let (𝑋𝑡 )𝑡⩾0 be an Itô process, d𝑋𝑡 = 𝑏𝑡 d𝑡 + 𝜎𝑡 d𝐵𝑡 , and let
𝑓 ∈ C2(R𝑑). Then, ( 𝑓 (𝑋𝑡 ))𝑡⩾0 is also an Itô process which satisfies, for 𝑡 ⩾ 0:

𝑓 (𝑋𝑡 ) − 𝑓 (𝑋0) =
∫ 𝑡

0

{
⟨∇ 𝑓 (𝑋𝑠), 𝑏𝑠⟩ +

1
2
⟨∇2 𝑓 (𝑋𝑠), 𝜎𝑠𝜎T

𝑠 ⟩
}

d𝑠 +
∫ 𝑡

0
⟨𝜎T

𝑠 ∇ 𝑓 (𝑋𝑠), d𝐵𝑠⟩ .

We omit the proof, since the bulk of the intuition is carried in the informal Taylor series argument
described above. Observe that since Itô integrals are (under appropriate integrability conditions)
continuous martingales, the expectation of the last term in Itô’s formula is typically zero. Therefore,

E 𝑓 (𝑋𝑡 ) − E 𝑓 (𝑋0) =
∫ 𝑡

0
E
[
⟨∇ 𝑓 (𝑋𝑠), 𝑏𝑠⟩ +

1
2
⟨∇2 𝑓 (𝑋𝑠), 𝜎𝑠𝜎T

𝑠 ⟩
]

d𝑠 , (1.1.20)

or in differential form,

𝜕𝑡 E 𝑓 (𝑋𝑡 ) = E
[
⟨∇ 𝑓 (𝑋𝑡 ), 𝑏𝑡⟩ +

1
2
⟨∇2 𝑓 (𝑋𝑡 ), 𝜎𝑡𝜎T

𝑡 ⟩
]
.

Itô’s formula can also be extended to time-dependent functions via

𝑓 (𝑡, 𝑋𝑡 ) − 𝑓 (0, 𝑋0) =
∫ 𝑡

0

{
𝜕𝑠 𝑓 (𝑠, 𝑋𝑠) + ⟨∇ 𝑓 (𝑠, 𝑋𝑠), 𝑏𝑠⟩ +

1
2
⟨∇2 𝑓 (𝑠, 𝑋𝑠), 𝜎𝑠𝜎T

𝑠 ⟩
}

d𝑠

+
∫ 𝑡

0
⟨𝜎T

𝑠 ∇ 𝑓 (𝑠, 𝑋𝑠), d𝐵𝑠⟩ .

We revisit and streamline Itô’s formula in Section 3.1.

1.1.3 Existence and Uniqueness of SDEs

Let 𝑏 : R+ ×R𝑑 → R𝑑 and 𝜎 : R+ ×R𝑑 → R𝑑×𝑁 . Consider the stochastic differential equation (SDE)

d𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡 ) d𝑡 + 𝜎(𝑡, 𝑋𝑡 ) d𝐵𝑡 . (1.1.21)

Suppose we are given a complete filtered probability space (Ω,ℱ, (ℱ𝑡 )𝑡⩾0, P) which supports a
standard 𝑁-dimensional adapted Brownian motion 𝐵. A (strong) solution to the SDE is an adapted
R𝑑-valued process 𝑋 such that

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏(𝑠, 𝑋𝑠) d𝑠 +

∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠) d𝐵𝑠 .

In this section, we state the basic existence and uniqueness result for this SDE. The result states that if
the coefficients 𝑏, 𝜎 are Lipschitz in space uniformly in time, then the SDE admits a unique solution.
Uniqueness means that if there are two solutions 𝑋 , 𝑋 to SDE on the same probability space, driven
by the same Brownian motion, then 𝑋 = 𝑋 .
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Theorem 1.1.22 (Existence and uniqueness of SDE solutions). Assume that 𝑏 and 𝜎 are
continuous, and there exists 𝐶 > 0 such that for all 𝑡 ⩾ 0 and 𝑥, 𝑦 ∈ R𝑑 ,

∥𝑏(𝑡, 𝑥) − 𝑏(𝑡, 𝑦)∥ ∨ ∥𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑦)∥HS ⩽ 𝐶 ∥𝑥 − 𝑦∥ .

Then, for any complete filtered probability space (Ω,ℱ, (ℱ𝑡 )𝑡⩾0, P) and 𝑥 ∈ R𝑑, there exists a
unique solution (𝑋𝑡 )𝑡∈[0,𝑇 ] for the SDE (1.1.21) with 𝑋0 = 𝑥. Moreover, the solution (𝑋𝑡 )𝑡∈[0,𝑇 ]
is a Markov process.

A theorem similar in spirit to Theorem 1.1.22 can be established under the assumption that 𝑏 and
𝜎 are only locally Lipschitz, but in this case the solution to the SDE is not guaranteed to exist for all
time. The issue is that when the coefficients grow faster than linearly, there can be a finite (random)
time 𝔢, called the explosion time, such that ∥𝑋𝑡 ∥ → ∞ as 𝑡 → 𝔢. This phenomenon is already present
for ODEs (see Exercise 1.2). For our purposes, the assumption of Lipschitz coefficients suffices.

1.2 Markov Semigroup Theory

More thorough treatments of Markov semigroup theory can be found in Bakry et al. (2014); van
Handel (2016). We will revisit and expand upon many of the topics introduced here in Chapter 2.

1.2.1 Basic Definitions and Kolmogorov’s Equations

The core idea of Markov semigroup theory is to encode the behavior of a Markov process (𝑋𝑡 )𝑡⩾0 via
operators which act on functions. We will then develop calculus rules for working with these operators,
and we can study the operators via functional analysis. This is analogous to how the linear algebraic
study of the transition matrix of a discrete-time Markov chain reveals properties (e.g., ergodicity,
convergence) of the chain.

Definition 1.2.1. For a time-homogeneous Markov process (𝑋𝑡 )𝑡⩾0, its associated Markov
semigroup (𝑃𝑡 )𝑡⩾0 is the family of operators acting on functions via

𝑃𝑡 𝑓 (𝑥) B E[ 𝑓 (𝑋𝑡 ) | 𝑋0 = 𝑥] .

The Markov property and iterated conditioning yields the following lemma (exercise).

Lemma 1.2.2 (Semigroup property). The Markov semigroup (𝑃𝑡 )𝑡⩾0 satisfies 𝑃0 = id and
𝑃𝑠𝑃𝑡 = 𝑃𝑡𝑃𝑠 = 𝑃𝑠+𝑡 for all 𝑠, 𝑡 ⩾ 0.

The starting point of developing a calculus is to differentiate the semigroup 𝑡 ↦→ 𝑃𝑡 , which is
accomplished via the following definition.
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Definition 1.2.3. The infinitesimal generator ℒ associated with a Markov semigroup (𝑃𝑡 )𝑡⩾0
is the operator defined by

ℒ 𝑓 B lim
𝑡↘0

𝑃𝑡 𝑓 − 𝑓
𝑡

,

for all functions 𝑓 for which the above limit exists.

Here we pause to warn the reader of some technical issues. Mathematical difficulties of Markov
semigroup theory arise in trying to answer the following questions: on what space of functions is
the generator defined, and in what sense is the above limit taken? As we shall see, a natural space of
functions to consider is 𝐿2(𝜋), with 𝜋 denoting the stationary distribution of the diffusion. However,
the generator is usually a differential operator, and not all functions in 𝐿2(𝜋) have enough regularity
to lie in the domain of the generator. The theory of unbounded linear operators on a Hilbert space was
developed to handle this situation, but it is rife with subtle distinctions such as the difference between
symmetric and self-adjoint operators. We will brush over these issues and focus on the calculation
rules, but see Bakry et al. (2014, Chapter 3) for details.

Example 1.2.4. Let us compute the generator of the Langevin diffusion (1.0.1). In fact, the
following computation is simply a consequence of Itô’s formula (Theorem 1.1.19), but it does
not hurt to derive this result from scratch. We approximate

𝑋𝑡 = 𝑋0 −
∫ 𝑡

0
∇𝑉 (𝑋𝑠) d𝑠 +

√
2 𝐵𝑡 = 𝑋0 − 𝑡 ∇𝑉 (𝑋0) +

√
2 𝐵𝑡 + 𝑜(𝑡) .

Assuming that 𝑓 ∈ C2(R𝑑) with bounded derivatives, we perform a Taylor expansion of 𝑓 to
second order.

E 𝑓 (𝑋𝑡 ) = E[ 𝑓 (𝑋0) + ⟨∇ 𝑓 (𝑋0),−𝑡 ∇𝑉 (𝑋0) +
√

2 𝐵𝑡⟩ + ⟨∇2 𝑓 (𝑋0) 𝐵𝑡 , 𝐵𝑡⟩] + 𝑜(𝑡) .

Since 𝐵𝑡 is mean zero and independent of 𝑋0, with E[𝐵𝑡𝐵T
𝑡 ] = 𝑡 𝐼𝑑 ,

E[ 𝑓 (𝑋𝑡 ) | 𝑋0 = 𝑥] = 𝑓 (𝑥) − 𝑡 ⟨∇ 𝑓 (𝑥),∇𝑉 (𝑥)⟩ + 𝑡 tr∇2 𝑓 (𝑥) + 𝑜(𝑡)
= 𝑓 (𝑥) − 𝑡 ⟨∇ 𝑓 (𝑥),∇𝑉 (𝑥)⟩ + 𝑡 Δ 𝑓 (𝑥) + 𝑜(𝑡) .

Hence,

ℒ 𝑓 (𝑥) = lim
𝑡↘0

E[ 𝑓 (𝑋𝑡 ) | 𝑋0 = 𝑥] − 𝑓 (𝑥)
𝑡

= Δ 𝑓 (𝑥) − ⟨∇𝑉 (𝑥),∇ 𝑓 (𝑥)⟩ .

The Markov semigroup and dynamics.
As promised, the Markov semigroup captures the information that was contained in the original
Markov process. One way to demonstrate this is to prove theorems which show that the Markov
process can be completely recovered from its Markov semigroup. Another approach, which we now
take up, is to show that the dynamics of the Markov process are captured via calculation rules involving
the Markov semigroup.
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Proposition 1.2.5 (Kolmogorov’s backward equation). For all 𝑡 ⩾ 0, it holds that

𝜕𝑡𝑃𝑡 𝑓 = ℒ𝑃𝑡 𝑓 = 𝑃𝑡ℒ 𝑓 .

In particular, ℒ commutes with the semigroup (𝑃𝑡 )𝑡⩾0.

Proof Observe that

lim
ℎ↘0

𝑃𝑡+ℎ 𝑓 − 𝑃𝑡 𝑓
ℎ

= lim
ℎ↘0

𝑃ℎ − id
ℎ

𝑃𝑡 𝑓 = ℒ𝑃𝑡 𝑓 .

Repeating the computation but factoring out 𝑃𝑡 on the left yields the second equality. □

There is a dual to this equation: let 𝜋0 denote the density of 𝑋0. Formally, we can write E 𝑓 (𝑋𝑡 ) =∫
𝑃𝑡 𝑓 d𝜋0 =

∫
𝑓 d𝑃∗𝑡 𝜋0, where 𝑃∗𝑡 is the adjoint of 𝑃𝑡 . This says that the law 𝜋𝑡 of 𝑋𝑡 is formally

given by 𝑃∗𝑡 𝜋0. Moreover, by Kolmogorov’s backward equation,

𝜕𝑡

∫
𝑓 d𝑃∗𝑡 𝜋0 = 𝜕𝑡

∫
𝑃𝑡 𝑓 d𝜋0 =

∫
𝑃𝑡ℒ 𝑓 d𝜋0 =

∫
ℒ 𝑓 d𝑃∗𝑡 𝜋0 =

∫
𝑓 dℒ∗𝑃∗𝑡 𝜋0 .

Since this has to hold for all functions 𝑓 , we conclude the following.

Proposition 1.2.6 (Kolmogorov’s forward equation). For all 𝑡 ⩾ 0,

𝜕𝑡𝑃
∗
𝑡 𝜋0 = ℒ

∗𝑃∗𝑡 𝜋0 = 𝑃
∗
𝑡ℒ
∗𝜋0 .

Here is another illuminating way to express these equations. For 𝑢𝑡 B 𝑃𝑡 𝑓 , and 𝜋𝑡 = 𝑃∗𝑡 𝜋0,

𝜕𝑡𝑢𝑡 = ℒ𝑢𝑡 , (Kolmogorov’s backward equation)
𝜕𝑡𝜋𝑡 = ℒ

∗𝜋𝑡 . (Kolmogorov’s forward equation)

The terms “backward” and “forward” can evoke confusion, so we will not use them. Instead, we will
henceforth refer to the evolution equation for the density (Kolmogorov’s forward equation) as the
Fokker–Planck equation.

Consequently, we obtain characterizations of stationarity. Recall that 𝜋 is stationary for the Markov
process if, when 𝑋0 ∼ 𝜋, then 𝑋𝑡 ∼ 𝜋 for all 𝑡 ⩾ 0.

Proposition 1.2.7 (Stationarity). The following are equivalent.

1 𝜋 is a stationary distribution for the Markov process.
2 ℒ

∗𝜋 = 0.
3 E𝜋 ℒ 𝑓 = 0 for all functions 𝑓 .

Proof The equivalence between the first two statements is the Fokker–Planck equation. The third
statement is the dual of the second statement. □
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Example 1.2.8. Consider again the Langevin diffusion. For functions 𝑓 , 𝑔 : R𝑑 → R,∫
ℒ 𝑓 𝑔 =

∫
{Δ 𝑓 − ⟨∇𝑉,∇ 𝑓 ⟩} 𝑔 =

∫
𝑓 {Δ𝑔 + div(𝑔 ∇𝑉)}

where the second equality is integration by parts. This shows that

ℒ
∗𝑔 = Δ𝑔 + div(𝑔 ∇𝑉) .

From here, we can solve for the stationary distribution. Write

0 = ℒ
∗𝜋 = Δ𝜋 + div(𝜋 ∇𝑉) = div

(
𝜋 (∇ log 𝜋 + ∇𝑉)

)
.

This can be solved by setting log 𝜋 = −𝑉 + constant, i.e., 𝜋 ∝ exp(−𝑉).

Corollary 1.2.9. The stationary distribution of the Langevin diffusion (1.0.1) with potential 𝑉 is
𝜋 ∝ exp(−𝑉).

1.2.2 Reversibility and the Spectrum
Consider a Markov semigroup (𝑃𝑡 )𝑡⩾0 with generator ℒ and stationary distribution 𝜋. Then, the
natural space of functions to study is the Hilbert space 𝐿2(𝜋). The analysis of the Markov process is
particularly simple if the following condition holds.

Definition 1.2.10. The Markov semigroup (𝑃𝑡 )𝑡⩾0 is reversible w.r.t. 𝜋 if for all 𝑓 , 𝑔 ∈ 𝐿2(𝜋)
and all 𝑡 ⩾ 0, ∫

𝑃𝑡 𝑓 𝑔 d𝜋 =

∫
𝑓 𝑃𝑡𝑔 d𝜋 .

Equivalently, for all 𝑓 and 𝑔 for which ℒ 𝑓 and ℒ𝑔 are defined,∫
ℒ 𝑓 𝑔 d𝜋 =

∫
𝑓 ℒ𝑔 d𝜋 .

If 𝑋0 ∼ 𝜋 and we take 𝑓 = 1𝐴 and 𝑔 = 1𝐵 for events 𝐴 and 𝐵, then it implies

P{𝑋𝑡 ∈ 𝐴, 𝑋0 ∈ 𝐵} = P{𝑋0 ∈ 𝐴, 𝑋𝑡 ∈ 𝐵} ,

i.e., (𝑋0, 𝑋𝑡 ) has the same distribution as (𝑋𝑡 , 𝑋0). This is the sense in which the associated Markov
process is time-reversible.

The definition says that 𝑃𝑡 and ℒ are symmetric operators on 𝐿2(𝜋), and thus we expect that 𝑃𝑡
and ℒ have real spectra. Also, since 𝜕𝑡𝑃𝑡 = ℒ𝑃𝑡 , we can formally write 𝑃𝑡 = exp(𝑡ℒ), and so we
expect 𝑃𝑡 to be a positive operator, meaning that

∫
𝑓 𝑃𝑡 𝑓 d𝜋 ⩾ 0 for all 𝑓 ∈ 𝐿2(𝜋), which can be

checked from reversibility (write
∫
𝑓 𝑃𝑡 𝑓 d𝜋 =

∫
(𝑃𝑡/2 𝑓 )2 d𝜋). Moreover, from the definition of 𝑃𝑡

and Jensen’s inequality,

{𝑃𝑡 𝑓 (𝑥)}2 = E[ 𝑓 (𝑋𝑡 ) | 𝑋0 = 𝑥]2 ⩽ E[ 𝑓 (𝑋𝑡 )2 | 𝑋0 = 𝑥] = 𝑃𝑡 ( 𝑓 2) (𝑥) (1.2.11)

and integrating this yields
∫
(𝑃𝑡 𝑓 )2 d𝜋 ⩽

∫
𝑃𝑡 ( 𝑓 2) d𝜋 =

∫
𝑓 2 d𝜋, where the equality follows from
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stationarity of 𝜋. This shows that 𝑃𝑡 is a contraction on 𝐿2(𝜋) (in fact, on any 𝐿 𝑝 (𝜋), 𝑝 ∈ [1,∞]).
Combining this with 𝑃𝑡 = exp(𝑡ℒ) leads us to predict that ℒ is a negative operator. Below, we will
give a direct proof of this fact; unsurprisingly, the proof of negativity of ℒ still relies on the crucial
fact (1.2.11).

Definition 1.2.12. The carré du champ is the bilinear operator Γ defined via

Γ( 𝑓 , 𝑔) B 1
2
{ℒ( 𝑓 𝑔) − 𝑓 ℒ𝑔 − 𝑔ℒ 𝑓 } .

The Dirichlet energy is the functional ℰ( 𝑓 , 𝑔) B
∫
Γ( 𝑓 , 𝑔) d𝜋.

Lemma 1.2.13 (Non-negativity of carré du champ). For any function 𝑓 , Γ( 𝑓 , 𝑓 ) ⩾ 0.

Proof Recall from (1.2.11) that 𝑃𝑡 ( 𝑓 2) ⩾ (𝑃𝑡 𝑓 )2 for all 𝑡 > 0. In terms of ℒ,

𝑓 2 + 𝑡ℒ( 𝑓 2) + 𝑜(𝑡) ⩾ [ 𝑓 + 𝑡ℒ 𝑓 + 𝑜(𝑡)]2 = 𝑓 2 + 2𝑡 𝑓 ℒ 𝑓 + 𝑜(𝑡)

and sending 𝑡 ↘ 0 yields ℒ( 𝑓 2) ⩾ 2 𝑓 ℒ 𝑓 . (This proof does not require reversibility.) □

Theorem 1.2.14 (Fundamental integration by parts identity). Suppose that the generator ℒ and
carré du champ Γ are associated with a Markov semigroup which is reversible w.r.t. 𝜋. Then, for
any functions 𝑓 and 𝑔,∫

𝑓 (−ℒ)𝑔 d𝜋 =

∫
(−ℒ) 𝑓 𝑔 d𝜋 =

∫
Γ( 𝑓 , 𝑔) d𝜋 =ℰ( 𝑓 , 𝑔) .

Since the identity implies that ℒ is symmetric, the integration by parts identity is in fact equivalent
to reversibility. It also implies

∫
𝑓 (−ℒ) 𝑓 d𝜋 ⩾ 0 for all 𝑓 .

Corollary 1.2.15. For a reversible Markov semigroup, −ℒ ⩾ 0.

Proof of Theorem 1.2.14 Since
∫
ℒℎ d𝜋 = 0 for all functions ℎ (due to stationarity of 𝜋), the

definition of Γ yields∫
Γ( 𝑓 , 𝑔) d𝜋 =

1
2

∫
𝑓 (−ℒ)𝑔 d𝜋 + 1

2

∫
𝑔 (−ℒ) 𝑓 d𝜋 .

The two terms are equal due to reversibility. □

It is usually convenient for our operators to be positive, so from now on we will instead refer to the
negative generator −ℒ.

When we introduced Kolmogorov’s equations, we ended up with two PDEs, one involving the
generator ℒ and one involving its 𝐿2(𝔪) adjoint ℒ∗, where 𝔪 is the Lebesgue measure on R𝑑 . The
issue is that we used the “wrong” inner product; ℒ is not symmetric in 𝐿2(𝔪). If we now switch to
𝐿2(𝜋), then instead of considering the density 𝜋𝑡 with respect to 𝔪 we should consider the density
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𝜌𝑡 B 𝜋𝑡/𝜋 with respect to 𝜋. Then, the Fokker–Planck equation becomes

𝜕𝑡 𝜌𝑡 = ℒ𝜌𝑡 . (1.2.16)

For the rest of the section, the Markov semigroup is assumed reversible.

Example 1.2.17. Returning to the fundamental example of the Langevin diffusion, a computation
shows that

Γ( 𝑓 , 𝑓 ) = 1
2
{Δ( 𝑓 2) − ⟨∇𝑉,∇( 𝑓 2)⟩ − 2 𝑓 (Δ 𝑓 − ⟨∇𝑉,∇ 𝑓 ⟩)} = ∥∇ 𝑓 ∥2 .

Incidentally, carré du champ means “square of the field” in French, and it is this expression
which gives it its name. More generally, Γ( 𝑓 , 𝑔) = ⟨∇ 𝑓 ,∇𝑔⟩.

The identity in Theorem 1.2.14 reads∫
𝑓 (−Δ𝑔 + ⟨∇𝑉,∇𝑔⟩) d𝜋 =

∫
𝑔 (−Δ 𝑓 + ⟨∇𝑉,∇ 𝑓 ⟩) d𝜋 =

∫
⟨∇ 𝑓 ,∇𝑔⟩ d𝜋

which can be checked using 𝜋 ∝ exp(−𝑉) via integration by parts (naturally!), showing that the
Langevin diffusion is indeed reversible w.r.t. 𝜋.

We can reformulate Theorem 1.2.14 in this case in an illuminating way as

−ℒ = ∇∗, 𝜋 ∇ (1.2.18)

where (·)∗, 𝜋 denotes the adjoint in 𝐿2(𝜋). This expression brings out the symmetry of ℒ.

Gradient flow of the Dirichlet energy.
It turns out that a reversible Markov process follows the steepest descent of the Dirichlet energy
with respect to 𝐿2(𝜋). To justify this, for a curve 𝑡 ↦→ 𝑢𝑡 in 𝐿2(𝜋), write ¤𝑢𝑡 B 𝜕𝑡𝑢𝑡 for the time
derivative. The 𝐿2(𝜋) gradient of the functional 𝑓 ↦→ ℰ( 𝑓 ) B ℰ( 𝑓 , 𝑓 ) at 𝑓 is defined to be the
element ∇𝐿2 (𝜋 )ℰ( 𝑓 ) ∈ 𝐿2(𝜋) such that for all curves 𝑡 ↦→ 𝑢𝑡 with 𝑢0 = 𝑓 , it holds that

𝜕𝑡
��
𝑡=0ℰ(𝑢𝑡 , 𝑢𝑡 ) =

∫
¤𝑢0 ∇𝐿2 (𝜋 )ℰ( 𝑓 ) d𝜋 .

From the integration by parts identity,

𝜕𝑡
��
𝑡=0ℰ(𝑢𝑡 , 𝑢𝑡 ) = 𝜕𝑡

��
𝑡=0

∫
𝑢𝑡 (−ℒ)𝑢𝑡 d𝜋 = 2

∫
¤𝑢0 (−ℒ) 𝑓 d𝜋 .

Therefore, ∇𝐿2 (𝜋 )ℰ( 𝑓 ) = −2ℒ 𝑓 .
The steepest descent of ℰ is the curve 𝑡 ↦→ 𝑢𝑡 such that ¤𝑢𝑡 = −∇𝐿2 (𝜋 )ℰ(𝑢𝑡 ) = 2ℒ𝑢𝑡 . This is, up to

a rescaling of time, precisely the equation satisfied by 𝑡 ↦→ 𝑃𝑡 𝑓 .

Spectral gap and convergence.
Consider a reversible Markov semigroup (𝑃𝑡 )𝑡⩾0 and recall that 𝑃𝑡 𝑓 (𝑥) = E[ 𝑓 (𝑋𝑡 ) | 𝑋0 = 𝑥]. We are
interested in the long-term behavior of 𝑃𝑡 𝑓 . If the process mixes, then by definition it forgets its initial
condition, so that 𝑃𝑡 𝑓 converges to a constant; moreover, this constant should be the average value∫
𝑓 d𝜋 at stationarity. How do we establish a rate of convergence for 𝑃𝑡 𝑓 →

∫
𝑓 d𝜋?

We may assume that
∫
𝑓 d𝜋 = 0, so we wish to prove 𝑃𝑡 𝑓 → 0. Also recall that, formally,
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𝑃𝑡 = exp(𝑡ℒ) with ℒ ⩽ 0. If we have a spectral gap

−ℒ ⩾ 𝜆min > 0 ,

then we would expect that

∥𝑃𝑡 𝑓 ∥2𝐿2 (𝜋 ) ⩽ exp(−2𝜆min𝑡) ∥ 𝑓 ∥2𝐿2 (𝜋 ) .

This is indeed the case. However, observe that since 𝑃𝑡1 = 1 for all 𝑡 ⩾ 0 and hence ℒ1 = 0, the
spectral gap condition is only supposed to hold on the subspace 1⊥ ⊆ 𝐿2(𝜋) which is orthogonal to
the space of constant functions.

Definition 1.2.19. The Markov process is said to satisfy a Poincaré inequality (PI) with constant
𝐶PI if for all functions 𝑓 ∈ 𝐿2(𝜋),∫

𝑓 (−ℒ) 𝑓 d𝜋 =ℰ( 𝑓 , 𝑓 ) ⩾ 1
𝐶PI
∥proj1⊥ 𝑓 ∥2𝐿2 (𝜋 ) =

1
𝐶PI

var𝜋 𝑓 .

The Poincaré constant 𝐶PI corresponds to the inverse of the spectral gap. Under the assumption of a
Poincaré inequality, we can establish convergence in 𝐿2(𝜋) via Markov semigroup calculus:

𝜕𝑡 ∥𝑃𝑡 𝑓 ∥2𝐿2 (𝜋 ) = 𝜕𝑡

∫
(𝑃𝑡 𝑓 )2 d𝜋 = 2

∫
𝑃𝑡 𝑓 ℒ𝑃𝑡 𝑓 d𝜋 = −2ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 )

⩽ −2𝐶PI ∥𝑃𝑡 𝑓 ∥2𝐿2 (𝜋 ) .

Such differential inequalities are encountered repeatedly throughout the book and are handled with
Grönwall’s inequality.

Lemma 1.2.20 (Grönwall’s lemma, differential form). Let 𝑇 > 0 and let 𝑔 : [0, 𝑇] → R be
differentiable. Suppose that there is a constant 𝑐 ∈ R such that

𝑔′ (𝑡) ⩽ 𝑐𝑔(𝑡) , ∀𝑡 ∈ [0, 𝑇] .

Then,

𝑔(𝑡) ⩽ 𝑔(0) exp(𝑐𝑡) , ∀𝑡 ∈ [0, 𝑇] .

Proof Differentiate the function 𝑡 ↦→ exp(−𝑐𝑡) 𝑔(𝑡) and apply the assumption.

𝜕𝑡 [exp(−𝑐𝑡) 𝑔(𝑡)] = exp(−𝑐𝑡) [−𝑐𝑔(𝑡) + 𝑔′ (𝑡)] ⩽ 0 . □

Hence, the differential inequality above proves the implication from the first to the second statement
below. The converse implication is left as Exercise 1.6.

Theorem 1.2.21 (PI and variance decay). The following are equivalent.

1 The Markov process satisfies a Poincaré inequality with constant 𝐶PI.
2 For all 𝑓 ∈ 𝐿2(𝜋) with

∫
𝑓 d𝜋 = 0 and all 𝑡 ⩾ 0,

∥𝑃𝑡 𝑓 ∥2𝐿2 (𝜋 ) ⩽ exp
(
− 2𝑡
𝐶PI

)
∥ 𝑓 ∥2

𝐿2 (𝜋 ) .
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In particular, we can apply this result to the semigroup corresponding to the Langevin diffusion (1.0.1)
to obtain a spectral gap criterion for quantitative convergence. However, this result is mainly of use
when we are interested in a specific test function 𝑓 . More generally, it is useful to obtain bounds on
the rate of convergence of the law 𝜋𝑡 of 𝑋𝑡 to the stationary distribution 𝜋. Recall from (1.2.16) that
the relative density 𝜌𝑡 B 𝜋𝑡/𝜋 solves the equation 𝜕𝑡 𝜌𝑡 = ℒ𝜌𝑡 , i.e., 𝜌𝑡 is given by 𝜌𝑡 = 𝑃𝑡 𝜌0. We can
therefore apply the preceding result to 𝑓 B 𝜌0 − 1.

For a probability measure 𝜇, we define the chi-squared divergence

𝜒2(𝜇 ∥ 𝜋) B
d𝜇

d𝜋
− 1

2
𝐿2 (𝜋 ) = var𝜋

d𝜇
d𝜋

if 𝜇 ≪ 𝜋 ,

with 𝜒2(𝜇 ∥ 𝜋) B ∞ otherwise. The result can be formulated as follows.

Theorem 1.2.22 (PI and 𝜒2 decay). The following are equivalent.

1 The Markov process satisfies a Poincaré inequality with constant 𝐶PI.
2 For any initial distribution 𝜋0 and all 𝑡 ⩾ 0,

𝜒2(𝜋𝑡 ∥ 𝜋) ⩽ exp
(
− 2𝑡
𝐶PI

)
𝜒2(𝜋0 ∥ 𝜋) .

Example 1.2.23. For the Langevin diffusion, the Poincaré inequality reads

var𝜋 𝑓 ⩽ 𝐶PI E𝜋 [∥∇ 𝑓 ∥2]

for all functions 𝑓 : R𝑑 → R, where 𝜋 ∝ exp(−𝑉).

1.2.3 The Log-Sobolev Inequality and Bakry–Èmery Theory
For sampling applications, the convergence result under a Poincaré inequality is not fully satisfactory
because the chi-squared divergence at initialization is typically large, scaling exponentially in the
dimension. The approach we explore next is to use the Kullback–Leibler (KL) divergence KL(· ∥ 𝜋)
as our objective functional, defined via

KL(𝜇 ∥ 𝜋) B
∫

d𝜇
d𝜋

log
d𝜇
d𝜋

d𝜋 =

∫
log

d𝜇
d𝜋

d𝜇 if 𝜇 ≪ 𝜋 ,

and KL(𝜇 ∥ 𝜋) B ∞ otherwise.
Recall the notation 𝜌𝑡 B 𝜋𝑡/𝜋 for the relative density of the Markov process w.r.t. 𝜋. Since

𝜕𝑡 𝜌𝑡 = ℒ𝜌𝑡 , we can calculate via the integration by parts identity that

𝜕𝑡 KL(𝜋𝑡 ∥ 𝜋) = 𝜕𝑡
∫

𝜌𝑡 log 𝜌𝑡 d𝜋 =

∫
(log 𝜌𝑡 + 1)ℒ𝜌𝑡 d𝜋 = −ℰ(𝜌𝑡 , log 𝜌𝑡 ) . (1.2.24)

Hence, if ℰ(𝜌𝑡 , log 𝜌𝑡 ) ≳ KL(𝜋𝑡 ∥ 𝜋), then we obtain convergence to equilibrium for the diffusion in
KL divergence, at an exponential rate.
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Definition 1.2.25. The Markov process is said to satisfy a log-Sobolev inequality (LSI) with
constant 𝐶LSI if for all densities 𝜌 w.r.t. 𝜋,

KL(𝜌𝜋 ∥ 𝜋) ⩽ 𝐶LSI

2
ℰ(𝜌, log 𝜌) .

Theorem 1.2.26 (LSI and KL decay). The following are equivalent.

1 The Markov process satisfies a log-Sobolev inequality with constant 𝐶LSI.
2 For any initial distribution 𝜋0 and all 𝑡 ⩾ 0,

KL(𝜋𝑡 ∥ 𝜋) ⩽ exp
(
− 2𝑡
𝐶LSI

)
KL(𝜋0 ∥ 𝜋) .

By linearizing the LSI, i.e., by taking 𝜌 = 1 + 𝜀 𝑓 for small 𝜀 > 0 and expanding both sides of the
LSI in powers of 𝜀, one can prove that the LSI implies a PI with constant 𝐶PI ⩽ 𝐶LSI (Exercise 1.7).

Example 1.2.27. For the Langevin diffusion, the LSI reads

2
𝐶LSI

KL(𝜇 ∥ 𝜋) ⩽ E𝜋
〈
∇ 𝜇
𝜋
,∇ log

𝜇

𝜋

〉
= E𝜇

[∇ log
𝜇

𝜋

2]
= 4E𝜋

[∇√︂ 𝜇

𝜋

2]
.

The right-hand side of the above expression is important; it is known as the (relative) Fisher
information FI(𝜇 ∥ 𝜋) B E𝜇 [∥∇ log(𝜇/𝜋)∥2]. In particular, the Fisher information plays a
central role in the study of non-log-concave sampling in Chapter 11.

The LSI often appears in many equivalent forms. For example, another formulation is that for
all functions 𝑓 : R𝑑 → R, it holds that

ent𝜋 ( 𝑓 2) ⩽ 2𝐶LSI E𝜋 [∥∇ 𝑓 ∥2] ,

where for a function 𝑔 : R𝑑 → R+ we define ent𝜋 (𝑔) B E𝜋 (𝑔 log 𝑔) − E𝜋 𝑔 logE𝜋 𝑔. To verify
the equivalence, consider 𝑓 =

√︁
𝜇/𝜋.

Bakry–Émery condition.
Although we have derived two criteria for convergence of the Markov process, namely, the Poincaré
inequality and the log-Sobolev inequality, we have not yet addressed when these criteria hold. Introduce
the following definition.

Definition 1.2.28. The iterated carré du champ is the operator Γ2 defined via

Γ2( 𝑓 , 𝑔) B
1
2
{ℒΓ( 𝑓 , 𝑔) − Γ( 𝑓 ,ℒ𝑔) − Γ(𝑔,ℒ 𝑓 )} .

Recalling that Γ( 𝑓 , 𝑔) = 1
2 {ℒ( 𝑓 𝑔) − 𝑓 ℒ𝑔 − 𝑔ℒ 𝑓 }, we see that Γ2 is defined analogously to Γ,

except we replace the bilinear operation of multiplication, ( 𝑓 , 𝑔) ↦→ 𝑓 𝑔, by the carré du champ
( 𝑓 , 𝑔) ↦→ Γ( 𝑓 , 𝑔). Also, similarly to how the carré du champ appears when computing the time
derivative of functionals such as the chi-squared divergence and the KL divergence, the iterated carré
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du champ appears when computing the second time derivative. After some calculations, one arrives at
the following criterion.

Definition 1.2.29. The Markov semigroup is said to satisfy the Bakry–Émery criterion with
constant 𝛼 > 0 if for all functions 𝑓 ,

Γ2( 𝑓 , 𝑓 ) ⩾ 𝛼 Γ( 𝑓 , 𝑓 ) .

This condition is also known as the curvature-dimension condition CD(𝛼,∞).

We will prove the following theorem in Chapter 2.

Theorem 1.2.30 (Bakry–Émery). Consider a diffusion Markov semigroup. Assume that the
curvature-dimension condition CD(𝛼,∞) holds. Then, a log-Sobolev inequality holds with
constant 𝐶LSI ⩽ 1/𝛼.

We have not explained yet what a diffusion Markov semigroup is, but for now we can think of the
Langevin diffusion as a fundamental example. The key point is that once the (iterated) carré du champ
operators are known, the curvature-dimension condition amounts to an algebraic condition which can
be easily checked, which in turn implies the log-Sobolev inequality (and hence the Poincaré inequality
by Exercise 1.7). For the Langevin diffusion, this condition amounts to the following theorem.

Theorem 1.2.31 (CD condition for Langevin). For the Langevin diffusion (1.0.1), the curvature-
dimension condition CD(𝛼,∞) holds if and only if the potential 𝑉 is 𝛼-strongly convex.

Although we have deferred the Markov semigroup proofs of these results to Chapter 2, we will
shortly prove these results using the calculus of optimal transport.

Another point to address is the origin of the name “curvature-dimension condition”. In fact
this is part of a rich story in which Markov diffusions on Riemannian manifolds capture the
geometric features of the ambient space, such as its curvature. A picture emerges in which curvature,
concentration, and mixing of the diffusion all intertwine, and only in this context is it appreciated that
the curvature-dimension condition is appropriately named. This is discussed more fully in Chapter 2.

1.3 The Geometry of Optimal Transport
In this section, we explain how the space of probability measures equipped with the 2-Wasserstein
distance from optimal transport can be formally viewed as a Riemannian manifold. The textbook Villani
(2003) is a standard reference for optimal transport; see also Ambrosio et al. (2008); Villani (2009b);
Santambrogio (2015); Chewi et al. (2025) for more detailed treatments of Wasserstein calculus. We
remind readers that the “proofs” in this section are only sketched for intuition.

1.3.1 Introduction and Duality Theory
The optimal transport problem can be defined in great generality. Throughout this section, P(X)
denotes the space of probability measures on a space X.
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Definition 1.3.1. Let X and Y be complete separable metric spaces, and consider a cost functional
𝑐 : X × Y→ [0,∞]. The optimal transport cost from 𝜇 ∈ P(X) to 𝜈 ∈ P(Y) with cost 𝑐 is

T𝑐 (𝜇, 𝜈) B inf
𝛾∈C(𝜇,𝜈)

∫
𝑐(𝑥, 𝑦) 𝛾(d𝑥, d𝑦) , (1.3.2)

where C(𝜇, 𝜈) is the space of couplings of (𝜇, 𝜈), i.e., the space of probability measures
𝛾 ∈ P(X × Y) whose marginals are 𝜇 and 𝜈 respectively.

A minimizer in this problem is known as an optimal transport plan.

An equivalent probabilistic formulation is that T𝑐 (𝜇, 𝜈) is the infimum of E 𝑐(𝑋,𝑌 ) over all pairs
of jointly defined random variables (𝑋,𝑌 ) such that 𝑋 ∼ 𝜇 and 𝑌 ∼ 𝜈.

Theorem 1.3.3 (Existence). If the cost 𝑐 is lower semicontinuous, then an optimal transport
plan always exists.

Proof One can show that the functional 𝛾 ↦→
∫
𝑐 d𝛾 is lower semicontinuous and that C(𝜇, 𝜈) is

compact, where we use the weak topology on P(X × Y). It is a general fact that lower semicontinuous
functions attain their minima on compact sets. □

Historically, optimal transport began with Gaspard Monge who considered the Euclidean cost
𝑐(𝑥, 𝑦) B ∥𝑥 − 𝑦∥ on R𝑑 × R𝑑 . Moreover, he considered a slightly different problem in which, rather
than searching over all couplings in C(𝜇, 𝜈), he restricted attention to couplings which are induced by
a mapping 𝑇 : R𝑑 → R𝑑 satisfying 𝑇#𝜇 = 𝜈; this is known as the Monge problem. In the probabilistic
interpretation, this corresponds to a pair of random variables (𝑋,𝑇 (𝑋)) with 𝑋 ∼ 𝜇 and 𝑇 (𝑋) ∼ 𝜈.
The physical interpretation of this additional constraint is that no mass from 𝜇 be split up before
it is transported, which may be reasonable from a modelling perspective but leads to an ill-posed
mathematical problem. Indeed, there may not even exist any such mappings 𝑇 , as is the case when
𝜇 = 𝛿𝑥 places all of its mass on a single point and 𝜈 does not. Consequently, the solution to the Monge
problem remained unknown for centuries.

The breakthrough arrived when Leonid Kantorovich formulated the relaxation of the Monge
problem introduced in Definition 1.3.1, which is therefore known as the Kantorovich problem. As
the product measure 𝜇 ⊗ 𝜈 always belongs to C(𝜇, 𝜈), we at least know that the constraint set is
non-empty, and Theorem 1.3.3 shows that the Kantorovich problem is well-behaved. Moreover, the
Kantorovich problem is actually a convex problem on P(X × Y); indeed, the objective is linear and
the constraint set C(𝜇, 𝜈) is convex. Hence, one can bring to bear the power of convex duality to study
the Kantorovich problem (historically, this study was actually the origin of linear programming).

Although a large part of optimal transport theory can be developed in a general framework as above,
for the rest of the section we focus on the case 𝑐(𝑥, 𝑦) B ∥𝑥 − 𝑦∥2 on R𝑑 × R𝑑 for concreteness.

Definition 1.3.4. The 2-Wasserstein distance between 𝜇 and 𝜈, denoted𝑊2(𝜇, 𝜈), is defined via

𝑊2
2 (𝜇, 𝜈) B inf

𝛾∈C(𝜇,𝜈)

∫
∥𝑥 − 𝑦∥2 𝛾(d𝑥, d𝑦) . (1.3.5)

Write P2(R𝑑) B {𝜇 ∈ P(R𝑑) |
∫
∥·∥2 d𝜇 < ∞} for the space of probability measures on R𝑑

with finite second moment.
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Duality and optimality.
For this section, it is actually convenient to consider the cost 𝑐(𝑥, 𝑦) B 1

2 ∥𝑥 − 𝑦∥
2 instead, i.e., we

consider 1
2 𝑊

2
2 (𝜇, 𝜈) instead of𝑊2

2 (𝜇, 𝜈).
The key to solving the Kantorovich problem is duality. First observe that the constraint that

the first marginal of 𝛾 is 𝜇 can be written as follows: for every function 𝑓 ∈ 𝐿1(𝜇), it holds that∫
𝑓 (𝑥) 𝛾(d𝑥, d𝑦) =

∫
𝑓 (𝑥) 𝜇(d𝑥). Doing the same for the constraint on the second marginal of 𝛾, we

can write the Kantorovich problem as an unconstrained min-max problem

1
2
𝑊2

2 (𝜇, 𝜈) = inf
𝛾∈M+ (R𝑑×R𝑑 )

sup
𝑓 ∈𝐿1 (𝜇)
𝑔∈𝐿1 (𝜈)

{∫ ∥𝑥 − 𝑦∥2
2

𝛾(d𝑥, d𝑦) +
∫

𝑓 d𝜇 −
∫

𝑓 (𝑥) 𝛾(d𝑥, d𝑦)

+
∫

𝑔 d𝜈 −
∫

𝑔(𝑦) 𝛾(d𝑥, d𝑦)
}
.

Here,M+(R𝑑 ×R𝑑) denotes the space of non-negative finite measures on R𝑑 ×R𝑑 . Next, if we switch
the order of the infimum and the supremum, we arrive at the dual optimal transport problem:

sup
𝑓 ∈𝐿1 (𝜇)
𝑔∈𝐿1 (𝜈)

inf
𝛾∈M+ (R𝑑×R𝑑 )

{∫
𝑓 d𝜇 +

∫
𝑔 d𝜈 +

∫ [ ∥𝑥 − 𝑦∥2
2

− 𝑓 (𝑥) − 𝑔(𝑦)
]
𝛾(d𝑥, d𝑦)

}
= sup
( 𝑓 ,𝑔) ∈D(𝜇,𝜈)

{∫
𝑓 d𝜇 +

∫
𝑔 d𝜈

}
where D(𝜇, 𝜈) is the set of dual feasible potentials

D(𝜇, 𝜈) B
{
( 𝑓 , 𝑔) ∈ 𝐿1(𝜇) × 𝐿1(𝜈)

�� 𝑓 (𝑥) + 𝑔(𝑦) ⩽ ∥𝑥 − 𝑦∥2
2

for 𝜇-a.e. 𝑥, 𝜈-a.e. 𝑦 ∈ R𝑑
}
.

Definition 1.3.6. Let 𝜇, 𝜈 ∈ P2(R𝑑). The dual optimal transport problem from 𝜇 to 𝜈 is the
optimization problem

sup
( 𝑓 ,𝑔) ∈D(𝜇,𝜈)

{∫
𝑓 d𝜇 +

∫
𝑔 d𝜈

}
. (1.3.7)

Since inf sup ⩾ sup inf, the value of the dual problem is always at most 1
2 𝑊

2
2 (𝜇, 𝜈). On the other hand,

if we find a transport plan 𝛾★ and feasible dual potentials 𝑓 ★, 𝑔★ such that 1
2

∫
∥𝑥 − 𝑦∥2 𝛾★(d𝑥, d𝑦) =∫

𝑓 ★ d𝜇 +
∫
𝑔★ d𝜈, then the primal and dual values coincide and 𝛾★, 𝑓 ★, and 𝑔★ are all optimal.

By carefully studying the dual problem, we can obtain a wealth of information about the optimal
transport problem. Our main goal now is to sketch the following theorem.
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Theorem 1.3.8 (Fundamental theorem of optimal transport). Let 𝜇, 𝜈 ∈ P2(R𝑑). Then, the
following assertions hold.

1 (Strong duality) The value of the dual optimal transport problem from 𝜇 to 𝜈 equals 1
2 𝑊

2
2 (𝜇, 𝜈).

2 (Existence of optimal dual potentials) There exists an optimal pair ( 𝑓 ★, 𝑔★) for the dual optimal
transport problem.

3 (Characterization of optimality) The optimal dual potentials are of the form

𝑓 ★ =
∥·∥2

2
− 𝜑 , 𝑔★ =

∥·∥2
2
− 𝜑∗ , (1.3.9)

where 𝜑 : R𝑑 → R ∪ {∞} is a proper, convex, lower semicontinuous function and 𝜑∗ is its
convex conjugate. If 𝛾★ denotes the optimal transport plan, then for 𝛾★-a.e. (𝑥, 𝑦) ∈ R𝑑 × R𝑑 ,
it holds that 𝜑(𝑥) + 𝜑∗(𝑦) = ⟨𝑥, 𝑦⟩, i.e., 𝛾★ is supported on the subdifferential of 𝜑.

4 (Brenier’s theorem) Suppose in addition that 𝜇 is absolutely continuous w.r.t. the Lebesgue
measure on R𝑑 . Then, the optimal transport plan is unique, and moreover it is induced by an
optimal transport map 𝑇 . The mapping 𝑇 is characterized as the (𝜇-almost surely) unique
gradient of a proper convex lower semicontinuous function 𝜑 which pushes forward 𝜇 to 𝜈:
𝑇 = ∇𝜑 and (∇𝜑)#𝜇 = 𝜈.

Various parts of this theorem can be proven separately; for example, strong duality can be established
by rigorously justifying the interchange of infimum and supremum via a high-powered minimax
theorem. Instead, we outline a proof which simultaneously establishes all of the above facts.

Outline In the proof, we abbreviate “proper convex lower semicontinuous function” to simply
“closed convex function”.

1 Optimal transport plans are cyclically monotone. Let 𝛾★ be an optimal transport plan, and suppose
that the pairs (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) lie in the support of 𝛾★. Then, it should be the case that we
cannot “rematch” these points to lower the optimal transport cost, i.e., for every permutation 𝜎 of
[𝑛] we should have

𝑛∑︁
𝑖=1

∥𝑥𝑖 − 𝑦𝑖 ∥2 ⩽
𝑛∑︁
𝑖=1

∥𝑥𝑖 − 𝑦𝜎 (𝑖) ∥2 .

Equivalently,
𝑛∑︁
𝑖=1

⟨𝑥𝑖, 𝑦𝑖⟩ ⩾
𝑛∑︁
𝑖=1

⟨𝑥𝑖, 𝑦𝜎 (𝑖)⟩ . (1.3.10)

Indeed, if this condition fails, then it is possible to construct a new transport plan from 𝛾★ by
slightly rearranging the mass which has strictly smaller transport cost, which is a contradiction;
see Gangbo and McCann (1996, Theorem 2.3).

A subset 𝑆 ⊆ R𝑑 × R𝑑 is said to be cyclically monotone if for all 𝑛 ∈ N+, all pairs
(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), and all permutations 𝜎 of [𝑛], the condition (1.3.10) holds. Thus, opti-
mal transport plans are supported on cyclically monotone sets.

2 Characterization of cyclically monotone sets. Remarkably, a complete characterization of cyclically
monotone sets is known. Suppose 𝜑 is convex and differentiable, let 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 , and let 𝜎 be
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a permutation of [𝑛]. Then, from convexity,

𝜑(𝑥𝜎−1 (𝑖) ) − 𝜑(𝑥𝑖) ⩾ ⟨∇𝜑(𝑥𝑖), 𝑥𝜎−1 (𝑖) − 𝑥𝑖⟩ . (1.3.11)

Summing this over 𝑖 ∈ [𝑛], we obtain

𝑛∑︁
𝑖=1

⟨∇𝜑(𝑥𝑖), 𝑥𝑖⟩ ⩾
𝑛∑︁
𝑖=1

⟨∇𝜑(𝑥𝑖), 𝑥𝜎−1 (𝑖)⟩ =
𝑛∑︁
𝑖=1

⟨∇𝜑(𝑥𝜎 (𝑖) ), 𝑥𝑖⟩ .

More generally, if 𝜑 is not differentiable, then the subdifferential of 𝜑 at 𝑥𝑖 is defined to be the set
of vectors 𝑦𝑖 ∈ R𝑑 such that (1.3.11) holds with 𝑦𝑖 replacing ∇𝜑(𝑥𝑖). This reasoning shows that the
set 𝜕𝜑 B {(𝑥, 𝑦) ∈ R𝑑 × R𝑑 | 𝑦 ∈ 𝜕𝜑(𝑥)} is a cyclically monotone subset of R𝑑 × R𝑑 .

The converse is also true: if 𝑆 ⊆ R𝑑 × R𝑑 is cyclically monotone, then it is contained in the
subdifferential of a closed convex function 𝜑. To prove this, pick any (𝑥0, 𝑦0) ∈ 𝑆 and consider

𝜑(𝑥) B sup
{ 𝑛∑︁
𝑖=0

⟨𝑦𝑖, 𝑥𝑖+1 − 𝑥𝑖⟩
��� 𝑛 ∈ N+, (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) ∈ 𝑆, 𝑥𝑛+1 = 𝑥

}
.

This characterization is due to Rockafellar (1966).

3 Characterization of dual optimality. Now that we see the connection between convexity and the
primal problem, it is time to do the same for the dual problem. Suppose ( 𝑓 , 𝑔) is a feasible dual
pair; if we hold 𝑓 fixed, can we improve 𝑔? The constraint on 𝑔 says that for all 𝑥, 𝑦 ∈ R𝑑 ,

𝑔(𝑦) ⩽ ∥𝑥 − 𝑦∥
2

2
− 𝑓 (𝑥) .

Hence, writing 𝜑 B ∥·∥2/2 − 𝑓 , the optimal choice is

𝑔(𝑦) = inf
𝑥∈R𝑑

{ ∥𝑥 − 𝑦∥2
2

− 𝑓 (𝑥)
}
=
∥𝑦∥2

2
− sup
𝑥∈R𝑑
{⟨𝑥, 𝑦⟩ − 𝜑(𝑥)} .

The function 𝜑∗ defined by 𝜑∗(𝑦) B sup𝑥∈R𝑑 {⟨𝑥, 𝑦⟩ − 𝜑(𝑥)} is known as the convex conjugate of 𝜑.
To summarize, we have shown that for fixed 𝑓 = ∥·∥2/2− 𝜑, the optimal choice for 𝑔 is ∥·∥2/2− 𝜑∗.
Similarly, if we fix 𝑔 = ∥·∥2/2 − 𝜑∗, the optimal choice for 𝑓 is ∥·∥2/2 − 𝜑∗∗.

We have not yet established existence, but suppose for the moment that an optimal dual pair
( 𝑓 ★, 𝑔★) exists. The preceding reasoning shows that 𝑓 ★ = ∥·∥2/2 − 𝜑 and 𝑔★ = ∥·∥2/2 − 𝜑∗, where
𝜑∗∗ = 𝜑; otherwise the dual pair could be improved. Next, it is known from convex analysis
that 𝜑 = 𝜑∗∗ if and only if 𝜑 is a closed convex function. Thus, optimal dual potentials have the
representation (1.3.9).

4 Proof of strong duality. Now consider the optimal transport plan 𝛾★ (which exists; see Theo-
rem 1.3.3). We know that 𝛾★ is supported on a cyclically monotone set, which in turn is contained
in the subdifferential of a closed convex function 𝜑. Define the functions 𝑓 ★ B ∥·∥2/2 − 𝜑 and
𝑔★ B ∥·∥2/2 − 𝜑∗; these are dual feasible potentials. Also, it is a standard fact of convex analysis
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that (𝑥, 𝑦) ∈ 𝜕𝜑 if and only if 𝜑(𝑥) + 𝜑∗(𝑦) = ⟨𝑥, 𝑦⟩. Since the support of 𝛾★ is contained in 𝜕𝜑,

1
2

∫
∥𝑥 − 𝑦∥2 𝛾★(d𝑥, d𝑦) =

∫ ( ∥𝑥∥2
2
+ ∥𝑦∥

2

2
− ⟨𝑥, 𝑦⟩

)
𝛾★(d𝑥, d𝑦)

=

∫ ( ∥𝑥∥2
2
+ ∥𝑦∥

2

2
− 𝜑(𝑥) − 𝜑∗(𝑦)

)
𝛾★(d𝑥, d𝑦)

=

∫ ( ∥·∥2
2
− 𝜑

)
d𝜇 +

∫ ( ∥·∥2
2
− 𝜑∗

)
d𝜈

=

∫
𝑓 ★ d𝜇 +

∫
𝑔★ d𝜈 .

This simultaneously proves that strong duality holds and that ( 𝑓 ★, 𝑔★) is an optimal dual pair.
5 For regular measures, optimal transport plans are induced by transport maps. Another fact from

convex analysis is that convex functions enjoy some regularity: a closed convex function 𝜑 is
differentiable at Lebesgue-a.e. points of the interior of its domain. Consequently, if 𝜇 is absolutely
continuous w.r.t. Lebesgue measure, then 𝜑 is differentiable 𝜇-a.e. This says that for 𝜇-a.e. 𝑥 ∈ R𝑑 ,
the gradient ∇𝜑(𝑥) exists and 𝜕𝜑(𝑥) = {∇𝜑(𝑥)}. Therefore, we can write 𝛾★ = (id,∇𝜑)#𝜇. In
particular, (∇𝜑)#𝜇 = 𝜈, and ∇𝜑 is the optimal transport map from 𝜇 to 𝜈.

Our discussion thus far applies to an arbitrary optimal transport plan 𝛾★. Hence, we have shown
that every optimal transport plan is of the form (id,∇𝜑)#𝜇 for some closed convex function 𝜑.

6 Uniqueness of the optimal transport map. So far, we have not discussed uniqueness of the solution
to the Kantorovich problem, and in general uniqueness does not hold. However, in the setting we are
currently dealing with (the cost is the squared Euclidean distance and 𝜇 is absolutely continuous),
we can use additional arguments to establish uniqueness. We show that if �̄�★ = (id,∇�̄�)#𝜇 is
another optimal transport plan where �̄� is a closed convex function, then ∇𝜑 = ∇�̄� (𝜇-a.e.). Note
that in particular, it implies that there is only one gradient of a closed convex function which pushes
forward 𝜇 to 𝜈.

From our above arguments, we see that (∥·∥2/2− �̄�, ∥·∥2/2− �̄�∗) is a dual optimal pair. Therefore,∫
{�̄�(𝑥) + �̄�∗(𝑦)} 𝛾★(d𝑥, d𝑦) =

∫
�̄� d𝜇 +

∫
�̄�∗ d𝜈 =

∫
𝜑 d𝜇 +

∫
𝜑∗ d𝜈

=

∫
{𝜑(𝑥) + 𝜑∗(𝑦)} 𝛾★(d𝑥, d𝑦) =

∫
⟨𝑥, 𝑦⟩ 𝛾★(d𝑥, d𝑦) .

Using 𝛾★ = (id,∇𝜑)#𝜇, it yields∫
{�̄�(𝑥) + �̄�∗(∇𝜑(𝑥)) − ⟨𝑥,∇𝜑(𝑥)⟩} 𝜇(d𝑥) = 0 .

On the other hand, by the definition of �̄�∗, we have �̄�(𝑥) + �̄�∗(𝑦) ⩾ ⟨𝑥, 𝑦⟩ for all 𝑥, 𝑦 ∈ R𝑑, with
equality if and only if 𝑦 ∈ 𝜕�̄�(𝑥). So, the integrand of the above expression is always non-negative
but the integral is zero, which combined with the previous fact shows that ∇𝜑(𝑥) ∈ 𝜕�̄�(𝑥) for
𝜇-a.e. 𝑥. But for 𝜇-a.e. 𝑥, we also know that 𝜕�̄�(𝑥) = {∇�̄�(𝑥)}, and we conclude that ∇𝜑 = ∇�̄�
(𝜇-a.e.). □

We refer to 𝜑 as a Brenier potential. From convex duality, ∇𝜑∗ = (∇𝜑)−1. So, if 𝜈 is also absolutely
continuous, then the optimal transport map from 𝜈 to 𝜇 is ∇𝜑∗. We often write 𝑇𝜇→𝜈 = ∇𝜑 for the
optimal transport map from 𝜇 to 𝜈.

In light of this discussion, it is natural to focus on the following class of measures.
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Definition 1.3.12. The space P2,ac(R𝑑) is the set of measures in P2(R𝑑) which are absolutely
continuous w.r.t. Lebesgue measure.

Remarks on other costs.
Many of the arguments can be generalized to other costs 𝑐. For example, the supports of optimal
transport plans can be characterized via 𝑐-cyclical monotonicity (generalizing cyclical monotonicity)
and optimal dual potentials can be characterized via 𝑐-concavity (generalizing convexity). Arguing
that the optimal transport plan is induced by a transport map requires additional information about the
differentiability of 𝑐. See Exercise 1.10.

1.3.2 Riemannian Structure of the Wasserstein Space
Wasserstein space as a metric space.

The following lemma is used to establish that the triangle inequality holds for𝑊2.

Lemma 1.3.13 (Gluing lemma). If 𝛾1,2 ∈ P(X1 × X2) and 𝛾2,3 ∈ P(X2 × X3) have the same
marginal distribution on X2, then there exists 𝛾 ∈ P(X1 × X2 × X3) such that its first two
marginals are 𝛾1,2 and its last two marginals are 𝛾2,3.

Proof Let 𝜇 denote the common X2-marginal of 𝛾1,2 and 𝛾2,3. The idea is to first draw 𝑋2 ∼ 𝜇. Then,
draw 𝑋1 from its conditional distribution given 𝑋2 (according to 𝛾1,2), and similarly draw 𝑋3 from its
conditional distribution given 𝑋2 (according to 𝛾2,3). Take 𝛾 to be the law of the triple (𝑋1, 𝑋2, 𝑋3).

The way to formalize this argument is via disintegration of measure. □

Proposition 1.3.14. The space (P2(R𝑑),𝑊2) is a metric space.

Proof Clearly,𝑊2 is symmetric in its two arguments. It is also clear that 𝜇 = 𝜈 implies𝑊2(𝜇, 𝜈) = 0.
Conversely, if𝑊2(𝜇, 𝜈) = 0, then there exists a coupling (𝑋,𝑌 ) of (𝜇, 𝜈) such that ∥𝑋 − 𝑌 ∥2 = 0 a.s.,
or equivalently 𝑋 = 𝑌 a.s., which gives 𝜇 = 𝜈.

To verify the triangle inequality, we use the gluing lemma. Let 𝜇1, 𝜇2, 𝜇3 ∈ P2(R𝑑), let 𝛾★1,2 be
optimal for (𝜇1, 𝜇2), and let 𝛾★2,3 be optimal for (𝜇2, 𝜇3). Let 𝛾 be obtained by gluing 𝛾★1,2 and 𝛾★2,3,
and let 𝛾1,3 ∈ C(𝜇1, 𝜇3) denote the (1, 3)-marginal of 𝛾. Then,

𝑊2(𝜇1, 𝜇3) ⩽

√︄∫
∥𝑥1 − 𝑥3∥2 𝛾1,3(d𝑥1, d𝑥3)

⩽

√︄∫
{∥𝑥1 − 𝑥2∥ + ∥𝑥2 − 𝑥3∥}2 𝛾(d𝑥1, d𝑥2, d𝑥3) .

Let 𝑓 (𝑥1, 𝑥2, 𝑥3) B ∥𝑥1 − 𝑥2∥ and 𝑔(𝑥1, 𝑥2, 𝑥3) B ∥𝑥2 − 𝑥3∥. The above expression can be written as
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∥ 𝑓 + 𝑔∥𝐿2 (𝛾) . By applying the triangle inequality in 𝐿2(𝛾),

𝑊2(𝜇1, 𝜇3) ⩽ ∥ 𝑓 ∥𝐿2 (𝛾) + ∥𝑔∥𝐿2 (𝛾)

=

√︄∫
∥𝑥1 − 𝑥2∥2 𝛾(d𝑥1, d𝑥2, d𝑥3) +

√︄∫
∥𝑥2 − 𝑥3∥2 𝛾(d𝑥1, d𝑥2, d𝑥3)

=

√︄∫
∥𝑥1 − 𝑥2∥2 𝛾★1,2(d𝑥1, d𝑥2) +

√︄∫
∥𝑥2 − 𝑥3∥2 𝛾★2,3(d𝑥2, d𝑥3)

= 𝑊2(𝜇1, 𝜇2) +𝑊2(𝜇2, 𝜇3) . □

Since the next result is technical, we omit the proof.

Proposition 1.3.15. The metric space (P2(R𝑑),𝑊2) is complete and separable. Also, we have
𝑊2(𝜇𝑛, 𝜇) → 0 if and only if 𝜇𝑛 → 𝜇 weakly and

∫
∥·∥2 d𝜇𝑛 →

∫
∥·∥2 d𝜇.

The continuity equation.
Next, we are going to consider dynamics in the space of measures, i.e., curves of measures 𝑡 ↦→ 𝜇𝑡 .
Throughout, we assume these curves are sufficiently nice, in the following sense.

Definition 1.3.16 (Informal). We say that a curve 𝑡 ↦→ 𝜇𝑡 ∈ P2,ac(R𝑑) is absolutely continuous
if for all 𝑡,

| ¤𝜇 | (𝑡) B lim
𝑠→𝑡

𝑊2(𝜇𝑠, 𝜇𝑡 )
|𝑠 − 𝑡 | < ∞ .

The quantity | ¤𝜇 | is called the metric derivative of the curve.

More generally, the metric derivative can be defined on any metric space and represents the magnitude
of the velocity of the curve, see Ambrosio et al. (2008).

It is helpful to adopt a fluid dynamics analogy in which we think of 𝜇𝑡 as the mass density of a fluid
at time 𝑡. There are two complementary perspectives on fluid flows: the Lagrangian perspective which
emphasizes individual particle trajectories, and the Eulerian perspective which tracks the evolution of
the aggregate fluid density.

Suppose that 𝑋0 ∼ 𝜇0 and that 𝑡 ↦→ 𝑋𝑡 evolves according to the ODE ¤𝑋𝑡 = 𝑣𝑡 (𝑋𝑡 ). Here, (𝑣𝑡 )𝑡⩾0 is a
family of vector fields, i.e., mappings R𝑑 → R𝑑 . Since the ODE describes the evolution of the particle
trajectory, it is the Lagrangian description of the dynamics. The corresponding Eulerian description is
the continuity equation.

Theorem 1.3.17 (Continuity equation). Let (𝑣𝑡 )𝑡⩾0 be a family of vector fields and suppose that
the process (𝑋𝑡 )𝑡⩾0 evolve according to ¤𝑋𝑡 = 𝑣𝑡 (𝑋𝑡 ). Then, the law 𝜇𝑡 of 𝑋𝑡 evolves according to
the continuity equation

𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 . (1.3.18)
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Proof Given a test function 𝜑 : R𝑑 → R,∫
𝜑 𝜕𝑡𝜇𝑡 = 𝜕𝑡

∫
𝜑𝜇𝑡 = 𝜕𝑡 E 𝜑(𝑋𝑡 ) = E⟨∇𝜑(𝑋𝑡 ), ¤𝑋𝑡⟩ = E⟨∇𝜑(𝑋𝑡 ), 𝑣𝑡 (𝑋𝑡 )⟩

=

∫
⟨∇𝜑, 𝑣𝑡⟩ 𝜇𝑡 = −

∫
𝜑 div(𝜇𝑡𝑣𝑡 ) .

Since this holds for every 𝜑, we obtain 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0. □

Remark 1.3.19. We have not justified that the curve (𝜇𝑡 )𝑡⩾0 is regular enough to make sense of
the PDE (1.3.18) in the classical sense. To be rigorous, we should interpret (1.3.18) in the “weak”
sense, that is, in duality with test functions: for all smooth and compactly supported functions 𝜑,
𝜕𝑡
∫
𝜑 d𝜇𝑡 =

∫
⟨∇𝜑, 𝑣𝑡⟩ d𝜇𝑡 . For pedagogical reasons, in the subsequent discussion, we simply assume

that (1.3.18) holds in the classical sense.
Here, Theorem 1.3.17 shows that a family of vector fields and an initial condition 𝜇0 give rise to a

curve of measures. The punchline is that the converse holds: every nice curve of measures (𝜇𝑡 )𝑡⩾0 can
be interpreted as the fluid flow along a family of vector fields, i.e., we can find vector fields (𝑣𝑡 )𝑡⩾0
such that the continuity equation (1.3.18) holds. First, however, note that there is no uniqueness: if
𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 and for each 𝑡, 𝑤𝑡 is a vector field satisfying div(𝜇𝑡𝑤𝑡 ) = 0, then the continuity
equation also holds with the new vector fields �̃�𝑡 B 𝑣𝑡 + 𝑤𝑡 . We will show how to pick a distinguished
choice of vector fields (𝑣𝑡 )𝑡⩾0 which can be described in two equivalent ways. First, among all vector
fields making the continuity equation hold true, we can choose 𝑣𝑡 to minimize

∫
∥𝑣𝑡 ∥2 d𝜇𝑡 , which has

the physical interpretation of minimizing kinetic energy. Second, we can choose 𝑣𝑡 to be the gradient
of a function; we will see that this is natural in light of the characterization of optimal transport maps.

Theorem 1.3.20 (Curves of measures as fluid flows). Let (𝜇𝑡 )𝑡⩾0 be an absolutely continuous
curve of measures.

1 For any family of vector fields (�̃�𝑡 )𝑡⩾0 such that the continuity equation (1.3.18) holds, we have
| ¤𝜇 | (𝑡) ⩽ ∥�̃�𝑡 ∥𝐿2 (𝜇𝑡 ) for all 𝑡.

2 Conversely, there exists a unique choice of vector fields (𝑣𝑡 )𝑡⩾0 such that the continuity
equation (1.3.18) holds and ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) ⩽ | ¤𝜇 | (𝑡) for all 𝑡. The choice of vector fields is also
characterized by the following property: the continuity equation (1.3.18) holds and for each 𝑡,
𝑣𝑡 = ∇𝜓𝑡 for a function 𝜓𝑡 : R𝑑 → R.

Moreover, the distinguished vector field 𝑣𝑡 satisfies

𝑣𝑡 = lim
𝛿↘0

𝑇𝜇𝑡→𝜇𝑡+𝛿 − id
𝛿

in 𝐿2(𝜇𝑡 ) , (1.3.21)

where 𝑇𝜇𝑡→𝜇𝑡+𝛿 is the optimal transport map from 𝜇𝑡 to 𝜇𝑡+𝛿 .

Proof 1 Proof of the first statement. Let 𝛿 > 0 and consider the flow map 𝐹𝑡 ,𝑡+𝛿 defined as follows.
Given any initial point 𝑥𝑡 ∈ R𝑑 , consider the ODE ¤𝑥𝑡 = �̃�𝑡 (𝑥𝑡 ) started at 𝑥𝑡 . Then, 𝐹𝑡 ,𝑡+𝛿 maps 𝑥𝑡 to
the solution 𝑥𝑡+𝛿 of the ODE at time 𝑡 + 𝛿.

If 𝑋𝑡 ∼ 𝜇𝑡 , then the continuity equation implies 𝐹𝑡 ,𝑡+𝛿 (𝑋𝑡 ) ∼ 𝜇𝑡+𝛿 , i.e., 𝐹𝑡 ,𝑡+𝛿 is a valid transport
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map from 𝜇𝑡 to 𝜇𝑡+𝛿 . Hence, we can estimate

𝑊2(𝜇𝑡 , 𝜇𝑡+𝛿)
𝛿

⩽

√︄∫ ∥𝐹𝑡 ,𝑡+𝛿 − id∥2
𝛿2 d𝜇𝑡 .

However, 𝐹𝑡 ,𝑡+𝛿 − id = 𝛿�̃�𝑡 + 𝑜(𝛿), so letting 𝛿 ↘ 0 we obtain | ¤𝜇 | (𝑡) ⩽ ∥�̃�𝑡 ∥𝐿2 (𝜇𝑡 ) . (Actually, to
prove this statement we should also consider the limit 𝛿↗ 0 for negative 𝛿, but it is clear that the
same argument works.)

2 Uniqueness of the optimal vector field. Suppose we find (𝑣𝑡 )𝑡⩾0 satisfying the continuity equation
and such that ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) ⩽ | ¤𝜇 | (𝑡). In light of the first statement, it implies that the zero vector field
is the minimizer of ∥𝑣𝑡 + 𝑤𝑡 ∥𝐿2 (𝜇𝑡 ) among all vector fields 𝑤𝑡 such that div(𝜇𝑡𝑤𝑡 ) = 0. This is a
strictly convex problem so the minimizer is unique, meaning that (𝑣𝑡 )𝑡⩾0 is uniquely determined.

3 Gradient vector fields are optimal. Here, we show that if the continuity equation holds for the family
of vector fields (𝑣𝑡 )𝑡⩾0 and that 𝑣𝑡 = ∇𝜓𝑡 for all 𝑡, then the vector fields are optimal.

There are at least two ways of seeing why gradient vector fields should be optimal. First, the
continuity equation is equivalent to requiring that for all test functions 𝜑 : R𝑑 → R, it holds
that 𝜕𝑡

∫
𝜑 d𝜇𝑡 =

∫
⟨∇𝜑, 𝑣𝑡⟩ d𝜇𝑡 . In this expression, the vector field 𝑣𝑡 only enters through inner

products with gradients. To put it another way, if we consider the space 𝑆 B {∇𝜓 | 𝜓 : R𝑑 → R}
of gradients, viewed as a subspace of 𝐿2(𝜇𝑡 ), then we can write 𝐿2(𝜇𝑡 ) = 𝑆 ⊕ 𝑆⊥ (actually, to
make this valid we should take the closure of 𝑆, but we will ignore this detail). If we decompose
𝑣𝑡 according to this direct sum, then 𝑣𝑡 = ∇𝜓𝑡 + 𝑤𝑡 for some function 𝜓𝑡 and some 𝑤𝑡 which is
orthogonal (in 𝐿2(𝜇𝑡 )) to 𝑆. If we replace 𝑣𝑡 by ∇𝜓𝑡 , then the continuity equation continues to hold,
but we have only made the norm ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) smaller, hence the optimal choice of 𝑣𝑡 should lie in 𝑆.

The second line of reasoning comes from the proof of the first statement: the reason why the
metric derivative | ¤𝜇 | (𝑡) was upper bounded by ∥�̃�𝑡 ∥𝐿2 (𝜇𝑡 ) is because the flow map corresponding to
(�̃�𝑡 )𝑡⩾0 furnishes a possibly suboptimal transport map. To fix this, the flow map for the optimal
(𝑣𝑡 )𝑡⩾0 should be approximately equal to the optimal transport map, i.e., 𝑣𝑡 ≈ (𝑇𝜇𝑡→𝜇𝑡+𝛿 − id)/𝛿.
From the fundamental theorem of optimal transport, however, 𝑇𝜇𝑡→𝜇𝑡+𝛿 is the gradient of a convex
function, so in the limit 𝑣𝑡 should be as well.

Instead of using these arguments, we will instead provide a proof based on direct computation. If
𝑣𝑡 = ∇𝜓𝑡 , the continuity equation shows that∫

𝜓𝑡 d𝜇𝑡+𝛿 −
∫
𝜓𝑡 d𝜇𝑡

𝛿
=

∫
𝜓𝑡 𝜕𝑡𝜇𝑡 + 𝑜(1) = −

∫
𝜓𝑡 div(𝜇𝑡∇𝜓𝑡 ) + 𝑜(1)

=

∫
∥∇𝜓𝑡 ∥2 d𝜇𝑡 + 𝑜(1) .

On the other hand,∫
𝜓𝑡 d𝜇𝑡+𝛿 −

∫
𝜓𝑡 d𝜇𝑡

𝛿
=

∫
𝜓𝑡 ◦ 𝑇𝜇𝑡→𝜇𝑡+𝛿 − 𝜓𝑡

𝛿
d𝜇𝑡

=

∫ 〈
∇𝜓𝑡 ,

𝑇𝜇𝑡→𝜇𝑡+𝛿 − id
𝛿

〉
d𝜇𝑡 + 𝑜(1)

⩽

√︄∫
∥∇𝜓𝑡 ∥2 d𝜇𝑡

𝑊2(𝜇𝑡 , 𝜇𝑡+𝛿)
𝛿

+ 𝑜(1) .

Taking 𝛿↘ 0 yields ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) = ∥∇𝜓𝑡 ∥𝐿2 (𝜇𝑡 ) ⩽ | ¤𝜇 | (𝑡).
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4 Existence of optimal vector fields. Finally, one can show for instance that vector fields defined via
limits of transport maps as in (1.3.21) indeed satisfy the continuity equation and are gradient vector
fields, and are therefore optimal. The details are omitted. □

From the theorem, we learn that the optimal vector field 𝑣𝑡 satisfies ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) = | ¤𝜇 | (𝑡). On the
other hand, the metric derivative is supposed to be the “magnitude of the velocity”. Our next goal is
to interpret 𝑣𝑡 as the velocity vector to the curve, and ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) as its norm, all through the lens of
Riemannian geometry.

Background on Riemannian geometry.
In the spirit of informality, we give a description of what a Riemannian manifold entails, rather than a
precise definition. A manifold M is a space which is locally homeomorphic to a Euclidean space. At
each point 𝑝 ∈ M, there is an associated vector space 𝑇𝑝M, called the tangent space at 𝑝, which is
the space of all possible velocities of curves passing through 𝑝. The whole structure should be smooth:
the tangent spaces should vary smoothly in a suitable sense.

A Riemannian metric is a smoothly varying choice of inner products 𝑝 ↦→ ⟨·, ·⟩𝑝 on the tangent
spaces. The metric allows us to, e.g., locally measure the angles between two intersecting curves. For
our purposes, it is important to note that the metric allows us to define the steepest descent direction
for an objective function, which in turn allows us to consider gradient flows.

The Riemannian metric induces a distance function (in the sense of metric spaces) via

d(𝑝, 𝑞) B inf
{∫ 1

0
∥ ¤𝛾(𝑡)∥𝛾 (𝑡 ) d𝑡

��� 𝛾 : [0, 1] →M, 𝛾(0) = 𝑝, 𝛾(1) = 𝑞
}
. (1.3.22)

Here, ¤𝛾(𝑡) denotes the tangent vector to the curve at time 𝑡. Note that the norm of the tangent
vector is measured w.r.t. the inner product on the tangent space 𝑇𝛾 (𝑡 )M, hence we write ∥ ¤𝛾(𝑡)∥𝛾 (𝑡 ) .
If the infimum is achieved by a curve 𝛾, then 𝛾 is referred to as a geodesic (a shortest path); if
𝑡 ↦→ ∥ ¤𝛾(𝑡)∥𝛾 (𝑡 ) is constant, then it is called a constant-speed geodesic. From now on, we will only
consider constant-speed geodesics, and the words “constant speed” will be dropped for brevity.

Given a functional F : M → R, the gradient of F at 𝑝 is defined to be the unique element
∇F(𝑝) ∈ 𝑇𝑝M such that for all curves (𝑝𝑡 )𝑡∈R passing through 𝑝 at time 0 with velocity 𝑣 ∈ 𝑇𝑝M, it
holds that 𝜕𝑡 |𝑡=0F(𝑝𝑡 ) = ⟨∇F(𝑝), 𝑣⟩𝑝.

Wasserstein space as a Riemannian manifold.
Based on our discussion thus far, it is natural to define the tangent space at 𝜇 ∈ P2,ac(R𝑑) as

𝑇𝜇P2,ac(R𝑑) B {∇𝜓 | 𝜓 ∈ C∞c (R𝑑)}
𝐿2 (𝜇)

,

where the notation denotes taking the 𝐿2(𝜇) closure. Equivalently,

𝑇𝜇P2,ac(R𝑑) = {𝜆 (𝑇 − id) | 𝜆 > 0, 𝑇 is an optimal transport map}
𝐿2 (𝜇)

.

We equip the tangent space 𝑇𝜇P2,ac(R𝑑) with the 𝐿2(𝜇) norm, which gives a Riemannian metric. This
does not define a genuine Riemannian manifold (e.g., it is not locally homeomorphic to a Euclidean
space or even a Hilbert space), but we treat it as one for the purpose of developing calculation rules.

If the continuity equation 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 holds and 𝑣𝑡 ∈ 𝑇𝜇𝑡P2,ac(R𝑑), then 𝑣𝑡 is the tangent
vector to the curve at time 𝑡. The condition 𝑣𝑡 ∈ 𝑇𝜇𝑡P2,ac(R𝑑) is equivalent to saying that 𝑣𝑡 is the
optimal vector field considered in Theorem 1.3.20.
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There are two questions to address. First, is this Riemannian structure compatible with the 2-
Wasserstein distance? In other words, we know that a Riemannian metric induces a distance function;
is the distance function induced by the Riemannian structure of P2,ac(R𝑑) equal to𝑊2? Second, what
are the geodesics? We answer both questions via the following theorem.

Theorem 1.3.23 (Wasserstein geodesics). Let 𝜇0, 𝜇1 ∈ P2,ac(R𝑑). Then,

𝑊2(𝜇0, 𝜇1) = inf
{∫ 1

0
∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) d𝑡

��� 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0
}
. (1.3.24)

The infimum is achieved as follows. Let 𝑋0 ∼ 𝜇0 and 𝑋1 ∼ 𝜇1 be optimally coupled random
variables, let 𝑋𝑡 B (1 − 𝑡) 𝑋0 + 𝑡 𝑋1, and let 𝜇𝑡 B law(𝑋𝑡 ). Then, (𝜇𝑡 )𝑡∈[0,1] is the unique
constant-speed geodesic joining 𝜇0 to 𝜇1.

Proof Suppose that 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0. Then,
∫ 1

0 ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) d𝑡 ⩾
∫ 1

0 | ¤𝜇 | (𝑡) d𝑡. For a partition
0 ⩽ 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 ⩽ 1,

𝑊2(𝜇0, 𝜇1) ⩽
𝑘∑︁
𝑖=1

𝑊2(𝑡𝑖−1, 𝑡𝑖) =
𝑘∑︁
𝑖=1

𝑊2(𝑡𝑖−1, 𝑡𝑖)
𝑡𝑖 − 𝑡𝑖−1

(𝑡𝑖 − 𝑡𝑖−1) .

As the size of the partition tends to zero, we obtain 𝑊2(𝜇0, 𝜇1) ⩽
∫ 1

0 | ¤𝜇 | (𝑡) d𝑡. This shows that
𝑊2(𝜇0, 𝜇1) is at most the value of the infimum.

To show that equality holds, let 𝑋𝑡 be defined as in the theorem statement and note that E[∥ ¤𝑋𝑡 ∥2] =
∥𝑣𝑡 ∥2𝐿2 (𝜇𝑡 )

by the correspondence of the Lagrangian and Eulerian perspectives. (This can be verified by
writing the vector field explicitly as 𝑣𝑡 = (𝑇1 − id) ◦ 𝑇−1

𝑡 , where 𝑇𝑡 B (1 − 𝑡) id + 𝑡 𝑇𝜇0→𝜇1 —exercise!)
Since E[∥ ¤𝑋𝑡 ∥2] = E[∥𝑋1 − 𝑋0∥2] = 𝑊2

2 (𝜇0, 𝜇1) does not depend on time, the curve has constant
speed, and

∫ 1
0 ∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) d𝑡 = 𝑊2(𝜇0, 𝜇1).

To show uniqueness, again work in the Lagrangian perspective: suppose we have a process (𝑋𝑡 )𝑡⩾0
such that 𝑡 ↦→ E[∥ ¤𝑋𝑡 ∥2] is constant, and 𝑋0 ∼ 𝜇0, 𝑋1 ∼ 𝜇1. Then, we have

𝑊2
2 (𝜇0, 𝜇1) ⩽ E[∥𝑋1 − 𝑋0∥2] = E

[∫ 1

0
¤𝑋𝑡 d𝑡

2]
⩽ E

∫ 1

0
∥ ¤𝑋𝑡 ∥2 d𝑡 =

(∫ 1

0
∥𝑣𝑡 ∥𝐿2 (𝜇𝑡 ) d𝑡

)2

where the last equality follow from the constant-speed assumption. In order for the first inequality to
be equality, (𝑋0, 𝑋1) is an optimal coupling. In order for the second inequality to be equality, strict
convexity of ∥·∥2 implies that ¤𝑋𝑡 is constant in time and equal to its average

∫ 1
0
¤𝑋𝑡 d𝑡 = 𝑋1 − 𝑋0. □

Definition 1.3.25. Let 𝜇0, 𝜇1 ∈ P2,ac(R𝑑), and let 𝑋0 ∼ 𝜇0, 𝑋1 ∼ 𝜇1 be optimally coupled.
Let 𝑋𝑡 B (1 − 𝑡) 𝑋0 + 𝑡 𝑋1, and let 𝜇𝑡 B law(𝑋𝑡 ). Then, the curve (𝜇𝑡 )𝑡∈[0,1] is called the
Wasserstein geodesic joining 𝜇0 to 𝜇1. It is also called the displacement interpolation or
McCann’s interpolation.

Exponential map and logarithmic map.
On a Riemannian manifold M, the Riemannian exponential map exp𝑝 : 𝑇𝜇M→M takes a tangent
vector 𝑣 ∈ 𝑇𝜇M to the endpoint at time 1 of the constant-speed geodesic emanating from 𝑝 with
velocity 𝑣. The logarithmic map is then defined to be the inverse mapping log𝑝 : M → 𝑇𝜇M.
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Actually, in general, the exponential map is only defined on a subset of the tangent space, because in
many manifolds (e.g., the sphere), geodesics cannot continue indefinitely while remaining shortest
paths between their endpoints. On Euclidean space R𝑑 , we have exp𝑝 (𝑣) = 𝑝 + 𝑣 and log𝑝 (𝑞) = 𝑞 − 𝑝.

We can identify these maps for (P2,ac(R𝑑),𝑊2). If (𝜇𝑡 )𝑡∈[0,1] is a Wasserstein geodesic and ∇𝜑𝜇0→𝜇1

is the optimal transport map from 𝜇0 to 𝜇1, then the tangent vector to the geodesic at time 0 is
∇𝜑𝜇0→𝜇1 − id. This implies that log𝜇0

(𝜇1) = ∇𝜑𝜇0→𝜇1 − id. The inverse mapping is then given
as follows: if ∇𝜓 ∈ 𝑇𝜇0P2,ac(R𝑑) is such that id + ∇𝜓 is the gradient of a convex function, then
exp𝜇0

(∇𝜓) = (id + ∇𝜓)#𝜇0.

Geodesically convex functionals.
Over a Riemannian manifold M, the correct way to define convexity is as follows.

Definition 1.3.26. Let M be a Riemannian manifold and let F : M→ R ∪ {∞} be smooth. For
𝛼 ∈ R, we say that F is 𝛼-geodesically convex if one of the following equivalent conditions hold:

1 For all geodesics (𝑝𝑡 )𝑡∈[0,1] and 𝑡 ∈ [0, 1],

F(𝑝𝑡 ) ⩽ (1 − 𝑡) F(𝑝0) + 𝑡 F(𝑝1) −
𝛼 𝑡 (1 − 𝑡)

2
d(𝑝0, 𝑝1)2 ,

where d is the induced Riemannian distance (1.3.22).
2 For all 𝑝, 𝑞 ∈ M,

F(𝑞) ⩾ F(𝑝) + ⟨∇F(𝑝), log𝑝 (𝑞)⟩𝑝 +
𝛼

2
d(𝑝, 𝑞)2 .

Here, ∇ denotes the Riemannian gradient.
3 For all constant-speed geodesics (𝑝𝑡 )𝑡∈[0,1] with tangent vector 𝑣0 ∈ 𝑇𝑝0M at time 0,

𝜕2
𝑡

��
𝑡=0F(𝑝𝑡 ) ⩾ 𝛼 ∥𝑣0∥2𝑝0

.

1.4 The Langevin SDE as a Wasserstein Gradient Flow
We are now ready to interpret the Langevin diffusion (1.0.1) as a gradient flow in the Wasserstein
space (P2,ac(R𝑑),𝑊2). Once we have done so, we will quickly deduce convergence results for the
Langevin diffusion based on gradient flow computations.

1.4.1 Derivation of the Gradient Flow
Let F : P2,ac(R𝑑) → R ∪ {∞} be a functional over the Wasserstein space. We now compute the
Wasserstein gradient of F at 𝜇, i.e., the element ∇𝑊2F(𝜇) ∈ 𝑇𝜇P2,ac(R𝑑) such that for every curve
(𝜇𝑡 )𝑡⩾0 with 𝜇0 = 𝜇, if 𝑣0 is the tangent vector to the curve at time 0, then 𝜕𝑡 |𝑡=0F(𝜇𝑡 ) = ⟨∇𝑊2F(𝜇), 𝑣0⟩𝜇,
where ⟨·, ·⟩𝜇 is the inner product on 𝑇𝜇P2,ac(R𝑑).

We will give a formula in terms of the first variation of F at 𝜇, denoted 𝛿F(𝜇). The first variation
is a function R𝑑 → R which satisfies 𝜕𝑡 |𝑡=0F(𝜇𝑡 ) =

∫
𝛿F(𝜇) 𝜕𝑡 |𝑡=0𝜇𝑡 . This is almost the same as the

𝐿2(𝔪) gradient of F, where 𝔪 is the Lebesgue measure on R𝑑 , except for a few differences: (1) there
is no guarantee that 𝛿F(𝜇) ∈ 𝐿2(𝔪); (2) in order to consider the 𝐿2(𝔪) gradient, we would want F to
be a functional defined over all of 𝐿2(𝔪), not just probability densities, and similarly we would have
to consider all curves in 𝐿2(𝔪) rather than curves of probability densities.
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As a consequence of looking only at probability densities, the first variation is only defined up to
an additive constant. Indeed, 𝜕𝑡 |𝑡=0𝜇𝑡 always integrates to 0, so we can add any constant to the first
variation. This does not cause any ambiguity, as we now see.

Recall that 𝑣𝑡 is the tangent vector to the curve of measures at time 𝑡 if the continuity equation
𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 holds and 𝑣𝑡 ∈ 𝑇𝜇𝑡P2,ac(R𝑑). Using the continuity equation with a curve such
that 𝜇0 = 𝜇,

𝜕𝑡
��
𝑡=0 F(𝜇𝑡 ) =

∫
𝛿F(𝜇) 𝜕𝑡

��
𝑡=0 𝜇𝑡 = −

∫
𝛿F(𝜇) div(𝑣0𝜇) =

∫
⟨∇𝛿F(𝜇), 𝑣0⟩ d𝜇 .

(Here, the ∇ is the Euclidean gradient.) Since ∇𝛿F(𝜇) is the gradient of a function, from our
characterization of the tangent space we know that ∇𝛿F(𝜇) ∈ 𝑇𝜇P2,ac(R𝑑). Therefore, the equation
above says that the Wasserstein gradient of F at 𝜇 is ∇𝛿F(𝜇).

Theorem 1.4.1 (Wasserstein gradient). Let F : P2,ac(R𝑑) → R ∪ {∞} be a functional. Then, its
Wasserstein gradient at 𝜇 is

∇𝑊2F(𝜇) = ∇𝛿F(𝜇) ,

where 𝛿F(𝜇) is a first variation of F at 𝜇.

Since we take the Euclidean gradient of the first variation, the fact that the first variation is only
defined up to additive constant does not bother us.

The Wasserstein gradient flow of F is by definition a curve of measures (𝜇𝑡 )𝑡⩾0 such that its
tangent vector 𝑣𝑡 at time 𝑡 is 𝑣𝑡 = −∇𝑊2F(𝜇𝑡 ). Substituting this into the continuity equation (1.3.18),
we obtain the gradient flow equation

𝜕𝑡𝜇𝑡 = div
(
𝜇𝑡∇𝑊2F(𝜇𝑡 )

)
= div

(
𝜇𝑡∇𝛿F(𝜇𝑡 )

)
.

Example 1.4.2. Consider F = KL(· ∥ 𝜋) where 𝜋 = exp(−𝑉). This functional can be rewritten as

F(𝜇) =
∫

𝜇 log
𝜇

𝜋
=

∫
𝑉 d𝜇 +

∫
𝜇 log 𝜇 .

These two terms have the interpretation of energy and (negative) entropy. From this, we can
compute that

𝛿F(𝜇) = 𝑉 + log 𝜇 + constant

and therefore

∇𝑊2F(𝜇) = ∇𝑉 + ∇ log 𝜇 = ∇ log
𝜇

𝜋
.

The Wasserstein gradient flow of F satisfies

𝜕𝑡𝜇𝑡 = div
(
𝜇𝑡∇ log

𝜇𝑡

𝜋

)
.

Comparing with the Fokker–Planck equation 𝜕𝑡𝜋𝑡 = ℒ
∗𝜋𝑡 and the form of the adjoint generator

ℒ
∗ for the Langevin diffusion (see Example 1.2.8), we obtain a truly remarkable fact: the law
(𝜋𝑡 )𝑡⩾0 of the Langevin diffusion with potential 𝑉 is the Wasserstein gradient flow of KL(· ∥ 𝜋).
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The calculus of optimal transport was introduced by Otto in Otto (2001), and it is often known as
Otto calculus; the interpretation of the Langevin diffusion in this context was put forth in the seminal
work Jordan et al. (1998). The paper Otto (2001) also raises and answers a salient question: given
that we can view dynamics as gradient flows in different ways (e.g. the Langevin diffusion can be
either viewed as the gradient flow of the Dirichlet energy in 𝐿2(𝜋), or the gradient flow of the KL
divergence in P2,ac(R𝑑)), what makes us prefer one gradient flow structure over another? Otto argues
that the Wasserstein geometry is particularly natural because it cleanly separates out two aspects
of the problem: the geometry of the ambient space, which is reflected in the metric on P2,ac(R𝑑),
and the objective functional. Moreover, the objective functional in the Wasserstein perspective is
physically intuitive because it has an interpretation in thermodynamics. From a sampling standpoint,
the Wasserstein geometry is undoubtedly more compelling and useful.

In our exposition, we focused on the calculation rules for Wasserstein gradient flows, but this is not
how they are normally defined. Instead, one usually considers a sequence of discrete approximations
to the gradient flow and proves that there is a limiting curve; this is called the minimizing movements
scheme and it is developed in detail in Ambrosio et al. (2008).

1.4.2 Convexity of the KL Divergence
The key to studying gradient flows is to understand the convexity properties of the objective functional.
For the specific functional F B KL(· ∥ 𝜋) with target 𝜋 = exp(−𝑉), our next goal is therefore to
compute the Wasserstein Hessian of F. When we computed Wasserstein gradients, we were free to
differentiate F along any curve (𝜇𝑡 )𝑡⩾0 of measures, but we have to be more careful when computing
the Hessian. If we take a function 𝑓 : R𝑑 → R on Euclidean space and a curve (𝑥𝑡 )𝑡⩾0, then
𝜕𝑡 𝑓 (𝑥𝑡 ) = ⟨∇ 𝑓 (𝑥𝑡 ), ¤𝑥𝑡⟩ and

𝜕2
𝑡 𝑓 (𝑥𝑡 ) = ⟨∇2 𝑓 (𝑥𝑡 ) ¤𝑥𝑡 , ¤𝑥𝑡⟩ + ⟨∇ 𝑓 (𝑥𝑡 ), ¥𝑥𝑡⟩ .

Here, instead of just obtaining the Hessian, we have an additional term. However, if 𝑡 ↦→ 𝑥𝑡 is a
constant-speed geodesic, then it has no acceleration (¥𝑥𝑡 = 0), and the extra term vanishes.

In the same way, let (𝜇𝑡 )𝑡∈[0,1] denote a Wasserstein geodesic. Explicitly, if 𝑇 denotes the optimal
transport map from 𝜇0 to 𝜇1, then 𝜇𝑡 = [(1 − 𝑡) id + 𝑡 𝑇]#𝜇0. We will calculate 𝜕2

𝑡 |𝑡=0F(𝜇𝑡 ), as a
function of the tangent vector𝑇− id ∈ 𝑇𝜇0P2,ac(R𝑑); this is interpreted as ⟨∇2

𝑊2
F(𝜇0) (𝑇− id), 𝑇− id⟩𝜇0 .

If we can lower bound this by 𝛼 ∥𝑇 − id∥2𝜇0
, for all 𝜇0 and all optimal transport maps 𝑇 , it means that

F is 𝛼-strongly convex.
Write E(𝜇) B

∫
𝑉 d𝜇 for the energy and H(𝜇) B

∫
𝜇 log 𝜇 for the entropy. We deal with the two

terms separately. First, for 𝑋𝑡 = (1 − 𝑡) 𝑋0 + 𝑡 𝑇 (𝑋0) and 𝑋0 ∼ 𝜇0,

𝜕𝑡E(𝜇𝑡 ) = 𝜕𝑡 E𝑉 (𝑋𝑡 ) = E⟨∇𝑉 (𝑋𝑡 ), ¤𝑋𝑡⟩ = E⟨∇𝑉 (𝑋𝑡 ), 𝑇 (𝑋0) − 𝑋0⟩ ,
𝜕2
𝑡

��
𝑡=0E(𝜇𝑡 ) = E⟨∇

2𝑉 (𝑋0) (𝑇 (𝑋0) − 𝑋0), 𝑇 (𝑋0) − 𝑋0⟩ .

If 𝑉 is 𝛼-strongly convex, then this is lower bounded by 𝛼 ∥𝑇 − id∥2𝜇0
, so that E is 𝛼-strongly convex.

The entropy is slightly trickier. Write 𝑇𝑡 B (1 − 𝑡) id + 𝑡 𝑇 . Since (𝑇𝑡 )#𝜇0 = 𝜇𝑡 , the change of
variables formula shows that

𝜇0

𝜇𝑡 ◦ 𝑇𝑡
= det∇𝑇𝑡 .
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Therefore,

H(𝜇𝑡 ) =
∫

𝜇𝑡 log 𝜇𝑡 =
∫

𝜇0 log(𝜇𝑡 ◦ 𝑇𝑡 ) =
∫

𝜇0 log
𝜇0

det∇𝑇𝑡
= H(𝜇0) −

∫
𝜇0 log det

(
(1 − 𝑡) 𝐼𝑑 + 𝑡 ∇𝑇

)
.

Already from the fact that − log det is convex on the space of positive semidefinite matrices, we
can see that 𝜕2

𝑡 H(𝜇𝑡 ) ⩾ 0. A more careful computation (Exercise 1.15) based on the derivatives of
− log det shows that

𝜕2
𝑡

��
𝑡=0H(𝜇𝑡 ) =

∫
∥∇𝑇 − 𝐼𝑑 ∥2HS d𝜇0 ⩾ 0 . (1.4.3)

We have obtained the following result.

Theorem 1.4.4 (Convexity of the KL divergence). If 𝜋 ∝ exp(−𝑉), where𝑉 is 𝛼-strongly convex,
then KL(· ∥ 𝜋) is also 𝛼-strongly convex along Wasserstein geodesics.

Consequences of strong convexity.
First, we describe consequences of strong convexity for gradient flows in general. Let (𝜇𝑡 )𝑡⩾0, (𝜈𝑡 )𝑡⩾0
denote gradient flows for a functional F which is minimized at 𝜇★. More generally, the discussion
here applies to gradient flows over Riemannian manifolds, with the appropriate change of definitions.
We refer to Chewi (2025) for a reference on the corresponding results for Euclidean gradient flows.

We begin with a preliminary fact.

Theorem 1.4.5 (Derivative of𝑊2). For 𝜈 ∈ P2,ac(R𝑑), the Wasserstein gradient of 𝜇 ↦→ 𝑊2
2 (𝜇, 𝜈)

at 𝜇 is given by −2 (𝑇𝜇→𝜈 − id).

Proof See Villani (2009b, Theorem 23.9). □

In general, on a Riemannian manifold, the gradient of d(·, 𝑞)2 at 𝑝 is −2 log𝑝 (𝑞). Check that this
formula makes sense on Euclidean space R𝑑 .

First, suppose that F is 𝛼-convex along Wasserstein geodesics; we allow 𝛼 < 0. Recall from Defini-
tion 1.3.26 that this is equivalent to the first-order condition

F(𝜈) ⩾ F(𝜇) + ⟨∇𝑊2F(𝜇), 𝑇𝜇→𝜈 − id⟩𝜇 +
𝛼

2
𝑊2

2 (𝜇, 𝜈) for all 𝜇, 𝜈 ∈ P2,ac(R𝑑) . (1.4.6)

We now justify the following facts.

• The gradient flow is contractive:3 for all 𝑡 ⩾ 0,

𝑊2(𝜇𝑡 , 𝜈𝑡 ) ⩽ exp(−𝛼𝑡)𝑊2(𝜇0, 𝜈0) .

See Exercise 1.17. In fact, contractivity is equivalent to 𝛼-convexity. When 𝜈0 = 𝜇★, then 𝜈𝑡 = 𝜇★
for all 𝑡 ⩾ 0, so this also yields convergence to the minimizer.

3“Contractive” is a misnomer when 𝛼 < 0.
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• The gradient flow converges in function value: for all 𝑡 ⩾ 0,

F(𝜇𝑡 ) − inf F ⩽
𝛼

2 (exp(𝛼𝑡) − 1) 𝑊
2
2 (𝜇0, 𝜇★) . (1.4.7)

In particular, for 𝛼 = 0, it yields

F(𝜇𝑡 ) − inf F ⩽
1
2𝑡
𝑊2

2 (𝜇0, 𝜇★) .

To justify this, we use Theorem 1.4.5 and (1.4.6) to obtain

𝜕𝑡𝑊
2
2 (𝜇𝑡 , 𝜇★) = 2 ⟨∇𝑊2F(𝜇𝑡 ), 𝑇𝜇𝑡→𝜇★ − id⟩𝜇𝑡 ⩽ −(F(𝜇𝑡 ) − inf F) − 𝛼𝑊2

2 (𝜇𝑡 , 𝜇★) .

By differentiating 𝑡 ↦→ exp(𝛼𝑡)𝑊2
2 (𝜇𝑡 , 𝜇★), one readily obtains (1.4.7).

Convexity is not necessary for the gradient flow to converge. It is always true that

𝜕𝑡 (F(𝜇𝑡 ) − inf F) = ⟨∇𝑊2F(𝜇𝑡 ), −∇𝑊2F(𝜇𝑡 )︸        ︷︷        ︸
tangent vector of the curve

⟩𝜇𝑡 = −∥∇𝑊2F(𝜇𝑡 )∥2𝜇𝑡 . (1.4.8)

Thus, 𝑡 ↦→ F(𝜇𝑡 ) is monotonically decreasing, and lower bounds on the gradient norm yield rates of
convergence. One such condition, known as a gradient domination condition, or a Polyak– Lojasiewicz
(P L) inequality, reads

∥∇𝑊2F(𝜇)∥2𝜇 ⩾ 2𝛼 (F(𝜇) − inf F) for all 𝜇 ∈ P2,ac(R𝑑) . (1.4.9)

• The functional F satisfies (1.4.9) if and only if

F(𝜇𝑡 ) − inf F ⩽ exp(−2𝛼𝑡) (F(𝜇0) − inf F)

for all gradient flows (𝜇𝑡 )𝑡⩾0 for F. This is a consequence of Grönwall’s lemma (Lemma 1.2.20).
• The condition (1.4.9) is implied by strong convexity: starting from (1.4.6), we take 𝜈 = 𝜇★, yielding

F(𝜇) − inf F ⩽ −⟨∇𝑊2F(𝜇), 𝑇𝜇→𝜇★ − id⟩𝜇 −
𝛼

2
𝑊2

2 (𝜇, 𝜇★) ⩽
1

2𝛼
∥∇𝑊2F(𝜇)∥2𝜇 ,

where the last line uses Young’s inequality and ∥𝑇𝜇→𝜇★ − id∥𝜇 = 𝑊2(𝜇, 𝜇★). However, (1.4.9) can
hold even if F is not strongly convex.
• To convert convergence in function value to closeness to the minimizer, we note that (1.4.9) implies

the following quadratic growth inequality for F around the minimizer:

F(𝜈) − inf F ⩾
𝛼

2
𝑊2

2 (𝜈, 𝜇★) for all 𝜈 ∈ P2,ac(R𝑑) . (1.4.10)

It is easy to show that strong convexity implies (1.4.10); simply take 𝜇 = 𝜇★ in (1.4.6), so that
∇𝑊2F(𝜇★) = 0. The proof of the stronger assertion—that (1.4.9) implies (1.4.10)—is sketched
as Exercise 1.16. In the case where F is not uniquely minimized, the right-hand side should be
replaced by 𝛼

2 inf𝜇★∈arg minF𝑊
2
2 (𝜈, 𝜇★).

Finally, when F satisfies neither strong convexity nor the P L condition, (1.4.8) still implies
convergence of the gradient norm:

inf
𝑡∈[0,𝑇 ]

∥∇𝑊2F(𝜇𝑡 )∥𝜇𝑡 ⩽
√︂

F(𝜇0) − inf F
𝑇

.

In some cases, this can be used as the basis of a soft argument that 𝜇𝑡 → 𝜇★.
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We now specialize these results to F = KL(· ∥ 𝜋) with 𝜇★ = 𝜋 ∝ exp(−𝑉). Let (𝜇𝑡 )𝑡⩾0, (𝜈𝑡 )𝑡⩾0
denote the marginal laws for two copies of the Langevin diffusion (1.0.1). Then, 𝛼-convexity of 𝑉
implies the bounds

𝑊2(𝜇𝑡 , 𝜈𝑡 ) ⩽ exp(−𝛼𝑡)𝑊2(𝜇0, 𝜈0) and KL(𝜇𝑡 ∥ 𝜋) ⩽
𝛼

2 (exp(𝛼𝑡) − 1) 𝑊
2
2 (𝜇0, 𝜋) .

In this setting, the first inequality is implied by the following theorem (see Exercise 1.17).

Theorem 1.4.11 (Contractivity of the Langevin diffusion). Suppose that ∇2𝑉 ⪰ 𝛼𝐼𝑑 for some
𝛼 ∈ R. If (𝑋𝑡 )𝑡⩾0 and (𝑋 ′𝑡 )𝑡⩾0 denote two copies of the Langevin diffusion (1.0.1) with potential
𝑉 and driven by the same Brownian motion, then we have the almost sure contraction

∥𝑋𝑡 − 𝑋 ′𝑡 ∥ ⩽ exp(−𝛼𝑡) ∥𝑋0 − 𝑋 ′0∥ .

On the other hand, in this setting, the second inequality above is not sharp. The following is true:

KL(𝜇𝑡 ∥ 𝜋) ⩽
𝛼

2 (exp(2𝛼𝑡) − 1) 𝑊
2
2 (𝜇0, 𝜋) . (1.4.12)

A proof of this inequality is sketched in Exercise 1.18 (see also Exercise 2.16, Exercise 3.4,
and Exercise 4.6). In the case 𝛼 = 0, it yields the convergence rate

KL(𝜇𝑡 ∥ 𝜋) ⩽
1
4𝑡
𝑊2

2 (𝜇0, 𝜋) . (1.4.13)

The P L inequality (1.4.9) specializes to

KL(𝜇 ∥ 𝜋) ⩽ 1
2𝛼

∇ log
𝜇

𝜋

2
𝜇
=

1
2𝛼

FI(𝜇 ∥ 𝜋) for all 𝜇 ∈ P2,ac(R𝑑) . (1.4.14)

This is precisely the log-Sobolev inequality (see Example 1.2.27); we have therefore recovered the
Bakry–Émery theorem (Theorem 1.2.30) that CD(𝛼,∞) implies LSI, as well as Theorem 1.2.26
which asserted that LSI yields exponentially fast decay in the KL divergence.

For the Langevin diffusion, the quadratic growth inequality (1.4.10) reads

KL(𝜇 ∥ 𝜋) ⩾ 𝛼
2
𝑊2

2 (𝜇, 𝜋) for all 𝜇 ∈ P2,ac(R𝑑) . (1.4.15)

This is known as Talagrand’s T2 inequality and it is an example of a transport inequality. Such
inequalities have been closely studied in relation to the concentration of measure phenomenon. See
Chapter 2 and van Handel (2016, Chapter 4) for more details. The fact that LSI implies the T2
inequality, which is a consequence of Exercise 1.16, is known as the Otto–Villani theorem (Otto and
Villani, 2000).

1.5 Overview of the Convergence Results
1.5.1 Convergence Results and Initialization

The main convergence results we have developed can be summarized as follows.

• KL(· ∥ 𝜋) is 𝛼-strongly convex along 𝑊2 geodesics if and only if 𝑉 is 𝛼-strongly convex, if and
only if: for all 𝜇0, 𝜈0 ∈ P2(R𝑑), if (𝜇𝑡 )𝑡⩾0, (𝜈𝑡 )𝑡⩾0 are Langevin diffusions started at 𝜇0 and 𝜈0
respectively, then𝑊2

2 (𝜇𝑡 , 𝜈𝑡 ) ⩽ exp(−2𝛼𝑡)𝑊2
2 (𝜇0, 𝜈0).



1.5 Overview of the Convergence Results 37

Moreover, in this case, KL(𝜇𝑡 ∥ 𝜋) ⩽ 𝛼𝑊2
2 (𝜇0, 𝜋)/(2 (exp(2𝛼𝑡) − 1)), which then reduces to

KL(𝜇𝑡 ∥ 𝜋) ⩽ 𝑊2
2 (𝜇0, 𝜋)/(4𝑡) for 𝛼 = 0.

• The target 𝜋 satisfies the log-Sobolev inequality (LSI) with constant 1/𝛼 if and only if for all
𝜇0 ∈ P2,ac(R𝑑), along the Langevin dynamics (𝜇𝑡 )𝑡⩾0 started at 𝜇0 it holds that KL(𝜇𝑡 ∥ 𝜋) ⩽
exp(−2𝛼𝑡) KL(𝜇0 ∥ 𝜋). The LSI is a gradient domination condition in Wasserstein space.

• The target 𝜋 satisfies the Poincaré inequality (PI) with constant 1/𝛼 if and only if for all
𝜇0 ∈ P2,ac(R𝑑), along the Langevin dynamics (𝜇𝑡 )𝑡⩾0 started at 𝜇0 it holds that 𝜒2(𝜇0 ∥ 𝜋) ⩽
exp(−2𝛼𝑡) 𝜒2(𝜇0 ∥ 𝜋). The Poincaré inequality is a spectral gap condition for the generator of the
Langevin diffusion.

The conditions are listed from strongest to weakest: 𝛼-strong log-concavity implies 𝛼−1-LSI, which
implies 𝛼−1-PI. We also present convergence results which hold in Rényi divergences in Section 2.2.5.

In order to interpret these results, it is helpful to compare the sizes of these quantities to each other
and at initialization.

Lemma 1.5.1 (Comparison between divergences). For any 𝜇 ≪ 𝜋,

2 ∥𝜇 − 𝜋∥2TV ⩽ KL(𝜇 ∥ 𝜋) ⩽ log(1 + 𝜒2(𝜇 ∥ 𝜋)) ⩽ 𝜒2(𝜇 ∥ 𝜋) ,

where ∥·∥TV is the total variation distance, introduced in Definition 1.5.4.

Proof The first inequality is known as Pinsker’s inequality. The second inequality is a special case
of Exercise 2.8, and the last inequaltiy follows from log(1 + 𝑥) ⩽ 𝑥 for 𝑥 ⩾ 0. □

In the strongly log-concave case, the following initialization bound holds.

Lemma 1.5.2 (Chi-squared divergence at initialization). Let 𝜋 ∝ exp(−𝑉) be such that 0 ≺
𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and 𝜅 B 𝛽/𝛼. Then, if 𝑥★ denotes the mode of 𝜋 and 𝜇0 B normal(𝑥★, 𝛽−1𝐼𝑑),

log(1 + 𝜒2(𝜇0 ∥ 𝜋)) ⩽
𝑑

2
log 𝜅 .

By Lemma 1.5.1, it implies that KL(𝜇0 ∥ 𝜋) ⩽ 𝑑

2 log 𝜅. Recall that under a T2 transport inequality
with constant 𝛼−1 (which is implied by 𝛼−1-LSI) we have KL ⩾ 𝛼

2 𝑊
2
2 , so this further implies

𝑊2
2 (𝜇0, 𝜋) ⩽ (𝑑/𝛼) log 𝜅. This inequality can be sharpened slightly.

Lemma 1.5.3 (Wasserstein distance at initialization). Let 𝜋 ∝ exp(−𝑉) be such that 0 ⪯ 𝛼𝐼𝑑 ⪯
∇2𝑉 . Let 𝑥★ denote the mode of 𝜋. Then, for any 𝜇0 with mean 𝑚 and covariance Σ,

𝑊2
2 (𝜇0, 𝜋) ⩽

𝑑

𝛼
+ trΣ + ∥𝑚 − 𝑥★∥

(
∥𝑚 − 𝑥★∥ + 2

√︂
𝑑

𝛼

)
,
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Proof Let 𝑋0 ∼ 𝜇0 and 𝑍 ∼ 𝜋 be indepedent. Then,

𝑊2
2 (𝜇0, 𝜋) ⩽ E[∥𝑋0 − 𝑍 ∥2] = E[∥𝑋0 − 𝑚 + 𝑚 − 𝑥★ + 𝑥★ − 𝑍 ∥2]

= E[∥𝑋0 − 𝑚∥2 + ∥𝑚 − 𝑥★∥2 + ∥𝑍 − 𝑥★∥2 − 2 ⟨𝑚 − 𝑥★, 𝑍 − 𝑥★⟩]

⩽ E[∥𝑍 − 𝑥★∥2] + trΣ + ∥𝑚 − 𝑥★∥
(
∥𝑚 − 𝑥★∥ + 2

√︁
E[∥𝑍 − 𝑥★∥2]

)
⩽
𝑑

𝛼
+ trΣ + ∥𝑚 − 𝑥★∥

(
∥𝑚 − 𝑥★∥ + 2

√︂
𝑑

𝛼

)
,

where the bound on E[∥𝑍 − 𝑥★∥2] follows from Lemma 4.0.1. □

In particular, for 𝜇0 = 𝛿𝑥★ , it yields𝑊2
2 (𝛿𝑥★ , 𝜋) ⩽ 𝑑/𝛼.

Therefore, at initialization, we typically have 𝑊2
2 (𝜇0, 𝜋), KL(𝜇0 ∥ 𝜋) = 𝑂 (𝑑) (at least when 𝜋 is

strongly log-concave). Hence, exponential convergence in 𝑊2
2 and KL both imply that the amount

of time it takes for the Langevin diffusion to reach 𝜀 error is 𝑂 (log(𝑑/𝜀)). In contrast, the chi-
squared divergence is typically much larger at initialization: 𝜒2(𝜋0 ∥ 𝜋) = exp(𝑂 (𝑑)). Therefore, the
chi-squared result implies that the Langevin diffusion takes 𝑂 (𝑑 ∨ log(1/𝜀)) time to reach 𝜀 error.

When we study discretization in Chapter 4, the𝑊2 contraction under strong log-concavity is the
easiest to turn into a sampling guarantee. This is because to bound the 𝑊2 distance, we can use
straightforward coupling techniques. On the other hand, a continuous-time result in KL or 𝜒2 often
requires the discretization analysis to also be carried out in KL or 𝜒2, which is substantially trickier.

For more general initialization results, see Chewi et al. (2024a, Appendix A).

1.5.2 Appendix: Divergences between Probability Measures
As we have already seen, the analysis of Langevin introduces many different notions of divergences
between probability measures. Therefore, it is important to develop a healthy understanding of the
relationships between these divergences.

First of all, there is a distinction between the Wasserstein metric, which is a transport distance
(measuring how far we must move the mass of one measure to the other), and information divergences
which are defined directly in terms of the densities such as the KL divergence and the chi-squared
divergence. Note that the latter two divergences are infinite unless the first argument is absolutely
continuous w.r.t. the second, which is certainly not the case for the Wasserstein metric.

We introduce another important metric.

Definition 1.5.4. The total variation (TV) distance between probability measures 𝜇, 𝜈 ∈ P(X)
is defined via

∥𝜇 − 𝜈∥TV B sup
𝐴⊆X
|𝜇(𝐴) − 𝜈(𝐴) | = sup

𝑓 :X→[0,1]

���∫ 𝑓 d𝜇 −
∫

𝑓 d𝜈
���

= inf
𝛾∈C(𝜇,𝜈)

∫
1{𝑥 ≠ 𝑦} 𝛾(d𝑥, d𝑦) = 1

2

∫ ��d𝜇
d𝜆
− d𝜈

d𝜆
�� d𝜆 ,

where 𝜆 is a common dominating measure for 𝜇 and 𝜈.

The TV metric is indeed a metric on the space P(X) (in fact, it can be extended to a norm on
the spaceM(X) of signed measures). The TV distance can be thought of as both a transport metric



1.5 Overview of the Convergence Results 39

(with cost (𝑥, 𝑦) ↦→ 1{𝑥 ≠ 𝑦}; in fact, the TV distance is a special case of the𝑊1 metric introduced
in Exercise 1.10) and an information divergence.

The family of information divergences can be further expanded as follows.

Definition 1.5.5. Let 𝜇, 𝜈 ∈ P(X), and let 𝑓 : R+ → R be a convex function with 𝑓 (1) = 0.
Then, the 𝑓 -divergence of 𝜇 relative to 𝜈 is

D 𝑓 (𝜇 ∥ 𝜈) B
∫

𝑓
(d𝜇
d𝜈

)
d𝜈 , if 𝜇 ≪ 𝜈 .

In general, if 𝜇 3 𝜈, we let 𝑝𝜇, 𝑝𝜈 denote the respective densities of 𝜇 and 𝜈 w.r.t. a common
dominating measure. Then,

D 𝑓 (𝜇 ∥ 𝜈) B
∫
𝑝𝜈>0

𝑓
( 𝑝𝜇
𝑝𝜈

)
d𝜈 + 𝑓 ′ (∞) 𝜇{𝑝𝜈 = 0} .

For example, the TV distance corresponds to 𝑓 (𝑥) = 1
2 |𝑥 − 1|, the KL divergence corresponds to

𝑓 (𝑥) = 𝑥 log 𝑥, and the 𝜒2 divergence corresponds to 𝑓 (𝑥) = (𝑥 − 1)2. When 𝑓 has superlinear growth,
then 𝑓 ′ (∞) = ∞ and hence D 𝑓 (𝜇 ∥ 𝜈) = ∞ unless 𝜇 ≪ 𝜈, but the second more general definition
given above is necessary to recover the TV distance.

In Section 2.2.5, we will introduce the closely related family of Rényi divergences.
We conclude by stating a few key facts (without complete proofs) about 𝑓 -divergences. The first is

the data-processing inequality. Below, given a Markov kernel 𝑃 and a mixing measure 𝜇, we write
𝜇𝑃 B

∫
𝑃(𝑥, ·) 𝜇(d𝑥) for the mixture distribution.

Theorem 1.5.6 (Data-processing inequality). Suppose that 𝜇, 𝜈 ∈ P(X) and that 𝑃 is any
Markov kernel. Then, for any 𝑓 -divergence, it holds that

D 𝑓 (𝜇𝑃 ∥ 𝜈𝑃) ⩽ D 𝑓 (𝜇 ∥ 𝜈) .

Equivalently, D 𝑓 (· ∥ ·) is jointly convex in its two arguments.

Proof sketch To simplify, we will abuse notation and identify all probability measures with densities.
Then, by Jensen’s inequality,

D 𝑓 (𝜇 ∥ 𝜈) =
∬

𝑓
( 𝜇(𝑥) 𝑃(𝑥, 𝑦)
𝜈(𝑥) 𝑃(𝑥, 𝑦)

)
𝜈(d𝑥) 𝑃(𝑥, d𝑦)

=

∬
𝑓
( 𝜇(𝑥) 𝑃(𝑥, 𝑦)
𝜈(𝑥) 𝑃(𝑥, 𝑦)

) 𝜈(d𝑥) 𝑃(𝑥, 𝑦)
𝜈𝑃(𝑦) 𝜈𝑃(d𝑦)

⩾

∫
𝑓

(∫ 𝜇(𝑥) 𝑃(𝑥, 𝑦)
𝜈(𝑥) 𝑃(𝑥, 𝑦)

𝜈(d𝑥) 𝑃(𝑥, 𝑦)
𝜈𝑃(𝑦)

)
𝜈𝑃(d𝑦) =

∫
𝑓
( 𝜇𝑃(𝑦)
𝜈𝑃(𝑦)

)
𝜈𝑃(d𝑦) .

To prove joint convexity, let 𝜆 ∈ (0, 1) and 𝑍 ∼ Bernoulli(𝜆). Let 𝜇0, 𝜇1, 𝜈0, 𝜈1 ∈ P(X). Under 𝝁,
let 𝑋 be drawn from 𝜇𝑍 , and under 𝝂, let 𝑋 be drawn from 𝜈𝑍 . Then,

D 𝑓

(
law𝝁 (𝑋, 𝑍)

 law𝝂 (𝑋, 𝑍)
)
= (1 − 𝜆) D 𝑓 (𝜇0 ∥ 𝜈0) + 𝜆D 𝑓 (𝜇1 ∥ 𝜈1) .

Also, D 𝑓 (law𝝁 (𝑋, 𝑍) ∥ law𝝂 (𝑋, 𝑍)) ⩾ D 𝑓 (law𝝁 (𝑋) ∥ law𝝂 (𝑋)) by the data-processing inequality,
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where we note that

D 𝑓 (law𝝁 (𝑋) ∥ law𝝂 (𝑋)) = D 𝑓

(
(1 − 𝜆) 𝜇0 + 𝜆 𝜇1

 (1 − 𝜆) 𝜈0 + 𝜆 𝜈1
)
. □

The remaining facts are specific to the KL divergence. The Donsker–Varadhan theorem expresses
the KL divergence via a variational principle.

Theorem 1.5.7 (Donsker–Varadhan variational principle). Suppose that 𝜇, 𝜈 ∈ P(X), where X

is a Polish space. Then,

KL(𝜇 ∥ 𝜈) = sup
{
E𝜇 𝑔 − logE𝜈 exp 𝑔

�� 𝑔 : X→ R is bounded and measurable
}
.

The theorem asserts that the functionals 𝜇 ↦→ KL(𝜇 ∥ 𝜈) and 𝑔 ↦→ logE𝜈 exp 𝑔 are convex conjugates
of each other. See Dembo and Zeitouni (2010, Lemma 6.2.13) or Rassoul-Agha and Seppäläinen
(2015, Theorem 5.4) for careful proofs, or see the remark after Lemma 2.3.5.

Lastly, we have the chain rule for the KL divergence.

Lemma 1.5.8 (Chain rule for KL divergence). Let X1, X2 be Polish spaces and suppose we are
given two probability measures 𝜇, 𝜈 ∈ P(X1 × X2) with 𝜇 ≪ 𝜈. Let 𝜇1 be the X1 marginal of 𝜇,
and let 𝜇2 |1(· | ·) be the conditional distribution for 𝜇 on X2 conditioned on X1; likewise define
𝜈1 and 𝜈2 |1. Then, it holds that

KL(𝜇 ∥ 𝜈) = KL(𝜇1 ∥ 𝜈1) +
∫

KL
(
𝜇2 |1(· | 𝑥1)

 𝜈2 |1(· | 𝑥1)
)
𝜇1(d𝑥1) .

We invite the reader to prove the chain rule in the discrete case (X1 and X2 are finite sets), free of
measure-theoretic guilt.

Bibliographical Notes
Much of the material in this chapter is foundational, with entire textbooks giving comprehensive
treatments of the topics. For stochastic calculus, there is of course a long list of textbooks, but as a
starting place we suggest Steele (2001); Le Gall (2016). For Markov semigroup theory, see Bakry
et al. (2014); van Handel (2016). For optimal transport, the core theory is developed in Villani
(2003); Santambrogio (2015); Chewi et al. (2025), and for a rigorous development of Otto calculus
see Ambrosio et al. (2008); Villani (2009b).

The notion of solution used in Section 1.1.3 is more typically called a strong solution to the SDE,
because given any Brownian motion 𝐵 we can find a process 𝑋 which is driven by 𝐵 and which
satisfies the SDE. There is also a notion of weak solution, in which we are allowed to construct the
probability space (Ω,ℱ, (ℱ𝑡 )𝑡⩾0, P) and the Brownian motion 𝐵 together with the solution 𝑋 . We
will not worry about the distinction in this book, since strong solutions suffice for our purposes.

In accordance with most of the literature, we refer to the last conclusion of Theorem 1.3.8 as
Brenier’s theorem, after Brenier (1991). However, see also the earlier work of Cuesta and Matrán
(1989). An elegant direct proof of strong duality can be found in Santambrogio (2015, Section 1.6.3).

The perspective of the Langevin diffusion as a Wasserstein gradient flow was introduced in Jordan
et al. (1998); the application of Otto calculus to functional inequalities was given in Otto and Villani
(2000); and the calculation rules for Otto calculus were set out in Otto (2001). These three papers
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are seminal and are worth reading carefully. An alternative (but related) approach to functional
inequalities via optimal transport is given in Cordero-Erausquin (2002). The use of P L inequalities in
optimizaton was popularized by Karimi et al. (2016). The formal proof of the Otto–Villani theorem
in Exercise 1.16 was made rigorous via entropic interpolations in Gentil et al. (2020); see Blanchet
and Bolte (2018) for a generalization.

The Efron–Stein inequality in Exercise 1.1 is just one example of the use of martingales to derive
concentration inequalities; see Boucheron et al. (2013); van Handel (2016) for more on this topic.

The upper bound (1.E.2) in Exercise 1.9 is surprisingly sharp: it holds that

1
2
∥Σ1/2

0 − Σ
1/2
1 ∥

2
HS ⩽ 𝑊

2
2 (𝜇0, 𝜇1) − ∥𝑚0 − 𝑚1∥2 ⩽ ∥Σ1/2

0 − Σ
1/2
1 ∥

2
HS ,

see Carrillo and Vaes (2021, Lemma 3.5).
The proof of the dynamical formulation of dual optimal transport in Exercise 1.11 is carried

out rigorously in Villani (2003, Section 8.1). We mention that the Hamilton–Jacobi equation has a
close connection with classical mechanics; in particular, the characteristics of the Hamilton–Jacobi
equation are precisely Hamilton’s equations of motion (Evans, 2010, Section 3.3). In the context of
optimal transport, the Hamiltonian consists only of kinetic energy (no potential energy) and hence the
characteristics are straight lines traversed at constant speed; this is consistent with the description of
Wasserstein geodesics. The Hamilton–Jacobi equation, the Hopf–Lax semigroup, and their connection
with optimal transport can also be generalized to other costs; see Villani (2003, Section 5.4).

The proof of the sharp KL convergence bound in Exercise 1.18 was carried out for 𝛼 = 0 in Otto
and Villani (2001), and for 𝛼 > 0 in Liang et al. (2024).

Exercises
A Primer on Stochastic Calculus

⊵ Exercise 1.1 (Orthogonality of martingale increments)
Let (𝑀𝑛)𝑛∈N be a discrete-time martingale which is adapted to a filtration (ℱ𝑛)𝑛∈N and satisfies
E[𝑀2

𝑛] < ∞ for all 𝑛 ∈ N. Let Δ𝑛 B 𝑀𝑛+1 − 𝑀𝑛 denote the martingale increment.

1 Prove that for 𝑚, 𝑛 ∈ N with 𝑚 ≠ 𝑛, E[Δ𝑚Δ𝑛] = 0: the martingale increments are orthogonal. In
particular, if 𝑀0 = 0, then E[𝑀2

𝑛] =
∑𝑛−1
𝑘=0 E[Δ2

𝑘
].

2 Let (𝑋𝑖)𝑛𝑖=1 be independent random variables taking values in some space X, and suppose that
the function 𝑓 : X𝑛 → R is bounded and measurable. Check that if 𝑀𝑘 B E[ 𝑓 (𝑋1, . . . , 𝑋𝑛) |
𝑋1, . . . , 𝑋𝑘], then the Doob martingale (𝑀𝑘)𝑛𝑘=1 is indeed a martingale. Then, using the previous
part, prove the following tensorization property of the variance:

var 𝑓 (𝑋1, . . . , 𝑋𝑛) ⩽ E
𝑛∑︁
𝑘=1

var
(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑘 ) ,
where 𝑋−𝑘 B (𝑋1, . . . , 𝑋𝑘−1, 𝑋𝑘+1, . . . , 𝑋𝑛).

3 Define the discrete derivative

𝐷𝑘 𝑓 (𝑥) B sup
𝑥′
𝑘
∈X
𝑓 (𝑥1, . . . , 𝑥𝑘−1, 𝑥

′
𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑛) − inf

𝑥′
𝑘
∈X
𝑓 (𝑥1, . . . , 𝑥𝑘−1, 𝑥

′
𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑛) .
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Prove the inequality

var 𝑓 (𝑋1, . . . , 𝑋𝑛) ⩽
1
4
E

𝑛∑︁
𝑘=1

{𝐷𝑘 𝑓 (𝑋1, . . . , 𝑋𝑛)}2 .

This inequality, known as the Efron–Stein inequality, expresses the fact that a function 𝑓 of
independent random variables which is not too sensitive to any individual coordinate has controlled
variance. This is a concentration inequality which has useful consequences in many probabilistic
settings, see, e.g., Boucheron et al. (2013).

Hint: First prove that a random variable which takes values in [𝑎, 𝑏] has variance bounded by
1
4 (𝑏 − 𝑎)

2.

⊵ Exercise 1.2 (Explosion of ODEs)
Solve the following ODE on R: ¤𝑥𝑡 = 𝑏(𝑥𝑡 ) with initial condition 𝑥0 ∈ R, where 𝑏(𝑥) = |𝑥 |𝛼, 𝛼 > 0.
Show that

1 when 0 < 𝛼 < 1, there are multiple solutions to the ODE (with initial condition 𝑥0 = 0) so that
uniqueness fails;

2 when 𝛼 = 1 (and hence 𝑏 is globally Lipschitz), there is a unique solution to the ODE which is
finite for all time;

3 when 𝛼 > 1, then the solution to the ODE blows up in finite time.

⊵ Exercise 1.3 (Ornstein–Uhlenbeck process)
One of the most important diffusions that we will encounter is the Ornstein–Uhlenbeck (OU) process,
which solves the SDE

d𝑋𝑡 = −𝑋𝑡 d𝑡 +
√

2 d𝐵𝑡 .

Give an explicit expression for 𝑋𝑡 in terms of 𝑋0 and an Itô integral involving (𝐵𝑡 )𝑡⩾0. From this
expression, can you read off the stationary distribution of this process?

Hint: Apply Itô’s formula to 𝑓 (𝑡, 𝑋𝑡 ) = 𝑋𝑡 exp 𝑡. To find the stationary distribution, justify the
following fact: if (𝜂𝑡 )𝑡⩾0 is a deterministic function, then

∫ 𝑇
0 𝜂𝑡 d𝐵𝑡 is a Gaussian with mean zero and

variance
∫ 𝑇

0 𝜂2
𝑡 d𝑡.

Markov Semigroup Theory
⊵ Exercise 1.4 (Generator for general SDEs)
Compute the generator for a general time-homogeneous SDE d𝑋𝑡 = 𝑏(𝑋𝑡 ) d𝑡 + 𝜎(𝑋𝑡 ) d𝐵𝑡 .

⊵ Exercise 1.5 (Basic properties of the Markov semigroup)
Let (𝑃𝑡 )𝑡⩾0 be a Markov semigroup with carré du champ Γ.

1 Prove that if 𝜙 : R→ R is convex, then 𝑃𝑡𝜙( 𝑓 ) ⩾ 𝜙(𝑃𝑡 𝑓 ) and ℒ𝜙( 𝑓 ) ⩾ 𝜙′ ( 𝑓 )ℒ 𝑓 whenever the
expressions are well-defined.

2 If (𝑋𝑡 )𝑡⩾0 denotes the Markov process associated with the semigroup, assumed to have continuous
sample paths, and 𝑓 is smooth, then the process 𝑡 ↦→ 𝑓 (𝑋𝑡 ) −

∫ 𝑡
0 ℒ 𝑓 (𝑋𝑠) d𝑠 is a continuous local

martingale. In particular, ( 𝑓 (𝑋𝑡 ))𝑡⩾0 is a continuous local martingale if and only if ℒ 𝑓 = 0.
3 Prove that for 𝑓 , 𝑔 ∈ 𝐿2(𝜋) in the domain of the carré du champ, we have the Cauchy–Schwarz

inequality Γ( 𝑓 , 𝑔) ⩽
√︁
Γ( 𝑓 , 𝑓 ) Γ(𝑔, 𝑔).
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Hint: For 𝜆 ∈ R, consider 0 ⩽ Γ( 𝑓 + 𝜆𝑔, 𝑓 + 𝜆𝑔) and use bilinearity.

⊵ Exercise 1.6 (Functional inequalities and exponential decay)
Prove the equivalence between the Poincaré inequality and exponential decay of variance (Theo-
rem 1.2.22), and the equivalence between the log-Sobolev inequality and exponential decay of entropy
(Theorem 1.2.26).

⊵ Exercise 1.7 (Log-Sobolev implies Poincaré)
Linearize the log-Sobolev inequality to obtain the Poincaré inequality.

Hint: Argue that if 𝑓 ∈ C∞c (R𝑑) satisfies
∫
𝑓 d𝜋 = 0, then

KL
(
(1 + 𝜀 𝑓 ) 𝜋

 𝜋) = 𝜀2

2

∫
𝑓 2 d𝜋 + 𝑜(𝜀2) . (1.E.1)

⊵ Exercise 1.8 (Mixing of the Ornstein–Uhlenbeck process)
Consider the Ornstein–Uhlenbeck process (𝑋𝑡 )𝑡⩾0 introduced in Exercise 1.3. Note that this is just an
instance of the Langevin diffusion with potential 𝑉 (𝑥) = ∥𝑥 ∥2

2 .

1 Using the explicit solution of the OU process, show that the semigroup has the explicit expression

𝑃𝑡 𝑓 (𝑥) = E 𝑓
(
exp(−𝑡) 𝑥 +

√︁
1 − exp(−2𝑡) 𝜉

)
, 𝜉 ∼ normal(0, 𝐼𝑑) .

Using this expression for the semigroup, compute the generator by hand and check that it agrees
with the general formula obtained in Example 1.2.4.

2 Show that for the OU process, ∇𝑃𝑡 𝑓 = exp(−𝑡) 𝑃𝑡∇ 𝑓 . Next, show that

ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ⩽ exp(−2𝑡)ℰ( 𝑓 , 𝑓 ) .

Explain why this implies a Poincaré inequality for the standard Gaussian distribution.
Hint: For a general Markov semigroup, show that var𝜋 𝑓 = 2

∫ ∞
0 ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝑡 by differentiating

𝑡 ↦→ var𝜋 (𝑃𝑡 𝑓 ).

In Chapter 2, we will generalize these calculations to prove Theorem 1.2.30.

The Geometry of Optimal Transport
⊵ Exercise 1.9 (Optimal transport between Gaussians)
Let 𝜇0 B normal(𝑚0, Σ0) and 𝜇1 B normal(𝑚1, Σ1); assume that Σ0 ≻ 0. Compute the optimal
transport map from 𝜇0 to 𝜇1, as well as the cost𝑊2(𝜇0, 𝜇1). [By Brenier’s theorem, it suffices to find
the gradient of a convex function which pushes forward 𝜇0 to 𝜇1.]

Also, exhibit a coupling to prove the upper bound

𝑊2
2 (𝜇0, 𝜇1) ⩽ ∥𝑚0 − 𝑚1∥2 + ∥Σ1/2

0 − Σ
1/2
1 ∥

2
HS . (1.E.2)

Finally, suppose that 𝜈0, 𝜈1 are probability measures, and suppose that 𝜇0, 𝜇1 are Gaussians whose
means and covariances match those of 𝜈0 and 𝜈1 respectively. Then, prove that𝑊2(𝜈0, 𝜈1) ⩾ 𝑊2(𝜇0, 𝜇1).

Hint: For the last statement, use the fact that the dual potentials for optimal transport between
Gaussians are quadratic functions.

⊵ Exercise 1.10 (Optimal transport with other costs)
In this exercise, we consider optimal transport with a general cost function 𝑐 as in (1.3.2).
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1 By following the proof of Theorem 1.3.8, argue that if optimal dual potentials ( 𝑓 , 𝑔) exist, they can
be taken to be 𝑐-conjugates, i.e., 𝑓 = 𝑔𝑐 and 𝑔 = 𝑓 𝑐 where

𝑔𝑐 (𝑥) B inf
𝑦∈Y
{𝑐(𝑥, 𝑦) − 𝑔(𝑦)} , 𝑓 𝑐 (𝑦) B inf

𝑥∈X
{𝑐(𝑥, 𝑦) − 𝑓 (𝑥)} , (1.E.3)

and that

T𝑐 (𝜇, 𝜈) ⩾ sup
𝑓 ∈𝐿1 (𝜇)

{∫
𝑓 d𝜇 +

∫
𝑓 𝑐 d𝜈

}
.

Under general conditions, equality holds; see Villani (2009b, Theorem 5.10).
Functions of the form (1.E.3) are called 𝑐-concave.

2 Let X = Y be a metric space with metric d. For all 𝑝 ⩾ 1, we can define the 𝑝-Wasserstein distance

𝑊 𝑝
𝑝 (𝜇, 𝜈) = inf

𝛾∈C(𝜇,𝜈)

∫
d(𝑥, 𝑦) 𝑝 𝛾(d𝑥, d𝑦) .

Let P𝑝 (X) denote the space of probability measures 𝜇 over X such that for some 𝑥0 ∈ X,∫
d(𝑥0, ·) 𝑝 d𝜇 < ∞. Show that (P𝑝 (X),𝑊𝑝) is a metric space.

3 In the case 𝑝 = 1, show that if ( 𝑓 , 𝑔) are d-conjugates, then 𝑓 = −𝑔 and 𝑓 is 1-Lipschitz. Deduce
the duality formula

𝑊1(𝜇, 𝜈) = sup
{∫

𝑓 d𝜇 −
∫

𝑓 d𝜈
��� 𝑓 : X→ R is 1-Lipschitz

}
. (1.E.4)

⊵ Exercise 1.11 (Dynamical formulations of optimal transport)
The formula (1.3.24) shows that the 𝑊2 distance between 𝜇0 and 𝜇1 equals the smallest arc length
of any curve joining 𝜇0 and 𝜇1. It is also true that the squared𝑊2 distance minimizes the energy or
action of any curve joining 𝜇0 and 𝜇1, in the following sense:

𝑊2
2 (𝜇0, 𝜇1) = inf

{∫ 1

0
∥𝑣𝑡 ∥2𝐿2 (𝜇𝑡 ) d𝑡

��� 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0
}
. (1.E.5)

Although the problems (1.3.24) and (1.E.5) both identify geodesics in the Wasserstein space, the latter
problem has more favorable properties. Namely, the minimizing curves in (1.3.24) are geodesics,
but they may not have constant speed (indeed, the arc length functional is invariant under time
reparameterization of the curve); in contrast, minimizing curves in (1.E.5) necessarily have constant
speed. Also, we can reparameterize problem (1.E.5) by introducing the momentum density 𝑝𝑡 B 𝜇𝑡𝑣𝑡
and write

𝑊2
2 (𝜇0, 𝜇1) = inf

{∫ 1

0

(∫ ∥𝑝𝑡 ∥2
𝜇𝑡

)
d𝑡

��� 𝜕𝑡𝜇𝑡 + div 𝑝𝑡 = 0
}
, (1.E.6)

which is now a strictly convex problem in the variables (𝜇, 𝑝). This convenient reformulation is known
as the Benamou–Brenier formula (Benamou and Brenier, 1999).

Just as (1.E.5) describes the dynamical version of the static optimal transport problem (1.3.5), there
is a dynamical formulation of the dual optimal transport problem (1.3.7), in which the dual potential
evolves according to the Hamilton–Jacobi equation

𝜕𝑡𝑢𝑡 +
1
2
∥∇𝑢𝑡 ∥2 = 0 . (1.E.7)
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Then, it holds that

1
2
𝑊2

2 (𝜇0, 𝜇1) = sup
{∫

𝑢1 d𝜇1 −
∫

𝑢0 d𝜇0

��� 𝜕𝑡𝑢𝑡 + 1
2
∥∇𝑢𝑡 ∥2 = 0

}
. (1.E.8)

The goal of this exercise is to justify and understand these facts.

1 Show that the mapping R>0 × R𝑑 → R, (𝜇, 𝑝) ↦→ ∥𝑝∥2/𝜇 is strictly convex. Also, compute the
convex conjugate of this mapping. Deduce that the Benamou–Brenier reformulation (1.E.6) is a
strictly convex problem.

2 Ignoring issues of regularity, show that the solution 𝑢𝑡 of the Hamilton–Jacobi equation with initial
condition 𝑢0 = 𝑓 is described by the Hopf–Lax semigroup

𝑢𝑡 (𝑥) = 𝑄𝑡 𝑓 (𝑥) B inf
𝑦∈R𝑑

{
𝑓 (𝑦) + 1

2𝑡
∥𝑦 − 𝑥∥2

}
.

3 Following the proof of Theorem 1.3.8, show that the dual optimal transport problem (1.3.7) can be
written

1
2
𝑊2

2 (𝜇0, 𝜇1) = sup
𝑓 ∈𝐿1 (𝜇0 )

{∫
𝑄1 𝑓 d𝜇1 −

∫
𝑓 d𝜇0

}
,

where 𝑄1 denotes the Hopf–Lax semigroup at time 1. From this, deduce that the formula (1.E.8)
holds.

4 Although the previous part gives a proof of the dynamical formulation (1.E.8), it is unsatisfactory
because it only involves an analysis of the static primal and dual problems. Here, we present a
purely dynamical proof. The continuity constraint 𝜕𝑡𝜇𝑡 + div 𝑝𝑡 = 0 in (1.E.6) can be reformulated
as follows: for any curve of functions [0, 1] × R𝑑 → R, (𝑡, 𝑥) ↦→ 𝑢𝑡 (𝑥),∫

𝑢1 d𝜇1 −
∫

𝑢0 d𝜇0 =

∫ 1

0

(
𝜕𝑡

∫
𝑢𝑡 d𝜇𝑡

)
d𝑡 =

∫ 1

0

(∫
(𝜕𝑡𝑢𝑡 𝜇𝑡 + 𝑢𝑡 𝜕𝑡𝜇𝑡 )

)
d𝑡

=

∫ 1

0

(∫ (
𝜕𝑡𝑢𝑡 +

〈
∇𝑢𝑡 ,

𝑝𝑡

𝜇𝑡

〉)
d𝜇𝑡

)
d𝑡 .

This can be incorporated as a Lagrange multiplier in (1.E.6):

1
2
𝑊2

2 (𝜇0, 𝜇1) = inf
𝜇:[0,1]×R𝑑→R+
𝑝:[0,1]×R𝑑→R𝑑

sup
𝑢:[0,1]×R𝑑→R

{∫ 1

0

∫ ∥𝑝𝑡 ∥2
2𝜇𝑡

d𝑡 +
∫

𝑢1 d𝜇1 −
∫

𝑢0 d𝜇0

−
∫ 1

0

(∫ (
𝜕𝑡𝑢𝑡 +

〈
∇𝑢𝑡 ,

𝑝𝑡

𝜇𝑡

〉)
d𝜇𝑡

)
d𝑡
}

Assume that the infimum and supremum can be interchanged (here, we are invoking an abstract
minimax theorem, which crucially relies on the convexity of the problem established in the first
part). Use this to prove that

1
2
𝑊2

2 (𝜇0, 𝜇1) = sup
{∫

𝑢1 d𝜇1 −
∫

𝑢0 d𝜇0

��� 𝜕𝑡𝑢𝑡 + 1
2
∥∇𝑢𝑡 ∥2 ⩽ 0

}
and that equality holds only if the Hamilton–Jacobi equation (1.E.7) holds, and if ∇𝑢𝑡 = 𝑣𝑡 = 𝑝𝑡/𝜇𝑡 .
Note that this also establishes that the optimal vector fields (𝑣𝑡 )𝑡∈[0,1] are gradients of functions.
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5 Let (𝜇𝑡 )𝑡∈[0,1] be a Wasserstein geodesic and let (𝑣𝑡 )𝑡∈[0,1] be its associated curve of tangent vectors.
Prove that 𝜕𝑡𝑣𝑡 + ∇𝑣𝑡 𝑣𝑡 = 0. (This statement follows from the previous part by differentiating the
Hamilton–Jacobi equation in space. Try to also give a more direct proof of this equation.)

Hint: If ¤𝑥𝑡 = 𝑣𝑡 (𝑥𝑡 ), then because particles travel with constant velocity along Wasserstein
geodesics, 𝑡 ↦→ ¤𝑥𝑡 is constant.

⊵ Exercise 1.12 (Wasserstein space has non-negative curvature)
Let (𝜇𝑡 )𝑡∈[0,1] denote a Wasserstein geodesic. By finding an appropriate coupling, prove that for all
𝑡 ∈ [0, 1] and all 𝜈 ∈ P2(R𝑑),

𝑊2
2 (𝜇𝑡 , 𝜈) ⩾ (1 − 𝑡)𝑊2

2 (𝜇0, 𝜈) + 𝑡 𝑊2
2 (𝜇1, 𝜈) − 𝑡 (1 − 𝑡)𝑊2

2 (𝜇0, 𝜇1) . (1.E.9)

Compare this to the following equality on R𝑑: if 𝑥𝑡 = (1 − 𝑡) 𝑥0 + 𝑡 𝑥1, then

∥𝑥𝑡 − 𝑦∥2 = (1 − 𝑡) ∥𝑥0 − 𝑦∥2 + 𝑡 ∥𝑥1 − 𝑦∥2 − 𝑡 (1 − 𝑡) ∥𝑥0 − 𝑥1∥2 . (1.E.10)

The equality (1.E.10) expresses the fact that R𝑑 is flat, whereas the inequality (1.E.9) expresses the
fact that P2(R𝑑) (equipped with the𝑊2 metric) is non-negatively curved, like a sphere; see Ambrosio
et al. (2008, Section 7.3).

The Langevin SDE as a Wasserstein Gradient Flow
⊵ Exercise 1.13 (Reconciling the SDE and Wasserstein perspectives)
Let 𝜑 : R𝑑 → R be a smooth test function and let 𝛿 > 0. First, consider the Langevin diffusion
d𝑍𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡 +

√
2 d𝐵𝑡 started at 𝑍0 ∼ 𝜇0, and compute E 𝜑(𝑍𝛿) up to first order in 𝛿.

Next, if 𝜕𝑡𝜇𝑡 = div(𝜇𝑡∇ log(𝜇𝑡/𝜋)), with 𝜋 ∝ exp(−𝑉), then we can interpret this as a fluid flow:
let 𝑋0 ∼ 𝜇0, and ¤𝑋𝑡 = −∇ log(𝜇𝑡/𝜋) (𝑋𝑡 ), so that 𝑋𝑡 ∼ 𝜇𝑡 . Compute E 𝜑(𝑋𝛿) up to first order in 𝛿.

Check that the two expressions you computed match (up to first order in 𝛿). Note that these
calculations are implicit in Sections 1.2 and 1.4, but it is illuminating to directly connect the Langevin
diffusion to the Wasserstein gradient flow.

⊵ Exercise 1.14 (Wasserstein calculus for 𝑓 -divergences)
Compute the Wasserstein gradient of the functional 𝜒2(· ∥ 𝜋). Use the rules of Wasserstein calculus to
compute 𝜕𝑡 𝜒2(𝜋𝑡 ∥ 𝜋), where (𝜋𝑡 )𝑡⩾0 is the law of the Langevin diffusion with stationary distribution
𝜋. Check that the result agrees with a calculation based on Markov semigroup theory.

More generally, let 𝑓 : R→ R+ and consider the 𝑓 -divergence

𝐷 𝑓 (𝜇 ∥ 𝜋) B
∫

𝑓
( 𝜇
𝜋

)
d𝜋 .

Compute the Wasserstein gradient of 𝐷 𝑓 (· ∥ 𝜋). For bonus points, calculate the Wasserstein Hessian
as well.

⊵ Exercise 1.15 (Smoothness along Wasserstein geodesics)
For a functional F over the Wasserstein space, let us say that it is 𝛽-smooth if, for all constant-speed
geodesics (𝜇𝑡 )𝑡∈[0,1] with initial tangent vector 𝑣0 = 𝑇 − id, it holds that 𝜕2

𝑡 |𝑡=0F(𝜇𝑡 ) ⩽ 𝛽 ∥𝑇 − id∥2𝜇0
.

1 Show that the potential energy functional E corresponding to a potential 𝑉 with ∇2𝑉 ⪯ 𝛽𝐼𝑑 is
𝛽-smooth.

2 Establish the expression (1.4.3) for the entropy H and argue that H is non-smooth.
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⊵ Exercise 1.16 (Otto–Villani theorem)
Consider the gradient flow (𝜇𝑡 )𝑡⩾0 of a functional F with inf F = 0. Assume that the P L inequality
∥∇𝑊2F(𝜇)∥2𝜇 ⩾ 2𝛼F(𝜇) holds with 𝛼 > 0, and that the gradient flow converges to the minimizer of
F. Argue that 𝜕𝑡𝑊2(𝜇𝑡 , 𝜇0) ⩽ ∥∇𝑊2F(𝜇𝑡 )∥𝜇𝑡 , and then show that

𝜕𝑡

(√︂𝛼

2
𝑊2(𝜇𝑡 , 𝜇0) +

√︁
F(𝜇𝑡 )

)
⩽ 0 .

Conclude that a quadratic growth inequality holds.

⊵ Exercise 1.17 (Contraction of the Langevin diffusion)
In this exercise, we explore different proofs of contraction.

1 Suppose that 𝑉 : R𝑑 → R is 𝛼-strongly convex. Let (𝑥𝑡 )𝑡⩾0, (𝑦𝑡 )𝑡⩾0 be two gradient flows for 𝑉 .
Show that ∥𝑥𝑡 − 𝑦𝑡 ∥2 ⩽ exp(−2𝛼𝑡) ∥𝑥0 − 𝑦0∥2.

2 Next, prove Theorem 1.4.11. Hint: Apply Itô’s formula (Theorem 1.1.19) to 𝑓 (𝑥, 𝑥′) B ∥𝑥 − 𝑥′∥2.
3 Let F : P2,ac(R𝑑) → R be an 𝛼-convex functional, and let (𝜇𝑡 )𝑡⩾0, (𝜈𝑡 )𝑡⩾0 be gradient flows for F.

Prove that

𝑊2
2 (𝜇𝑡 , 𝜈𝑡 ) ⩽ exp(−2𝛼𝑡)𝑊2

2 (𝜇0, 𝜈0)

using the following steps. First, compute the derivative of 𝑡 ↦→ 𝑊2
2 (𝜇𝑡 , 𝜈𝑡 ) using Theorem 1.4.5. Next,

apply the strong convexity inequality (1.4.6) to obtain two inequalities F(𝜇𝑡 ) ⩾ F(𝜈𝑡 ) + · · · and
F(𝜈𝑡 ) ⩾ F(𝜇𝑡 ) + · · · . Adding these two inequalities, deduce that 𝜕𝑡𝑊2

2 (𝜇𝑡 , 𝜈𝑡 ) ⩽ −2𝛼𝑊2
2 (𝜇𝑡 , 𝜈𝑡 ).

⊵ Exercise 1.18 (Sharp KL convergence)
Let (𝜇𝑡 )𝑡⩾0 denote the marginal law of the Langevin diffusion (1.0.1) with ∇2𝑉 ⪰ 𝛼𝐼𝑑 ⪰ 0.

1 Prove via direct calculation that FI(𝜇𝑡 ∥ 𝜋) ⩽ exp(−2𝛼𝑡) FI(𝜇0 ∥ 𝜋). Hint: If you are stuck, see the
proof of Theorem 1.2.30 in Chapter 2.

2 Consider the Lyapunov function L𝑡 B 𝐴𝑡 FI(𝜇𝑡 ∥ 𝜋) + 2𝐵𝑡 KL(𝜇𝑡 ∥ 𝜋) +𝑊2
2 (𝜇𝑡 , 𝜋). Choose 𝐴𝑡 , 𝐵𝑡

carefully to ensure that ¤L𝑡 ⩽ −𝛼L𝑡 , and thereby deduce the bounds

FI(𝜇𝑡 ∥ 𝜋) ⩽
𝛼2𝑊2

2 (𝜇0, 𝜋)
exp(2𝛼𝑡) (1 − exp(−𝛼𝑡))2

, KL(𝜇𝑡 ∥ 𝜋) ⩽
𝛼𝑊2

2 (𝜇0, 𝜋)
2 (exp(2𝛼𝑡) − 1) .

Overview of the Convergence Results
⊵ Exercise 1.19 (Divergences at initialization)
Prove Lemma 1.5.2. In fact, prove the following stronger fact: log sup(𝜇0/𝜋) ⩽ 𝑑

2 log 𝜅.

⊵ Exercise 1.20 (First moment of an exponential distribution)
Consider the probability measure 𝜋 ∝ exp(−∥·∥) over R𝑑. Show that the first moment behaves as∫
∥·∥ d𝜋 = 𝑑. This yields a natural example of a log-concave distribution for which the Wasserstein

distance at initialization is expected to scale as 𝑑, rather than
√
𝑑.

⊵ Exercise 1.21 (Sharpness of the initialization bounds)
How sharp are Lemma 1.5.2 and Lemma 1.5.3? Consider the case where 𝜋 is a Gaussian.



CHAPTER 2

Functional Inequalities

In this chapter, we explore the connection between functional inequalities, such as the Poincaré and
log-Sobolev inequalities, and the concentration of measure phenomenon.

2.1 Overview of the Inequalities
2.1.1 Relationships between the Inequalities

Let C∞c (R𝑑) denote the set of compactly supported and smooth functions R𝑑 → R. The main
inequalities that we study in this chapter are the following:

• the Poincaré inequality (PI), as specialized to the Langevin diffusion (see Example 1.2.23):

var𝜋 ( 𝑓 ) ⩽ 𝐶PI E𝜋 [∥∇ 𝑓 ∥2] , for all 𝑓 ∈ C∞c (R𝑑) .

• the log-Sobolev inequality (LSI), as specialized to the Langevin diffusion (see Example 1.2.27):

ent𝜋 ( 𝑓 2) ⩽ 2𝐶LSI E𝜋 [∥∇ 𝑓 ∥2] , for all 𝑓 ∈ C∞c (R𝑑) .

• and Talagrand’s T2 inequality

KL(𝜇 ∥ 𝜋) ⩾ 1
2𝐶T2

𝑊2
2 (𝜇, 𝜋) , for all 𝜇 ∈ P2(R𝑑) .

In addition, using the𝑊1 metric introduced in Exercise 1.10, we consider

• Talagrand’s T1 inequality

KL(𝜇 ∥ 𝜋) ⩾ 1
2𝐶T1

𝑊2
1 (𝜇, 𝜋) , for all 𝜇 ∈ P1(R𝑑) .

In many cases, arguments involving Poincaré and log-Sobolev inequalities hold more generally in
the context of reversible Markov processes, and when this is case we will try to use notation from
Markov semigroup theory (e.g., writing E𝜋 Γ( 𝑓 , 𝑓 ) or ℰ( 𝑓 , 𝑓 ) instead of E𝜋 [∥∇ 𝑓 ∥2]) to indicate

48
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that this is the case. However, for clarity of exposition, we do not dwell on this point, and we urge new
readers to focus on the case in which the Markov process is the Langevin diffusion.

Although the Poincaré and log-Sobolev inequalities are stated above for compactly supported and
smooth functions, once established they can be extended to a wider class of functions by density
arguments; see Bakry et al. (2014, Chapter 3). Throughout the chapter, we omit mention of such
approximation arguments.

Write PI(𝐶) to denote that the Poincaré inequality holds with constant 𝐶, and similarly for the
other inequalities. We have the following relationships.

• The Bakry–Émery theorem (Theorem 1.2.30) shows that 𝛼-strong log-concavity of 𝜋 implies that
𝜋 satisfies LSI(𝛼−1).

• The Otto–Villani theorem (Exercise 1.16) shows that LSI(𝐶) implies T2(𝐶).
• Since𝑊1 ⩽ 𝑊2, then T2(𝐶) obviously implies T1(𝐶). On the other hand, we will show below that

T2(𝐶) implies PI(𝐶) as well. Combined with the previous point, this shows that LSI(𝐶) implies
PI(𝐶), which was shown directly in Exercise 1.7.
• In general, PI and T1 are incomparable.

2.1.2 Linearization of Transport Inequalities
To prove that T2(𝐶) implies PI(𝐶), we linearize the transport cost. It will be convenient for future
purposes to prove a more general version of the linearization principle.

Proposition 2.1.1 (Linearization of transport cost). Let 𝑐 : R𝑑 × R𝑑 → R+ be a lower
semicontinuous cost function. Assume that 𝑐(𝑥, 𝑥) = 0 for all 𝑥 ∈ R𝑑 , that there exists 𝛿 > 0 for
which 𝑐(𝑥, 𝑦) ⩾ 𝛿 ∥𝑥− 𝑦∥2 for all 𝑥, 𝑦 ∈ R𝑑 , and that there is a measurable mapping 𝑥 ↦→ 𝐻𝑥 ≻ 0
such that for each compact 𝐾 ⊆ R𝑑 ,

sup
𝑥∈𝐾

��𝑐(𝑥 + ℎ, 𝑥) − 1
2
⟨ℎ, 𝐻𝑥ℎ⟩

�� = 𝑜(∥ℎ∥2) as ℎ→ 0 .

Then, for any 𝜇 ∈ P(R𝑑) and 𝑓 ∈ C∞c (R𝑑) with
∫
𝑓 d𝜇 = 0, it holds that

lim inf
𝜀↘0

1
𝜀2 T𝑐

(
𝜇, (1 + 𝜀 𝑓 ) 𝜇

)
⩾

(
∫
𝑓 2 d𝜇)2

2
∫
⟨∇ 𝑓 (𝑥), 𝐻−1

𝑥 ∇ 𝑓 (𝑥)⟩ 𝜇(d𝑥)
.

Proof sketch Fix 𝜆 ∈ R. Using the dual formulation given in Exercise 1.10,

T𝑐 (𝜇, 𝜈) ⩾
∫
𝜆𝜀 𝑓 d𝜇 +

∫
(𝜆𝜀 𝑓 )𝑐 d𝜈 =

∫
(𝜆𝜀 𝑓 )𝑐 d𝜈 .

Here, (𝜆𝜀 𝑓 )𝑐 (𝑥) = infℎ∈R𝑑 {𝑐(𝑥 + ℎ, 𝑥) −𝜆𝜀 𝑓 (𝑥 + ℎ)}, and using the assumption on 𝑐 and the compact
support of 𝑓 , one can justify that the infimum is attained at a point ℎ with ∥ℎ∥ = 𝑂 (𝜀). Then,

(𝜆𝜀 𝑓 )𝑐 (𝑥) = inf
ℎ∈R𝑑

{1
2
⟨ℎ, 𝐻𝑥ℎ⟩ − 𝜆𝜀 𝑓 (𝑥) − 𝜆𝜀 ⟨∇ 𝑓 (𝑥), ℎ⟩

}
+ 𝑜(𝜀2)

⩾ −𝜆𝜀 𝑓 (𝑥) − 𝜆
2𝜀2

2
⟨∇ 𝑓 (𝑥), 𝐻−1

𝑥 ∇ 𝑓 (𝑥)⟩ + 𝑜(𝜀2) .
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Hence,

T𝑐
(
𝜇, (1 + 𝜀 𝑓 ) 𝜇

)
⩾ −𝜆𝜀2

∫
𝑓 2 d𝜇 − 𝜆

2𝜀2

2

∫
⟨∇ 𝑓 (𝑥), 𝐻−1

𝑥 ∇ 𝑓 (𝑥)⟩ 𝜇(d𝑥)

and the result follows by optimizing over 𝜆. □

Corollary 2.1.2 (T2 implies PI). If 𝜋 satisfies T2(𝐶), then it satisfies PI(𝐶).

Proof Let 𝑓 ∈ C∞c (R𝑑) and apply the linearization in the preceding proposition to the quadratic cost
𝑐(𝑥, 𝑦) = 1

2 ∥𝑥 − 𝑦∥
2 with 𝐻𝑥 = 𝐼𝑑 for all 𝑥 ∈ R𝑑 . Then, T2(𝐶) yields

2𝐶 KL
(
(1 + 𝜀 𝑓 ) 𝜋

 𝜋) ⩾ 𝑊2
2
(
𝜋, (1 + 𝜀 𝑓 ) 𝜋

)
⩾
𝜀2 (

∫
𝑓 2 d𝜋)2∫

∥∇ 𝑓 ∥2 d𝜋
+ 𝑜(𝜀2) .

On the other hand, the linearization (1.E.1) of the KL divergence in Exercise 1.7 yields

KL
(
(1 + 𝜀 𝑓 ) 𝜋

 𝜋) = 𝜀2

2

∫
𝑓 2 d𝜋 + 𝑜(𝜀2) .

Comparing terms proves the result. □

In Exercise 2.1, we explore a perhaps more intuitive approach to linearizing the 2-Wasserstein
distance via the Monge–Ampère equation.

2.2 Proofs via Markov Semigroup Theory
2.2.1 Commutation and Curvature

In Section 1.2.3, we introduced the iterated carré du champ operator Γ2, as well as the curvature-
dimension condition Γ2( 𝑓 , 𝑓 ) ⩾ 𝛼 Γ( 𝑓 , 𝑓 ) (denoted CD(𝛼,∞)). Since this condition plays a key role
in the subsequent calculations, our goal is to demystify this idea.

By definition, the iterated carré du champ is

Γ2( 𝑓 , 𝑓 ) =
1
2
{ℒΓ( 𝑓 , 𝑓 ) − 2 Γ( 𝑓 ,ℒ 𝑓 )} .

For the case of the Langevin diffusion with carré du champ Γ( 𝑓 , 𝑓 ) = ∥∇ 𝑓 ∥2,

Γ2( 𝑓 , 𝑓 ) =
1
2
{ℒ(∥∇ 𝑓 ∥2) − 2 ⟨∇ 𝑓 ,∇ℒ 𝑓 ⟩} . (2.2.1)

Recall that ℒ 𝑓 = Δ 𝑓 − ⟨∇𝑉,∇ 𝑓 ⟩, where 𝑉 is the potential. Let us begin with the simple case in
which 𝑉 = 0, so ℒ is the Laplacian Δ (the generator of

√
2 𝐵, where 𝐵 is standard Brownian motion).

In this case, the iterated carré du champ turns out to simply be the operator Γ2( 𝑓 , 𝑓 ) = ∥∇2 𝑓 ∥2HS,
which is known as the Bochner identity:

1
2
Δ(∥∇ 𝑓 ∥2) = ⟨∇Δ 𝑓 ,∇ 𝑓 ⟩ + ∥∇2 𝑓 ∥2HS . (2.2.2)

Consequently, Δ satisfies CD(0,∞).
It may seem strange at first sight to give such a fancy name to the seemingly innocuous identity (2.2.2),

which is a simple exercise in calculus. However, the importance of the Bochner identity begins to
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reveal itself through the following fact: the identity continues to make sense on a Riemannian manifold,
except that there is an extra term involving the Ricci curvature of the manifold.

1
2
Δ(∥∇ 𝑓 ∥2) = ⟨∇Δ 𝑓 ,∇ 𝑓 ⟩ + ∥∇2 𝑓 ∥2HS + Ric(∇ 𝑓 ,∇ 𝑓 ) .

We will defer a fuller discussion of Riemannian geometry for later, but for now we can get a hint at the
role of the curvature by observing that the Bochner identity (2.2.2) on R𝑑 follows from the equation1

∇Δ 𝑓 − Δ∇ 𝑓 = 0 (2.2.3)

by taking the inner product with ∇ 𝑓 and applying the identity

1
2
Δ(∥∇ 𝑓 ∥2) = div(∇2 𝑓 ∇ 𝑓 ) = ⟨Δ∇ 𝑓 ,∇ 𝑓 ⟩ + ∥∇2 𝑓 ∥2HS .

In turn, the equation (2.2.3) shows that the Laplacian commutes with the gradient operator, which is
true because partial derivatives commute on R𝑑; this is a manifestation of the fact that R𝑑 is flat. In
contrast, the very definition of curvature on a Riemannian manifold is usually based upon the lack of
commutativity of differential operators.2

Turning now to the Langevin generator ℒ, the identity (2.2.3) is replaced by

∇ℒ 𝑓 −ℒ∇ 𝑓 = −∇2𝑉 ∇ 𝑓 . (2.2.4)

Hence, the commutator of ∇ and ℒ brings out the curvature of the measure 𝜋 ∝ exp(−𝑉), and the
plan is to exploit this in order to prove functional inequalities. The identity (2.2.4) then yields the
following formula for the iterated carré du champ:

Γ2( 𝑓 , 𝑓 ) = ∥∇2 𝑓 ∥2HS + ⟨∇ 𝑓 ,∇2𝑉 ∇ 𝑓 ⟩ . (2.2.5)

In particular, if ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0, then the curvature-dimension condition CD(𝛼,∞) holds, which was
asserted as Theorem 1.2.31.

As a first illustration of the use of curvature, let us generalize the calculation in Exercise 1.8 from
the Ornstein–Uhlenbeck diffusion to the Langevin diffusion. From the computation 𝜕𝑡 var𝜋 𝑃𝑡 𝑓 =
−2ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) = −2

∫
Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝜋 and var𝜋 𝑃𝑡 𝑓 → 0 as 𝑡 → ∞ by ergodicity, we obtain

the identity var𝜋 𝑓 = 2
∫ ∞

0 ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝑡. For the Ornstein–Uhlenbeck semigroup, we have the
explicit identity ∇𝑃𝑡 𝑓 = exp(−𝑡) 𝑃𝑡∇ 𝑓 , which leads to ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ⩽ exp(−2𝑡)ℰ( 𝑓 , 𝑓 ) and hence
var𝜋 𝑓 ⩽ ℰ( 𝑓 , 𝑓 ), which is a Poincaré inequality for the standard Gaussian measure.

To extend this idea to more general diffusions, we show that the curvature-dimension condition is
equivalent to a gradient bound.

Theorem 2.2.6 (Gradient bound). The following are equivalent.

1 The curvature-dimension condition CD(𝛼,∞) holds.
2 For all 𝑓 and 𝑡 ⩾ 0,

Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ⩽ exp(−2𝛼𝑡) 𝑃𝑡Γ( 𝑓 , 𝑓 ) .

1 Here, Δ acts on ∇𝑢 component by component.
2 Loosely speaking, the idea of curvature is that travelling in direction 𝑢 and then direction 𝑣 is not exactly the same as

travelling in direction 𝑣 and direction 𝑢. Algebraically, this is captured by studying the difference between differentiating
along vector field 𝑋 and then vector field 𝑌 , or vice versa.
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Proof (1) =⇒ (2): We differentiate the following quantity:

𝜕𝑠 [𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 )] = 𝑃𝑠
(
ℒΓ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) − 2Γ(𝑃𝑡−𝑠 𝑓 ,ℒ𝑃𝑡−𝑠 𝑓 )

)
.

Applying the definition of the iterated carré du champ and CD(𝛼,∞) yields

𝜕𝑠 [𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 )] = 2𝑃𝑠Γ2(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) ⩾ 2𝛼 𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) .

Integrating this from 𝑠 = 0 to 𝑠 = 𝑡 yields 𝑃𝑡Γ( 𝑓 , 𝑓 ) ⩾ exp(2𝛼𝑡) Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ).
(2) =⇒ (1): A Taylor expansion of the inequality around 𝑡 = 0 yields

Γ( 𝑓 , 𝑓 ) + 2𝑡 Γ( 𝑓 ,ℒ 𝑓 ) + 𝑜(𝑡) ⩽ Γ( 𝑓 , 𝑓 ) + 𝑡 {−2𝛼 Γ( 𝑓 , 𝑓 ) +ℒΓ( 𝑓 , 𝑓 )} + 𝑜(𝑡) ,

which clearly recovers the CD(𝛼,∞) condition Γ2 ⩾ 𝛼Γ. □

Substituting this into var𝜋 𝑓 = 2
∫ ∞

0 ℰ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝑡 now shows that as soon as the Markov
semigroup satisfies CD(𝛼,∞), the Poincaré inequality PI(𝛼−1) holds.

2.2.2 The Brascamp–Lieb Inequality
In this section, we prove a far-reaching refinement of the preceding argument and thereby establish
the Brascamp–Lieb inequality, a strong form of the Poincaré inequality. This inequality will also gain
a natural interpretation via a diffusion process in Section 10.2.

The proof method in this section is known as Hörmander’s 𝐿2 method. The starting point is to
write down a dual form of the Poincaré inequality.3

Lemma 2.2.7 (Dualizing the Poincaré inequality). Let 𝜋 ∝ exp(−𝑉) be a probability measure
on R𝑑 , where 𝑉 is continuously differentiable; let ℒ be the corresponding Langevin generator.
Suppose that 𝐴 : R𝑑 → PD(𝑑) is a matrix-valued function mapping into the space of symmetric
positive definite matrices such that for all smooth 𝑢 : R𝑑 → R,

E𝜋 [(ℒ𝑢)2] ⩾ E𝜋 ⟨∇𝑢, 𝐴∇𝑢⟩ . (2.2.8)

Then, for all smooth 𝑓 : R𝑑 → R it holds that

var𝜋 𝑓 ⩽ E𝜋 ⟨∇ 𝑓 , 𝐴−1 ∇ 𝑓 ⟩ .

Proof Assume that E𝜋 𝑓 = 0. Recall that E𝜋 ℒ𝑢 = 0 for any 𝑢, so that E𝜋 𝑓 = 0 is a necessary
condition for the solvability of the Poisson equation −ℒ𝑢 = 𝑓 . For simplicity, we will assume that
this condition is also sufficient.

If we express E𝜋 [ 𝑓 2] terms of 𝑢 and apply integration by parts (Theorem 1.2.14) and Cauchy–
Schwarz, we obtain

E𝜋 [ 𝑓 2] = 2E𝜋 [ 𝑓 (−ℒ) 𝑢] − E𝜋 [(ℒ𝑢)2]
⩽ 2E𝜋 ⟨∇ 𝑓 ,∇𝑢⟩ − E⟨∇𝑢, 𝐴∇𝑢⟩

⩽ 2
√︁
E𝜋 ⟨∇ 𝑓 , 𝐴−1 ∇ 𝑓 ⟩ E𝜋 ⟨∇𝑢, 𝐴∇𝑢⟩ − E⟨∇𝑢, 𝐴∇𝑢⟩ ⩽ E𝜋 ⟨∇ 𝑓 , 𝐴−1 ∇ 𝑓 ⟩ . □

3The idea of dualizing the Poincaré inequality also appears in Exercise 2.1, in which the Poincaré inequality is deduced
from an inequality on (−ℒ)−1.
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The point is that the condition (2.2.8) can now be checked with the help of curvature. Suppose that
𝜋 ∝ exp(−𝑉) where 𝑉 is twice continuously differentiable and strictly convex. Then, using integration
by parts (Theorem 1.2.14),

E𝜋 [(ℒ𝑢)2] = −E𝜋 ⟨∇𝑢,∇ℒ𝑢⟩ = E𝜋
[
Γ2(𝑢, 𝑢) −

1
2
ℒ(∥∇𝑢∥2)

]︸                                ︷︷                                ︸
by (2.2.1)

= E𝜋 Γ2(𝑢, 𝑢)︸       ︷︷       ︸
because E𝜋 ℒ=0

= E𝜋 [∥∇2𝑢∥2HS + ⟨∇𝑢,∇2𝑉 ∇𝑢⟩]︸                                 ︷︷                                 ︸
by (2.2.5)

.

Applying the lemma, we obtain the following result.

Theorem 2.2.9 (Brascamp–Lieb inequality). Let 𝜋 ∝ exp(−𝑉), where 𝑉 is strictly convex on R𝑑
and twice continuously differentiable. Then, for all 𝑓 : R𝑑 → R,

var𝜋 𝑓 ⩽ E𝜋 ⟨∇ 𝑓 , (∇2𝑉)−1 ∇ 𝑓 ⟩ .

When ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0, then this implies that a Poincaré inequality holds for 𝜋 with constant
𝐶PI ⩽ 1/𝛼. However, the Brascamp–Lieb inequality is much stronger, as it allows us to take advantage
of non-uniform convexity.
Remark 2.2.10. Lemma 2.2.7 shows that PI(𝛼−1) is equivalent to the integrated version of the
CD(𝛼,∞) condition:

∫
Γ2( 𝑓 , 𝑓 ) d𝜋 ⩾ 𝛼

∫
Γ( 𝑓 , 𝑓 ) d𝜋 for all 𝑓 .

In Exercise 2.3, we give another proof of Theorem 2.2.9 by linearizing a transport inequality. First,
we introduce the transport cost.

Definition 2.2.11. The Bregman transport cost for the potential𝑉 , denoted D𝑉 , is the transport
cost associated with the Bregman divergence

𝐷𝑉 (𝑥, 𝑦) B 𝑉 (𝑥) −𝑉 (𝑦) − ⟨∇𝑉 (𝑦), 𝑥 − 𝑦⟩ ,

i.e., we set

D𝑉 (𝜇, 𝜈) B inf
𝛾∈C(𝜇,𝜈)

∫
𝐷𝑉 (𝑥, 𝑦) 𝛾(d𝑥, d𝑦) .

The Bregman transport cost will also play a key role in Section 10.2, in which we will prove the
following transport inequality (see also Exercise 2.3).

Theorem 2.2.12 (Bregman transport inequality). Suppose that 𝑉 : R𝑑 → R is continuously
differentiable. Then, for 𝜋 ∝ exp(−𝑉) and all 𝜇 ∈ P(R𝑑),

D𝑉 (𝜇, 𝜋) ⩽ KL(𝜇 ∥ 𝜋) .

Actually, convexity of 𝑉 is not necessary for the theorem to hold, although the Bregman transport
cost D𝑉 is only guaranteed to be non-negative when 𝑉 is convex. When 𝑉 is strongly convex,
∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0, then 𝐷𝑉 (𝑥, 𝑦) ⩾ 𝛼

2 ∥𝑥 − 𝑦∥
2, so the Bregman transport inequality implies T2(𝛼−1).
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2.2.3 Proof of the Bakry–Émery Theorem
In this section, we prove the Bakry–Émery theorem (Theorem 1.2.30), i.e., that CD(𝛼,∞) implies
LSI(𝛼−1). We introduce the notion of a diffusion semigroup.

Definition 2.2.13. The Markov semigroup (𝑃𝑡 )𝑡⩾0 is a diffusion semigroup if for all functions
𝑓 , 𝑔 ∈ 𝐿2(𝜋) in the domain of the carré du champ Γ and all 𝜙 : R→ R, the chain rule holds:

Γ(𝜙 ◦ 𝑓 , 𝑔) = 𝜙′ ( 𝑓 ) Γ( 𝑓 , 𝑔) . (2.2.14)

More generally, for functions 𝑓1, . . . , 𝑓𝑘 and Ψ : R𝑘 → R,

Γ
(
Ψ( 𝑓1, . . . , 𝑓𝑘), 𝑔

)
=

𝑘∑︁
𝑖=1

(𝜕𝑖Ψ) ( 𝑓1, . . . , 𝑓𝑘) Γ( 𝑓𝑖, 𝑔) .

Equivalently, the chain rule can be stated for the generator (Exercise 2.7):

ℒ𝜙( 𝑓 ) = 𝜙′ ( 𝑓 )ℒ 𝑓 + 𝜙′′ ( 𝑓 ) Γ( 𝑓 , 𝑓 ) . (2.2.15)

The chain rule is satisfied for the Langevin diffusion whose carré du champ is given by Γ( 𝑓 , 𝑔) =
⟨∇ 𝑓 ,∇𝑔⟩, and more generally this assumption encodes the fact that the Markov process is a diffusion.
Since we are mainly interested in diffusion processes, this is not a restrictive assumption, but it
indicates that the following proof will fail for Markov processes on discrete state spaces.

Proof of the Bakry–Émery theorem (Theorem 1.2.30) Given a smooth positive function 𝑓 and a
function 𝜙 : R+ → R, we differentiate 𝑡 ↦→

∫
𝜙(𝑃𝑡 𝑓 ) d𝜋. We are primarily interested in the case

𝜙(𝑥) B 𝑥 log 𝑥, but carrying out the calculation for a general 𝜙 clarifies the structure of the argument.
Using the Markov semigroup calculus,

𝜕𝑡

∫
𝜙(𝑃𝑡 𝑓 ) d𝜋 =

∫
𝜙′ (𝑃𝑡 𝑓 )ℒ𝑃𝑡 𝑓 d𝜋 = −ℰ(𝜙′ ◦ 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) .

This yields the representation

ent𝜙𝜋 𝑓 B
∫

𝜙( 𝑓 ) d𝜋 − 𝜙
(∫

𝑓 d𝜋
)
= −

∫ ∞

0

(
𝜕𝑡

∫
𝜙(𝑃𝑡 𝑓 ) d𝜋

)
d𝑡

=

∫ ∞

0
ℰ(𝜙′ ◦ 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝑡 .

We now specialize our calculations to the entropy function 𝜙(𝑥) = 𝑥 log 𝑥 and use reversibility of
the semigroup.

ℰ(𝜙′ ◦ 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) =
∫
(log 𝑃𝑡 𝑓 ) (−ℒ)𝑃𝑡 𝑓 d𝜋 =

∫
(log 𝑃𝑡 𝑓 ) 𝑃𝑡 (−ℒ 𝑓 ) d𝜋

=

∫
𝑃𝑡 log 𝑃𝑡 𝑓 (−ℒ) 𝑓 d𝜋 =

∫
Γ(𝑃𝑡 log 𝑃𝑡 𝑓 , 𝑓 ) d𝜋

⩽

√︄∫
Γ( 𝑓 , 𝑓 )

𝑓
d𝜋

∫
𝑓 Γ(𝑃𝑡 log 𝑃𝑡 𝑓 , 𝑃𝑡 log 𝑃𝑡 𝑓 ) d𝜋

where the last line uses the Cauchy–Schwarz inequality (Exercise 1.5). By the chain rule for the carré
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du champ, we have

Γ(log 𝑓 , 𝑓 ) = Γ( 𝑓 , 𝑓 )
𝑓

.

By applying the gradient bound (Theorem 2.2.6) and the chain rule,

ℰ(log 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ⩽ exp(−𝛼𝑡)

√︄∫
Γ(log 𝑓 , 𝑓 ) d𝜋

∫
𝑓 𝑃𝑡Γ(log 𝑃𝑡 𝑓 , log 𝑃𝑡 𝑓 ) d𝜋

= exp(−𝛼𝑡)

√︄∫
Γ(log 𝑓 , 𝑓 ) d𝜋

∫
𝑃𝑡 𝑓 Γ(log 𝑃𝑡 𝑓 , log 𝑃𝑡 𝑓 ) d𝜋

= exp(−𝛼𝑡)

√︄∫
Γ(log 𝑓 , 𝑓 ) d𝜋

∫
Γ(log 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝜋

which is rearranged to yield

ℰ(log 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ⩽ exp(−2𝛼𝑡)ℰ(log 𝑓 , 𝑓 ) . (2.2.16)

This shows that under CD(𝛼,∞), the Fisher information (introduced in Example 1.2.27) decays
exponentially fast. Another proof of this fact is given as Exercise 3.5.

Substituting this into the representation above,

ent𝜋 𝑓 =
∫ ∞

0
ℰ(log 𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) d𝑡 ⩽ ℰ(log 𝑓 , 𝑓 )

∫ ∞

0
exp(−2𝛼𝑡) d𝑡 ⩽ 1

2𝛼
ℰ(log 𝑓 , 𝑓 ) ,

which is the log-Sobolev inequality. □

2.2.4 Local Inequalities
The curvature-dimension condition is a pointwise inequality that does not explicitly involve the
stationary distribution 𝜋. Interestingly, this means that the Poincaré and log-Sobolev inequalities can
be strengthened to local inequalities, which in turn turn out to be equivalent to the curvature-dimension
condition. To illustrate this, we state local versions of the Poincaré inequality, along with an interesting
reverse inequality.

Theorem 2.2.17 (Local Poincaré inequality). Let (𝑃𝑡 )𝑡⩾0 be a diffusion semigroup. The following
are equivalent.

1 The curvature-dimension condition CD(𝛼,∞) holds.
2 For all 𝑓 and 𝑡 ⩾ 0,

𝑃𝑡 ( 𝑓 2) − (𝑃𝑡 𝑓 )2 ⩽
1 − exp(−2𝛼𝑡)

𝛼
𝑃𝑡Γ( 𝑓 , 𝑓 ) . (2.2.18)

3 For all 𝑓 and 𝑡 ⩾ 0,

𝑃𝑡 ( 𝑓 2) − (𝑃𝑡 𝑓 )2 ⩾
exp(2𝛼𝑡) − 1

𝛼
Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) . (2.2.19)

Consider the local Poincaré inequality (2.2.18). When evaluated at a point 𝑥, and keeping in
mind that 𝑃𝑡 𝑓 (𝑥) = E𝛿𝑥𝑃𝑡

𝑓 where 𝛿𝑥𝑃𝑡 is the law of the Markov process started at 𝛿𝑥 , it can be
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interpreted as follows: for all 𝑥 and all 𝑡 ⩾ 0, the measure 𝛿𝑥𝑃𝑡 satisfies a Poincaré inequality with
constant (1 − exp(−2𝛼𝑡))/𝛼. If 𝛼 > 0, then as 𝑡 → ∞ it recovers the Poincaré inequality for the
stationary measure with constant 1/𝛼, but the local inequality is considerably stronger: for example, it
is meaningful even for 𝛼 ⩽ 0. When 𝛼 = 0, the constant should be interpreted in terms of its limiting
value, i.e., lim𝛼→0(1 − exp(−2𝛼𝑡))/𝛼 = 2𝑡. Similarly, the inequality (2.2.19) can be understood as a
local reverse Poincaré inequality.

To give the flavor for the arguments, let 𝜙 be a convex function. The proofs begin with the following
differentiation:

𝜕𝑠𝑃𝑠𝜙(𝑃𝑡−𝑠 𝑓 ) = 𝑃𝑠
(
ℒ𝜙(𝑃𝑡−𝑠 𝑓 ) − 𝜙′ (𝑃𝑡−𝑠 𝑓 )ℒ𝑃𝑡−𝑠 𝑓

)
= 𝑃𝑠

(
𝜙′′ (𝑃𝑡−𝑠 𝑓 ) Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 )

)
,

where we applied the diffusion chain rule (2.2.15). It yields

𝑃𝑡𝜙( 𝑓 ) − 𝜙(𝑃𝑡 𝑓 ) =
∫ 𝑡

0
𝑃𝑠

(
𝜙′′ (𝑃𝑡−𝑠 𝑓 ) Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 )

)
d𝑠 .

By Jensen’s inequality, the left-hand side is always non-negative, but the right-hand side quantifies
this effect. Indeed, Markov semigroup calculations are designed to extract useful information from the
lack of commutativity of the semigroup 𝑃𝑡 and the application of the non-linear function 𝜙. If we
apply this to 𝜙 : 𝑥 ↦→ 𝑥2, we obtain

𝑃𝑡 ( 𝑓 2) − (𝑃𝑡 𝑓 )2 = 2
∫ 𝑡

0
𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) d𝑠 . (2.2.20)

Under CD(𝛼,∞), we have 𝑃𝑠Γ(𝑃𝑡−𝑠 𝑓 , 𝑃𝑡−𝑠 𝑓 ) ⩽ exp(−2𝛼 (𝑡 − 𝑠)) 𝑃𝑡Γ( 𝑓 , 𝑓 ) from Theorem 2.2.6,
and substituting this into (2.2.20) yields the local Poincaré inequality (2.2.18). The other implications
in Theorem 2.2.17 are left as Exercise 2.6.

A salient feature of these arguments is that by their pointwise nature—i.e., they are not integrated
w.r.t. 𝜋—we never invoke integration by parts. They are also perfectly valid even when the stationary
measure is infinite, e.g., for standard Brownian motion.

Finally, we also record the local log-Sobolev inequality.

Theorem 2.2.21 (Local log-Sobolev inequality). Let (𝑃𝑡 )𝑡⩾0 be a diffusion semigroup. The
following are equivalent.

1 The curvature-dimension condition CD(𝛼,∞) holds.
2 For all 𝑓 and 𝑡 ⩾ 0,

√︁
Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ⩽ exp(−𝛼𝑡) 𝑃𝑡

√︁
Γ( 𝑓 , 𝑓 ).

3 For all 𝑓 ⩾ 0 and 𝑡 ⩾ 0,

𝑃𝑡 ( 𝑓 log 𝑓 ) − 𝑃𝑡 𝑓 log 𝑃𝑡 𝑓 ⩽
1 − exp(−2𝛼𝑡)

2𝛼
𝑃𝑡

Γ( 𝑓 , 𝑓 )
𝑓

.

4 For all 𝑓 ⩾ 0 and 𝑡 ⩾ 0,

𝑃𝑡 ( 𝑓 log 𝑓 ) − 𝑃𝑡 𝑓 log 𝑃𝑡 𝑓 ⩾
exp(2𝛼𝑡) − 1

2𝛼
Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 )

𝑃𝑡 𝑓
. (2.2.22)

2.2.5 Convergence in Rényi Divergence
One curiosity is that the log-Sobolev inequality directly implies a Poincaré inequality (Exercise 1.7),
and yet the convergence guarantees implied by these inequalities for the Langevin diffusion are
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incomparable, because they apply to different metrics (𝜒2 vs. KL). It turns out that these convergence
guarantees can be placed in the same framework by introducing the family of Rényi divergences.
Rényi divergences have also gained importance in recent research due to applications to differential
privacy (Mironov, 2017).

Definition 2.2.23. For 𝑞 > 1, the Rényi divergence of order 𝑞 between 𝜇 and 𝜋 is defined by

R𝑞 (𝜇 ∥ 𝜋) B
1

𝑞 − 1
log

∫ (d𝜇
d𝜋

)𝑞 d𝜋 (2.2.24)

if 𝜇 ≪ 𝜋, and R𝑞 (𝜇 ∥ 𝜋) B +∞ otherwise.

Rényi divergences are monotonic in the order: if 1 < 𝑞 ⩽ 𝑞′ < ∞, then R𝑞 ⩽ R𝑞′ (this follows
from Jensen’s inequality, see Exercise 2.8). Some notable special cases include:

• As 𝑞 ↘ 1, R𝑞 ↘ KL; hence, we set R1 = KL.
• For 𝑞 = 2, we have the identity R2 = log(1 + 𝜒2).
• As 𝑞 ↗∞, R𝑞 ↗ R∞, where R∞(𝜇 ∥ 𝜋) B log ∥ d𝜇

d𝜋 ∥𝐿∞ (𝜋 ) .

Remarkably, Vempala and Wibisono (2019) show that the Poincaré and log-Sobolev inequalities
imply convergence of the Langevin diffusion in every Rényi divergence.

Theorem 2.2.25 (Rényi convergence, Vempala and Wibisono (2019)). Let (𝑃𝑡 )𝑡⩾0 be a reversible
diffusion Markov semigroup, and let (𝜋𝑡 )𝑡⩾0 denote the law of the Markov process associated
with the semigroup.

1 Suppose that a log-Sobolev inequality holds with constant 𝐶LSI. Then, for all 𝑞 ⩾ 1,

R𝑞 (𝜋𝑡 ∥ 𝜋) ⩽ exp
(
− 2𝑡
𝑞𝐶LSI

)
R𝑞 (𝜋0 ∥ 𝜋) .

2 Suppose that a Poincaré inequality holds with constant 𝐶PI. Then, for all 𝑞 ⩾ 2,

R𝑞 (𝜋𝑡 ∥ 𝜋) ⩽


R𝑞 (𝜋0 ∥ 𝜋) −

2𝑡
𝑞𝐶PI

, if R𝑞 (𝜋𝑡 ∥ 𝜋) ⩾ 1 ,

exp
(
− 2𝑡
𝑞𝐶PI

)
R𝑞 (𝜋0 ∥ 𝜋) , if R𝑞 (𝜋0 ∥ 𝜋) ⩽ 1 .

Proof We begin by differentiating the Rényi divergence in time. Let 𝜌𝑡 B d𝜋𝑡
d𝜋 = 𝑃𝑡 𝜌0. Applying the

chain rule for the carré du champ,

𝜕𝑡R𝑞 (𝜋𝑡 ∥ 𝜋) =
1

𝑞 − 1
𝜕𝑡
∫
𝜌
𝑞
𝑡 d𝜋∫

𝜌
𝑞
𝑡 d𝜋

=
𝑞

𝑞 − 1

∫
𝜌
𝑞−1
𝑡 ℒ𝜌𝑡 d𝜋∫
𝜌
𝑞
𝑡 d𝜋

= − 𝑞

𝑞 − 1

∫
Γ(𝜌𝑞−1

𝑡 , 𝜌𝑡 ) d𝜋∫
𝜌
𝑞
𝑡 d𝜋

= −4
𝑞

ℰ(𝜌𝑞/2𝑡 , 𝜌
𝑞/2
𝑡 )∫

𝜌
𝑞
𝑡 d𝜋

.

Log-Sobolev case. The log-Sobolev inequality reads (due to the chain rule) as

2𝐶LSIℰ( 𝑓 , 𝑓 ) ⩾ ent𝜋 ( 𝑓 2) .
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Applying this to 𝑓 = 𝜌𝑞/2, we obtain

2𝐶LSIℰ(𝜌𝑞/2, 𝜌𝑞/2) ⩾ 𝑞
∫

𝜌𝑞 log 𝜌 d𝜋 −
(∫

𝜌𝑞 d𝜋
)

log
(∫

𝜌𝑞 d𝜋
)

= 𝑞 𝜕𝑞

∫
𝜌𝑞 d𝜋 −

(∫
𝜌𝑞 d𝜋

)
log

(∫
𝜌𝑞 d𝜋

)
and hence

4
𝑞

ℰ(𝜌𝑞/2, 𝜌𝑞/2)∫
𝜌𝑞 d𝜋

⩾
2
𝐶LSI

𝜕𝑞 log
∫

𝜌𝑞 d𝜋 − 2
𝑞𝐶LSI

log
∫

𝜌𝑞 d𝜋

=
2
𝐶LSI

𝜕𝑞 [(𝑞 − 1)R𝑞 (𝜌𝜋 ∥ 𝜋)] −
2 (𝑞 − 1)
𝑞𝐶LSI

R𝑞 (𝜌𝜋 ∥ 𝜋)

=
2
𝐶LSI

R𝑞 (𝜌𝜋 ∥ 𝜋) +
2 (𝑞 − 1)
𝐶LSI

𝜕𝑞R𝑞 (𝜌𝜋 ∥ 𝜋)︸           ︷︷           ︸
⩾0

− 2 (𝑞 − 1)
𝑞𝐶LSI

R𝑞 (𝜌𝜋 ∥ 𝜋)

⩾
2

𝑞𝐶LSI
R𝑞 (𝜌𝜋 ∥ 𝜋)

where we used the fact that the Rényi divergence is monotonic in the order.
Poincaré case. Next, applying a Poincaré inequality to 𝑓 = 𝜌𝑞/2,

𝐶PIℰ(𝜌𝑞/2, 𝜌𝑞/2) ⩾ var𝜋 (𝜌𝑞/2) =
∫

𝜌𝑞 d𝜋 −
(∫

𝜌𝑞/2 d𝜋
)2

=

(∫
𝜌𝑞 d𝜋

) [
1 −

exp((𝑞 − 2)R𝑞/2(𝜌𝜋 ∥ 𝜋))
exp((𝑞 − 1)R𝑞 (𝜌𝜋 ∥ 𝜋))

]
⩾

(∫
𝜌𝑞 d𝜋

) {
1 − exp

(
−R𝑞 (𝜌𝜋 ∥ 𝜋)

)}
where we used the monotonicity of the Rényi divergence in the order. Hence,

4
𝑞

ℰ(𝜌𝑞/2, 𝜌𝑞/2)∫
𝜌𝑞 d𝜋

⩾
4
𝑞𝐶PI

{
1 − exp

(
−R𝑞 (𝜌𝜋 ∥ 𝜋)

)}
⩾

2
𝑞𝐶PI

{
1 , if R𝑞 (𝜌𝜋 ∥ 𝜋) ⩾ 1 ,
R𝑞 (𝜌𝜋 ∥ 𝜋) , if R𝑞 (𝜌𝜋 ∥ 𝜋) ⩽ 1 .

□

To interpret this theorem, the Poincaré result states that after an initial waiting period of time
𝑂 (𝑞𝐶PI R𝑞 (𝜋0 ∥ 𝜋)), the Rényi divergence starts decaying exponentially fast. On the other hand, the
log-Sobolev inequality implies exponentially fast convergence from the outset. In particular, for 𝑞 = 2,
we see that whereas a Poincaré inequality implies exponential decay of 𝜒2, a log-Sobolev inequality
implies exponential decay of log(1 + 𝜒2), which is substantially stronger.

Another approach to Rényi convergence under CD(𝛼,∞) is based on Harnack inequalities,
see Exercise 2.16.

2.2.6 Beyond Strong Log-Concavity
Most of the results thus far have assumed CD(𝛼,∞) for 𝛼 > 0, which in the case of the Langevin
diffusion is equivalent to strong log-concavity of 𝜋. What can we assert about the validity of functional
inequalities more generally?
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First, consider the case 𝛼 = 0: 𝜋 is log-concave but not uniformly so. For example, 𝜋 could
be the Laplace distribution with density 𝜋(𝑥) = exp(− 1

2 |𝑥 |) on R. In this case, since 𝜋 only has
subexponential tails, we cannot hope for a log-Sobolev inequality due to Theorem 2.4.3 below.4 The
Brascamp–Lieb inequality (Theorem 2.2.9) holds as a useful substitute for the Poincaré inequality,
but a deep conjecture of Kannan, Lovász, and Simonovits (Kannan et al., 1995) goes much further:
they conjectured that any log-concave measure 𝜋 on R𝑑 which is isotropic (i.e., if 𝑋 ∼ 𝜋 then
cov 𝑋 = 𝐼𝑑) satisfies a Poincaré inequality with a dimension-free constant 𝐶PI ≲ 1. This is known as
the Kannan–Lovász–Simonovits (KLS) conjecture. By considering linear test functions of the form
𝑥 ↦→ ⟨𝑎, 𝑥⟩, one has 𝐶PI ⩾ 1, so the conjecture asserts that linear functions nearly saturate the spectral
gap inequality for log-concave measures. The KLS conjecture has inspired a considerable amount
of research (including Theorem 2.4.22), see Guédon and Milman (2011); Eldan (2013); Lee and
Vempala (2017); Chen (2021); Klartag and Lehec (2022), culminating in the current state-of-the-art
result described next.

Theorem 2.2.26 (Klartag (2023)). If 𝜋 is an isotropic log-concave measure over R𝑑, then it
satisfies a Poincaré inequality with 𝐶PI ≲ log 𝑑.

In the non-convex case, the Poincaré and log-Sobolev inequalities can still hold, but with constants
that scale exponentially with the amount of non-convexity. The most favorable case is when the
potential𝑉 has a benign landscape. In this setting, there is an explicit expression for the low-temperature
limit of the Poincaré and log-Sobolev constants, which shows that they scale as 𝛽−1 (where 𝛽 is the
inverse temperature).

Theorem 2.2.27 (Chewi and Stromme (2024)). Assume that 𝑉 is C2, admits a unique minimizer
𝑥★, and that there exists 𝐶 > 0 such that Δ𝑉 ⩽ 𝐶 (1 + ∥∇𝑉 ∥2). Furthermore, assume that 𝑉
satisfies a P L inequality with constant 𝐶PL < ∞, that is,

𝑉 − inf𝑉 ⩽
𝐶PL

2
∥∇𝑉 ∥2 .

For 𝛽 > 0, let 𝜋𝛽 be the probability measure with density 𝜋𝛽 ∝ exp(−𝛽𝑉). Then,

lim
𝛽→∞

𝛽𝐶PI(𝜋𝛽) =
1

𝜆min(∇2𝑉 (𝑥★))
, lim

𝛽→∞
𝛽𝐶LSI(𝜋𝛽) = 𝐶PL .

Note that the second formula connects the P L constant of 𝑉 to the asymptotic limit of the LSI
constant of 𝜋𝛽, and that the LSI is the analogue of the P L condition for the KL divergence over the
Wasserstein space (see Section 1.4.2). This is somewhat analogous to Theorem 1.4.4, which connects
the strong convexity of 𝑉 to strong convexity of the KL divergence over the Wasserstein space, but
the connection between the P L conditions is only true in the low-temperature limit. Interestingly, the
asymptotic limit of the Poincaré constant only depends on the local behavior of 𝑉 via the curvature at
the minimizer, although Theorem 2.2.27 does impose global assumptions (that 𝑉 admits a unique
minimizer and satisfies the P L condition).

When 𝑉 violates the unique minimizer assumption, the functional inequality constants generally
scale exponentially. A special case of the Eyring–Kramers formula (Eyring, 1935; Kramers, 1940)

4 However, if we further assume that 𝜋 has support with diameter 𝑅, then a log-Sobolev inequality holds for 𝜋 with
constant𝑂 (𝑅2 ); see Exercise 3.9.
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asserts that if 𝑉 has two separated minima 𝑥0, 𝑥1, then the Poincaré constant for 𝜋 can be expected to
scale as exp( |𝑉 (𝑥1) −𝑉 (𝑥0) |), that is, exponential in the size of the “energy barrier”. See Menz and
Schlichting (2014) for a precise statement.

The next section is devoted to techniques for establishing functional inequalities in various settings.

2.3 Operations Preserving Functional Inequalities
To further expand the class of distributions known to satisfy functional inequalities, we will show in
this section that functional inequalities are stable under various common operations on probability
measures. We let 𝐶PI(𝜋) denote the Poincaré constant of a probability measure 𝜋, and similarly write
𝐶LSI(𝜋), 𝐶T2 (𝜋), etc.

2.3.1 Bounded Perturbation
Suppose that 𝜋 satisfies a functional inequality, and that 𝜇 is another probability measure satisfying
0 < 𝑐 ⩽ d𝜇

d𝜋 ⩽ 𝐶 < ∞. Then, it often follows that 𝜇 also satisfies the same functional inequality, with
a worse constant. This furnishes a large class of examples of non-log-concave measures satisfying
functional inequalities.

Proposition 2.3.1 (Holley–Stroock perturbation, Holley and Stroock (1987)). Suppose that 𝜋
satisfies either a Poincaré or log-Sobolev inequality. Then, if 𝜇 satisfies 0 < 𝑐 ⩽ d𝜇

d𝜋 ⩽ 𝐶 < ∞,
then 𝜇 also satisfies the corresponding functional inequality with constant

𝐶PI(𝜇) ⩽
𝐶

𝑐
𝐶PI(𝜋) or 𝐶LSI(𝜇) ⩽

𝐶

𝑐
𝐶LSI(𝜋)

respectively.

Proof The key is to find a variational principle for the variance or for the entropy. For the variance,
for any 𝜈 ∈ P(R𝑑) and 𝑓 : R𝑑 → R,

var𝜈 𝑓 = inf
𝑚∈R
E𝜈 [| 𝑓 − 𝑚 |2] .

From this,

var𝜇 𝑓 = inf
𝑚∈R
E𝜇 [| 𝑓 − 𝑚 |2] ⩽ 𝐶 inf

𝑚∈R
E𝜋 [| 𝑓 − 𝑚 |2] = 𝐶 var𝜋 𝑓

⩽ 𝐶 𝐶PI(𝜋) E𝜋 Γ( 𝑓 , 𝑓 ) ⩽
𝐶

𝑐
𝐶PI(𝜋) E𝜇 Γ( 𝑓 , 𝑓 ) .

The proof for the log-Sobolev inequality is similar once we have the variational principle

ent𝜈 𝑓 = inf
𝑡>0
E𝜈

[
𝑓 log

𝑓

𝑡
− 𝑓 + 𝑡︸             ︷︷             ︸
⩾0

]
for any 𝑓 : R𝑑 → R+, which we leave as Exercise 2.11. □

One can also state a perturbation principle for the T2 inequality, but it is more involved and the
constants are less precise, see Bakry et al. (2014, Proposition 9.6.3).
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Proposition 2.3.2 (Bounded perturbations for T2). Suppose that 𝜋 satisfies a T2 inequality. If
𝜇 ∈ P2(R𝑑) satisfies 0 < 𝐶−1 ⩽ d𝜇

d𝜋 ⩽ 𝐶 < ∞, then 𝜇 also satisfies a T2 inequality, where𝐶T2 (𝜇)
is bounded in terms of 𝐶 and 𝐶T2 (𝜋) only.

2.3.2 Lipschitz Mapping
Another simple but useful condition which enables us to transfer functional inequalities from 𝜋 to 𝜇 is
the existence of a Lipschitz mapping which pushes forward 𝜋 to 𝜇.

Proposition 2.3.3 (Lipschitz mapping). Suppose that 𝜋 ∈ P(R𝑑) satisfies either a Poincaré or a
log-Sobolev inequality, and that there exists an 𝐿-Lipschitz map 𝑇 : R𝑑 → R𝑑 such that 𝜇 = 𝑇#𝜋.
Then, 𝜇 also satisfies the corresponding functional inequality with constant

𝐶PI(𝜇) ⩽ 𝐿2𝐶PI(𝜋) or 𝐶LSI(𝜇) ⩽ 𝐿2𝐶LSI(𝜋)

respectively.

Proof Assume for simplicity that 𝑇 is continuously differentiable, so that ∥∇𝑇 ∥op ⩽ 𝐿. Then, for
𝑓 : R𝑑 → R, by applying the Poincaré inequality for 𝜋,

var𝜇 𝑓 = var𝜋 ( 𝑓 ◦ 𝑇) ⩽ 𝐶PI(𝜋) E𝜋 [∥∇( 𝑓 ◦ 𝑇)∥2] ⩽ 𝐶PI(𝜋) E𝜋 [∥∇𝑇 ∥2op ∥∇ 𝑓 ◦ 𝑇 ∥2]
⩽ 𝐶PI(𝜋) 𝐿2 E𝜋 [∥∇ 𝑓 ◦ 𝑇 ∥2] = 𝐶PI(𝜋) 𝐿2 E𝜇 [∥∇ 𝑓 ∥2] .

The proof for the log-Sobolev inequality is similar. □

This result becomes particularly powerful when combined with Caffarelli’s contraction theorem,
which states that the optimal transport map from the standard Gaussian to an 𝛼-strongly log-concave
measure is 𝛼−1/2-Lipschitz. As it is often easier to prove functional inequalities for the standard
Gaussian, this principle then quickly implies Poincaré and log-Sobolev inequalities (as well as many
other functional inequalities) for strongly log-concave measures. We will return to this in Section 3.5.

2.3.3 Lipschitz Perturbations
Whereas Proposition 2.3.1 implies that the LSI for strongly log-concave measures is robust against
bounded perturbations, the following result shows that it is also robust against Lipschitz perturbations.

Proposition 2.3.4 (Lipschitz perturbations). Let 𝜋 ∝ exp(−𝑉 −𝑊), where𝑉 is 𝛼-strongly convex
(𝛼 > 0) and𝑊 is 𝐿-Lipschitz. Then,

𝐶LSI(𝜋) ⩽
1
𝛼

exp
( 4𝐿
√
𝛼
+ 𝐿

2

𝛼

)
.

This result is established via Proposition 2.3.3 and the construction of a suitable Lipschitz transport
map from the Gaussian; see Exercise 3.9.
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2.3.4 Convolution
Next, we show that if 𝜋 = 𝜋1 ∗ 𝜋2 is a convolution of two measures, where both 𝜋1 and 𝜋2 satisfy
a functional inequality, then so does 𝜋. This is a consequence of the subadditivity of variance and
entropy. We begin with a variational principle for the entropy.

Lemma 2.3.5 (Variational principle for entropy). For 𝑓 : R𝑑 → R>0,

ent𝜋 𝑓 = sup{E𝜋 [ 𝑓 𝑔] | 𝑔 : R𝑑 → R such that E𝜋 exp 𝑔 ⩽ 1} .

Proof We may assume that E𝜋 exp 𝑔 = 1, and define 𝜇 via d𝜇
d𝜋 B exp 𝑔. Then,

ent𝜋 𝑓 = E𝜋
[
𝑓 log

𝑓

E𝜋 𝑓

]
= E𝜇

[
𝑓 exp(−𝑔) log

𝑓 exp(−𝑔)
E𝜇 [ 𝑓 exp(−𝑔)]

]
︸                                         ︷︷                                         ︸

=ent𝜇 ( 𝑓 exp(−𝑔) )⩾0

+E𝜋 [ 𝑓 𝑔] .

Equality holds if 𝑔 = log( 𝑓 /E𝜋 𝑓 ). □

Remark 2.3.6. The variational principle above is essentially a reformulation of the Donsker–Varadhan
variational principle (Theorem 1.5.7).

Lemma 2.3.7 (Subadditivity of variance and entropy). If 𝑋1, . . . , 𝑋𝑛 are independent random
variables, then

var 𝑓 (𝑋1, . . . , 𝑋𝑛) ⩽ E
𝑛∑︁
𝑖=1

var
(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑖 ) ,
ent 𝑓 (𝑋1, . . . , 𝑋𝑛) ⩽ E

𝑛∑︁
𝑖=1

ent
(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑖 ) .
Here, var(· | 𝑋−𝑖) and ent(· | 𝑋−𝑖) denote the conditional variance and entropy respectively
when all variables except 𝑋𝑖 are held fixed, i.e.,

var
(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑖 = 𝑥−𝑖 ) = var 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑋𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) ,
ent

(
𝑓 (𝑋1, . . . , 𝑋𝑛)

�� 𝑋−𝑖 = 𝑥−𝑖 ) = ent 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑋𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) .

Proof The subadditivity of the variance was established in Exercise 1.1, so we turn towards the
entropy. Let 𝑍 B 𝑓 (𝑋1, . . . , 𝑋𝑛) and

Δ𝑖 = logE[𝑍 | 𝑋1, . . . , 𝑋𝑖] − logE[𝑍 | 𝑋1, . . . , 𝑋𝑖−1] ,

so that

ent 𝑍 = E[𝑍 (log 𝑍 − logE 𝑍)] = E
[
𝑍

𝑛∑︁
𝑖=1

Δ𝑖

]
.

Since

E[expΔ𝑖 | 𝑋−𝑖] =
E[E[𝑍 | 𝑋1, . . . , 𝑋𝑖] | 𝑋−𝑖]
E[𝑍 | 𝑋1, . . . , 𝑋𝑖−1]

= 1 ,
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the variational principle yields

E[𝑍Δ𝑖] = EE[𝑍Δ𝑖 | 𝑋−𝑖] ⩽ E ent(𝑍 | 𝑋−𝑖) . □

Proposition 2.3.8 (Functional inequalities and convolutions). Suppose that 𝜋 = 𝜋1 ∗ 𝜋2 ∈ P(R𝑑),
where 𝜋1 and 𝜋2 both satisfy either a Poincaré or a log-Sobolev inequality. Then, 𝜋 also satisfies
the corresponding functional inequality with constant

𝐶PI(𝜋) ⩽ 𝐶PI(𝜋1) + 𝐶PI(𝜋2) or 𝐶LSI(𝜋) ⩽ 𝐶LSI(𝜋1) + 𝐶LSI(𝜋2)

respectively.

Proof Let 𝑋 ∼ 𝜋1 and 𝑌 ∼ 𝜋2 be independent, and let 𝑓 : R𝑑 → R. Using the subadditivity of the
variance (Lemma 2.3.7),

var𝜋 𝑓 = var 𝑓 (𝑋 + 𝑌 ) ⩽ E var
(
𝑓 (𝑋 + 𝑌 )

�� 𝑌 ) + E var
(
𝑓 (𝑋 + 𝑌 )

�� 𝑋 )
⩽ {𝐶PI(𝜋1) + 𝐶PI(𝜋2)} E[∥∇ 𝑓 (𝑋 + 𝑌 )∥2] ,

and a similar argument holds for the entropy. □

2.3.5 Mixtures
Suppose that 𝜋 is a mixture, 𝜋 = 𝜇𝑃 B

∫
𝑃𝑥 𝜇(d𝑥), where 𝜇 ∈ P(X) is the mixing measure and

(𝑃𝑥)𝑥∈X is a family of probability measures on R𝑑 indexed by X (in other words, a Markov kernel).
For example, when X = [𝑘], then 𝜇𝑃 is a mixture of 𝑘 distributions 𝑃1, . . . , 𝑃𝑘 with mixing weights
given by 𝜇. When X = R𝑑 and 𝑃𝑥 is the translation of a fixed probability measure 𝜈 ∈ P(R𝑑) by 𝑥,
then 𝜇𝑃 = 𝜇 ∗ 𝜈 is the convolution of 𝜇 and 𝜈.

Under general conditions on the mixture, it turns out that if each 𝑃𝑥 satisfies a functional inequality,
then so does the mixture 𝜇𝑃. The simplest demonstration of this idea is for the Poincaré inequality.
Although the arguments in this section apply more generally to mixtures 𝜇𝑃 on arbitrary state spaces,
we focus on the R𝑑 case for simplicity.

Proposition 2.3.9 (PI for mixtures, Bardet et al. (2018)). Let 𝜇𝑃 be a mixture and assume that
each 𝑃𝑥 satisfies a Poincaré inequality with constant 𝐶PI(𝑃). Also, assume that

𝐶𝜒2 B sup
𝑥,𝑥′∈supp(𝜇)

𝜒2(𝑃𝑥 ∥ 𝑃𝑥′) < ∞ . (2.3.10)

Then, 𝜇𝑃 satisfies a Poincaré inequality with constant

𝐶PI(𝜇𝑃) ⩽
(
1 +

𝐶𝜒2

2
)
𝐶PI(𝑃) .

Proof Let 𝑓 : R𝑑 → R, and let 𝑋, 𝑋 ′ i.i.d.∼ 𝜇. By the law of total variance,

var𝜇𝑃 𝑓 = E var𝑃𝑋
𝑓 + varE𝑃𝑋

𝑓 .

The first term is easy to control, because we can apply the Poincaré inequality for 𝑃𝑋 inside the
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expectation, so the main difficulty lies in the second term. Here,

varE𝑃𝑋
𝑓 =

1
2
E[|E𝑃𝑋

𝑓 − E𝑃𝑋′ 𝑓 |2] =
1
2
E
[���∫ 𝑓

( d𝑃𝑋
d𝑃𝑋′

− 1
)

d𝑃𝑋′
���2]

⩽
1
2
E[(var𝑃𝑋′ 𝑓 ) 𝜒2(𝑃𝑋 ∥ 𝑃𝑋′)] ⩽

𝐶𝜒2

2
E var𝑃𝑋

𝑓 .

Hence,

var𝜇𝑃 𝑓 ⩽
(
1 +

𝐶𝜒2

2
)
E var𝑃𝑋

𝑓 ⩽
(
1 +

𝐶𝜒2

2
)
𝐶PI(𝑃) EE𝑃𝑋

Γ( 𝑓 , 𝑓 )︸           ︷︷           ︸
=E𝜇𝑃 Γ ( 𝑓 , 𝑓 )

. □

Our aim is to extend this idea to the log-Sobolev inequality, which will require a few preliminaries.
Rather than aiming to directly prove a log-Sobolev inequality, we will instead prove a defective
log-Sobolev inequality: for all 𝑓 : R𝑑 → R,

ent𝜋 ( 𝑓 2) ⩽ 2𝐶 E𝜋 Γ( 𝑓 , 𝑓 ) + 𝐷 E𝜋 [ 𝑓 2] . (2.3.11)

Although the defective LSI involves an extra term on the right-hand side of the inequality, the extra
term can be removed via a Poincaré inequality. The following result shows how this is achieved.

Lemma 2.3.12 (Tightening a defective LSI, Wang (2024)). Suppose that 𝜋 satisfies the defective
log-Sobolev inequality (2.3.11), together with a Poincaré inequality. Then, 𝜋 satisfies an log-
Sobolev inequality with constant

𝐶LSI ⩽ 𝐶 +
𝐶PI𝐷

2
.

We also need one change of measure lemma.

Lemma 2.3.13 (Chen et al. (2021a)). Suppose that 𝜇, 𝜈 are probability measures and 𝑓 is a
positive function. Then,

E𝜇 ( 𝑓 ) log
E𝜇 ( 𝑓 )
E𝜈 ( 𝑓 )

⩽ ent𝜇 ( 𝑓 ) + E𝜇 ( 𝑓 ) log
(
1 + 𝜒2(𝜇 ∥ 𝜈)

)
.

Proof By rescaling, we may assume E𝜇 𝑓 = 1. Recall the Donsker–Varadhan variational principle
(Theorem 1.5.7), which states

KL(𝜂 ∥ 𝜂′) = sup
{
E𝜂 𝑔 − logE𝜂′ exp 𝑔

�� 𝑔 : X→ R is bounded and measurable
}
.

If we take 𝜂 = 𝑓 𝜇, 𝜂′ = 𝜈, and 𝑔 = log( 𝑓 /E𝜈 𝑓 ), then

E𝜇
[
𝑓 log

𝑓

E𝜈 𝑓

]
= E𝜂 log

𝑓

E𝜈 𝑓
⩽ KL(𝜂 ∥ 𝜈) + logE𝜈

𝑓

E𝜈 𝑓︸        ︷︷        ︸
=0

= E𝜇
[
𝑓 log

(
𝑓

d𝜇
d𝜈

) ]
.

By subtracting E𝜇 ( 𝑓 log 𝑓 ) from both sides, we obtain

log
1
E𝜈 𝑓

= E𝜇
[
𝑓 log

1
E𝜈 𝑓

]
⩽ E𝜇

[
𝑓 log

d𝜇
d𝜈

]
.
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Next, applying the Donsker–Varadhan variational principle a second time with 𝜂 = 𝑓 𝜇, 𝜂′ = 𝜇, and
𝑔 = log d𝜇

d𝜈 yields

E𝜇
[
𝑓 log

d𝜇
d𝜈

]
= E𝜂 log

d𝜇
d𝜈
⩽ KL(𝜂 ∥ 𝜇) + logE𝜇

d𝜇
d𝜈

= ent𝜇 𝑓 + log
(
1 + 𝜒2(𝜇 ∥ 𝜈)

)
,

which is what we wanted to show. □

We can now prove the log-Sobolev inequality for mixtures.

Proposition 2.3.14 (LSI for mixtures, Chen et al. (2021a)). Let 𝜇𝑃 be a mixture and assume
that each 𝑃𝑥 satisfies a log-Sobolev inequality with constant 𝐶LSI(𝑃). Also, assume that

𝐶𝜒2 B sup
𝑥,𝑥′∈supp(𝜇)

𝜒2(𝑃𝑥 ∥ 𝑃𝑥′) < ∞ .

Then, 𝜇𝑃 satisfies a log-Sobolev inequality with constant

𝐶LSI(𝜇𝑃) ⩽ 𝐶LSI(𝑃)
{
2 + 1

2
(
1 +

𝐶𝜒2

2
)

log(1 + 𝐶𝜒2)
}
.

Proof We begin, as in the proof of Proposition 2.3.9, with a decomposition of the entropy:

ent𝜇𝑃 ( 𝑓 2) = E ent𝑃𝑋
( 𝑓 2) + entE𝑃𝑋

( 𝑓 2) .

As before, it is the second term that is difficult to control.
Applying Lemma 2.3.13,

entE𝑃𝑋
( 𝑓 2) = E

[
E𝑃𝑋
( 𝑓 2) log

E𝑃𝑋
( 𝑓 2)

E𝜇𝑃 ( 𝑓 2)
]
⩽ E

[
ent𝑃𝑋

( 𝑓 2) + E𝑃𝑋
( 𝑓 2) log

(
1 + 𝜒2(𝑃𝑋 ∥ 𝜇𝑃)

) ]
⩽ E ent𝑃𝑋

( 𝑓 2) + log(1 + 𝐶𝜒2) E𝜇𝑃 ( 𝑓 2) .

Hence,

ent𝜇𝑃 ( 𝑓 2) ⩽ 2E ent𝑃𝑋
( 𝑓 2) + log(1 + 𝐶𝜒2) E𝜇𝑃 ( 𝑓 2)

⩽ 4𝐶LSI(𝑃) E𝜇𝑃 Γ( 𝑓 , 𝑓 ) + log(1 + 𝐶𝜒2) E𝜇𝑃 ( 𝑓 2) ,

where we have applied the log-Sobolev inequality for 𝑃𝑋. This is a defective log-Sobolev inequality
for 𝜇𝑃; by applying the Poincaré inequality from Proposition 2.3.9 and tightening the inequality
via Lemma 2.3.12, we conclude the proof. □
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Example 2.3.15 (LSI for Gaussian mixtures). Suppose that 𝜇 is supported on a ball B(0, 𝑅), and
that for each 𝑥 ∈ R𝑑, 𝑃𝑥 = normal(𝑥, 𝜎2𝐼𝑑). Then, 𝜇𝑃 is the convolution 𝜇 ∗ normal(0, 𝜎2𝐼𝑑).
Since 𝐶LSI(𝑃) = 𝜎2 and

𝜒2(𝑃𝑥 ∥ 𝑃𝑥′) = exp
∥𝑥 − 𝑥′∥2
𝜎2 − 1 ⩽ exp

4𝑅2

𝜎2 − 1

for 𝑥, 𝑥′ ∈ B(0, 𝑅), we deduce that 𝜇𝑃 satisfies a log-Sobolev inequality with constant

𝐶LSI(𝜇𝑃) ⩽ 2
(
𝜎2 + 𝑅2 exp

4𝑅2

𝜎2

)
.

Hence, Gaussian convolutions of measures with bounded support satisfy a log-Sobolev inequality.
The exponential dependence on 𝑅2/𝜎2 is unavoidable in general. Another approach to the
log-Sobolev inequality for Gaussian mixtures is given in Exercise 3.9.

We extend the results of this section in Exercise 2.13.

2.3.6 Tensorization
A key feature of these functional inequalities which makes them crucial for the study of high-
dimensional (or even infinite-dimensional phenomena) is that they often hold with dimension-free
constants, as demonstrated in the next result.

Theorem 2.3.16 (Tensorization). Suppose that 𝜋1, . . . , 𝜋𝑁 ∈ P(R𝑑) satisfy either a Poincaré
inequality or a log-Sobolev inequality. Then, for any 𝑁 ∈ N+, the product measure 𝜋 B

⊗𝑁

𝑖=1 𝜋𝑖
also satisfies the corresponding functional inequality with constant

𝐶PI(𝜋) = max
𝑖∈[𝑁 ]

𝐶PI(𝜋𝑖) or 𝐶LSI(𝜋) = max
𝑖∈[𝑁 ]

𝐶LSI(𝜋𝑖)

respectively.

Proof The proof is a straightforward consequence of subadditivity (Lemma 2.3.7). Indeed, if
𝑓 : R𝑁𝑑 → R and if 𝑋𝑖 ∼ 𝜋𝑖 are independent for 𝑖 ∈ [𝑁],

var𝜋 𝑓 = var 𝑓 (𝑋1, . . . , 𝑋𝑁 ) ⩽ E
𝑁∑︁
𝑖=1

var
(
𝑓 (𝑋1, . . . , 𝑋𝑁 )

�� 𝑋−𝑖 )
⩽ max
𝑖∈[𝑁 ]

𝐶PI(𝜋𝑖) E
𝑁∑︁
𝑖=1

E[∥∇𝑖 𝑓 (𝑋1, . . . , 𝑋𝑁 )∥2 | 𝑋−𝑖]

= max
𝑖∈[𝑁 ]

𝐶PI(𝜋𝑖) E𝜋 [∥∇ 𝑓 ∥2] .

The proof is the same for the log-Sobolev inequality. □

There is also a tensorization principle for transport inequalities, which however requires some
additional work to prove. We formulate a general result which applies to many different transport
inequalities (not just the T1 and T2 inequalities). See the supplementary material for a proof.
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Theorem 2.3.17 (Marton’s tensorization, Marton (1996)). Let X1, . . . ,X𝑁 be Polish spaces
equipped with probability measures 𝜋1, . . . , 𝜋𝑁 respectively. Let X B X1 × · · · ×X𝑁 be equipped
with the product measure 𝜋 B 𝜋1 ⊗ · · · ⊗ 𝜋𝑁 .

Let 𝜑 : [0,∞) → [0,∞) be convex and for 𝑖 ∈ [𝑁], let 𝑐𝑖 : X𝑖 × X𝑖 → [0,∞) be a lower
semicontinuous cost function. Suppose that

inf
𝛾𝑖∈C(𝜋𝑖 ,𝜈𝑖 )

𝜑

(∫
𝑐𝑖 d𝛾𝑖

)
⩽ 2𝜎2 KL(𝜈𝑖 ∥ 𝜋𝑖) , ∀𝜈𝑖 ∈ P(X𝑖) , ∀𝑖 ∈ [𝑁] .

Then, it holds that

inf
𝛾∈C(𝜋,𝜈)

𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾(d𝑥1:𝑁 , d𝑦1:𝑁 )

)
⩽ 2𝜎2 KL(𝜈 ∥ 𝜋) , ∀𝜈 ∈ P(X) .

We can apply Marton’s tensorization (Theorem 2.3.17) with the convex function 𝜑(𝑥) B 𝑥 and
cost functions 𝑐𝑖 B d2

𝑖 , with d𝑖 a lower semicontinuous metric on X𝑖. This immediately yields the
following corollary.

Corollary 2.3.18 (Tensorization of T2). Suppose that for each 𝑖 ∈ [𝑁], 𝜋𝑖 ∈ P(X𝑖) satisfies
a T2 inequality with parameter 𝜎2 with respect to the metric d𝑖. Then, the product measure
𝜋1 ⊗ · · · ⊗ 𝜋𝑁 satisfies a T2 inequality with the same parameter 𝜎2 with respect to the metric
d(𝑥1:𝑁 , 𝑦1:𝑁 )2 B

∑𝑁
𝑖=1 d(𝑥𝑖, 𝑦𝑖)2 on X1 × · · · × X𝑁 .

2.4 Concentration of Measure and Isoperimetry

Arguably, the most prominent application of functional inequalities has been to the concentration of
measure phenomenon, which is an indispensable tool in high-dimensional probability and statistics.
Since it is not the focus of this book, we only mention a few key results, focusing on the connection
with isoperimetric inequalities due to their relevance to Chapter 7. See, however, the supplementary
material to this book for more details.

Since many of the arguments hold on a general Polish space (that is, a complete separable metric
space) (X, d) equipped with a probability measure 𝜋, we will work in this setting unless explicitly
stated otherwise.

2.4.1 Blow-Up of Sets and Concentration of Lipschitz Functions

Loosely speaking, the concentration of measure phenomenon holds when a huge fraction of the mass
of 𝜋 is concentrated on a relatively small set. Another way of capturing this idea is to assert that
whenever a set has a non-trivial amount of mass under 𝜋, then expanding the set slightly causes it to
capture almost all of the mass of 𝜋. The following definitions formalize this idea.
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Definition 2.4.1. For a Borel subset 𝐴 ⊆ X and 𝜀 > 0, we let 𝐴𝜀 denote the 𝜀-blow-up of 𝐴,
defined by

𝐴𝜀 B {𝑥 ∈ X | d(𝑥, 𝐴) < 𝜀} .

The concentration function 𝛼𝜋 : R+ → [0, 1] is defined via

𝛼𝜋 (𝜀) = sup
{
𝜋
(
(𝐴𝜀)c

) �� 𝐴 ⊆ X is a Borel subset with 𝜋(𝐴) ⩾ 1
2
}
.

Typically, we have 𝛼𝜋 (𝜀) ⩽ 𝐶0 exp(−𝜀/𝐶1) or 𝛼𝜋 (𝜀) ⩽ 𝐶0 exp(−𝜀2/𝐶1) for some constants
𝐶0, 𝐶1 > 0; hence, as we increase 𝜀, the blow-up 𝐴𝜀 captures a (often substantially) larger fraction of
the mass of 𝜋. We first develop an equivalence between the formulation of concentration of measure
via blow-up of sets, and with another involving concentration of Lipschitz functions. Although the
former has a more striking geometric interpretation, the latter is often more useful for applications.

Given a real-valued random variable 𝑋 , we abuse notation and let med 𝑋 denote any median of 𝑋 ,
that is, any number 𝑚 such that P{𝑋 ⩽ 𝑚} ∧ P{𝑋 ⩾ 𝑚} ⩾ 1

2 .

Theorem 2.4.2 (Blow-up and Lipschitz functions). Suppose that (X, d, 𝜋) has concentration
function 𝛼𝜋 . Then, for any 1-Lipschitz function 𝑓 : X→ R and 𝜀 ⩾ 0,

𝜋{ 𝑓 ⩾ med 𝑓 + 𝜀} ⩽ 𝛼𝜋 (𝜀) .

Conversely, suppose that for all 1-Lipschitz functions 𝑓 : X→ R, it holds that

𝜋{ 𝑓 ⩾ med 𝑓 + 𝜀} ⩽ 𝛽(𝜀) .

Then, the concentration function 𝛼𝜋 of (X, d, 𝜋) satisfies 𝛼𝜋 ⩽ 𝛽.

Proof ( =⇒ ) Consider the set 𝐴 B { 𝑓 ⩽ med 𝑓 }. We claim that 𝐴𝜀 ⊆ { 𝑓 − med 𝑓 < 𝜀}. To
prove this, let 𝑥 ∈ 𝐴𝜀 . By definition, there exists 𝑦 ∈ 𝐴 such that d(𝑥, 𝑦) < 𝜀, so 𝑓 (𝑥) − med 𝑓 =
𝑓 (𝑦) −med 𝑓 + 𝑓 (𝑥) − 𝑓 (𝑦) ⩽ d(𝑥, 𝑦) < 𝜀. Hence,

𝜋{ 𝑓 −med 𝑓 < 𝜀} ⩾ 𝜋(𝐴𝜀) ⩾ 1 − 𝛼(𝜀) .

(⇐= ) The function 𝑓 B d(·, 𝐴) is 1-Lipschitz, and if 𝜋(𝐴) ⩾ 1
2 then 0 is a median of 𝑓 . Thus, it

holds that

𝜋(𝐴𝜀) = 𝜋{ 𝑓 −med 𝑓 < 𝜀} ⩾ 1 − 𝛽(𝜀) . □

More broadly, it is a general principle that many statements about sets have an equivalent
reformulation in terms of functions.

Whether by bounding the concentration function, or by establishing concentration inequalities
for Lipschitz functions directly, by now there is a wealth of techniques for proving results of the
following type. We remark that while the following theorem asserts concentration around the mean,
whereas Theorem 2.4.2 considers concentration around the median, the difference is merely superficial
since the mean and median are essentially equivalent (see, e.g., Milman, 2009).
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Theorem 2.4.3 (Functional inequalities and concentration). Let 𝜋 ∈ P(R𝑑), and let 𝑓 : R𝑑 → R
be a 1-Lipschitz function.

1 If 𝜋 satisfies a Poincaré inequality with constant 𝐶PI, then for all 𝑡 ⩾ 0,

𝜋{ 𝑓 − E𝜋 𝑓 ⩾ 𝑡} ⩽ 3 exp
(
− 𝑡
√
𝐶PI

)
.

2 If 𝜋 satisfies Talagrand’s T1 inequality with constant 𝐶T1 , then for all 𝑡 ⩾ 0,

𝜋{ 𝑓 − E𝜋 𝑓 ⩾ 𝑡} ⩽ exp
(
− 𝑡2

2𝐶T1

)
.

In particular, recalling that 𝐶T1 ⩽ 𝐶T2 ⩽ 𝐶LSI, the second statement furnishes a concentration
inequality under a log-Sobolev inequality. Thus, a Poincaré inequality implies subexponential
concentration, and a log-Sobolev inequality implies sub-Gaussian concentration. Moreover, due to
tensorization results (Section 2.3.6), the constants involved are dimension-free for many situations of
interest. Consequently, Theorem 2.4.3 is immensely useful for high-dimensional applications. Here is
a basic illustration.

Example 2.4.4. Suppose that 𝛾 is the standard Gaussian measure on R𝑑 . From the Bakry–Émery
theorem (Theorem 1.2.30), 𝛾 satisfies the log-Sobolev inequality with 𝐶LSI = 1. For 𝑍 ∼ 𝛾,
since E[∥𝑍 ∥2] = 𝑑, the Poincaré inequality applied to the norm ∥·∥ shows that var ∥𝑍 ∥ ⩽ 1, i.e.,√
𝑑 − 1 ⩽ E∥𝑍 ∥ ⩽

√
𝑑.

The concentration result above now shows that the standard Gaussian “lives” on a thin spherical
shell of radius

√
𝑑 and width 𝑂 (1).

2.4.2 Classical Isoperimetry Results

We now study finer questions about the concentration function. More generally, for 𝑝 ∈ (0, 1) and
𝜀 > 0, we introduce the quantity

𝜔𝜋 (𝑝, 𝜀) B inf{𝜋(𝐴𝜀) | 𝐴 is a Borel set with 𝜋(𝐴) = 𝑝} ,

and we can ask about the deviation of 𝜔𝜋 (𝑝, 𝜀) from 𝑝 when 𝜀 is small. In some special cases, we
can even determine the function 𝜔𝜋 exactly. The study of this question will bring us to the classical
geometric problem of isoperimetry. In its simplest guise, it asks: among all plane curves which
enclose an area of a prescribed area, which ones have the least perimeter? Unsurprisingly, among
regular curves, it is well-known that circles provide the answer to this question. As we shall see, the
isoperimetric question, once generalized to abstract spaces, contains a wealth of information about
concentration phenomena.

The connection between concentration and isoperimetry began with the work of Lévy, who found
the isoperimetric inequality on the sphere.
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Theorem 2.4.5 (Spherical isoperimetry). Let𝜎𝑑 denote the uniform measure on the 𝑑-dimensional
unit sphere S𝑑 , and let 𝐴 ⊆ S𝑑 be a Borel subset with 𝜎𝑑 (𝐴) ∉ {0, 1}. Let 𝐶 be a spherical cap
with the same measure as 𝐴. Then, for all 𝜀 > 0,

𝜎𝑑 (𝐴𝜀) ⩾ 𝜎𝑑 (𝐶 𝜀) .

We give a few reminders about spherical geometry. We equip S𝑑 with its geodesic metric d, so that
the distance between two points 𝑥, 𝑦 ∈ S𝑑 is equal to the angle between 𝑥 and 𝑦. A spherical cap is a
geodesic ball, that is, it is a set of the form B(𝑥0, 𝑟) for some 𝑥0 ∈ S𝑑 and 𝑟 > 0, where the balls are
defined w.r.t. d.

Note that Theorem 2.4.5 identifies the exact function 𝜔𝜎𝑑
. To see how an isoperimetric result

naturally leads to a concentration result, suppose that 𝐴 has measure 1
2 . Then, the corresponding

spherical cap 𝐶 can be taken to be half of the sphere, 𝐶 = B(𝑥0,
π

2 ), and so

𝜎𝑑 (𝐴𝜀) ⩾ 𝜎𝑑 (𝐶 𝜀) = 𝜎𝑑
(
B
(
𝑥0,

π

2
+ 𝜀

) )
.

To obtain an upper bound on the concentration function 𝛼𝜎𝑑
, it therefore suffices to lower bound the

volume of the spherical cap. It leads to the following result, which we leave as Exercise 2.17.

Theorem 2.4.6 (Concentration on the sphere). Let 𝜎𝑑 be the uniform measure on the unit sphere
S𝑑 in dimension 𝑑 ⩾ 2, equipped with the geodesic distance d. Then,

𝛼𝜎𝑑
(𝜀) ⩽ exp

(
− (𝑑 − 1) 𝜀2

2
)
, for all 𝜀 > 0 .

There is also an isoperimetric result for the standard Gaussian measure 𝛾𝑑 on R𝑑 . In this case, the
optimal sets are given by half-spaces, i.e., sets of the form

𝐻𝑥0 ,𝑡 B {𝑥 ∈ R𝑑 | ⟨𝑥, 𝑥0⟩ ⩽ 𝑡} .

Theorem 2.4.7 (Gaussian isoperimetry). Let 𝛾𝑑 denote the standard Gaussian measure on R𝑑 ,
and let 𝐴 ⊆ R𝑑 be a Borel subset with 𝛾𝑑 (𝐴) ≠ {0, 1}. Let 𝐻𝑥0 ,𝑡 be a half-space with the same
measure as 𝐴. Then, for all 𝜀 > 0,

𝛾𝑑 (𝐴𝜀) ⩾ 𝛾𝑑 (𝐻 𝜀
𝑥0 ,𝑡
) .

We can write this result more explicitly as follows. By rotational invariance of the Gaussian, we
can take 𝑥0 to be any unit vector 𝑒, in which case the measure of 𝐻𝑒,𝑡 is 𝛾𝑑 (𝐻𝑒,𝑡 ) = Φ(𝑡), where Φ is
the Gaussian CDF. Since 𝐻 𝜀

𝑒,𝑡 = 𝐻𝑒,𝑡+𝜀 , then

𝛾𝑑 (𝐴𝜀) ⩾ Φ
(
Φ−1 (𝛾𝑑 (𝐴)) + 𝜀) . (2.4.8)

In particular, if 𝛾𝑑 (𝐴) = 1
2 , then Φ−1( 1

2 ) = 0, so

𝛼𝛾𝑑 (𝜀) ⩽ Φ(−𝜀) ⩽ 1
2

exp
(
−𝜀

2

2
)
.

We now pause to give a remark on proofs. Since these isoperimetric inequalities require a detailed
understanding of the measure (including the optimal sets in the inequality), they are considerably
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more difficult to prove than the other results we have seen so far (e.g., a log-Sobolev inequality). In
particular, usually they can only established for measures which are simple in some regard, e.g., they
enjoy many symmetries. Hence, we will not prove them here.

It is often convenient to pass to a differential form of the isoperimetric inequality, which is obtained
by sending 𝜀 ↘ 0. This is formalized as follows.

Definition 2.4.9. Given a non-empty Borel set 𝐴 and a measure 𝜋 on a Polish space (X, d), the
Minkowski content of 𝐴 under 𝜋 is

𝜋+(𝐴) B lim inf
𝜀↘0

𝜋(𝐴𝜀) − 𝜋(𝐴)
𝜀

.

Definition 2.4.10. For a measure 𝜋 on a Polish space (X, d), the isoperimetric profile of 𝜋,
denoted I𝜋 : [0, 1] → R+, is the function

I𝜋 (𝑝) B inf{𝜋+(𝐴) | 𝐴 is measurable with 𝜋(𝐴) = 𝑝} .

For the standard Gaussian, a Taylor expansion of (2.4.8) yields

𝛾𝑑 (𝐴𝜀) ⩾ 𝛾𝑑 (𝐴) + 𝜙
(
Φ−1 (𝛾𝑑 (𝐴)) ) 𝜀 + 𝑜(𝜀) ,

where 𝜙 = Φ′ is the Gaussian density. Hence, we can identify the isoperimetric profile of the standard
Gaussian as

I𝛾𝑑 (𝑝) = 𝜙
(
Φ−1(𝑝)

)
. (2.4.11)

Actually, (2.4.11) is equivalent to the Gaussian isoperimetric inequality (2.4.8). Here, (2.4.8) is
called the integral form of the inequality, whereas (2.4.11) is called the differential form. The following
theorem shows how to convert between the two forms.

Theorem 2.4.12 (Bobkov and Houdré (1997)). Let I : (0, 1) → R>0. Define the increasing
function 𝐹 such that 𝐹 (0) = 1

2 and 𝑓 ◦ 𝐹−1 = I, where 𝑓 = 𝐹′; equivalently, we can take
𝐹−1(𝑝) =

∫ 𝑝

1/2 I(𝑡)
−1 d𝑡. Then, the following statements are equivalent.

1 For all 𝜀 > 0 and all Borel 𝐴 with 𝜋(𝐴) ∉ {0, 1},

𝜋(𝐴𝜀) ⩾ 𝐹
(
𝐹−1 (𝜋(𝐴)) + 𝜀) .

2 For all Borel 𝐴 with 𝜋(𝐴) ∉ {0, 1},

𝜋+(𝐴) ⩾ I
(
𝜋(𝐴)

)
.

Proof sketch Let �̄�(𝑝, 𝜀) B 𝐹 (𝐹−1(𝑝) + 𝜀). Then, one can show that �̄� satisfies the semigroup
property �̄�(�̄�(𝑝, 𝜀), 𝜀′) = �̄�(𝑝, 𝜀 + 𝜀′). Using this, one shows that to prove 𝜋(𝐴𝜀) ⩾ 𝜔(𝜋(𝐴)) it
suffices to consider 𝜀 ↘ 0. A Taylor expansion yields

𝜋(𝐴𝜀) ⩾ 𝜋(𝐴) + 𝜋+(𝐴) 𝜀 + 𝑜(𝜀) ,
�̄�(𝜋(𝐴), 𝜀) = 𝜋(𝐴) + I(𝜋(𝐴)) 𝜀 + 𝑜(𝜀) ,



72 Functional Inequalities

from which we deduce that 𝜋+(𝐴) ⩾ I(𝜋(𝐴)) for all 𝐴 if and only if 𝜋(𝐴𝜀) ⩾ �̄�(𝜋(𝐴), 𝜀) for all 𝐴
and all 𝜀 > 0. □

2.4.3 Cheeger Isoperimetry
We now consider a class of probability measures which is characterized by a lower bound on the
isoperimetric profile.

Definition 2.4.13. A probability measure 𝜋 satisfies a Cheeger isoperimetric inequality with
constant Ch > 0 if for all Borel sets 𝐴 ⊆ X,

𝜋+(𝐴) ⩾ 1
Ch

𝜋(𝐴) 𝜋(𝐴c) . (2.4.14)

For the two-sided exponential density 𝑥 ↦→ 𝜇(𝑥) B 1
2 exp(−|𝑥 |), the isoperimetric profile is known

to be I𝜇 (𝑝) = min(𝑝, 1 − 𝑝). Hence, the Cheeger isoperimetric inequality roughly asserts that the
isoperimetric properties of 𝜋 are at least as good as those of 𝜇.

The inequality in (2.4.14) is the differential form of the inequality. By applying Theorem 2.4.12,
one shows that the inequality (2.4.14) implies, for any 𝜀 ∈ [0,Ch],

𝜋(𝐴𝜀) − 𝜋(𝐴) ⩾ 𝜀

2 Ch
𝜋(𝐴) 𝜋(𝐴c) . (2.4.15)

For all 𝜀 > 0, Theorem 2.4.12 also implies that

𝛼𝜋 (𝜀) ⩽ exp
(
− 𝜀

Ch
)
,

so 𝜋 enjoys at least subexponential concentration.
Such isoperimetric inequalities will play a key role when we study Metropolis-adjusted sampling

algorithms in Chapter 7. For now, however, our goal is to establish an equivalence between the Cheeger
isoperimetric inequality and a functional version of it.

To pass from a functional inequality to an inequality involving sets, we can usually apply the
functional inequality to the indicator of a set. To go the other way around, we need to represent a
function via its level sets, which is achieved via the coarea inequality.

Theorem 2.4.16 (Coarea inequality). Let 𝑓 : X→ R be Lipschitz. Then,∫
∥∇ 𝑓 ∥ d𝜋 ⩾

∫ ∞

−∞
𝜋+{ 𝑓 > 𝑡} d𝑡 .

Remark 2.4.17. On a general metric space (X, d), we define

∥∇ 𝑓 ∥(𝑥) B lim sup
𝑦∈X, d(𝑥,𝑦)↘0

| 𝑓 (𝑥) − 𝑓 (𝑦) |
d(𝑥, 𝑦) .

In “nice” spaces, the coarea inequality is actually an equality, but we will not need this.

Proof By an approximation argument we may assume that 𝑓 is bounded, and by adding a constant
to 𝑓 we may suppose 𝑓 ⩾ 0. Let 𝑓𝜀 (𝑥) B supd(𝑥, · )<𝜀 𝑓 and 𝐴𝑡 B { 𝑓 > 𝑡}. We can check that
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𝐴𝜀𝑡 = { 𝑓𝜀 > 𝑡}, and for 𝑔 ⩾ 0 we have the formula
∫
𝑔 d𝜋 =

∫ ∞
0 𝜋{𝑔 > 𝑡} d𝑡. By applying this to

𝑔 = 𝑓 and 𝑔 = 𝑓𝜀 , ∫
𝑓𝜀 − 𝑓
𝜀

d𝜋 =

∫ ∞

0

𝜋(𝐴𝜀𝑡 ) − 𝜋(𝐴𝑡 )
𝜀

d𝑡 .

Now let 𝜀 ↘ 0 using Fatou’s lemma and dominated convergence. □

Theorem 2.4.18 (Functional form of Cheeger isoperimetry). Let 𝜋 ∈ P1(X) and let Ch > 0. The
following are equivalent.

1 𝜋 satisfies a Cheeger isoperimetric inequality with constant Ch.
2 For all Lipschitz 𝑓 : X→ R, it holds that

E𝜋 | 𝑓 − E𝜋 𝑓 | ⩽ 2 ChE𝜋 ∥∇ 𝑓 ∥ . (2.4.19)

Proof sketch (2) =⇒ (1): Apply (2.4.19) to an approximation 𝑓 of the indicator function 1𝐴, so
that E𝜋 | 𝑓 − E𝜋 𝑓 | ≈ 2 𝜋(𝐴) (1 − 𝜋(𝐴)) and E𝜋 ∥∇ 𝑓 ∥ ≈ 𝜋+(𝐴).

(1) =⇒ (2): Let 𝐴𝑡 B { 𝑓 > 𝑡}. Applying the coarea inequality and the Cheeger isoperimetric
inequality,

2 ChE𝜋 ∥∇ 𝑓 ∥ ⩾ 2 Ch
∫ ∞

−∞
𝜋+{ 𝑓 > 𝑡} d𝑡

⩾ 2
∫ ∞

−∞
𝜋(𝐴𝑡 ) 𝜋(𝐴c

𝑡 ) d𝑡 =
∫ ∞

−∞
E𝜋 |1𝐴𝑡

− 𝜋(𝐴𝑡 ) | d𝑡

⩾ sup
∥𝑔∥𝐿∞ (𝜋)⩽1

∫ ∞

−∞

(∫
𝑔 {1𝐴𝑡

− 𝜋(𝐴𝑡 )} d𝜋
)

d𝑡

= sup
∥𝑔∥𝐿∞ (𝜋)⩽1

∫ ∞

−∞

(∫
{𝑔 − E𝜋 𝑔} 1𝐴𝑡

d𝜋
)

d𝑡 = sup
∥𝑔∥𝐿∞ (𝜋)⩽1

∫
{𝑔 − E𝜋 𝑔} 𝑓 d𝜋

= E𝜋 | 𝑓 − E𝜋 𝑓 | . □

2.4.4 𝐿 𝑝–𝐿𝑞 Poincaré Inequalities
In this section, we work on Euclidean space for simplicity.

The inequality (2.4.19) can be considered an “𝐿1 variant” of the Poincaré inequality. More generally,
we can define the following family of inequalities.

Definition 2.4.20 (𝐿 𝑝–𝐿𝑞 Poincaré inequality). For 𝑝, 𝑞 ∈ [1,∞] with 𝑞 ⩾ 𝑝, the 𝐿 𝑝–𝐿𝑞
Poincaré inequality asserts that for all smooth 𝑓 : R𝑑 → R,

∥ 𝑓 − E𝜋 𝑓 ∥𝐿𝑝 (𝜋 ) ⩽ 𝐶𝑝,𝑞
 ∥∇ 𝑓 ∥ 

𝐿𝑞 (𝜋 ) .

In this new notation, the usual Poincaré inequality is an 𝐿2–𝐿2 Poincaré inequality with𝐶2,2 =
√
𝐶PI,

whereas the inequality (2.4.19) is an 𝐿1–𝐿1 Poincaré inequality.
These inequalities form a hierarchy via Hölder’s inequality.
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Proposition 2.4.21 (Milman (2009)). Suppose 𝑝, 𝑞, 𝑝, 𝑞 ∈ [1,∞] are such that 𝑝 ⩽ 𝑝 and
𝑞 ⩽ 𝑞, and 𝑝−1 − 𝑞−1 = 𝑝−1 − 𝑞−1. Then,

𝐶 �̂�,�̂� ≲
𝑝

𝑝
𝐶𝑝,𝑞 .

Proof Let 𝑓 satisfy med𝜋 𝑓 = 0, which we can arrange by adding a constant. Define the function
𝑔 B (sgn 𝑓 ) | 𝑓 | �̂�/𝑝, which still satisfies med𝜋 𝑔 = 0. Throughout the proof, we use the fact that
for any function ℎ, the 𝐿 𝑝 (𝜋) norms of ℎ − E𝜋 ℎ and ℎ − med𝜋 ℎ are equivalent up to a universal
constant (Milman, 2009). Applying the 𝐿 𝑝–𝐿𝑞 Poincaré inequality to 𝑔 together with Hölder’s
inequality,

∥ 𝑓 −med𝜋 𝑓 ∥ �̂�/𝑝𝐿 �̂� (𝜋 ) = ∥𝑔 −med𝜋 𝑔∥𝐿𝑝 (𝜋 ) ≲ ∥𝑔 − E𝜋 𝑔∥𝐿𝑝 (𝜋 ) ⩽ 𝐶𝑝,𝑞
 ∥∇𝑔∥ 

𝐿𝑞 (𝜋 )

=
𝑝

𝑝
𝐶𝑝,𝑞

 | 𝑓 | �̂�/𝑝−1 ∥∇ 𝑓 ∥

𝐿𝑞 (𝜋 )

=
𝑝

𝑝
𝐶𝑝,𝑞 ∥ 𝑓 −med𝜋 𝑓 ∥ �̂�/𝑝−1

𝐿 �̂� (𝜋 )

 ∥∇ 𝑓 ∥ 
𝐿�̂� (𝜋 ) ,

where we leave it to the reader to check that the exponents work out correctly. If we rearrange this
inequality, then

∥ 𝑓 − E𝜋 𝑓 ∥𝐿 �̂� (𝜋 ) ≲ ∥ 𝑓 −med𝜋 𝑓 ∥𝐿 �̂� (𝜋 ) ≲
𝑝

𝑝
𝐶𝑝,𝑞

 ∥∇ 𝑓 ∥ 
𝐿�̂� (𝜋 ) . □

Thus, we have the following implications: for any 𝑝 ∈ (2,∞),

(𝐿1–𝐿1) =⇒ (𝐿2–𝐿2) =⇒ · · · =⇒ (𝐿 𝑝–𝐿 𝑝) .

In particular, the first implication together with the equivalence in Theorem 2.4.18 shows that the
Cheeger isoperimetric inequality implies the Poincaré inequality.

Also, given any 𝐿 𝑝–𝐿𝑞 Poincaré inequality, by Jensen’s inequality we can trivially make it weaker
by decreasing 𝑝 or increasing 𝑞; hence, every 𝐿 𝑝–𝐿𝑞 Poincaré inequality implies an 𝐿1–𝐿∞ Poincaré
inequality. On the other hand, for any 1 ⩽ 𝑝 ⩽ 𝑞 < ∞, an 𝐿1–𝐿1 Poincaré implies an 𝐿 𝑝–𝐿 𝑝 Poincaré,
which trivially implies an 𝐿 𝑝–𝐿𝑞 Poincaré inequality. We conclude that among these inequalities, the
𝐿1–𝐿1 inequality is the strongest and the 𝐿1–𝐿∞ inequality is the weakest.

We now sketch the proof of a deep result by E. Milman, which states that for log-concave measures,
the hierarchy can be reversed. The formal statement is as follows.

Theorem 2.4.22 (Reversing the hierarchy, Milman (2009)). Let 𝜋 be log-concave. Then,

𝐶1,1 ≲ 𝐶1,∞ .

As a consequence, suppose that 𝜋 is 𝛼-strongly log-concave. By the Bakry–Émery theorem
(Theorem 1.2.30), 𝜋 satisfies a Poincaré inequality with 𝐶2

2,2 = 𝐶PI ⩽ 1/𝛼. By reversing the hierarchy,
we see that this implies a Cheeger isoperimetric inequality.

Corollary 2.4.23. If 𝜋 ∈ P(R𝑑) is 𝛼-strongly log-concave, then 𝜋 satisfies a Cheeger isoperi-
metric inequality with constant Ch ≲ 1/

√
𝛼.
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The proof of Milman’s theorem will require some preparations. The first fact that we need is a
deep result in its own right. Typically it is proven with geometric measure theory by studying the
isoperimetric problem, and we omit the proof.

Theorem 2.4.24. If 𝜋 is log-concave, then its isoperimetric profile I𝜋 is concave.

The isoperimetric profile satisfies I𝜋 (0) = 0, and it is symmetric around 1
2 , so it suffices to consider

𝑝 ∈ [0, 1
2 ]. By concavity,

I𝜋 (𝑝) ⩾ I𝜋
(1
2
)
𝑝 . (2.4.25)

Hence, in order to prove Cheeger’s isoperimetric inequality, we need only find a suitable lower bound
for I𝜋 ( 1

2 ).
The next idea is that instead of applying the 𝐿1–𝐿∞ directly to an indicator function 1𝐴, we will

first regularize 1𝐴 using the Langevin semigroup (𝑃𝑡 )𝑡⩾0 with stationary distribution 𝜋. We start with
a semigroup calculation.

Proposition 2.4.26. Assume that the Markov semigroup (𝑃𝑡 )𝑡⩾0 is reversible and satisfies the
curvature-dimension condition CD(0,∞). For all 𝑡 > 0 and 𝑝 ∈ [2,∞],√︁Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 )


𝐿𝑝 (𝜋 ) ⩽

1
√

2𝑡
∥ 𝑓 ∥𝐿𝑝 (𝜋 ) (2.4.27)

and

∥ 𝑓 − 𝑃𝑡 𝑓 ∥𝐿1 (𝜋 ) ⩽
√

2𝑡
√︁Γ( 𝑓 , 𝑓 )


𝐿1 (𝜋 ) . (2.4.28)

Proof The local reverse Poincaré inequality (2.2.19) yields√︁
Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 ) ⩽

1
√

2𝑡

√︁
𝑃𝑡 ( 𝑓 2)

so that √︁Γ(𝑃𝑡 𝑓 , 𝑃𝑡 𝑓 )

𝐿𝑝 (𝜋 ) ⩽

1
√

2𝑡
{E𝜋 𝑃𝑡 ( | 𝑓 |𝑝)}1/𝑝 ⩽

1
√

2𝑡
∥ 𝑓 ∥𝐿𝑝 (𝜋 ) .

The last inequality is the dual of the 𝑝 = ∞ case. Indeed, for 𝑔 with ∥𝑔∥𝐿∞ (𝜋 ) ⩽ 1,

𝜕𝑡

∫
( 𝑓 − 𝑃𝑡 𝑓 ) 𝑔 d𝜋 = −

∫
𝑃𝑡ℒ 𝑓 𝑔 d𝜋 =

∫
Γ( 𝑓 , 𝑃𝑡𝑔) d𝜋

and hence, by the Cauchy–Schwarz inequality for the carré du champ (Exercise 1.5),∫
( 𝑓 − 𝑃𝑡 𝑓 ) 𝑔 d𝜋 =

∫ 𝑡

0

(∫
Γ( 𝑓 , 𝑃𝑠𝑔) d𝜋

)
d𝑠 ⩽

∫ 𝑡

0

(∫ √︁
Γ( 𝑓 , 𝑓 ) Γ(𝑃𝑠𝑔, 𝑃𝑠𝑔) d𝜋

)
d𝑠

⩽
√︁Γ( 𝑓 , 𝑓 )


𝐿1 (𝜋 )

∫ 𝑡

0

√︁Γ(𝑃𝑠𝑔, 𝑃𝑠𝑔)

𝐿∞ (𝜋 ) d𝑠

⩽
√︁Γ( 𝑓 , 𝑓 )


𝐿1 (𝜋 ) ∥𝑔∥𝐿∞ (𝜋 )

∫ 𝑡

0

1
√

2𝑠
d𝑠 ⩽

√
2𝑡
√︁Γ( 𝑓 , 𝑓 )


𝐿1 (𝜋 ) . □

We are now ready to prove Milman’s theorem.
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Proof of Milman’s theorem, Theorem 2.4.22 By approximating the indicator function 1𝐴 with a
smooth function and applying the inequality (2.4.28), we can justify the bound

√
2𝑡 𝜋+(𝐴) ⩾ ∥1𝐴 − 𝑃𝑡1𝐴∥𝐿1 (𝜋 ) .

Next, a calculation shows that

E𝜋 |1𝐴 − 𝑃𝑡1𝐴 | = 2
{
𝜋(𝐴) 𝜋(𝐴c) − E

[ (
1𝐴 − 𝜋(𝐴)

) (
𝑃𝑡1𝐴 − 𝜋(𝐴)

) ]}
⩾ 2 {𝜋(𝐴) 𝜋(𝐴c) − ∥1𝐴 − 𝜋(𝐴)∥𝐿∞ (𝜋 )︸                 ︷︷                 ︸

⩽1

∥𝑃𝑡1𝐴 − 𝜋(𝐴)∥𝐿1 (𝜋 ) } .

From the 𝐿1–𝐿∞ Poincaré inequality and (2.4.27),

∥𝑃𝑡1𝐴 − 𝜋(𝐴)∥𝐿1 (𝜋 ) ⩽ 𝐶1,∞
 ∥∇𝑃𝑡1𝐴∥ 𝐿∞ (𝜋 ) ⩽ 𝐶1,∞√

2𝑡
∥1𝐴∥𝐿∞ (𝜋 ) ⩽

𝐶1,∞√
2𝑡
.

Hence, we have
√

2𝑡 𝜋+(𝐴) ⩾ 2
{
𝜋(𝐴) 𝜋(𝐴c) − 𝐶1,∞√

2𝑡

}
.

Now choose
√

2𝑡 = 2𝐶1,∞/(𝜋(𝐴) 𝜋(𝐴c)) to obtain

𝜋+(𝐴) ⩾ 1
2𝐶1,∞

𝜋(𝐴)2 𝜋(𝐴c)2 .

This inequality is not fully satisfactory, but if we take 𝜋(𝐴) = 1
2 then we deduce from this that

I𝜋 ( 1
2 ) ⩾ 1/(32𝐶1,∞), and from (2.4.25) we conclude. □

2.4.5 Gaussian Isoperimetry
The Cheeger isoperimetric inequality asserts that for small 𝑝, I𝜋 (𝑝) ≳ 𝑝. On the other hand,
one can check that the Gaussian isoperimetric profile I𝛾𝑑 (𝑝) = 𝜙(Φ−1(𝑝)) has the asymptotics
I𝛾𝑑 (𝑝) ∼ 𝑝

√︁
2 log(1/𝑝) as 𝑝 ↘ 0.

As with the Cheeger isoperimetric inequality, isoperimetry of Gaussian type can also be captured
via a functional inequality. The following result is due to Bobkov (1997).

Theorem 2.4.29 (Gaussian isoperimetry, functional form). Suppose that 𝜋 ∈ P(R𝑑) is 𝛼-strongly
log-concave for some 𝛼 > 0. Then, for all 𝑓 : R𝑑 → [0, 1],

√
𝛼I𝛾𝑑 (E𝜋 𝑓 ) ⩽ E𝜋

√︃
𝛼I𝛾𝑑 ( 𝑓 )2 + Γ( 𝑓 , 𝑓 ) . (2.4.30)

As this formulation suggests, Theorem 2.4.29 has a proof via Markov semigroup theory, for which
we refer readers to Bakry et al. (2014, Section 8.5.2). By converting the functional inequality back
into an isoperimetric statement, one can deduce the following comparison theorem.

Theorem 2.4.31 (Gaussian isoperimetry comparison theorem). Suppose that the measure
𝜋 ∈ P(R𝑑) is 𝛼-strongly log-concave for some 𝛼 > 0. Then,

I𝜋 ⩾
√
𝛼I𝛾𝑑 .
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We explore these results further in the exercises.

2.5 Riemannian Manifolds
In this section, we revisit the curvature-dimension condition. As we hinted at in Section 2.2.1, the
commutation relation which underlies the curvature-dimension condition captures the underlying
curvature of both the ambient space and the measure. To aid the reader who is unfamiliar with
Riemannian geometry, we will provide a brief review of the main concepts. In this section, we shall
omit many of the proofs, as the goal is simply to acquaint the reader with the general picture in a
geometric context.

2.5.1 Riemannian Geometry
Basic concepts.

We recall some of the definitions from Section 1.3.2. A Riemannian manifold M is a space which is
locally homeomorphic to a Euclidean space, such that at every point 𝑝 ∈ M there is an associated
vector space 𝑇𝑝M, called the tangent space to M at 𝑝, equipped with an inner product ⟨·, ·⟩𝑝. The
tangent space 𝑇𝑝M represents the velocities of all curves passing through 𝑝. We can collect together
the different tangent spaces into a single object called the tangent bundle,

𝑇M B
⋃
𝑝∈M
({𝑝} × 𝑇𝑝M) .

The Riemannian metric 𝑝 ↦→ ⟨·, ·⟩𝑝 is required to be smooth in a suitable sense.
A smooth function 𝑓 : M→ R has a differential 𝑑𝑓 : 𝑇M→ R, defined as follows. Given a point

𝑝 ∈ M and a tangent vector 𝑣 ∈ 𝑇𝑝M, let (𝑝𝑡 )𝑡∈R be a curve on M with 𝑝0 = 𝑝 and with velocity 𝑣
at time 0. Then, (𝑑𝑓 ) 𝑝𝑣 B 𝜕𝑡 |𝑡=0 𝑓 (𝑝𝑡 ). One can check that this definition does not depend on the
choice of curve (𝑝𝑡 )𝑡∈R and that (𝑑𝑓 ) 𝑝 is a linear function on 𝑇𝑝M. Note that the differential can be
defined on any manifold, even if it does not have a Riemannian structure, but (𝑑𝑓 ) 𝑝 is not an element
of 𝑇𝑝M; it is an element of the dual space 𝑇 ∗𝑝M, called the cotangent space. The Riemannian metric
allows us to identify (𝑑𝑓 ) 𝑝 with an element of 𝑇𝑝M: there is a unique vector ∇ 𝑓 (𝑝) ∈ 𝑇𝑝M such that
for all 𝑣 ∈ 𝑇𝑝M, it holds that (𝑑𝑓 ) 𝑝𝑣 = ⟨∇ 𝑓 (𝑝), 𝑣⟩𝑝. The vector ∇ 𝑓 (𝑝) is called the gradient of 𝑓 at
𝑝. The gradient depends on the choice of the metric, and we can then define the gradient flow of 𝑓 to
be a curve (𝑝𝑡 )𝑡⩾0 such that the velocity ¤𝑝𝑡 of the curve equals −∇ 𝑓 (𝑝𝑡 ) for all 𝑡 ⩾ 0.

We pause to give a simple example. Suppose that M = R𝑑, and we pick a smooth mapping
𝑝 ↦→ 𝐴𝑝 where 𝐴𝑝 is a positive definite 𝑑 × 𝑑 matrix for each 𝑝 ∈ R𝑑. This induces a Riemannian
metric via ⟨𝑢, 𝑣⟩𝑝 B ⟨𝑢, 𝐴𝑝 𝑣⟩, where ⟨·, ·⟩ (without a subscript) denotes the usual Euclidean inner
product. If (𝑝𝑡 )𝑡∈R is a smooth curve in R𝑑 and its usual time derivative is ( ¤𝑝𝑡 )𝑡∈R, then we know
that 𝜕𝑡 𝑓 (𝑝𝑡 ) = ⟨∇ 𝑓 (𝑝𝑡 ), ¤𝑝𝑡⟩ = ⟨𝐴−1

𝑝𝑡
∇ 𝑓 (𝑝𝑡 ), ¤𝑝𝑡⟩𝑝𝑡 . Hence, the manifold gradient ∇M 𝑓 is given by

∇M 𝑓 (𝑝) = 𝐴−1
𝑝 ∇ 𝑓 , where ∇ 𝑓 is the Euclidean gradient. When 𝐴𝑝 = ∇2𝜙(𝑝) is obtained as the

Hessian of a mapping 𝜙, then M is called a Hessian manifold.
A vector field on M is a mapping 𝑋 : M→ 𝑇M such that 𝑋 (𝑝) ∈ 𝑇𝑝M for all 𝑝 ∈ M.5 A single

vector 𝑣 ∈ 𝑇𝑝M can be thought of as a differential operator; for 𝑓 ∈ C∞(M), we can define the
action of 𝑣 on 𝑓 via 𝑣( 𝑓 ) B (𝑑𝑓 ) 𝑝𝑣. Similarly, a vector field 𝑋 acts on 𝑓 and produces a function

5 Geometers would write that 𝑋 is a section of the tangent bundle.



78 Functional Inequalities

𝑋 𝑓 : M→ R, defined by 𝑋 𝑓 (𝑝) = 𝑋 (𝑝) 𝑓 for all 𝑝 ∈ M. For example, on R𝑑, a vector field can be
identified with a mapping R𝑑 → R𝑑 , and it differentiates functions via 𝑋 𝑓 (𝑝) = ⟨∇ 𝑓 (𝑝), 𝑋 (𝑝)⟩.

We would also like to differentiate vector fields along other vector fields, and there are two main
ways of doing so. The first is called the Lie derivative, and it can be defined on any smooth manifold
without the need for a Riemannian metric, and is consequently less important for our discussion. The
second is the Levi–Civita connection, which given vector fields 𝑋 and 𝑌 , outputs another vector
field ∇𝑋𝑌 . This connection is characterized by various properties, including compatibility with the
Riemannian metric: for all vector fields 𝑋 , 𝑌 , and 𝑍 , we have the chain rule

𝑍 ⟨𝑋,𝑌⟩ = ⟨∇𝑍𝑋,𝑌⟩ + ⟨𝑋,∇𝑍𝑌⟩ . (2.5.1)

Here, the vector field 𝑍 is differentiating the scalar function 𝑝 ↦→ ⟨𝑋 (𝑝), 𝑌 (𝑝)⟩𝑝. Since we do
not aim to perform many Riemannian calculations here, we omit most of the other properties for
simplicity. However, we mention one key fact, which is that for any smooth function 𝑓 , it holds that
∇ 𝑓 𝑋𝑌 = 𝑓 ∇𝑋𝑌 , where 𝑓 𝑋 is the vector field ( 𝑓 𝑋) (𝑝) = 𝑓 (𝑝) 𝑋 (𝑝). This property implies that the
mapping (𝑋,𝑌 ) ↦→ ∇𝑋𝑌 is tensorial in its first argument, that is, (∇𝑋𝑌 ) (𝑝) only depends on the value
𝑋 (𝑝) of 𝑋 at 𝑝.

The tensorial property of the Levi–Civita connection allows us to compute the derivative of a vector
field 𝑌 along a curve 𝑐 : R→M. Namely, for 𝑡 ∈ R, we can define 𝐷𝑐𝑌 (𝑡) B (∇ ¤𝑐 (𝑡 )𝑌 ) (𝑐(𝑡)), which
makes sense because we can extend ¤𝑐 to a vector field 𝑋 on M and deduce that (∇𝑋𝑌 ) (𝑐(𝑡)) only
depends on 𝑋 (𝑐(𝑡)) = ¤𝑐(𝑡) (and not on the choice of extension 𝑋). Then, 𝐷𝑐𝑌 is called the covariant
derivative of 𝑌 along the curve 𝑐. From there, we can define the parallel transport of a vector
𝑣0 ∈ 𝑇𝑐 (0)M along the curve 𝑐 to be the unique vector field (𝑣(𝑡))𝑡∈R defined along the curve 𝑐 with
𝑣(0) = 𝑣0 such that the covariant derivative vanishes: 𝐷𝑐𝑣 = 0. The parallel transport is a canonical
way of identifying two different tangent spaces on M. Due to compatibility with the metric, it has the
property that if 𝑐(0) = 𝑝, 𝑐(1) = 𝑞, and 𝑃𝑐𝑣 ∈ 𝑇𝑞M denotes the parallel transport of 𝑣 ∈ 𝑇𝑝M along
𝑐 for time 1, then 𝑃𝑐 : 𝑇𝑝M→ 𝑇𝑞M is an isometry.

We already have seen the idea of a length-minimizing curve, or a geodesic. Recall that the
Riemannian metric induces a distance on M via

d(𝑝, 𝑞) = inf
{∫ 1

0
∥ ¤𝛾(𝑡)∥𝛾 (𝑡 ) d𝑡

��� 𝛾(0) = 𝑝, 𝛾(1) = 𝑞} .
If there is a minimizing constant-speed curve 𝛾 in this variational problem, we say that 𝛾 is a geodesic
joining 𝑝 and 𝑞. By taking the first variation of this problem, one shows that a necessary condition for
𝛾 to be a geodesic is for the covariant derivative of its velocity to vanish: 𝐷𝛾 ¤𝛾 = 0. We will write this,
however, with the more familiar notation ¥𝛾 = 0, which in Euclidean space means that there is zero
acceleration (and hence Euclidean geodesics are straight lines). The converse is not true; if ¥𝛾 = 0, it
does not imply that 𝛾 must be a shortest path between its endpoints (but it means that 𝛾 is locally a
shortest path).

If 𝑝 ∈ M and 𝑣 ∈ 𝑇𝑝M, then exp𝑝 (𝑣) is defined to be the endpoint (at time 1) of a constant-speed
geodesic emanating from 𝑝 with velocity 𝑣, if such a geodesic exists. In general, the exponential
map may only be defined in a neighborhood of 0 on 𝑇𝑝M. The logarithmic map is the inverse of the
exponential map: given 𝑞 ∈ M, log𝑝 (𝑞) is the unique vector 𝑣 ∈ 𝑇𝑝M, if this is well-defined, such
that exp𝑝 (𝑣) = 𝑞.

Given a vector field 𝑋 on M, the divergence of 𝑋 is the function div 𝑋 : M→ R defined as follows:
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(div 𝑋) (𝑝) is the trace6 of the linear mapping 𝑣 ↦→ (∇𝑣𝑋) (𝑝) on 𝑇𝑝M. Also, 𝑓 ∈ C∞(M), we define
the Hessian of 𝑓 at 𝑝 to be the bilinear mapping ∇2 𝑓 (𝑝) : 𝑇𝑝M × 𝑇𝑝M→ R given by

∇2 𝑓 (𝑝) [𝑣, 𝑤] = ⟨∇𝑣∇ 𝑓 (𝑝), 𝑤⟩𝑝 .

Even though we have not given all of the definitions precisely, we will now work through one
example to give the reader the flavor of the computations. Suppose that (𝑝𝑡 )𝑡∈R is a curve on M;
then we know that 𝜕𝑡 𝑓 (𝑝𝑡 ) = ⟨∇ 𝑓 (𝑝𝑡 ), ¤𝑝𝑡⟩𝑝𝑡 . If 𝑔(𝑝) B ⟨∇ 𝑓 (𝑝), ¤𝑝⟩𝑝, then by definition we have
𝜕2
𝑡 𝑓 (𝑝𝑡 ) = ¤𝑝𝑡 (𝑔) (𝑝𝑡 ). By compatibility of the Levi–Civita connection with the metric (2.5.1), this

equals ⟨∇ ¤𝑝𝑡∇ 𝑓 (𝑝𝑡 ), ¤𝑝𝑡⟩𝑝𝑡 + ⟨∇ 𝑓 (𝑝𝑡 ),∇ ¤𝑝𝑡 ¤𝑝𝑡⟩𝑝𝑡 . The first term is ∇2 𝑓 (𝑝𝑡 ) [ ¤𝑝𝑡 , ¤𝑝𝑡 ]. For the second term,
if 𝑝 is a geodesic, then the term ∇ ¤𝑝𝑡 ¤𝑝𝑡 vanishes. This shows that it is convenient to pick geodesic
curves when computing Hessians.7

For 𝑓 ∈ C∞(M), the Laplacian of 𝑓 is the function Δ 𝑓 : M→ R defined by Δ 𝑓 B tr∇2 𝑓 . In the
Riemannian setting, Δ is usually called the Laplace–Beltrami operator. The Riemannian metric
induces a volume measure, which we always denote via 𝔪. Throughout, when we abuse notation to
refer to the density of an absolutely continuous measure 𝜇 ∈ P(M), we always refer to the density
w.r.t. the volume measure, i.e., d𝜇

d𝔪 . We have the integration by parts formula∫
Δ 𝑓 𝑔 d𝔪 =

∫
𝑓 Δ𝑔 d𝔪 = −

∫
⟨∇ 𝑓 ,∇𝑔⟩ d𝔪 ,

provided that there are no boundary terms.

Curvature.
For a two-dimensional surface, it is easier to define the notion of curvature: one has the Gaussian
curvature, which associates to each point 𝑝 ∈ M a single number 𝐾 (𝑝) ∈ R. It is the product of the
two principal curvatures at 𝑝. The celebrated Theorema Egregium (“remarkable theorem”) of Gauss
asserts that the Gaussian curvature is unchanged under local isometries, i.e., the Gaussian curvature is
intrinsic to the surface. (In contrast, there are other extrinsic notions of curvature, such as the mean
curvature, which rely on the embedding of the manifold in Euclidean space.)

In higher dimensions, we are not so fortunate and it requires much more geometric information to
fully capture the idea of curvature. In fact, at each point 𝑝 ∈ M, we associate to it a 4-tensor, called
the Riemann curvature tensor. It is defined as follows: given vector fields𝑊 , 𝑋 , 𝑌 , and 𝑍 ,

Riem(𝑊, 𝑋,𝑌, 𝑍) B ⟨∇𝑋∇𝑊𝑌 − ∇𝑊∇𝑋𝑌 + ∇[𝑊,𝑋]𝑌, 𝑍⟩ .

Here, [𝑊, 𝑋] is the Lie bracket of𝑊 and 𝑋 , which is the vector field𝑈 defined as the commutator:
𝑈 𝑓 B 𝑊𝑋 𝑓 − 𝑋𝑊 𝑓 . This tensor is obviously an unwieldy object. Nevertheless, we may begin to
get a handle on it by observing that at its core, it measures the lack of commutativity of certain
differential operators, which we stated was the basis for curvature in Section 2.2.1. On Euclidean
space, it vanishes: Riem = 0. Also, the Riemann curvature tensor is fully determined by the sectional

6The trace is defined as usual, namely if 𝐴 is a linear mapping on 𝑇𝑝M, then after choosing an arbitrary orthonormal
basis 𝑒1, . . . , 𝑒𝑑 of 𝑇𝑝M (w.r.t. the Riemannian metric), we have tr 𝐴 =

∑𝑑
𝑖=1 ⟨𝑒𝑖 , 𝐴𝑒𝑖 ⟩𝑝 .

7When computing first-order derivatives, it is only important that the first-order behavior of the curve is correct (i.e.,
the curve has the correct tangent vector). When computing second-order derivatives, it should come at no surprise that the
second-order behavior of the curve begins to matter.

Incidentally, if ∇ 𝑓 (𝑝𝑡 ) = 0, i.e., we are at a stationary point, then the second term vanishes regardless of the curve 𝑝.
Hence, the Hessian of 𝑓 can be defined on any smooth manifold without the need for a Riemannian metric, provided that we
restrict ourselves to stationary points of 𝑓 . This observation is used heavily in Morse theory.
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curvatures of M: given a two-dimensional subspace 𝑆 of 𝑇𝑝M, the sectional curvature of 𝑆 can be
defined as the Gaussian curvature of the two-dimensional surface obtained by following geodesics
with directions in 𝑆. Thus, we can view the Riemann curvature tensor as collecting together all of the
curvature information from two-dimensional slices.

Luckily, the Riemann curvature tensor contains information that is too detailed for our purposes.
With an eye towards probabilistic applications, we focus mainly on properties such as the distortion of
volumes of balls along geodesics, which only requires looking at certain averages of the Riemann
curvature. More specifically, for 𝑢, 𝑣 ∈ 𝑇𝑝M, let

Ric𝑝 (𝑢, 𝑣) B tr Riem(𝑢, ·, 𝑣, ·) .

The tensor Ric is called the Ricci curvature tensor. It is a powerful fact that many useful geometric
and probabilistic consequences, such as diameter bounds and functional inequalities, are consequences
of lower bounds on the Ricci curvature.

We also mention that one can further take the trace of the Ricci curvature tensor to arrive at a single
scalar function, known as the scalar curvature, but we shall not use it in this book.

Diffusions on manifolds.
Recall that on R𝑑, the generator of the standard Brownian motion is 1

2 Δ, where Δ is the Laplacian
operator. On a manifold M, we define standard Brownian motion (𝐵𝑡 )𝑡⩾0 to be the unique M-valued
stochastic process with generator 1

2 Δ, where Δ is now the Laplace–Beltrami operator. This means that
for all smooth functions 𝑓 : M→ R, we require 𝑡 ↦→ 𝑓 (𝐵𝑡 ) − 𝑓 (𝐵0) −

∫ 𝑡
0

1
2 Δ 𝑓 (𝐵𝑠) d𝑠 to be a local

martingale; see Hsu (2002).
More generally, a stochastic process (𝑍𝑡 )𝑡⩾0 has generator ℒ if for all smooth functions 𝑓 : M→ R,

the process 𝑡 ↦→ 𝑓 (𝑍𝑡 ) − 𝑓 (𝑍0) −
∫ 𝑡

0 ℒ 𝑓 (𝑍𝑠) d𝑠 is a local martingale. When the generator is
ℒ 𝑓 = Δ 𝑓 − ⟨∇𝑉,∇ 𝑓 ⟩ for a smooth function 𝑉 : M→ R, this corresponds to a Langevin diffusion
on the manifold. We informally write d𝑍𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡 +

√
2 d𝐵𝑡 , although the “+” symbol has to be

interpreted carefully. Under some assumptions, the stationary distribution 𝜋 of the Langevin diffusion
has density 𝜋 ∝ exp(−𝑉) w.r.t. the volume measure 𝔪.

Under appropriate assumptions on ∇𝑉 , the existence and uniqueness of the diffusion process on
the manifold can be proven, e.g., via embedding the manifold in Euclidean space and using similar
arguments as in Section 1.1.3.

Optimal transport on Riemannian manifolds.
We conclude this section by discussing how the optimal transport problem can be generalized to
Riemannian manifolds. Recall from Exercise 1.10 that the optimal transport problem can be posed
with other costs; in particular, we take the cost to be 𝑐(𝑥, 𝑦) = d(𝑥, 𝑦)2, where d is the distance
induced by the Riemannian metric. Suppose, for simplicity, that M is compact and that 𝜇 is absolutely
continuous (w.r.t. the volume measure). Then, there is a unique optimal transport map 𝑇 from 𝜇 to 𝜈,
which is of the form 𝑇 (𝑥) = exp𝑥 (∇𝜓(𝑥)), where −𝜓 is d2/2-concave.

Moreover, there is a formal Riemannian structure on P2,ac(M). We can formally define the tangent
space at 𝜇 to be

𝑇𝜇P2,ac(M) B {∇𝜓 | 𝜓 ∈ C∞(M)}
𝐿2 (𝜇)

,

equipped with the norm ∥∇𝜓∥𝜇 B
√︃∫
∥∇𝜓∥2 d𝜇. Also, curves of measures are again characterized
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by the continuity equation

𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑣𝑡 ) = 0 ,

where the equation is to be interpreted in a weak sense: for any test function 𝜑 ∈ C∞(M), for a.e. 𝑡, it
holds that

𝜕𝑡

∫
𝜑 d𝜇𝑡 =

∫
⟨∇𝜑, 𝑣𝑡⟩ d𝜇𝑡 .

In short, aside from new technicalities introduced in the Riemannian setting (such as the presence
of a cut locus8), most of the facts familiar to us from the Euclidean setting continue to hold when
generalized appropriately. We refer to Villani (2009b) for more details.

2.5.2 Geometry of Markov Semigroups
We now indicate how Markov semigroup proofs can be extended to the setting of a weighted
Riemannian manifold M with a reference measure 𝜋 which admits a density 𝜋 ∝ exp(−𝑉) w.r.t. the
volume measure 𝔪.

Consider the Langevin diffusion on M with generator ℒ given by

ℒ 𝑓 B Δ 𝑓 − ⟨∇𝑉,∇ 𝑓 ⟩ .

As before, we can compute the carré du champ to be

Γ( 𝑓 , 𝑓 ) = ∥∇ 𝑓 ∥2 .

For the iterated carré du champ,

Γ2( 𝑓 , 𝑓 ) =
1
2
{ℒ(∥∇ 𝑓 ∥2) − 2 ⟨∇ 𝑓 ,∇ℒ 𝑓 ⟩}

=
1
2
{Δ(∥ 𝑓 ∥2) − 2 ⟨∇ 𝑓 ,∇Δ 𝑓 ⟩} + ⟨∇ 𝑓 ,∇2𝑉 ∇ 𝑓 ⟩ .

Unlike in Section 2.2.1, however, we now have to apply the Bochner identity
1
2
Δ(∥∇ 𝑓 ∥2) = ⟨∇ 𝑓 ,∇Δ 𝑓 ⟩ + ∥∇2 𝑓 ∥2HS + Ric(∇ 𝑓 ,∇ 𝑓 ) (2.5.2)

which shows that

Γ2( 𝑓 , 𝑓 ) = ∥∇2 𝑓 ∥2HS + ⟨∇ 𝑓 , (Ric + ∇2𝑉) ∇ 𝑓 ⟩ .

Observe that in this formula, the curvature of the ambient space and the curvature of the measure
are placed on an equal footing through the tensor Ric + ∇2𝑉 . If Ric + ∇2𝑉 ⪰ 𝛼, in the sense that
Ric(𝑋, 𝑋)+⟨𝑋,∇2𝑉 𝑋⟩ ⩾ 𝛼 ∥𝑋 ∥2 for any vector field 𝑋 onM, then the curvature-dimension condition
Γ2 ⩾ 𝛼Γ holds. Since the proof of the Bakry–Émery theorem (Theorem 1.2.30) only relied on the
CD(𝛼,∞) condition (together with calculus rules for the Markov semigroup, such as the chain rule),
the theorem continues to hold in the setting of weighted Riemannian manifolds.

Actually, we can refine the condition further as follows. If dimM = 𝑑, then

∥∇2 𝑓 ∥2HS ⩾
1
𝑑
(tr∇2 𝑓 )2 = 1

𝑑
(Δ 𝑓 )2 .

8 Loosely speaking, the presence of a cut locus means that there are multiple minimizing geodesics connecting two points.
Think for instance of the two poles of a sphere.
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This observation motivates the following definition.

Definition 2.5.3. A Markov semigroup is said to satisfy the curvature-dimension condition
with curvature lower bound 𝛼 and dimension bound 𝑑, denoted CD(𝛼, 𝑑), if for all functions 𝑓 ,

Γ2( 𝑓 , 𝑓 ) ⩾ 𝛼 Γ( 𝑓 , 𝑓 ) + 1
𝑑
(ℒ 𝑓 )2 . (2.5.4)

As the name suggests, the following theorem holds.

Theorem 2.5.5. Let M be a complete Riemannian manifold with volume measure 𝔪, and let
𝛼 > 0, 𝑑 ⩾ 1. Consider the Markov semigroup associated with standard Brownian motion on M.
Then, the following two statements are equivalent.

1 CD(𝛼, 𝑑) holds.
2 Ric ⪰ 𝛼 and dimM ⩽ 𝑑.

As an example, one can show that the unit sphere S𝑑 satisfies Ric = 𝑑 − 1, so that the CD(𝑑 − 1, 𝑑)
condition holds. Then, using the Bakry–Émery theorem (Theorem 1.2.30), or by using Markov
semigroup calculus to prove that the curvature-dimension condition implies Bobkov’s functional form
of the Gaussian isoperimetric inequality (Theorem 2.4.29; see Bakry et al., 2014, Corollary 8.5.4),
one can now deduce results such as concentration on the sphere (Theorem 2.4.6).

Besides providing an abstract framework for deriving functional inequalities, it is worth noting
that the condition (2.5.4) no longer makes any mention of the ambient space except through the
Markov semigroup (𝑃𝑡 )𝑡⩾0 and its associated operators ℒ, Γ, and Γ2. This has led to a line of research
investigating to what extent we can study the intrinsic geometry intrinsic associated with a Markov
semigroup. Although we do not survey the literature here, we show one illustrative example to give
the flavor of the results. First, one shows that the CD(𝛼, 𝑑) condition implies a Sobolev inequality.

Theorem 2.5.6 (Sobolev inequality). Consider a diffusion Markov semigroup satisfying the
CD(𝛼, 𝑑) condition for some 𝛼 > 0 and 𝑑 > 2. Then, for all 𝑝 ∈ [1, 2𝑑

𝑑−2 ] and all functions 𝑓 ,

1
𝑝 − 2

{(∫
| 𝑓 |𝑝 d𝜋

)2/𝑝
−
∫

𝑓 2 d𝜋
}
⩽
𝑑 − 1
𝛼𝑑

∫
Γ( 𝑓 , 𝑓 ) d𝜋 . (2.5.7)

From this Sobolev inequality, one can then deduce a diameter bound for the Markov semigroup.
Here, the diameter is defined as follows:

diam
(
(𝑃𝑡 )𝑡⩾0

)
B sup

{
𝜋-ess sup
𝑥,𝑦∈X

| 𝑓 (𝑥) − 𝑓 (𝑦) |
�� ∥Γ( 𝑓 , 𝑓 )∥𝐿∞ (𝜋 ) ⩽ 1

}
.

Theorem 2.5.8 (Diameter bound). Suppose that the Markov semigroup (𝑃𝑡 )𝑡⩾0 satisfies the
Sobolev inequality (2.5.7). Then,

diam
(
(𝑃𝑡 )𝑡⩾0

)
⩽ π

√︂
𝑑 − 1
𝛼

.
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The diameter bound is sharp, as it is attained by the sphere, and together with Theorem 2.5.6 it
recovers the classical Bonnet–Myers diameter bound from Riemannian geometry. Other geometric
results obtained in this fashion include volume growth comparison results and heat kernel bounds.

2.5.3 Displacement Convexity of Entropy
The other perspective with which we can encode geometry is the optimal transport perspective.
Namely, in Section 1.4, we informally argued that in the Euclidean context, the 𝛼-strong convexity of
the KL divergence KL(· ∥ 𝜋) on (P2(R𝑑),𝑊2) is equivalent to the 𝛼-strong convexity of the potential
𝑉 . At this stage, it is a perhaps expected, although still remarkable, fact that on a general weighted
Riemannian manifold M, the 𝛼-strong convexity of KL(· ∥ 𝜋) on (P2(M),𝑊2) is equivalent to the
CD(𝛼,∞) condition, which in turn is equivalent to Ric + ∇2𝑉 ⪰ 𝛼.

Theorem 2.5.9. Let M be a Riemannian manifold and let 𝜋 ∝ exp(−𝑉) be a density w.r.t. the
volume measure. Then, the following are equivalent:

1 It holds that Ric + ∇2𝑉 ⪰ 𝛼.
2 For all measures 𝜇0, 𝜇1 ∈ P2(X), there exists a constant-speed geodesic (𝜇𝑡 )𝑡∈[0,1] joining 𝜇0

to 𝜇1 such that for all 𝑡 ∈ [0, 1],

KL(𝜇𝑡 ∥ 𝜋) ⩽ (1 − 𝑡) KL(𝜇0 ∥ 𝜋) + 𝑡 KL(𝜇1 ∥ 𝜋) −
𝛼 𝑡 (1 − 𝑡)

2
𝑊2

2 (𝜇0, 𝜇1) . (2.5.10)

A key observation is that the condition (2.5.10) still makes sense when we replace M with a space
that admits a notion of geodesics, i.e., there is no need for a smooth structure a priori. Similarly, there
are ways to to formulate the general CD(𝛼, 𝑑) condition via displacement convexity, but they are
considerably more complicated, and we omit them for simplicity. This observation is the starting place
for the influential Lott–Sturm–Villani theory of synthetic Ricci curvature lower bounds (Sturm,
2006a,b; Lott and Villani, 2009). See the supplement for further context and details.

2.6 Discrete Space and Time
Up until this point, we have been focusing on continuous-time Markov processes on a continuous state
space. In this section, we give a few pointers on what may break down in discrete space or discrete
time. Our treatment here is far from comprehensive.

Discrete space.
For Markov processes on a discrete space space, we can still define the Markov semigroup, generator,
carré du champ, and Dirichlet form. The main difference is that the carré du champ is now a finite
difference operator, rather than a differential operator, and consequently it fails to satisfy a chain rule.

Crucially, this difference manifests itself for the log-Sobolev inequality, which we have written in
this chapter as

ent𝜋 ( 𝑓 2) ⩽ 2𝐶ℰ( 𝑓 , 𝑓 ) for all 𝑓 . (2.6.1)

On the other hand, recall from Theorem 1.2.26 (which still holds for discrete state spaces) that the
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exponential decay of the KL divergence is equivalent to the inequality

ent𝜋 ( 𝑓 ) ⩽
𝐶

2
ℰ( 𝑓 , log 𝑓 ) for all 𝑓 ⩾ 0 . (2.6.2)

When the carré du champ satisfies a chain rule, then (2.6.1) and (2.6.2) are equivalent, but in general
the first inequality (2.6.1) is strictly stronger.

Lemma 2.6.3. The inequality (2.6.1) implies inequality (2.6.2).

See Exercise 2.22. The first inequality (2.6.1) is often simply called the log Sobolev inequality,
whereas the second inequality (2.6.2) is called a modified log-Sobolev inequality (MLSI). In many
cases, the log-Sobolev inequality is too strong in that it does not hold with a good constant 𝐶; hence,
the modified log-Sobolev inequality is often the more appropriate inequality for the discrete setting.

Discrete time.
Similarly, for discrete-time Markov chains we can no longer use semigroup calculus, although the basic
principles of Poincaré inequalities (spectral gap inequalities) and modified log-Sobolev inequalities
can be adapted to this setting. In addition, there are new techniques based on the notion of conductance.
As we shall need to study discrete-time Markov chains in detail for sampling algorithms, we defer a
fuller discussion of this theory to Chapter 7.

Discrete curvature.
Inspired by the geometric connections in Section 2.5, many researchers have attempted to define
notions of curvature on discrete spaces. We do not attempt to survey this literature here, but we give a
few pointers to the literature.

Ollivier (Ollivier, 2007, 2009) introduced the following notion of curvature.

Definition 2.6.4. A metric space (X, d) equipped with a Markov kernel 𝑃 is said to have coarse
Ricci curvature bounded below by 𝜅 ∈ [0, 1] if for all 𝑥, 𝑦 ∈ X,

𝑊1
(
𝑃(𝑥, ·), 𝑃(𝑦, ·)

)
⩽ (1 − 𝜅) d(𝑥, 𝑦) . (2.6.5)

In other words, the Markov chain with kernel 𝑃 is a𝑊1 contraction. The definition is motivated by
the following observation: on a 𝑑-dimensional Riemannian manifold with Ric ⪰ 𝛼, let 𝑃(𝑥, ·) be the
uniform measure on B(𝑥, 𝜀). Then, provided that d(𝑥, 𝑦) = 𝑂 (𝜀), it holds that

𝑊1
(
𝑃(𝑥, ·), 𝑃(𝑦, ·)

)
⩽

(
1 − 𝛼𝜀2

2 (𝑑 + 2) +𝑂 (𝜀
3)
)

d(𝑥, 𝑦) .

A lower bound on the coarse Ricci curvature is often too strong of an assumption for the purpose
of studying mixing times of Markov chains, although there are refinements in Ollivier (2007, 2009).
However, when a lower bound on the coarse Ricci curvature holds, then it implies a number of useful
consequences, such as concentration estimates and functional inequalities. We mention the following
result in particular (Exercise 2.24).



2.6 Discrete Space and Time 85

Theorem 2.6.6 (Ollivier (2009)). Suppose that 𝑃 is a reversible Markov kernel on a metric
space (X, d), and that 𝑃 has coarse Ricci curvature bounded below by 𝜅. Then, 𝑃 satisfies a
Poincaré inequality with constant at most 1/𝜅.

Refer to Chapter 7 for a precise definition of the Poincaré inequality used here.
Other approaches for studying the curvature of discrete Markov processes include: studying the dis-

placement convexity of entropy (using different interpolating curves rather than𝑊2 geodesics) (Ollivier
and Villani, 2012; Gozlan et al., 2014; Léonard, 2017); using ideas from Bakry–Émery theory (Klartag
et al., 2016; Fathi and Shu, 2018); and defining a modified𝑊2 distance for which the Markov process
becomes a gradient flow of the KL divergence (Maas, 2011; Erbar and Maas, 2012; Mielke, 2013).

We emphasize that although we only described the coarse Ricci curvature approach in any detail,
there is not a single approach which supersedes the others in the discrete setting. Each approach has
its own merits and shortcomings.

Bibliographical Notes

The monographs Bakry et al. (2014); van Handel (2016) are excellent sources to learn more about
Markov semigroup theory.

The Monge–Ampère equation introduced in Exercise 2.1, being a fully non-linear PDE, is
notoriously difficult to study. See Villani (2003, Chapter 4) for an overview of rigorous results on
the Monge–Ampère equation, including the celebrated regularity theory of Caffarelli. The proofs
of Proposition 2.1.1 and Exercise 2.3 are taken from Cordero-Erausquin (2017). One might wonder
whether a “log-Sobolev” version of the Brascamp–Lieb inequality holds, but the answer is unfortunately
negative (Bobkov and Ledoux, 2000).

The general idea used in the proof of Lemma 2.2.7 is attributed to Hörmander (2007). In the proof
of Lemma 2.2.7, we assumed the solvability of the Poisson equation; this can be avoided via a density
argument, see Cordero-Erausquin et al. (2004); Barthe and Cordero-Erausquin (2013). The proof of
the dimensional Brascamp–Lieb inequality in Exercise 2.4 is taken from the paper Bolley et al. (2018),
and Exercise 2.5 is from Helffer and Sjöstrand (1994). The bound on var𝜋 𝑉 obtained in the exercise
was used in Chewi (2021) to show that the entropic barrier is an optimal self-concordant barrier.
Finally, we caution the reader that the Brascamp–Lieb inequality in Theorem 2.2.9 should not be
confused with another family of inequalities, which are unfortunately also known as Brascamp–Lieb
inequalities, described in, e.g., Villani (2003, Section 6.3).

The convergence in Rényi divergence of the Langevin diffusion was obtained earlier, under stronger
assumptions in Cao et al. (2019). A natural question to ask is whether there are functional inequalities
that interpolate between the Poincaré and log-Sobolev inequalities, which imply intermediate rates of
convergence for the Langevin diffusion. One answer is given by the family of Latala–Oleszkiewicz
inequalities (LOI) (Latala and Oleszkiewicz, 2000). The convergence of the Langevin diffusion
under an LO inequality is given in Chewi et al. (2024a). One can also consider variants of Sobolev
inequalities (Chafai, 2004).

For further works investigating functional inequalities in the low temperature regime, see Kinoshita
and Suzuki (2022); Li and Erdogdu (2023); Chen and Sridharan (2025); Gong et al. (2025).

The Prékopa–Leindler inequality given in Exercise 2.10 can be used to deduce other functional
inequalities, such as the log-Sobolev inequality and the Bregman transport inequality; see Bobkov and
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Ledoux (2000); Gentil (2008). It was subsequently generalized to Riemannian manifolds in Cordero-
Erausquin et al. (2001).

The tightening lemma (Lemma 2.3.12) is usually proven via the Rothaus lemma (Rothaus, 1985);
the sharper form stated in the lemma is due to Wang (2024). Exercise 2.13 essentially contains the
main results of Chen et al. (2021a) (actually the paper assumes a slightly weaker condition than (2.E.3),
namely that the 𝑝-th moment of the chi-squared divergence is bounded for some 𝑝 > 1, but this is
handled with the same arguments as in Exercise 2.13).

There are many treatments on concentration of measure, e.g., Ledoux (2001); Boucheron et al.
(2013); Bakry et al. (2014); van Handel (2016); Vershynin (2018). The monographs Bobkov and
Houdré (1997); Ledoux (2001); Bakry et al. (2014) are excellent sources to learn about isoperimetry.
The exposition of the functional form of Cheeger’s inequality (Theorem 2.4.18) as well as Milman’s
theorem (Theorem 2.4.22) were inspired by the treatment in Alonso-Gutiérrez and Bastero (2015).
It would be hard to survey the various developments on this subject here, but we would like to
mention a few nice additions to the story. First, as we saw in Theorem 2.4.18 and Proposition 2.4.21,
isoperimetric inequalities are typically stronger than their functional inequality counterparts, and often
strictly so. In order to obtain inequalities involving sets which are equivalent to, say, the Poincaré and
log-Sobolev inequalities, one should turn towards measure capacity inequalities, for which we refer
the reader to Bakry et al. (2014, Chapter 8). Also, more refined “two-level” isoperimetric inequalities
have been pioneered in Talagrand (1991), which has applications in its own right.

From Exercise 2.14, the Harnack inequality was first established in Wang (1997), and the log-
Harnack inequality proof is from Bobkov et al. (2001). These inequalities are variants of parabolic
Harnack inequalities from the PDE literature, and they are notable for holding with dimension-free
constants. Moreover, whereas parabolic Harnack inequalities typically compare the semigroup at two
different times, the inequalities from Exercise 2.14 avoids this by considering the commutation of the
Markov semigroup with strictly convex functions such as the power function (·) 𝑝. There is a huge
literature on these inequalities which we cannot survey here, but we refer to F.-Y. Wang’s monographs
for details (Wang, 2013, 2014). The convexity principle is taken from Altschuler and Chewi (2024b),
which also contains further discussion. Further proofs of the inequalities in Exercise 2.16 are given
as Exercise 3.4 and Exercise 4.6.

The Gaussian isoperimetric inequality is due to Sudakov and Cirel’son (1974) and Borell (1975). It
has since been extended and refined in various ways, e.g., in the context of noise stability (Borell,
1985; Isaksson and Mossel, 2012; Eldan, 2015; Mossel and Neeman, 2015; Kindler et al., 2018).

Section 2.5 draws upon many resources, which we list here: do Carmo (1992) for Riemannian
geometry; Hsu (2002) for diffusions on manifolds; Villani (2009b) for optimal transport on manifolds,
including synthetic Ricci curvature lower bounds; and Ledoux (2000); Bakry et al. (2014) for the
geometry of Markov semigroups. The curvature-dimension condition and its equivalences have been
explored in a vast number of works, e.g., Sturm (2006a,b); Lott and Villani (2009); Wang (2011).

Exercises

Overview of the Inequalities
⊵ Exercise 2.1 (Linearization of the Monge–Ampère equation)
In general, when 𝜇, 𝜈 ∈ P2,ac(R𝑑) have smooth densities and ∇𝜑 denotes the optimal transport map
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from 𝜇 to 𝜈, then from the change of variables formula we expect
𝜇

𝜈 ◦ ∇𝜑 = det∇2𝜑 .

This is known as the Monge–Ampère equation. It is a non-linear PDE in the variable 𝜑, which
is a convex function (by Brenier’s theorem, Theorem 1.3.8). In this exercise, we linearize the
Monge–Ampère equation to gain insight into the infinitesimal behavior of optimal transport.

Let 𝜇 be a probability measure on R𝑑 with a smooth density, and let 𝑓 ∈ C∞c (R𝑑) satisfy
∫
𝑓 d𝜇 = 0.

Let 𝜇𝜀 B (1 + 𝜀 𝑓 ) 𝜇, and let ∇𝜑𝜀 denote the optimal transport map from 𝜇 to 𝜇𝜀 . Assuming
that 𝜑𝜀 (𝑥) = ∥𝑥 ∥2

2 + 𝜀𝑢(𝑥) + 𝑜(𝜀) for some function 𝑢 : R𝑑 → R, perform an expansion of the
Monge–Ampère equation in 𝜀 and argue that 𝑢 satisfies the following linear PDE, known as the
Poisson equation:

−ℒ𝑢 = 𝑓 , where ℒ𝑢 B Δ𝑢 −
〈
∇ log

1
𝜇
,∇𝑢

〉
.

Note thatℒ is the generator of the Langevin diffusion with stationary distribution 𝜇 (see Example 1.2.4).
Use this to formally argue that

lim
𝜀↘0

1
𝜀2 𝑊

2
2
(
𝜇, (1 + 𝜀 𝑓 ) 𝜇

)
=

∫
∥∇𝑢∥2 d𝜇 =

∫
𝑢 (−ℒ) 𝑢 d𝜇 =

∫
𝑓 (−ℒ)−1

𝑓 d𝜇 .

Here,
∫
∥∇𝑢∥2 d𝜇 =

∫
𝑢 (−ℒ) 𝑢 d𝜇 is the squared Sobolev norm ∥𝑢∥2¤𝐻1 (𝜇) , where the dot is

used to distinguish this from the usual Sobolev norm ∥𝑢∥2
𝐻1 (𝜇) = ∥𝑢∥

2
𝐿2 (𝜇) + ∥𝑢∥

2
¤𝐻1 (𝜇) . Similarly,∫

𝑓 (−ℒ)−1
𝑓 d𝜇 is the squared inverse Sobolev norm ∥ 𝑓 ∥2¤𝐻−1 (𝜇) . Therefore, the linearization result

shows that𝑊2
2 (𝜇, 𝜈) ∼ ∥𝜇 − 𝜈∥2¤𝐻−1 (𝜇) as 𝜈 → 𝜇.

Using the linearization (1.E.1) of the KL divergence from Exercise 1.7, deduce that the T2(𝐶)
inequality implies

𝐶

∫
𝑓 2 d𝜇 ⩾

∫
𝑓 (−ℒ)−1

𝑓 d𝜇 .

In light of the spectral gap interpretation of the Poincaré inequality, why does the above inequality
suggest that T2(𝐶) implies PI(𝐶)?

The astute reader should also work out how the Poisson equation can be obtained starting with the
continuity equation (1.3.18).

Proofs via Markov Semigroup Theory
⊵ Exercise 2.2 (Curvature-dimension condition)
Verify the commutation identity (2.2.4) and the formula (2.2.5) for the iterated carré du champ.

⊵ Exercise 2.3 (Bregman transport inequality)
Let ∇𝜑 denote the optimal transport map from 𝜋 to 𝜇, so that the Monge–Ampère equation holds
(see Exercise 2.1):

𝜋

𝜇 ◦ ∇𝜑 = det∇2𝜑 .

Take logarithms of both sides of this equation and integrate w.r.t. 𝜋 to prove the Bregman transport
inequality (Theorem 2.2.12). Then, by applying Proposition 2.1.1, give another proof of the Brascamp–
Lieb inequality (Theorem 2.2.9).
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⊵ Exercise 2.4 (Dimensional improvement of the Brascamp–Lieb inequality)
In finite-dimensional space, one can improve upon the Brascamp–Lieb inequality (Theorem 2.2.9) by
subtracting a non-negative term from the right-hand side. There are different ways to do this, but in
this exercise we explore an approach which utilizes the extra term ∥∇2𝑢∥2HS in the iterated carré du
champ operator.

1 Let 𝜋 ∝ exp(−𝑉), where as before we assume that𝑉 is twice continuously differentiable and strictly
convex. Let 𝑓 satisfy E𝜋 𝑓 = 0, and consider another function 𝑢 (not necessarily the solution to
−ℒ𝑢 = 𝑓 ). Show that

E𝜋 [ 𝑓 2] ⩽ E𝜋 [( 𝑓 +ℒ𝑢)2] + E𝜋 ⟨∇ 𝑓 , (∇2𝑉)−1 ∇ 𝑓 ⟩ − E𝜋 [∥∇2𝑢∥2HS] .

2 Prove that E𝜋 [∥∇2𝑢∥2HS] ⩾ 𝑑−1 (E𝜋 Δ𝑢)2, and that

E𝜋 Δ𝑢 = cov𝜋 ( 𝑓 , 𝑉) − E𝜋 [( 𝑓 +ℒ𝑢)𝑉] .

3 Choose 𝑢 to solve −ℒ𝑢 = 𝑓 + 𝜆 (𝑉 − E𝜋 𝑉) for some 𝜆 ⩾ 0 and substitute this into the previous
parts. Optimize over 𝜆 and prove that

var𝜋 𝑓 ⩽ E𝜋 ⟨∇ 𝑓 , (∇2𝑉)−1 ∇ 𝑓 ⟩ − cov𝜋 ( 𝑓 , 𝑉)2

𝑑 − var𝜋 𝑉
.

4 In particular, deduce that

var𝜋 𝑉 ⩽
𝑑 E𝜋 ⟨∇𝑉, (∇2𝑉)−1 ∇𝑉⟩
𝑑 + E𝜋 ⟨∇𝑉, (∇2𝑉)−1 ∇𝑉⟩ ⩽ 𝑑 .

⊵ Exercise 2.5 (Helffer–Sjöstrand identity)
Let ℒ denote the generator corresponding to 𝜋 ∝ exp(−𝑉), ∇2𝑉 ≻ 0. Heuristically derive the
following identity: for all 𝑓 , 𝑔 : R𝑑 → R,

cov𝜋 ( 𝑓 , 𝑔) = E𝜋 ⟨∇ 𝑓 , (−ℒ + ∇2𝑉)−1 ∇𝑔⟩ .

Note that since −ℒ ⩾ 0, this implies the Brascamp–Lieb inequality (Theorem 2.2.9)!
Hint: Let (·)∗ denote the adjoint in 𝐿2(𝜋). It suffices to prove that ∇∗ (−ℒ + ∇2𝑉)−1 ∇ is the

orthogonal projection onto 1⊥. Suppose that 𝐿2(𝜋) admits a basis of eigenfunctions for −ℒ, and let
𝑢 : R𝑑 → R be such an eigenfunction with −ℒ𝑢 = 𝜆𝑢, 𝜆 > 0. Study the effect of the operator on 𝑢,
recalling (1.2.18) and (2.2.4).

⊵ Exercise 2.6 (Local Poincaré inequality)
In Theorem 2.2.17, prove that CD(𝛼,∞) implies (2.2.19), and that a Taylor expansion of either (2.2.18)
or (2.2.19) implies back CD(𝛼,∞).

Hint: To establish (2.2.19), use (2.2.20).

⊵ Exercise 2.7 (Diffusion chain rule)
Verify the equivalence between (2.2.14) and (2.2.15).

⊵ Exercise 2.8 (Monotonicity of Rényi divergences in the order)
Prove that for 1 ⩽ 𝑞 ⩽ 𝑞′ ⩽ ∞, R𝑞 ⩽ R𝑞′ .

⊵ Exercise 2.9 (Hypercontractivity)
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Let (𝑃𝑡 )𝑡⩾0 be a Markov semigroup with stationary distribution 𝜋, and let 𝛼 ⩾ 0. Assume that the
semigroup either satisfies the diffusion chain rule, or that it is reversible. Show that the log-Sobolev
inequality in the form

ent𝜋 ( 𝑓 2) ⩽ 2𝐶LSIℰ( 𝑓 , 𝑓 )

for all 𝑓 is equivalent to the following hypercontractivity statement: for all functions 𝑓 , 𝑡 ⩾ 0, and
𝑝 ⩾ 1, if we set 𝑝(𝑡) B 1 + (𝑝 − 1) exp(2𝑡/𝐶LSI), then

∥𝑃𝑡 𝑓 ∥𝐿𝑝 (𝑡 ) (𝜋 ) ⩽ ∥ 𝑓 ∥𝐿𝑝 (𝜋 ) .

This is a strengthening of the fact that the semigroup is a contraction on any 𝐿 𝑝 (𝜋) space and shows
that in fact the semigroup maps 𝐿 𝑝 (𝜋) into 𝐿 𝑝′ (𝜋) for some 𝑝′ > 𝑝.

Hint: Differentiate 𝑡 ↦→ log ∥𝑃𝑡 𝑓 ∥𝐿𝑝 (𝑡 ) (𝜋 ) . In the case where the semigroup is assumed to be
reversible (but does not satisfy the diffusion chain rule), one needs to show the following inequality:
for any non-negative function ℎ and any 𝑞 > 1, it holds that ℰ(ℎ𝑞−1, ℎ) ⩾ 4 (𝑞−1)

𝑞2 ℰ(ℎ𝑞/2, ℎ𝑞/2). Show
that this follows from the numerical inequality (𝑏𝑞−1 − 𝑎𝑞−1) (𝑏 − 𝑎) ⩾ 4 (𝑞−1)

𝑞2 (𝑏𝑞/2 − 𝑎𝑞/2)2 for all
0 ⩽ 𝑎 ⩽ 𝑏.

⊵ Exercise 2.10 (Prékopa–Leindler inequality)
In this exercise, we introduce another important functional inequality, known as the Prékopa–Leindler
inequality.

1 Let 𝜋 be 𝛼-strongly log-concave, let 𝑡 ∈ [0, 1], and let 𝑓 , 𝑔, ℎ : R𝑑 → R>0 be three functions such
that for all 𝑥, 𝑦 ∈ R𝑑 ,

log ℎ
(
(1 − 𝑡) 𝑥 + 𝑡 𝑦

)
⩾ (1 − 𝑡) log 𝑓 (𝑥) + 𝑡 log 𝑔(𝑦) − 𝛼

2
𝑡 (1 − 𝑡) ∥𝑥 − 𝑦∥2 .

Prove that

log
∫

ℎ d𝜋 ⩾ (1 − 𝑡) log
∫

𝑓 d𝜋 + 𝑡 log
∫

𝑔 d𝜋 . (2.E.1)

Hint: Let 𝜇0, 𝜇1 achieve equality in the Donsker–Varadhan variational principle (Theorem 1.5.7),
so that

logE𝜋 𝑓 = E𝜇0 log 𝑓 − KL(𝜇0 ∥ 𝜋) ,
logE𝜋 𝑔 = E𝜇1 log 𝑔 − KL(𝜇1 ∥ 𝜋) .

Let 𝜇𝑡 be along the Wasserstein geodesic from 𝜇0 to 𝜇1. Apply the Donsker–Varadhan principle
again, together with the assumption on 𝑓 , 𝑔, ℎ as well as strong convexity of the KL divergence, in
order to lower bound logE𝜋 ℎ.

2 The inequality (2.E.1) continues to hold when 𝜋 is replaced by Lebesgue measure, if we set 𝛼 = 0 in
the assumption.9 Use this to prove that if 𝜋 is a log-concave measure over R𝑑1+𝑑2 , then the marginal
𝜋1 of 𝜋 on R𝑑1 is also log-concave.

Hint: Partition elements of R𝑑1+𝑑2 as (𝑥, 𝑦). Apply the Prékopa–Leindler inequality on R𝑑2 with
𝑓 B 𝜋(𝑥0, ·), 𝑔 B 𝜋(𝑥1, ·), and ℎ B 𝜋((1 − 𝑡) 𝑥0 + 𝑡 𝑥1, ·).
9 For example, one could first consider the case when 𝑓 , 𝑔, ℎ are compactly supported, take 𝜋 to be the uniform distribution

over a ball B(0, 𝑅) , and take 𝑅 →∞.



90 Functional Inequalities

3 We now aim to generalize the fact in the previous part. Suppose that 𝜋 is a density on R𝑑1+𝑑2 such
that (𝑥, 𝑦) ↦→ log 𝜋(𝑥, 𝑦) + 1

2 ⟨(𝑥, 𝑦), Σ
−1 (𝑥, 𝑦)⟩ is concave, where

Σ =

[
Σ1,1 Σ1,2
Σ2,1 Σ2,2

]
≻ 0 .

Prove that for the marginal 𝜋1 of 𝜋 on R𝑑1+𝑑2 , 𝑥 ↦→ log 𝜋1(𝑥) + 1
2 ⟨𝑥, (Σ1,1)−1

𝑥⟩ is concave. (Use
the result in the previous part.)

4 Show that if 𝜋 is 𝛼-strongly log-concave, then the convolution 𝜋 ∗ normal(0, 𝑡 𝐼𝑑) is 𝛼/(1 + 𝛼𝑡)-
strongly log-concave.

5 Show that the Prékopa–Leindler inequality for the Lebesgue measure is equivalent to the Brunn–
Minkowski inequality: for compact sets 𝐴, 𝐵 ⊆ R𝑑 ,

vol
(
(1 − 𝑡) 𝐴 + 𝑡 𝐵

)
⩾ vol(𝐴)1−𝑡 vol(𝐵)𝑡 . (2.E.2)

By scaling 𝐴 and 𝐵 and choosing 𝑡, show that (2.E.2) can be upgraded to

vol(𝐴 + 𝐵)1/𝑑 ⩾ vol(𝐴)1/𝑑 + vol(𝐵)1/𝑑 .

Operations Preserving Functional Inequalities
⊵ Exercise 2.11 (Variational principle for entropies)
Let 𝜙 : R>0 → R be a convex function and let 𝐷𝜙 denote the associated Bregman divergence
(c.f. Definition 2.2.11). For any positive random variable 𝑋 withE|𝜙(𝑋) | < ∞ and any 𝑡 > 0, prove that
that E𝐷𝜙 (𝑋, 𝑡) −E𝐷𝜙 (𝑋,E 𝑋) = 𝐷𝜙 (E 𝑋, 𝑡), and deduce that E 𝜙(𝑋) −𝜙(E 𝑋) = inf𝑡>0 E𝐷𝜙 (𝑋, 𝑡).
Use this to prove the variational principle for the entropy used in the proof of Holley–Stroock
perturbation (Proposition 2.3.1).

⊵ Exercise 2.12 (Transport inequality in one dimension)
Let 𝜋 be the standard Gaussian on R, and let 𝜇 ≪ 𝜋. In one dimension, the optimal transport map 𝑇
from 𝜋 to 𝜇 is the monotone rearrangement that satisfies, for each 𝑥 ∈ R, 𝜇((−∞, 𝑇 (𝑥)]) = 𝜋((−∞, 𝑥]).

1 Differentiate this relation to obtain a formula for d𝜇
d𝜋 (𝑇 (𝑥)).

2 Substitute this into the KL divergence KL(𝜇 ∥ 𝜋) =
∫

log d𝜇
d𝜋 (𝑇 (𝑥)) 𝜋(d𝑥) and use the inequality

𝑡 − 1− log 𝑡 ⩾ 0 for all 𝑡 > 0 in order to prove the Gaussian T2 inequality in one dimension. Deduce
the Gaussian T2 inequality in general dimension via a tensorization argument.

3 Can you generalize this calculation to a density 𝜋 ∝ exp(−𝑉) on R𝑑, where 𝑉 is smooth and
𝛼-strongly convex for some 𝛼 > 0?

⊵ Exercise 2.13 (Generalizing the LSI for mixtures)
In this exercise, we generalize the log-Sobolev inequality for mixtures (Proposition 2.3.14).

1 First, show that Example 2.3.15 is sharp up to universal constants as follows. Consider the case
when 𝜇 = 1

2 (𝛿−𝑅 + 𝛿+𝑅) on R, so that 𝜇𝑃 is a mixture of two Gaussians. Construct a test function
𝑓 : R→ R for the Poincaré inequality which shows that𝐶PI(𝜇𝑃) ≳ 𝑅2 exp(Ω(𝑅2/𝜎2)) if 𝑅/𝜎 ≳ 1.

2 Next, consider the setting of Proposition 2.3.9 except that we replace the assumption (2.3.10) with
the weaker condition

𝐶𝜒2 ,2 B

√︃
E[𝜒2(𝑃𝑋 ∥ 𝑃𝑋′)2] < ∞ , (2.E.3)
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where 𝑋, 𝑋 ′ i.i.d.∼ 𝜇. Now, rather than writing varE𝑃𝑋
𝑓 = 1

2 E[|E𝑃𝑋
𝑓 − E𝑃𝑋′ 𝑓 |2], instead write

varE𝑃𝑋
𝑓 = E[|E𝑃𝑋

𝑓 − E𝜇𝑃 𝑓 |2]. By bounding this quantity in two different ways deduce that

varE𝑃𝑋
𝑓 ⩽ Emin{(var𝑃𝑋

𝑓 ) 𝜒2(𝜇𝑃 ∥ 𝑃𝑋), (var𝜇𝑃 𝑓 ) 𝜒2(𝑃𝑋 ∥ 𝜇𝑃)}

⩽ E
√︃
(var𝑃𝑋

𝑓 ) 𝜒2(𝜇𝑃 ∥ 𝑃𝑋) (var𝜇𝑃 𝑓 ) 𝜒2(𝑃𝑋 ∥ 𝜇𝑃) .

Use this to prove that a Poincaré inequality holds for 𝜇𝑃, and give an upper bound on 𝐶PI(𝜇𝑃).
3 Now consider the setting of Proposition 2.3.14 except that we again assume the weaker condi-

tion (2.E.3). Previously, we bounded

E
[
E𝑃𝑋
( 𝑓 2) log

(
1 + 𝜒2(𝑃𝑋 ∥ 𝑃𝑋′)

) ]
⩽ E𝜇𝑃 ( 𝑓 2) log(1 + 𝐶𝜒2) ,

which relies on 𝐿1–𝐿∞ duality. This time, we want to use duality between “𝐿 log 𝐿” and “exp 𝐿”.
Namely, use the variational principle for the entropy (Lemma 2.3.5) to prove that for a suitable
constant 𝐶 > 0 (depending on 𝐶𝜒2 ,2),

2E
[
E𝑃𝑋
( 𝑓 2)

{
log

(
1 + 𝜒2(𝑃𝑋 ∥ 𝑃𝑋′)

)
− 𝐶

}]
⩽ entE𝑃𝑋

( 𝑓 2) .

Use this to prove that a log-Sobolev inequality holds for 𝜇𝑃, and give an upper bound on 𝐶LSI(𝜇𝑃).
4 Consider Example 2.3.15 again, except instead of assuming that 𝜇 is supported on B(0, 𝑅), we

assume that 𝜇 has sub-Gaussian tails:∬
exp
∥𝑥 − 𝑥′∥2

𝜎2
sG

𝜇(d𝑥) 𝜇(d𝑥′) ⩽ 𝐶sG .

Prove that if 𝜎 ≳ 𝜎sG for a sufficiently large implied constant, then the Gaussian mixture 𝜇𝑃
satisfies a log-Sobolev inequality, and give an upper bound on 𝐶LSI(𝜇𝑃). Also, show how this can
recover the result of Example 2.3.15.

The next group of exercises introduces Harnack and reverse transport inequalities.
⊵ Exercise 2.14 (Harnack and reverse transport inequalities)
Let 𝑃 be a Markov kernel over a space X, and let 𝑥, 𝑦 ∈ X.

1 Use Donsker–Varadhan duality to show that

𝑃 𝑓 (𝑥) ⩽ 𝐶log(𝑥, 𝑦) + log 𝑃(exp 𝑓 ) (𝑦) for all bounded 𝑓 : X→ R , (2.E.4)

if and only if

KL(𝛿𝑥𝑃 ∥ 𝛿𝑦𝑃) ⩽ 𝐶log(𝑥, 𝑦) . (2.E.5)

2 Similarly, let 𝑝, 𝑞 ∈ (1,∞) be a pair of Hölder conjugate exponents, and use duality to show that

𝑃 𝑓 (𝑥) ⩽ 𝐶𝑝 (𝑥, 𝑦) 𝑃( 𝑓 𝑝) (𝑦)1/𝑝 for all bounded 𝑓 : X→ R+ , (2.E.6)

if and only if

R𝑞 (𝛿𝑥𝑃 ∥ 𝛿𝑦𝑃) ⩽
𝑞

𝑞 − 1
log𝐶𝑝 (𝑥, 𝑦) . (2.E.7)

We refer to (2.E.4) as a log-Harnack inequality, (2.E.6) as a Harnack inequality, and (2.E.5)
and (2.E.7) as reverse transport inequalities.

3 Show that if (2.E.6) holds for every 𝑝 > 1 with 𝐶𝑝 = exp( 𝐶
𝑝−1 ), then (2.E.4) holds with 𝐶log ⩽ 𝐶.

Hint: Let 𝑝 →∞.
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⊵ Exercise 2.15 (Convexity principle)
Let 𝑃 be a Markov kernel over X.

1 Suppose that KL(𝛿𝑥𝑃 ∥ 𝛿𝑦𝑃) ⩽ 𝜌(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X. Using the joint convexity of the KL
divergence (Theorem 1.5.6), prove that

KL(𝜇𝑃 ∥ 𝜈𝑃) ⩽ inf
𝛾∈C(𝜇,𝜈)

∫
𝜌(𝑥, 𝑦) 𝛾(d𝑥, d𝑦) .

2 Suppose that R𝑞 (𝛿𝑥𝑃 ∥ 𝛿𝑦𝑃) ⩽ 𝜌(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X. Although R𝑞 is not jointly convex for
𝑞 > 1, it is a monotonic transformation of an 𝑓 -divergence. Use this to give an upper bound on
R𝑞 (𝜇𝑃 ∥ 𝜈𝑃) in terms of an optimal transport problem between 𝜇 and 𝜈.

⊵ Exercise 2.16 (Harnack inequalities via semigroup arguments)
Let (𝑃𝑡 )𝑡⩾0 be a Markov semigroup over R𝑑 , satisfying the CD(𝛼,∞) condition with 𝛼 ∈ R.

1 Let 𝑥, 𝑦 ∈ R𝑑 and let (𝑥𝑠)𝑠∈[0,1] be a curve joining 𝑥 to 𝑦. Differentiate 𝑃𝑠 (log 𝑃𝑡−𝑠 𝑓 ) (𝑥𝑠) w.r.t. 𝑠
and apply the diffusion chain rule and the gradient bound (Theorem 2.2.6). By optimizing over the
choice of curves (𝑥𝑠)𝑠∈[0,𝑡 ] , prove the log-Harnack inequality

𝑃𝑡 (log 𝑓 ) (𝑥) ⩽ log 𝑃𝑡 𝑓 (𝑦) +
𝛼 ∥𝑥 − 𝑦∥2

2 (exp(2𝛼𝑡) − 1) .

By Exercise 2.14 and Exercise 2.15, it implies that for all 𝜇, 𝜈 ∈ P2(R𝑑),

KL(𝜇𝑃𝑡 ∥ 𝜈𝑃𝑡 ) ⩽
𝛼𝑊2

2 (𝜇, 𝜈)
2 (exp(2𝛼𝑡) − 1) . (2.E.8)

Note that this strengthens (1.4.12) in that it allows the second argument to be 𝜈𝑃𝑡 for any 𝜈 ∈ P2(R𝑑).
2 Find an analogous Markov semigroup argument to prove that

(𝑃𝑡 𝑓 (𝑥)) 𝑝 ⩽ 𝑃𝑡 ( 𝑓 𝑝) (𝑦) exp
( 𝛼𝑝 ∥𝑥 − 𝑦∥2
2 (𝑝 − 1) (exp(2𝛼𝑡) − 1)

)
, (2.E.9)

and hence

R𝑞 (𝛿𝑥𝑃𝑡 ∥ 𝛿𝑦𝑃𝑡 ) ⩽
𝛼𝑞 ∥𝑥 − 𝑦∥2

2 (exp(2𝛼𝑡) − 1) . (2.E.10)

3 Here, we consider an alternative argument. Starting from the local log-Sobolev inequality in the
form (2.2.22), establish (2.E.9) by differentiating 𝑠 ↦→ 𝑝

𝜉𝑠
log 𝑃𝑡 ( 𝑓 𝜉𝑠 ) (𝑥𝑠), where 𝜉𝑠 B 1+ (𝑝−1) 𝑠.

Argue that this reasoning can be reversed, so that (2.E.9) implies back the local log-Sobolev
inequality, and hence CD(𝛼,∞).

Concentration of Measure and Isoperimetry
⊵ Exercise 2.17 (Isoperimetry on the sphere)
Prove Theorem 2.4.6 from the spherical isoperimetric inequality (Theorem 2.4.5). To do so, use the
fact that the measure of B(𝑥0, 𝑟) is

𝜎𝑑
(
B(𝑥0, 𝑟)

)
=

∫ 𝑟
0 (sin 𝜃)𝑑−1 d𝜃∫ π

0 (sin 𝜃)𝑑−1 d𝜃
,

or prove this fact yourself. It is also acceptable to establish a weaker bound of the form 𝛼𝜎𝑑
(𝜀) ⩽

𝐶 exp(−𝑐𝑑𝜀2) for universal constants 𝑐, 𝐶 > 0.
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⊵ Exercise 2.18 (Gaussian isoperimetry)
Consider the Gaussian isoperimetric inequality in Theorem 2.4.7.

1 In the spirit of Theorem 2.4.18, show that the functional inequality (2.4.30) is equivalent to
an isoperimetric statement. Consequently, deduce the comparison theorem (Theorem 2.4.31)
from Theorem 2.4.29.

2 Show that the functional form of the Gaussian isoperimetric inequality in (2.4.30) is preserved (up
to constants) under Lipschitz mappings (in other words, prove the analogue of Proposition 2.3.3
for (2.4.30)).

⊵ Exercise 2.19 (Gaussian isoperimetry implies LSI)
In a similar spirit to Exercise 1.7, show that the Gaussian isoperimetric inequality (2.4.30) implies the
log-Sobolev inequality.

⊵ Exercise 2.20 (Isoperimetry and optimal transport in dimension one)
Let 𝜇, 𝜋 ∈ P2,ac(R), and let 𝑇 denote the optimal transport map from 𝜋 to 𝜇.

1 Show that 𝑇 = 𝐹−1
𝜇 ◦ 𝐹𝜋 , where 𝐹𝜇, 𝐹𝜋 denote the CDFs of 𝜇 and 𝜋 respectively.

2 Use the Monge–Ampère equation (Exercise 2.1) to deduce that 𝑇 is 𝐿-Lipschitz if and only if
𝜇 ◦ 𝐹−1

𝜇 ⩾ 𝐿
−1 𝜋 ◦ 𝐹−1

𝜋 , i.e., the isoperimetric profile of 𝜇 is lower bounded by the isoperimetric
profile of 𝜋.

3 When 𝜋 = normal(0, 𝐼𝑑), the existence of a Lipschitz transport map from 𝜋 to 𝜇 implies that 𝜇
satisfies a Gaussian isoperimetric inequality, by Exercise 2.18. Use the preceding part to deduce the
converse of this statement holds in dimension one. What happens when 𝜋 is the Laplace distribution
with density 𝜋(𝑥) = 1

2 exp(−|𝑥 |)?

Riemannian Manifolds
⊵ Exercise 2.21 (Lichnerowicz inequality)
Under the CD(𝛼, 𝑑) condition (2.5.4), the spectral gap estimate for −ℒ can be sharpened to
𝜆min(−ℒ) ⩾ 𝛼𝑑/(𝑑 − 1), an estimate that is attributed to Lichnerowicz. Prove this as follows: assume
that 𝑓 is such that −ℒ 𝑓 = 𝜆 𝑓 . Show that 𝜆

∫
Γ( 𝑓 , 𝑓 ) d𝜋 =

∫
Γ2( 𝑓 , 𝑓 ) d𝜋. Apply CD(𝛼, 𝑑) and

deduce that 𝜆 ⩾ 𝛼𝑑/(𝑑 − 1).

Discrete Space and Time
⊵ Exercise 2.22 (LSI implies MLSI)
Prove Lemma 2.6.3.

Hint: Prove that 4 (
√
𝑎 −
√
𝑏)2 = (

∫ 𝑏
𝑎
𝑡−1/2 d𝑡)2 ⩽ (log 𝑎 − log 𝑏) (𝑎 − 𝑏) for all 𝑎, 𝑏 > 0.

⊵ Exercise 2.23 (Coarse Ricci curvature on graphs)
Show that if (2.6.5) holds for all 𝑥, 𝑦 ∈ X, then𝑊1(𝜇𝑃, 𝜈𝑃) ⩽ (1 − 𝜅)𝑊1(𝜇, 𝜈) for all 𝜇, 𝜈 ∈ P1(X).
Furthermore, show that when d is the shortest path metric on a graph, it suffices to check (2.6.5) for
neighbors, that is, for pairs (𝑥, 𝑦) with d(𝑥, 𝑦) = 1.

⊵ Exercise 2.24 (Coarse Ricci curvature implies PI)
Suppose that X has bounded diameter and that 𝑃 satisfies (2.6.5). Let 𝑓 : X→ R be Lipschitz and
satisfy

∫
𝑓 d𝜋 = 0, where 𝜋 is the stationary distribution for 𝑃. Prove that lim sup𝑛→∞ (var𝜋 𝑃𝑛 𝑓 )1/𝑛 ⩽

(1 − 𝜅)2, and deduce that the operator norm of 𝑃 restricted to the subspace V ⊆ 𝐿2(𝜋) consisting of
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Lipschitz functions with zero mean is at most 1 − 𝜅. Next, using the fact that V is dense in 𝐿2(𝜋),
establish Theorem 2.6.6. (See Section 7.4 for background on discrete-time chains.)



CHAPTER 3

Additional Topics in Stochastic Analysis

In this chapter, we further expand our toolbox of stochastic analysis. Namely, we introduce Girsanov’s
theorem, which furnishes a formula for the Radon–Nikodym derivative of the laws of two SDEs w.r.t.
to each other, and we discuss the time reversal of an SDE. In order to highlight the flexibility and
power of these ideas, we then study some interesting applications, not all of which are directly relevant
to log-concave sampling but nevertheless fit within the broader themes of this book.

3.1 Quadratic Variation
We now take a more general view of the ideas that led to the construction of the Itô integral as well as
Itô’s formula (Theorem 1.1.19).

Finite variation vs. quadratic variation.
As a first step toward understanding the difficulties we faced when constructing the Itô integral, we
recall the classical condition under which it is possible to integrate a continuous process (𝜂𝑡 )𝑡∈[0,𝑇 ]
against another continuous process (𝐴𝑡 )𝑡∈[0,𝑇 ] to form the integral

∫ 𝑇
0 𝜂𝑡 d𝐴𝑡 . This condition states

that the process 𝐴 is of finite variation. This means that for any partition 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑇
of [0, 𝑇], if we define the mesh of the partition to be

mesh(𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛) B max
𝑖∈[𝑛]
|𝑡𝑖 − 𝑡𝑖−1 | ,

then it holds that

lim
mesh(𝑡𝑖 : 𝑖=0,1,...,𝑛)↘0

𝑛∑︁
𝑖=1

|𝐴𝑡𝑖 − 𝐴𝑡𝑖−1 | < ∞ .

The above limit is called the total variation of 𝐴 on [0, 𝑇]. Under this condition, there is a signed
measure 𝜇𝐴 such that for all 𝑡 ∈ [0, 𝑇], we have 𝜇𝐴( [0, 𝑡]) = 𝐴𝑡 − 𝐴0. Moreover, we can define a
norm ∥·∥TV on the space of signed measures, called the total variation norm, for which ∥𝜇𝐴∥TV
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96 Additional Topics in Stochastic Analysis

equals the total variation of 𝐴 as defined above.1 In this case, we can simply define the integral∫
[0,𝑇 ] 𝜂𝑡 d𝐴𝑡 B

∫
[0,𝑇 ] 𝜂𝑡 𝜇𝐴(d𝑡). Note that if 𝑡 ↦→ 𝐴𝑡 is differentiable, then the total variation of 𝐴

equals
∫
[0,𝑇 ] | ¤𝐴𝑡 | d𝑡, and the integral becomes

∫
[0,𝑇 ] 𝜂𝑡 d𝐴𝑡 =

∫
[0,𝑇 ] 𝜂𝑡

¤𝐴𝑡 d𝑡.
Hence, the condition that 𝐴 is of finite variation is enough to develop a satisfactory theory of

integration. The difficulty, however, is that Brownian motion is not of finite variation. To see this, take
𝑡𝑖 B 𝑖𝑇/𝑛 for 𝑖 = 0, 1, . . . , 𝑛, so that the mesh of the partition is𝑇/𝑛. Since 𝐵𝑡𝑖−𝐵𝑡𝑖−1 ∼ normal(0, 𝑇/𝑛),
we expect (heuristically) that

lim inf
𝑛→∞

𝑛∑︁
𝑖=1

|𝐵𝑡𝑖 − 𝐵𝑡𝑖−1 |︸       ︷︷       ︸
≍
√
𝑇/𝑛

≳ lim inf
𝑛→∞

𝑛 ·
√︂
𝑇

𝑛
= ∞ .

On the other hand, if we change the definition slightly, then we expect (heuristically) that

lim sup
𝑛→∞

𝑛∑︁
𝑖=1

|𝐵𝑡𝑖 − 𝐵𝑡𝑖−1 |2︸         ︷︷         ︸
≍𝑇/𝑛

≲ lim sup
𝑛→∞

𝑛 · 𝑇
𝑛
< ∞ .

We say that Brownian motion has finite quadratic variation. We will show in fact that the above limit
is well-defined and non-trivial in the sense of convergence in probability.

More generally, for a process of the form

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏𝑡 d𝑡 +

∫ 𝑡

0
𝜎𝑡 d𝐵𝑡 , 𝑡 ∈ [0, 𝑇] ,

the second term is a process of finite variation (provided that
∫
[0,𝑇 ] |𝑏𝑡 | d𝑡 < ∞ almost surely), whereas

the third term requires consideration of quadratic variation.

Definition of the quadratic variation.
More formally, we have the following theorem.

Theorem 3.1.1 (Quadratic variation). Let (𝑀𝑡 )𝑡∈[0,𝑇 ] be a continuous local martingale; then,
there is an a.s. unique increasing process 𝑡 ↦→ [𝑀, 𝑀]𝑡 such that 𝑡 ↦→ 𝑀2

𝑡 − [𝑀, 𝑀]𝑡 is a
continuous local martingale. Also, suppose that for each 𝑛 ∈ N+, (𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛) is a
partition of [0, 𝑡], with mesh tending to zero as 𝑛→∞. Then,

[𝑀, 𝑀]𝑡 = lim
𝑛→∞

𝑛∑︁
𝑖=1

(𝑀𝑡𝑖 − 𝑀𝑡𝑖−1)2 in probability .

Definition 3.1.2. The process [𝑀, 𝑀] of Theorem 3.1.1 is called the quadratic variation of 𝑀 .

Note that Theorem 3.1.1 provides another interpretation of the quadratic variation: when we
compose the martingale 𝑀 with the convex function (·)2, then 𝑀2 is no longer a martingale.2 The
quadratic variation is the process that we can subtract from 𝑀2 in order to make it a martingale.

1 Indeed, the notation ∥𝜇 − 𝜈 ∥TV for the total variation distance between 𝜇 and 𝜈 is in accordance with this more general
notion of a norm on the space of signed measures, up to a factor of 2 in the conventions.

2 It is, however, a submartingale.
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We will not prove Theorem 3.1.1 in full generality. However, we will verify that the quadratic
variation of one-dimensional Brownian motion (𝐵𝑡 )𝑡∈[0,𝑇 ] is [𝐵, 𝐵]𝑇 = 𝑇 , which gives an idea of the
general result. By independence of the Brownian increments,

E
[��� 𝑛∑︁
𝑖=1

{(𝐵𝑡𝑖 − 𝐵𝑡𝑖−1)2 − (𝑡𝑖 − 𝑡𝑖−1)}
���2] = 𝑛∑︁

𝑖=1

E[| (𝐵𝑡𝑖 − 𝐵𝑡𝑖−1)2 − (𝑡𝑖 − 𝑡𝑖−1) |2]

⩽
𝑛∑︁
𝑖=1

E[(𝐵𝑡𝑖 − 𝐵𝑡𝑖−1)4] = 3
𝑛∑︁
𝑖=1

(𝑡𝑖 − 𝑡𝑖−1)2

⩽ 3 mesh(𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛)
𝑛∑︁
𝑖=1

(𝑡𝑖 − 𝑡𝑖−1)︸          ︷︷          ︸
=𝑇

→ 0 .

Hence,
∑𝑛
𝑖=1 (𝐵𝑡𝑖 − 𝐵𝑡𝑖−1)2

P−→ 𝑇 as 𝑛 → ∞. We also know that 𝑡 ↦→ 𝐵2
𝑡 − 𝑡 is a martingale (see,

e.g., Exercise 1.5).

Semimartingales.
We often consider solutions to SDEs with non-zero drift coefficients, which therefore are not continuous
local martingales. To accommodate this addition, we consider the following definition.

Definition 3.1.3. A process (𝑋𝑡 )𝑡∈[0,𝑇 ] is called a continuous semimartingale if we can write
𝑋 = 𝐴 + 𝑀 , where 𝐴 is an adapted process of finite variation with 𝐴0 = 0 and 𝑀 is a continuous
local martingale.

The decomposition 𝑋 = 𝐴 + 𝑀 is then unique. Indeed, suppose that 𝑋 = 𝐴 + 𝑀 for another finite
variation process 𝐴 (with 𝐴0 = 0) and a continuous local martingale𝑀 . Then, fromΔ B 𝑀−𝑀 = 𝐴−𝐴,
we deduce that Δ is both a continuous local martingale and a process of finite variation. Since Δ is of
finite variation,

𝑛∑︁
𝑖=1

(Δ𝑡𝑖 − Δ𝑡𝑖−1)2 ⩽ mesh(𝑡𝑖 : 𝑖 = 0, 1, . . . , 𝑛)
𝑛∑︁
𝑖=1

|Δ𝑡𝑖 − Δ𝑡𝑖−1 |︸            ︷︷            ︸
bounded as 𝑛→∞

→ 0

as the mesh size tends to zero. This shows that [Δ,Δ] = 0, and thus Δ2 is a continuous local martingale.
If we knew that Δ2 were a genuine martingale, then together with Δ0 = 0 it would imply that Δ = 0,
establishing uniqueness of the semimartingale decomposition. We omit the localization argument
required to finish the proof.

We can also define the quadratic variation of the semimartingale 𝑋 as [𝑋, 𝑋] B [𝑀, 𝑀]. To see
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why this makes sense, observe that��� 𝑛∑︁
𝑖=1

(𝑋𝑡𝑖 − 𝑋𝑡𝑖−1)2 −
𝑛∑︁
𝑖=1

(𝑀𝑡𝑖 − 𝑀𝑡𝑖−1)2
���

=

��� 𝑛∑︁
𝑖=1

(𝐴𝑡𝑖 − 𝐴𝑡𝑖−1)2 + 2
𝑛∑︁
𝑖=1

(𝐴𝑡𝑖 − 𝐴𝑡𝑖−1) (𝑀𝑡𝑖 − 𝑀𝑡𝑖−1)
���

⩽
𝑛∑︁
𝑖=1

(𝐴𝑡𝑖 − 𝐴𝑡𝑖−1)2 + 2

√√( 𝑛∑︁
𝑖=1

(𝐴𝑡𝑖 − 𝐴𝑡𝑖−1)2
) ( 𝑛∑︁

𝑖=1

(𝑀𝑡𝑖 − 𝑀𝑡𝑖−1)2
)
,

which tends to zero using the same argument as in the uniqueness of the semimartingale decomposition:
finite variation processes have zero quadratic variation.

The bracket of two semimartingales.
Given two semimartingales 𝑋 and 𝑌 , we define their bracket via polarization:

[𝑋,𝑌 ] B 1
2
( [𝑋 + 𝑌, 𝑋 + 𝑌 ] − [𝑋, 𝑋] − [𝑌,𝑌 ]) .

Equivalently, if 𝑋 = 𝐴𝑋 + 𝑀𝑋 and 𝑌 = 𝐴𝑌 + 𝑀𝑌 are the respective decompositions, then [𝑋,𝑌 ] =
[𝑀𝑋, 𝑀𝑌 ]. The following theorem gives a concrete way of computing the bracket for processes driven
by Brownian motion.

Theorem 3.1.4 (Bracket of processes driven by Brownian motion). Suppose that 𝑋 and 𝑌 are
R𝑑-valued processes with

d𝑋𝑡 = 𝑏𝑋𝑡 d𝑡 + 𝜎𝑋𝑡 d𝐵𝑡 ,
d𝑌𝑡 = 𝑏𝑌𝑡 d𝑡 + 𝜎𝑌𝑡 d𝐵𝑡 ,

where we assume
∫
[0,𝑇 ] ∥𝑏

𝑋
𝑡 ∥ d𝑡,

∫
[0,𝑇 ] ∥𝑏

𝑌
𝑡 ∥ d𝑡,

∫
[0,𝑇 ] ∥𝜎

𝑋
𝑡 ∥2HS d𝑡, and

∫
[0,𝑇 ] ∥𝜎

𝑌
𝑡 ∥2HS d𝑡 are all finite

almost surely. Then, 𝑋 and 𝑌 are continuous semimartingales, and

[𝑋,𝑌 ]𝑡 =
∫ 𝑡

0
⟨𝜎𝑋𝑠 , 𝜎𝑌𝑠 ⟩ d𝑠 , for 𝑡 ∈ [0, 𝑇] .

Itô’s formula revisited.
Finally, we conclude this section by revisiting Itô’s formula (Theorem 1.1.19) using our new calculus.

Theorem 3.1.5 (Itô’s formula revisited). Let 𝑋 be an R𝑑-valued semimartingale, and write
𝑋 = (𝑋1, . . . , 𝑋𝑑). Let 𝑓 ∈ C2(R𝑑). Then, 𝑓 (𝑋) is also a semimartingale, and

𝑓 (𝑋𝑡 ) = 𝑓 (𝑋0) +
𝑑∑︁
𝑖=1

∫ 𝑡

0
𝜕𝑖 𝑓 (𝑋𝑠) d𝑋 𝑖𝑠 +

1
2

𝑑∑︁
𝑖, 𝑗=1

∫ 𝑡

0
𝜕𝑖𝜕𝑗 𝑓 (𝑋𝑠) d[𝑋 𝑖, 𝑋 𝑗]𝑠 .

If we interpret [𝑋, 𝑋] as the matrix whose (𝑖, 𝑗)-entry is [𝑋 𝑖, 𝑋 𝑗], then this can be written in matrix
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notation as

𝑓 (𝑋𝑡 ) = 𝑓 (𝑋0) +
∫ 𝑡

0
⟨∇ 𝑓 (𝑋𝑠), d𝑋𝑠⟩ +

1
2

∫ 𝑡

0

〈
∇2 𝑓 (𝑋𝑠), d[𝑋, 𝑋]𝑠

〉
. (3.1.6)

For 𝑑-dimensional standard Brownian motion (𝐵𝑡 )𝑡∈[0,𝑇 ] , we have [𝐵, 𝐵]𝑡 = 𝑡 𝐼𝑑 , so that d[𝐵, 𝐵]𝑡 =
𝐼𝑑 d𝑡 and we recover the original statement of Itô’s formula in Theorem 1.1.19. The point is that the
quadratic variation is a convenient way of streamlining Itô calculations, as it formalizes the idea that
only the Brownian motion part of a process contributes in the second-order term in Itô’s formula.

3.2 Change of Measure in Path Space
In this section, we begin to investigate measures on path space, for which it is convenient to adopt the
following canonical setup. Let (𝐵𝑡 )𝑡∈[0,𝑇 ] be standard Brownian motion, and let W denote its law,
the Wiener measure. Recall that in probability theory, all of our random variables are defined on an
underlying probability space (Ω,ℱ, P). Since we can take this probability space to be whatever we
wish, as long as it is sufficiently rich, we may as well take Ω = C([0, 𝑇]) to be the space of continuous
paths with ℱ being the Borel 𝜎-algebra, equipped with the Wiener measure P = W. Then, for 𝜔 ∈ Ω,
the Brownian motion at time 𝑡 simply becomes the evaluation functional, 𝐵𝑡 (𝜔) = 𝜔𝑡 .

3.2.1 The Cameron–Martin Theorem
Our goal now is to understand when two measures P, Q on the path space C([0, 𝑇]) are absolutely
continuous w.r.t. each other, and if so, to write down a formula for the Radon–Nikodym derivative dP

dQ .
The final result, known as Girsanov’s theorem, will be used for the analysis of sampling algorithms
later in this book, and more broadly it is an indispensable tool for stochastic analysis.

Before reaching this goal, however, it may be helpful to provide some mathematical context.
We begin with the following question. For a curve ℎ ∈ C([0, 𝑇]), the translation operator 𝑇ℎ :
C([0, 𝑇]) → C([0, 𝑇]) is defined simply by the mapping 𝜔 ↦→ 𝜔 + ℎ. What happens to the Wiener
measure under translations?

More generally, we can define the translation operator 𝑇ℎ on any Banach space B, with ℎ ∈ B.
If B = R𝑑 and 𝜇 is the Lebesgue measure, then we know that 𝜇 is invariant under translations, in
the sense that (𝑇ℎ)#𝜇 = 𝜇 for all ℎ ∈ R𝑑, and that the Lebesgue measure is the unique measure
with this property up to rescaling. However, as soon as we move to infinite dimensions, a classical
result of analysis states that there is no non-trivial measure 𝜇 which is invariant under translations,
i.e., infinite-dimensional Lebesgue measure does not exist. This makes it difficult to decide upon a
“canonical” reference measure for infinite-dimensional analysis.

Although invariance is impossible, we can at least ask for quasi-invariance: does there exist 𝜇 such
that (𝑇ℎ)#𝜇 ≪ 𝜇 for all ℎ ∈ B? For example, the standard Gaussian measure is quasi-invariant on R𝑑 .
In infinite dimensions, the answer is still no; in particular, there is no infinite-dimensional standard
Gaussian. To understand this point more concretely, suppose that B = H is actually a Hilbert space,
and let (𝑒𝑘)𝑘∈N be an orthonormal basis. An obvious attempt to build “the standard Gaussian measure
onH” is to take an i.i.d. sequence (𝜉𝑘)𝑘∈N of standard Gaussians on R, and to take 𝜇 to be the law of∑
𝑘∈N 𝜉𝑘𝑒𝑘 . However, since ∥∑𝑁

𝑘=0 𝜉𝑘𝑒𝑘 ∥2 =
∑𝑁
𝑘=0 𝜉

2
𝑘
, standard probability theory tells us that almost

surely, this is not a convergent sum inH .
Despite this obstruction, we will now see that the Wiener measure behaves in some sense like a
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standard Gaussian measure on a Hilbert space! The theorem below begins by precisely characterizing
the set of ℎ for which (𝑇ℎ)#W ≪W.

Theorem 3.2.1 (Cameron–Martin). Let W be the Wiener measure on C([0, 𝑇]). Then, (𝑇ℎ)#W ≪
W if and only if

ℎ ∈ H B
{
ℎ ∈ C([0, 𝑇])

��� ℎ(0) = 0,
∫ 𝑇

0
∥ ¤ℎ(𝑡)∥2 d𝑡 < ∞

}
. (3.2.2)

If this holds, then

d(𝑇ℎ)#W
dW

(𝜔) = exp
(∫ 𝑇

0
⟨ ¤ℎ(𝑡), d𝜔𝑡⟩ −

1
2

∫ 𝑇

0
∥ ¤ℎ(𝑡)∥2 d𝑡

)
. (3.2.3)

Here,H is called the Cameron–Martin space associated with Brownian motion.

The Cameron–Martin theorem will be subsumed by Girsanov’s theorem, so we will not prove it
here. Instead, we will focus on its interpretation.

Interpretation of the Cameron–Martin theorem.
To interpret (3.2.3), let 𝛾 denote the standard Gaussian measure on R𝑑 and let ℎ ∈ R𝑑 . Then, on R𝑑 ,
we have the formula

d(𝑇ℎ)#𝛾
d𝛾

(𝑥) = exp
(
⟨ℎ, 𝑥⟩ − 1

2
∥ℎ∥2

)
.

This bears a striking resemblance to (3.2.3). Namely, for ℎ0, ℎ1 ∈ H , let us define the inner product
⟨ℎ0, ℎ1⟩H B

∫ 𝑇
0 ⟨ ¤ℎ0(𝑡), ¤ℎ1(𝑡)⟩ d𝑡. If we interpret the stochastic integral

∫ 𝑇
0 ⟨ ¤ℎ(𝑡), d𝜔𝑡⟩ as ⟨ℎ, 𝜔⟩H ,

then the density ratio in (3.2.3) behaves as if

dW(𝜔) “∝” exp
(
−1

2
∥𝜔∥2H

)
d𝜔 . (3.2.4)

The charming part about (3.2.4) is that not a single aspect of it makes any sense. We know that W-a.s.
𝜔 ∈ Ω does not even belong to H , since Brownian paths are non-differentiable (in fact, they are
Hölder continuous of any exponent less than 1/2, but no better, whereas we would require Lipschitz
continuity to have a.e. differentiability). Also, (3.2.4) tries to express the density of W, but with
respect to what measure? We have just stated that there is no “Lebesgue measure” onH .

Despite these objections, Theorem 3.2.1 is a perfectly rigorous manifestation of the intuition
that W is a standard Gaussian measure on H . To reconcile this, it will turn out that a “standard
H -Gaussian measure” can exist, but the catch is that it no longer “fits” inH (indeed, W is supported
on C([0, 𝑇]) ⊋ H ). Indeed, the fact that W is usually defined on C([0, 𝑇]) is somewhat of a red
herring, and many of the deeper properties of Brownian motion (e.g., Schilder’s theorem in large
deviations) are best understood viaH .

Abstract Wiener space.
More generally, letH be an infinite-dimensional Hilbert space and let us try to construct the standard
Gaussian measure onH . We tried earlier to use the sum

∑
𝑘∈N 𝜉𝑘𝑒𝑘 , but this does not converge in the

norm of H . To proceed forward, the idea is rather simple: we can just use another norm. Namely,
if we can find a Banach space B ⊇ H with corresponding norm ∥·∥B , such that the sum

∑
𝑘∈N 𝜉𝑘𝑒𝑘
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converges in ∥·∥B , then
∑
𝑘∈N 𝜉𝑘𝑒𝑘 makes sense as a random element of B, and we can take 𝜇 to be its

law. Note that 𝜇 is supported on B rather than onH . It turns out that a suitable orthonormal basis
(𝑒𝑘)𝑘∈N and a norm ∥·∥B can always be found to make this procedure work.

For Brownian motion, we take ∥·∥B to be the supremum norm (i.e., the norm of C([0, 𝑇])) and
the orthonormal basis can be chosen as a certain (integrated) wavelet basis. In fact, the abstract
construction described above is implicit in Lévy’s usual construction of Brownian motion.

It is also possible to flip this process around. Namely, suppose that 𝜇 is a Gaussian measure on a
Banach space B, which means that for any linear functionals ℓ1, . . . , ℓ𝑛 ∈ B∗ and 𝑋 ∼ 𝜇, the vector
(ℓ1(𝑋), . . . , ℓ𝑛 (𝑋)) is jointly Gaussian. Then, one can find a Hilbert spaceH associated to (B, 𝜇),
which is called the Cameron–Martin space, and an appropriate analogue of the Cameron–Martin
theorem (Theorem 3.2.1) holds. In fact, one has ∥𝑥∥H B sup{|ℓ(𝜔) | | ℓ ∈ B∗, ∥ℓ∥𝐿2 (𝜇) ⩽ 1} and
H B {𝑥 ∈ B | ∥𝑥∥H < ∞}. The triple (B,H , 𝜇) is known as an abstract Wiener space.

3.2.2 Girsanov’s Theorem
The Cameron–Martin theorem (Theorem 3.2.1) provides a formula for the density ratio of the laws of
two diffusions that differ by a deterministic drift. Girsanov’s theorem generalizes this to diffusions
which differ by a random drift.

Why do we only consider a change of drift? The answer is that two diffusions

d𝑋𝑡 = 𝑏𝑋𝑡 d𝑡 + 𝜎𝑋𝑡 d𝐵𝑡 ,
d𝑌𝑡 = 𝑏𝑌𝑡 d𝑡 + 𝜎𝑌𝑡 d𝐵𝑡 ,

with 𝜎𝑋 (𝜎𝑋)T ≠ 𝜎𝑌 (𝜎𝑌 )T, have mutually singular laws, as a consequence of the existence of the
quadratic variation (Theorem 3.1.1). Indeed, the laws of 𝑋 and 𝑌 are concentrated on the disjoint
events that the quadratic variation equals

∫ ·
0 𝜎

𝑋 (𝜎𝑋)T or
∫ ·

0 𝜎
𝑌 (𝜎𝑌 )T respectively. Nevertheless,

Girsanov’s theorem will show that a change of drift is enough to obtain any other path measure which
is absolutely continuous w.r.t. the original one.

To understand the intuition behind Girsanov’s theorem, consider the diffusion

d𝑋𝑡 = 𝑏𝑡 d𝑡 + d𝐵𝑡 ⇐⇒ 𝑋𝑡 =

∫ 𝑡

0
𝑏𝑠 d𝑠 + 𝐵𝑡 , (3.2.5)

where (𝑏𝑡 )𝑡⩾0 is an adapted process. If (𝑏𝑡 )𝑡⩾0 is in fact deterministic, then the law of 𝑋𝑡 is a centered
Gaussian with covariance (

∫ 𝑡
0 𝑏𝑠 d𝑠)⊗2 + 𝑡 𝐼𝑑 , and is therefore fully explicit. In general, however, the

law of 𝑋𝑡 is not easily describable. Nevertheless, it is possible to understand the joint law of (𝑋𝑡 )𝑡∈[0,𝑇 ] ,
which is a measure P on path space.

To see why this is the case, consider a discrete-time analogue of (3.2.5):

𝑋𝑛+1 B 𝐹 (𝑋𝑛) + 𝜉𝑛 , 𝑛 = 0, 1, 2, . . . ,

where 𝐹 : R𝑑 → R𝑑 is a deterministic map and (𝜉𝑛)𝑛∈N is a sequence of i.i.d. Gaussian variables.
Again, due to the non-linear mapping 𝐹, the law of 𝑋𝑛 is hard to describe exactly, yet once we
condition on 𝑋𝑛, the law of 𝑋𝑛+1 is an explicit Gaussian. This observation makes it straightforward to
write down an explicit and simple expression for the joint law of (𝑋0, 𝑋1, . . . , 𝑋𝑁 ). See Exercise 3.3
for further elaboration on this discrete-time approach.

Returning to (3.2.5), we can think of it in the same way: namely, conditioned on the past, the
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conditional law of the diffusion in the next instant is a Gaussian with some mean and covariance.
Moreover, by using the formula for the density ratio of two Gaussians, one can guess the formula

dP
dW

= exp
(∫ 𝑇

0
⟨𝑏𝑠, d𝐵𝑠⟩ −

1
2

∫ 𝑇

0
∥𝑏𝑠 ∥2 d𝑠

)
. (3.2.6)

Note that this exactly mirrors Theorem 3.2.1, except that now we allow for adapted processes (𝑏𝑡 )𝑡⩾0.
Let us now discuss how we would establish (3.2.6) carefully. Actually, we will proceed in the

opposite order from our informal discussion: we will first define P via the formula (3.2.6), and then
investigate the effect of the change of measure from W to P on our stochastic processes. This requires a
change of perspective: instead of considering two processes (𝐵𝑡 )𝑡∈[0,𝑇 ] and (𝑋𝑡 )𝑡∈[0,𝑇 ] , we instead think
of a single process (𝐵𝑡 )𝑡∈[0,𝑇 ] defined on our canonical filtered space (Ω = C([0, 𝑇]),ℱ, (ℱ𝑡 )𝑡∈[0,𝑇 ]).
Recall that (𝐵𝑡 )𝑡∈[0,𝑇 ] is just the coordinate process 𝐵𝑡 (𝜔) = 𝜔𝑡 . When we endow our space with
the Wiener measure W, then (𝐵𝑡 )𝑡∈[0,𝑇 ] becomes a standard Brownian motion. On the other hand, if
we instead endow our space with the measure P, we will show that (𝐵𝑡 )𝑡∈[0,𝑇 ] is, in some sense, a
Brownian motion with drift.

To carry out our plan, the first step is to show that (3.2.6) defines a valid probability measure P. In
other words, we need the W-expectation of the right-hand side of (3.2.6) to equal 1. Actually, for any
𝑡 ∈ [0, 𝑇], let us write W𝑡 to be the restriction of W to ℱ𝑡 (and similarly write P𝑡 ). In order for our
putative P𝑡 to be a probability measure for each 𝑡 ∈ [0, 𝑇], we would require

𝑡 ↦→ dP𝑡
dW𝑡

?
= exp

(∫ 𝑡

0
⟨𝑏𝑠, d𝐵𝑠⟩ −

1
2

∫ 𝑡

0
∥𝑏𝑠 ∥2 d𝑠

)
to have constant W-expectation, equal to 1 for all 𝑡 ∈ [0, 𝑇]. This would follow if we knew that this
defined a W-martingale.

Assume that EW
∫ 𝑇

0 ∥𝑏𝑠 ∥
2 d𝑠 < ∞. Then, the process 𝑡 ↦→

∫ 𝑡
0 ⟨𝑏𝑠, d𝐵𝑠⟩ is a W-martingale, and

𝑡 ↦→
∫ 𝑡

0 ∥𝑏𝑠 ∥
2 d𝑠 is its quadratic variation. We will simply write 𝑀 B

∫ ·
0 ⟨𝑏, d𝐵⟩ for the martingale

and [𝑀, 𝑀] for its quadratic variation. Then,

E(𝑀) B exp
(
𝑀 − 1

2
[𝑀, 𝑀]

)
(3.2.7)

is called the exponential martingale associated with 𝑀 . Is it actually a martingale? Applying Itô’s
formula in the form (3.1.6),

dE(𝑀)𝑡 = E(𝑀)𝑡
(
d𝑀𝑡 −

1
2

d[𝑀, 𝑀]𝑡 +
1
2

d[𝑀, 𝑀]𝑡
)
= E(𝑀)𝑡 d𝑀𝑡 ,

so E(𝑀) is a stochastic integral. From Proposition 1.1.16, this tells us that E(𝑀) is a continuous local
W-martingale. In other words, it is possible for E(𝑀) to fail to be a martingale if some integrability
conditions are violated. For now, we will assume that E(𝑀) is an honest3 martingale, treating this
point as a technical issue, although later we will see that there is a clear understanding of what happens
when this assumption fails.

Under this assumption, the measure P defined via (3.2.6) is a probability measure on path space. We
now claim that under P, the process 𝑡 ↦→ �̃�𝑡 B 𝐵𝑡 − [𝐵, 𝑀]𝑡 = 𝐵𝑡 −

∫ 𝑡
0 𝑏𝑠 d𝑠 is a standard Brownian

motion. Actually, this is not too hard to check using (3.2.6) and characteristic functions; we leave it
as Exercise 3.2. It leads to the following theorem.

3We borrow the terminology from Steele (2001).
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Theorem 3.2.8 (Girsanov). Let (𝐵𝑡 )𝑡∈[0,𝑇 ] be a standard Brownian motion under the Wiener
measure W and let (𝑏𝑡 )𝑡∈[0,𝑇 ] be a progressive process with EW

∫ 𝑇
0 ∥𝑏𝑠 ∥

2 d𝑠 < ∞. Let 𝑀𝑡 B∫ 𝑡
0 ⟨𝑏𝑠, d𝐵𝑠⟩ for 𝑡 ∈ [0, 𝑇] and let [𝑀, 𝑀] =

∫ ·
0 ∥𝑏𝑠 ∥

2 d𝑠 denote the quadratic variation. Define
the exponential martingale

E(𝑀) B exp
(
𝑀 − 1

2
[𝑀, 𝑀]

)
.

Assume that E(𝑀) is a W-martingale and define the measure P on path space via

dP
dW

= E(𝑀)𝑇 .

Then, under P,

𝑡 ↦→ �̃�𝑡 B 𝐵𝑡 − [𝐵, 𝑀]𝑡 = 𝐵𝑡 −
∫ 𝑡

0
𝑏𝑠 d𝑠 is a standard Brownian motion .

At present, Girsanov’s theorem may seem rather abstract, and perhaps the best way to learn its
meaning is to see it in action. We will put it to work in Section 4.4.

When is the exponential martingale an honest martingale?
Since E(𝑀) is a non-negative local martingale, then it is a supermartingale, i.e., we always have
EW E(𝑀)𝑇 ⩽ 1. The only situation in which we encounter difficulties is when EW E(𝑀)𝑇 < 1, which
would lead P defined via (3.2.6) to be a sub-probability measure. One might suspect that this is related
to some probability mass “running off to∞”, and indeed one can show that 1−EW E(𝑀)𝑇 is precisely
the probability that the diffusion has exploded by time 𝑇 , in the sense discussed in Section 1.1.3.
Therefore, the following criteria for E(𝑀) to be a martingale are really criteria for non-explosion.

The standard sufficient condition for E(𝑀) to be a martingale is Novikov’s condition, which reads
EW exp( 1

2 [𝑀, 𝑀]𝑇 ) < ∞. An even weaker condition, known as Kazamaki’s condition, requires only
that sup𝑡∈[0,𝑇 ] EW exp( 1

2 𝑀𝑡 ) < ∞. In principle, one of these conditions should be checked before
applying Girsanov’s theorem. However, if one is only interested in bounding a quantity such as the
KL divergence or a Rényi divergence, one can often use the technique of localization, mentioned in
Section 1.1.1, together with lower semicontinuity, to avoid these conditions altogether. In this book,
we omit discussion of these technical arguments.

3.3 Doob’s Transform
In this section, we will introduce a more sophisticated use of change of measure on path space, known
as Doob’s transform. Some applications include obtaining SDEs for processes conditioned on an
endpoint and deriving the Föllmer process in the next section.

Suppose that Q is a reference measure on path space, describing the law of the SDE

d𝑋𝑡 = 𝑏𝑡 (𝑋𝑡 ) d𝑡 + 𝜎𝑡 (𝑋𝑡 ) d𝐵𝑡 , 𝑋0 ∼ 𝜋0 . (3.3.1)

Let 𝑃𝑠,𝑡 denote the transition operator from time 𝑠 to time 𝑡 (note that our reference process is
time-inhomogeneous). The question we address in this section is the following: suppose that P is
another probability measure on path space such that its Radon–Nikodym derivative w.r.t. Q only
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depends on 𝑋𝑇 , the path at time 𝑇 :
dP𝑇
dQ𝑇

= ℎ𝑇 (𝑋𝑇 ) .

Since P𝑇 ≪ Q𝑇 , we know from the previous section that the process 𝑋 under P corresponds to the
original process under Q with a change of drift. Can we solve for this drift?

The Radon–Nikodym process 𝑡 ↦→ dP𝑡

dQ𝑡
must be a martingale, and we make the ansatz that at time 𝑡,

it only depends on the path at time 𝑡: dP𝑡

dQ𝑡
= ℎ𝑡 (𝑋𝑡 ). Applying Itô’s formula to (ℎ𝑡 (𝑋𝑡 ))𝑡∈[0,𝑇 ] ,

dℎ𝑡 (𝑋𝑡 ) = (𝜕𝑡ℎ𝑡 +ℒ𝑡ℎ𝑡 ) (𝑋𝑡 ) d𝑡 + ⟨∇ℎ𝑡 (𝑋𝑡 ), 𝜎𝑡 (𝑋𝑡 ) d𝐵𝑡⟩ , (3.3.2)

and we deduce that this is a martingale if and only if

𝜕𝑡ℎ𝑡 +ℒ𝑡ℎ𝑡 = 0 ,

where ℒ𝑡 𝑓 B
1
2 ⟨𝜎𝑡𝜎

T
𝑡 ,∇2 𝑓 ⟩ + ⟨𝑏𝑡 ,∇ 𝑓 ⟩ is the generator at time 𝑡. This is the backward heat equation

(indeed, if 𝑋 is a Brownian motion, then the equation reads 𝜕𝑡ℎ𝑡 + 1
2 Δℎ𝑡 = 0), which makes sense

since we have a terminal time condition for ℎ𝑇 . In the case when the process is time-homogeneous
(i.e., the coefficients do not depend on 𝑡), setting ℎ←𝑡 B ℎ𝑇−𝑡 , we see that ℎ← satisfies the forward heat
equation 𝜕𝑡ℎ←𝑡 = ℒℎ←𝑡 , which has the solution ℎ←𝑡 = 𝑃0,𝑡ℎ

←
0 . Switching back to ℎ, we deduce that

ℎ𝑡 = 𝑃0,𝑇−𝑡ℎ𝑇 .
Now that we have a formula for dP𝑡

dQ𝑡
, let us solve for the change of drift. On one hand, we know that

if �̃� = 𝐵 − [𝐵, 𝑀] is a standard Brownian motion under P, where 𝑀 B
∫ ·

0 ⟨Δ, d𝐵⟩, then Girsanov’s
theorem (Theorem 3.2.8) yields

d
(
log

dP𝑡
dQ𝑡

)
= ⟨Δ𝑡 , d𝐵𝑡⟩ −

1
2
∥Δ𝑡 ∥2 d𝑡 .

On the other hand, Itô’s formula and (3.3.2) yield

d
(
log ℎ𝑡 (𝑋𝑡 )

)
=

1
ℎ𝑡 (𝑋𝑡 )

dℎ𝑡 (𝑋𝑡 ) −
1

2 ℎ𝑡 (𝑋𝑡 )2
d[ℎ· (𝑋), ℎ· (𝑋)]𝑡

=
1

ℎ𝑡 (𝑋𝑡 )
⟨∇ℎ𝑡 (𝑋𝑡 ), 𝜎𝑡 (𝑋𝑡 ) d𝐵𝑡⟩ −

1
2 ℎ𝑡 (𝑋𝑡 )2

∥𝜎𝑡 (𝑋𝑡 )T ∇ℎ𝑡 (𝑋𝑡 )∥2 d𝑡

and we quickly deduce that

Δ𝑡 = 𝜎𝑡 (𝑋𝑡 )T ∇ log ℎ𝑡 (𝑋𝑡 ) .

Finally, we have obtained

d𝑋𝑡 =
(
𝑏𝑡 (𝑋𝑡 ) + 𝜎𝑡 (𝑋𝑡 ) Δ𝑡

)
d𝑡 + 𝜎𝑡 (𝑋𝑡 ) d�̃�𝑡

=
(
𝑏𝑡 (𝑋𝑡 ) + 𝜎𝑡 (𝑋𝑡 ) 𝜎𝑡 (𝑋𝑡 )T ∇ log ℎ𝑡 (𝑋𝑡 )

)
d𝑡 + 𝜎𝑡 (𝑋𝑡 ) d�̃�𝑡 .

This is our expression for the SDE under P𝑇 . We recall that in the time-homogeneous case, we actually
have ℎ𝑡 = 𝑃0,𝑇−𝑡ℎ𝑇 .

3.3.1 Conditioning on an Endpoint
As a first application, we will show how the Doob transform allows us to condition on 𝑋𝑇 = 𝑥𝑇 ,
for some fixed 𝑥𝑇 ∈ R𝑑. To see what this means, let 𝑡 < 𝑇 and let 𝜂𝑡 be a bounded ℱ𝑡 -measurable
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random variable; let us try to compute EQ [𝜂𝑡 | 𝑋𝑇 ]. By the definition of the conditional expectation,
we wish to compute EQ [𝜂𝑡 𝑓 (𝑋𝑇 )] for any bounded measurable 𝑓 : R𝑑 → R. Using the transition
operator 𝑃𝑡 ,𝑇 (which, in an abuse of notation, we identify with the transition kernel itself), and writing
𝜋𝑡 B lawQ(𝑋𝑡 ),

EQ [𝜂𝑡 𝑓 (𝑋𝑇 )] = EQ [𝜂𝑡 EQ [ 𝑓 (𝑋𝑇 ) | 𝑋𝑡 ]
]
= EQ

[
𝜂𝑡

∫
𝑓 (𝑥𝑇 ) 𝑃𝑡 ,𝑇 (𝑋𝑡 , d𝑥𝑇 )

]
= EQ

[
𝜂𝑡

∫
𝑓 (𝑥𝑇 )

d𝑃𝑡 ,𝑇 (𝑋𝑡 , ·)
d𝜋𝑇

(𝑥𝑇 ) 𝜋𝑇 (d𝑥𝑇 )
]

=

∫
𝑓 (𝑥𝑇 ) EQ

[
𝜂𝑡

d𝑃𝑡 ,𝑇 (𝑋𝑡 , ·)
d𝜋𝑇

(𝑥𝑇 )
]
𝜋𝑇 (d𝑥𝑇 ) .

We conclude that if ℎ𝑥𝑇𝑡 (𝑥) B
d𝑃𝑡,𝑇 (𝑥, · )

d𝜋𝑇
(𝑥𝑇 ), then

EQ [𝜂𝑡 | 𝑋𝑇 = 𝑥𝑇 ] = EQ [𝜂𝑡 ℎ𝑥𝑇𝑡 (𝑋𝑡 )] .

Since this holds for every 𝜂𝑡 , it says that if P denotes the measure Q conditioned on 𝑋𝑇 = 𝑥𝑇 , then

dP𝑡
dQ𝑡

= ℎ
𝑥𝑇
𝑡 (𝑋𝑡 ) for all 0 ⩽ 𝑡 < 𝑇 .

We are now in the setting of Doob’s transform. In particular, under P,

d𝑋𝑡 =
(
𝑏𝑡 (𝑋𝑡 ) + 𝜎𝑡 (𝑋𝑡 ) 𝜎𝑡 (𝑋𝑡 )T ∇ log ℎ𝑥𝑇𝑡 (𝑋𝑡 )

)
d𝑡 + 𝜎𝑡 (𝑋𝑡 ) d�̃�𝑡 , 0 ⩽ 𝑡 < 𝑇 . (3.3.3)

Example 3.3.4 (Brownian bridge). Suppose that 𝐵 = 𝑋 is a standard Brownian motion under Q.
Then, 𝑃𝑠,𝑡 = normal(0, (𝑡 − 𝑠) 𝐼𝑑) and 𝜋𝑡 = 𝑃0,𝑡 . If we condition 𝐵 to hit 𝑥𝑇 at time 𝑇 , then this
process is known as a Brownian bridge.

We can calculate

ℎ
𝑥𝑇
𝑡 (𝑥) ∝ exp

(
− ∥𝑥 − 𝑥𝑇 ∥

2

2 (𝑇 − 𝑡)

)
=⇒ ∇ log ℎ𝑥𝑇𝑡 (𝑥) = −

𝑥 − 𝑥𝑇
𝑇 − 𝑡 .

Hence, we arrive at the SDE representation for Brownian bridge,

d𝑋𝑡 =
𝑥𝑇 − 𝑋𝑡
𝑇 − 𝑡 d𝑡 + d�̃�𝑡 .

Note that the drift is singular as 𝑡 ↗ 𝑇 . Of course, it must be, in order to drive the process to hit
a single point 𝑥𝑇 at time 𝑇 .

3.3.2 Reversing the SDE
Next, we describe how to construct the time reversal of the SDE (𝑋𝑡 )𝑡∈[0,𝑇 ] . Namely, suppose that
𝜋𝑡 B law(𝑋𝑡 ) is the marginal law of 𝑋 at time 𝑡. We will construct another SDE 𝑋← such that
law(𝑋←𝑡 ) = 𝜋𝑇−𝑡 for all 𝑡 ∈ [0, 𝑇]. This construction will play an important role in the study of the
proximal sampler in Chapter 8.

Perhaps the most straightforward approach is to start with the Fokker–Planck equation for 𝑋 . Let
𝑋 denote the general SDE (3.3.1), but for the sake of simplifying calculations we shall assume that
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the diffusion matrix 𝜎𝑡 does not depend on the spatial variable, for all 𝑡 ∈ [0, 𝑇]. Then, we have the
Fokker–Planck equation

𝜕𝑡𝜋𝑡 =
1
2
⟨𝜎𝑡𝜎T

𝑡 ,∇2𝜋𝑡⟩ − div(𝜋𝑡𝑏𝑡 ) .

Therefore, the time reversal 𝜋←𝑡 B 𝜋𝑇−𝑡 satisfies

𝜕𝑡𝜋
←
𝑡 = −1

2
⟨𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ,∇2𝜋←𝑡 ⟩ + div(𝜋←𝑡 𝑏𝑇−𝑡 ) .

Next, we note that

⟨𝜎𝑇−𝑡𝜎T
𝑇−𝑡 ,∇2𝜋←𝑡 ⟩ = div(𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ∇𝜋←𝑡 ) = div
(
𝜋←𝑡 (𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ∇ log 𝜋←𝑡 )
)
,

and hence we can write

𝜕𝑡𝜋
←
𝑡 =

1
2
⟨𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ,∇2𝜋←𝑡 ⟩ + div
(
𝜋←𝑡 (𝑏𝑇−𝑡 − 𝜎𝑇−𝑡𝜎T

𝑇−𝑡∇ log 𝜋←𝑡 )
)
. (3.3.5)

We can therefore read off the SDE

d𝑋←𝑡 = {−𝑏𝑇−𝑡 (𝑋←𝑡 ) + 𝜎𝑇−𝑡𝜎T
𝑇−𝑡 ∇ log 𝜋←𝑡 (𝑋←𝑡 )} d𝑡 + 𝜎𝑇−𝑡 d𝐵𝑡 . (3.3.6)

If we initialize this SDE with 𝑋←0 ∼ 𝜋𝑇 , then 𝑋←𝑡 ∼ 𝜋←𝑡 = 𝜋𝑇−𝑡 for all 𝑡 ∈ [0, 𝑇].
If we initialize this SDE at 𝑋←0 = 𝑥𝑇 , does it then follow that 𝑋←

𝑇
∼ 𝜋0 |𝑇 (· | 𝑥𝑇 ), where 𝜋0 |𝑇 denotes

the conditional distribution of 𝑋0 given 𝑋𝑇? This would follow if we knew that (𝑋←0 , 𝑋←𝑇 ) has the
same joint distribution as (𝑋𝑇 , 𝑋0), but this is not clear from the above derivation, which produced
the process 𝑋← by matching only the marginal laws. To see that this statement indeed holds, we will
instead apply the conditioning argument from the previous section.

In the previous section, recalling that P is the measure Q conditioned on 𝑋𝑇 = 𝑥𝑇 , we know
that lawP(𝑋𝑡 ) = 𝜋𝑡 |𝑇 (· | 𝑥𝑇 ). Therefore, from (3.3.3) and writing 𝜋𝑡 |𝑇 B 𝜋𝑡 |𝑇 (· | 𝑥𝑇 ) to lighten the
notation, we deduce that

𝜕𝑡𝜋𝑡 |𝑇 =
1
2
⟨𝜎𝑡𝜎T

𝑡 ,∇2𝜋𝑡 |𝑇⟩ − div
(
𝜋𝑡 |𝑇

(
𝑏𝑡 + 𝜎𝑡𝜎T

𝑡 ∇ log
d𝑃𝑡 ,𝑇
d𝜋𝑇

) )
.

The time reversal 𝜋←
𝑡 |𝑇 B 𝜋𝑇−𝑡 |𝑇 satisfies

𝜕𝑡𝜋
←
𝑡 |𝑇 = −1

2
⟨𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ,∇2𝜋←𝑡 |𝑇⟩ + div
(
𝜋←𝑡 |𝑇

(
𝑏𝑇−𝑡 + 𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ∇ log
d𝑃𝑇−𝑡 ,𝑇

d𝜋𝑇
) )
. (3.3.7)

As an application of the Bayes rule,

d𝑃𝑇−𝑡 ,𝑇 (𝑥, ·)
d𝜋𝑇

(𝑥𝑇 ) =
𝜋𝑇 |𝑇−𝑡 (𝑥𝑇 | 𝑥)

𝜋𝑇 (𝑥𝑇 )
=
𝜋𝑇−𝑡 |𝑇 (𝑥 | 𝑥𝑇 )
𝜋𝑇−𝑡 (𝑥)

and

∇ log
𝜋𝑇−𝑡 |𝑇 (· | 𝑥𝑇 )

𝜋𝑇−𝑡
= ∇ log 𝜋←𝑡 |𝑇 − ∇ log 𝜋←𝑡 .

Substituting this into (3.3.7) and applying the logarithmic derivative trick,

𝜕𝑡𝜋
←
𝑡 |𝑇 =

1
2
⟨𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ,∇2𝜋←𝑡 |𝑇⟩ + div
(
𝜋←𝑡 |𝑇 (𝑏𝑇−𝑡 − 𝜎𝑇−𝑡𝜎T

𝑇−𝑡 ∇ log 𝜋←𝑡 )
)
. (3.3.8)

Observe that this is the same Fokker–Planck equation as (3.3.5), except that it is now satisfied by
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𝑡 ↦→ 𝜋←
𝑡 |𝑇 rather than 𝑡 ↦→ 𝜋←𝑡 . Therefore, the SDE corresponding to (3.3.8) is the same SDE (3.3.6)

above. Since 𝜋←0 |𝑇 = 𝛿𝑥𝑇 , this confirms that initializing (3.3.6) with 𝑋←0 = 𝑥𝑇 yields 𝑋←𝑡 ∼ 𝜋←𝑡 |𝑇 .
Note that the time reversal of the SDE depends on the initial distribution.

3.4 Föllmer Drift
As an application of the Doob transform, we now introduce a process attributed to Föllmer (1985).
Under Q, let (𝑋𝑡 )𝑡∈[0,1] be a standard Brownian motion started at 0. Then, the law of 𝑋1 is standard
Gaussian, 𝛾 B normal(0, 𝐼𝑑). Next, we take P to be a path measure under which 𝑋1 ∼ 𝜇, for some
other probability measure 𝜇 with 𝜇 ≪ 𝛾.

To achieve this, we can use the construction in Section 3.3, namely, we take dP1
dQ1

= ℎ1(𝑋1) where
ℎ1 =

d𝜇
d𝛾 . This yields ℎ𝑡 = 𝑃1−𝑡

d𝜇
d𝛾 , and

d𝑋𝑡 = ∇ log 𝑃1−𝑡
d𝜇
d𝛾
(𝑋𝑡 ) d𝑡 + d�̃�𝑡 , 𝑋0 = 0 ,

where �̃� is the P-Brownian motion. This process is known as the Föllmer process, and the added
drift term is known as the Föllmer drift. The fundamental property enjoyed by this process (or more
specifically, by P) is that

KL(P ∥ Q) = EP log
d𝜇
d𝛾
(𝑋1) = E𝜇 log

d𝜇
d𝛾

= KL(𝜇 ∥ 𝛾) . (3.4.1)

On the other hand, if P̂ is any other path measure under which 𝑋1 ∼ 𝜇, then by the data-processing
inequality (Theorem 1.5.6) we have KL(P̂ ∥Q) ⩾ KL(𝜇 ∥ 𝛾). This reflects a certain entropy optimality
property for the Föllmer process. Moreover, if �̂� is a P̂-Brownian motion and under P̂,

d𝑋𝑡 = �̂�𝑡 (𝑋𝑡 ) d𝑡 + d�̂�𝑡 ,

then by Girsanov’s theorem (Theorem 3.2.8), this entropy optimality property becomes

KL(P ∥ Q) = 1
2
EP

∫ 1

0

∇ log 𝑃1−𝑡
d𝜇
d𝛾
(𝑋𝑡 )

2 d𝑡 ⩽
1
2
EP̂

∫ 1

0
∥�̂�𝑡 (𝑋𝑡 )∥2 d𝑡 = KL(P̂ ∥ Q) . (3.4.2)

Thus, among all drifts that drive the process to satisfy 𝑋1 ∼ 𝜇, the Föllmer drift has minimal “energy”.
Moreover, by the chain rule for the KL divergence,

KL(P ∥ Q) = KL(𝜇 ∥ 𝛾) +
∫

KL(P |𝑋1=𝑥 ∥ Q |𝑋1=𝑥) 𝜇(d𝑥) ,

where P |𝑋1=𝑥 = lawP((𝑋𝑡 )0<𝑡<1 | 𝑋1 = 𝑥) and similarly for Q |𝑋1=𝑥 . The optimality property (3.4.1)
for the Föllmer process entails that the second term above vanishes, which means that under P, the
conditional law of the path given 𝑋1 = 𝑥 is the same as the corresponding conditional law under Q.
The latter corresponds to the Brownian bridge (see Example 3.3.4).

3.4.1 Application to Functional Inequalities
The use of the Föllmer drift as a potent tool for establishing functional inequalities was perhaps
pioneered by Lehec (2013), although he attributes the idea earlier, e.g., to Borell (2000). Here, we
demonstrate its power to establish the Gaussian log-Sobolev and T2 inequalities, and refer to Lehec
(2013) and subsequent literature for further applications.
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Transport inequality.
Under P, we know that 𝑋1 ∼ 𝜇 and �̃�1 ∼ 𝛾. Hence,

𝑊2
2 (𝜇, 𝛾) ⩽ EP [∥𝑋1 − �̃�1∥2] = EP

[∫ 1

0
∇ log 𝑃1−𝑡

d𝜇
d𝛾
(𝑋𝑡 ) d𝑡

2]
⩽ EP

∫ 1

0

∇ log 𝑃1−𝑡
d𝜇
d𝛾
(𝑋𝑡 )

2 d𝑡 = 2 KL(𝜇 ∥ 𝛾) ,

where we used (3.4.1) and (3.4.2) in the last line.

Log-Sobolev inequality.
Let ℎ𝑡 B 𝑃1−𝑡

d𝜇
d𝛾 and recall from the construction of the Doob transform that (ℎ𝑡 (𝑋𝑡 ))𝑡∈[0,1] is a

Q-martingale. We claim that (∇ log ℎ𝑡 (𝑋𝑡 ))𝑡∈[0,1] is a P-martingale. To prove this, let 𝑠 ⩽ 𝑡 and let
𝐴𝑠 ∈ ℱ𝑠. Then,

EP𝑡 [∇ log ℎ𝑡 (𝑋𝑡 ) 1𝐴𝑠
] = EP𝑡

[∇ℎ𝑡 (𝑋𝑡 )
ℎ𝑡 (𝑋𝑡 )

1𝐴𝑠

]
= EQ𝑡 [∇ℎ𝑡 (𝑋𝑡 ) 1𝐴𝑠

] = EQ𝑡 [∇𝑃1−𝑡ℎ1(𝑋𝑡 ) 1𝐴𝑠
]

= EQ𝑡 [𝑃1−𝑡∇ℎ1(𝑋𝑡 ) 1𝐴𝑠
] = EQ𝑠

[
E[𝑃1−𝑡∇ℎ1(𝑋𝑡 ) | ℱ𝑠] 1𝐴𝑠

]
= EQ𝑠 [𝑃1−𝑠∇ℎ1(𝑋𝑠) 1𝐴𝑠

] .

Applying this equality for 𝑠 = 𝑡 yields EP𝑡 [∇ log ℎ𝑡 (𝑋𝑡 ) 1𝐴𝑠
] = EP𝑠 [∇ log ℎ𝑠 (𝑋𝑠) 1𝐴𝑠

], or

EP [∇ log ℎ𝑡 (𝑋𝑡 ) | ℱ𝑠] = ∇ log ℎ𝑠 (𝑋𝑠) .

In particular, 𝑡 ↦→ ∥∇ log ℎ𝑡 (𝑋𝑡 )∥2 is a P-submartingale.
Now, using the equality for the KL divergence and the submartingale property,

KL(𝜇 ∥ 𝛾) = 1
2
EP

∫ 1

0

∇ log 𝑃1−𝑡
d𝜇
d𝛾
(𝑋𝑡 )

2 d𝑡 ⩽
1
2
EP [∇ log

d𝜇
d𝛾
(𝑋1)

2]
=

1
2

FI(𝜇 ∥ 𝛾) .

3.4.2 Connection to Stochastic Localization
In this section, we relate the Föllmer process to Eldan’s stochastic localization scheme (introduced
in Eldan (2013)), which by now has solidified its status as a core tool in high-dimensional probability.
Although we do not have space in this book to describe its many applications, we present some basic
ideas here to help the reader understand the connections with the extant literature; see Klartag and
Putterman (2021); El Alaoui et al. (2022) for more details.

Stochastic localization is a method of understanding a probability measure 𝜇 by decomposing it
into simpler parts, with the goal of, e.g., establishing functional inequalities or other useful properties
for 𝜇. It was inspired by earlier work on deterministic localization schemes (Kannan et al., 1995), but
instead seeks to produce a random measure-valued process (𝑝𝑡 )𝑡⩾0. This process is such that 𝑝0 = 𝜇,
𝑝∞ = 𝛿𝑋 for some random variable 𝑋 , and (𝑝𝑡 )𝑡⩾0 is a martingale. The last property implies that
𝑋 ∼ 𝜇, and indeed, E 𝑝𝑡 = 𝜇 for all 𝑡 ⩾ 0. This is the decomposition of 𝜇 into “simpler parts” as
alluded to earlier.

How might we build such a process? We motivate the process via a Bayesian interpretation. Consider
the process 𝜃𝑡 B 𝑡𝑋 + 𝐵𝑡 , where as usual (𝐵𝑡 )𝑡⩾0 is a Brownian motion, independent of 𝑋 . At time
𝑡 ≈ 0, the Brownian motion dominates, so 𝜃𝑡 contains almost no information about 𝑋 . At time 𝑡 →∞,
the linear term 𝑡𝑋 dominates and 𝜃𝑡 contains nearly perfect information about 𝑋 . Therefore, if we set
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𝑝𝑡 to be the conditional law of 𝑋 given the observation 𝜃𝑡 , then we expect 𝑝0 = 𝜇 and 𝑝∞ = 𝛿𝑋. One
can check that (𝑝𝑡 )𝑡⩾0 is indeed a martingale.

We can relate this process to the usual heat flow via rescaling: let 𝜃𝑡 B 𝜃𝑡/𝑡, so that 𝜃𝑡 = 𝑋 + 𝐵𝑡/𝑡.
The time inversion property of Brownian motion implies that (�̆�𝑡 )𝑡⩾0 is also a Brownian motion, where
�̆�1/𝑡 B 𝐵𝑡/𝑡. Hence, 𝜃𝑡 = 𝑋 + �̆�1/𝑡 is the output of the heat flow, started at 𝑋 , after time 1/𝑡 (note the
time inversion). If we let 𝜌0,𝑠 denote the joint distribution of the heat flow, started at 𝜇, at times 0 and
𝑠, and denote conditional distributions accordingly, we can write 𝑝𝑡 = law(𝑋 | 𝜃𝑡 ) = 𝜌0 |𝑡−1 (· | 𝜃𝑡/𝑡).
Thus, we have the explicit expression

𝑝𝑡 (𝑥) ∝ 𝜇(𝑥) exp
(
− 𝑡 ∥𝑥 − 𝜃𝑡/𝑡∥

2

2

)
.

We now want to take logarithms in this expression and apply Itô’s formula to derive a stochastic
evolution equation. Before doing so, note that the equation 𝜃𝑡 = 𝑡𝑋 + 𝐵𝑡 , which seems to give
d𝜃𝑡 = 𝑋 d𝑡 + d𝐵𝑡 , does not express 𝜃 as a Markov process (since 𝑋 is not adapted to the filtration
at time 𝑡 < ∞). However, one can replace this equation by the equivalent Markov evolution
d𝜃𝑡 = E[𝑋 | ℱ𝑡 ] d𝑡 + d𝐵𝑡 = 𝑎𝑡 d𝑡 + d𝐵𝑡 , where we set 𝑎𝑡 B

∫
𝑥 𝑝𝑡 (d𝑥); see Klartag and Putterman

(2021). Then, a calculation starting from

d log 𝑝𝑡 (𝑥) = −d
( 𝑡 ∥𝑥 − 𝜃𝑡/𝑡∥2

2

)
− d log

∫
exp

(
− 𝑡 ∥𝑦 − 𝜃𝑡/𝑡∥

2

2

)
𝜇(d𝑦)

eventually yields (Exercise 3.6)

d𝑝𝑡 (𝑥) = 𝑝𝑡 (𝑥) ⟨𝑥 − 𝑎𝑡 , d𝐵𝑡⟩ , (3.4.3)

which was the form in which stochastic localization was originally introduced.
To see the connection with the Föllmer process (𝐹𝑡 )𝑡∈[0,1] with 𝐹1 ∼ 𝜇, recall that given 𝐹1, the law

of (𝐹𝑡 )0<𝑡<1 is a Brownian bridge. In other words, 𝐹𝑡 = 𝑡𝐹1 + BB𝑡 , where (BB𝑡 )𝑡∈[0,1] is the Brownian
bridge process starting and ending at 0. We can identify 𝐹1 = 𝑋 , in which case this expression for 𝐹
nearly resembles the expression for the tilt process 𝜃 in stochastic localization. To make this precise,
we claim that the Brownian bridge can be constructed as BB𝑡 = (1− 𝑡) 𝐵𝑡/(1−𝑡 ) . With this identification,
then 𝐹𝑡 = (1 − 𝑡) 𝜃𝑡/(1−𝑡 ) , i.e., the Föllmer process is a rescaled time compression of the tilt process 𝜃
from R+ to the interval [0, 1]; see Exercise 3.7 for details.

This discussion also shows that these concepts are related to the idea of running the heat flow
backward in time (e.g., we consider the conditional distribution 𝜌0 |𝑡−1 above). These ideas will reappear
in Chapter 8 as the proximal sampler.

3.5 Schrödinger Bridge
In this section, we consider a generalization of the Föllmer process. The setup arises from a hot
gas Gedankenexperiment due to Schrödinger. Let 𝜇 and 𝜈 be two probability measures over R𝑑,
representing the observed distribution of a cloud of particles at times 0 and 1 respectively. In the
absence of the observation of 𝜈, we may have modelled the evolution of the gas particles as a scaled
Brownian motion: 𝑋𝑡 = 𝑋0 +

√
𝜀 d𝐵𝑡 for 𝑡 ∈ [0, 1], where 𝑋0 ∼ 𝜇 and (𝐵𝑡 )𝑡∈[0,1] are independent, and

𝜀 > 0 represents the noise level of the process. However, if the observed distribution 𝜈 differs from
the law 𝜇 ∗ normal(0, 𝜀𝐼𝑑) of 𝑋1 in our model, what then is our best guess for the law of the trajectory
(𝑋𝑡 )𝑡∈[0,1]? The law of the trajectory is said to bridge the distributions 𝜇0 and 𝜇1.
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Schrödinger formulated this as a KL minimization problem:

minimize
P∈P(C([0,1] ) )

KL(P ∥W𝜇,𝜀) such that (𝑋0)#P = 𝜇 , (𝑋1)#P = 𝜈 .

Here, the minimization takes place over the set of path measures (probability measures over C([0, 1])),
and W𝜇,𝜀 denotes the path measure corresponding to Brownian motion, rescaled by

√
𝜀 and started at

𝜇. The choice of KL divergence as our criterion can be motivated by large deviations theory.
We can solve this problem as follows. If we condition on the endpoints 𝑋0 and 𝑋1 and apply the KL

chain rule, we end up with

KL(P ∥W𝜇,𝜀) = KL
(
lawP(𝑋0, 𝑋1)

 lawW𝜇,𝜀 (𝑋0, 𝑋1)
)
+ EP KL(P |𝑋0 ,𝑋1 ∥W𝜇,𝜀 |𝑋0 ,𝑋1) ,

where P |𝑋0 ,𝑋1 , W𝜇,𝜀 |𝑋0 ,𝑋1 denote the path measures P, W𝜇,𝜀 conditioned on (𝑋0, 𝑋1) respectively.
Also, W𝜇,𝜀 |𝑋0 ,𝑋1 is a Brownian bridge (rescaled by

√
𝜀), and the second term above can be made zero

by setting P |𝑋0 ,𝑋1 = W𝜇,𝜀 |𝑋0=𝑋1 .
Thus far, the development has closely mirrored our discussion of the Föllmer process, which is the

special case of the Schrödinger bridge when 𝜇 = 𝛿0. The interesting new features of this more general
setting arise, however, when we consider minimizing the first term in the KL chain rule, which is a
minimization over joint distributions for (𝑋0, 𝑋1) with 𝑋0 ∼ 𝜇 and 𝑋1 ∼ 𝜈, i.e., a coupling of 𝜇 and 𝜈.
In the Föllmer case, this minimization problem was trivial, essentially because the space of couplings
of a Dirac measure 𝛿0 and any other measure 𝜈 is also trivial (consisting solely of 𝛿0 ⊗ 𝜈). Our goal
now is to understand this minimization problem when the space of couplings is non-trivial.

3.5.1 Entropically Regularized Optimal Transport
Our first step is to note that for 𝜂 B lawW𝜇,𝜀 (𝑋0, 𝑋1),

𝜂(d𝑥, d𝑦) ∝ 𝜇(d𝑥) exp
(
− ∥𝑦 − 𝑥∥

2

2𝜀

)
d𝑦 .

Therefore, we can explicitly write, for 𝛾 B lawP(𝑋0, 𝑋1),

KL(𝛾 ∥ 𝜂) = 1
2𝜀

∫
∥𝑥 − 𝑦∥2 𝛾(d𝑥, d𝑦) +

∫
log

𝛾(𝑥, 𝑦)
𝜇(𝑥) 𝛾(d𝑥, d𝑦) + const.

=
1

2𝜀

∫
∥𝑥 − 𝑦∥2 𝛾(d𝑥, d𝑦) + KL(𝛾 ∥ 𝜇 ⊗ 𝜈) + const.

where we used the fact that
∫

log 𝜈(𝑦) 𝛾(d𝑥, d𝑦) =
∫

log 𝜈 d𝜈 does not depend on 𝛾, allowing us to
absorb it into the constant term. Hence, the problem of finding the optimal coupling 𝛾 between 𝜇 and
𝜈 for the Schrödinger bridge problem is an entropically regularized variant of the optimal transport
problem from Section 1.3. More generally, we have:

Definition 3.5.1. Let X and Y be complete separable metric spaces, let 𝜀 > 0, and let
𝑐 : X × Y → [0,∞] be a cost function. The entropically regularized optimal transport
cost from 𝜇 ∈ P(X) to 𝜈 ∈ P(Y) with cost 𝑐 is

T𝑐,𝜀 (𝜇, 𝜈) B inf
𝛾∈C(𝜇,𝜈)

[∫
𝑐(𝑥, 𝑦) 𝛾(d𝑥, d𝑦) + 𝜀 KL(𝛾 ∥ 𝜇 ⊗ 𝜈)

]
.
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Entropic optimal transport was introduced to speed up computation of optimal transport costs
in Cuturi (2013); see the bibliographical notes for further discussion. One can show that if 𝑐 is
lower semicontinuous, then there always exists a unique entropic optimal transport plan. Note that
unlike Theorem 1.3.8, which required 𝜇 to have a density in order for uniqueness of the optimal
transport plan with quadratic cost, here uniqueness always holds as a consequence of the strict
convexity of the KL divergence.

To summarize our observations thus far, we have argued that the solution to the Schrödinger bridge
problem is to first draw (𝑋0, 𝑋1) from the entropic optimal transport plan between 𝜇 and 𝜈 with cost
𝑐(𝑥, 𝑦) = 1

2 ∥𝑥 − 𝑦∥
2, and then to join 𝑋0 and 𝑋1 by a Brownian bridge (rescaled by

√
𝜀). Although in

principle this completes the description of the Schrödinger bridge, we can go further by characterizing
the entropic optimal transport plan via a duality principle.

Duality works here similarly as Kantorovich duality did for unregularized optimal transport, and
we simply quote the main theorem here.

Theorem 3.5.2 (Duality for entropic optimal transport). There exist maximizers 𝑓𝜀 , 𝑔𝜀 to the
dual problem

sup
( 𝑓 ,𝑔) ∈𝐿1 (𝜇)×𝐿1 (𝜈)

{∫
𝑓 d𝜇 +

∫
𝑔 d𝜈 − 𝜀

∬
exp

( 𝑓 ⊕ 𝑔 − 𝑐
𝜀

)
d(𝜇 ⊗ 𝜈) + 𝜀

}
which are unique up to adding a constant to 𝑓𝜀 and subtracting that same constant from 𝑔𝜀 . The
optimal value of the dual problem equals the entropic optimal transport cost from 𝜇 to 𝛾, and the
entropic optimal transport plan 𝛾𝜀 is of the form

𝛾𝜀 (d𝑥, d𝑦) = exp
( 𝑓𝜀 (𝑥) + 𝑔𝜀 (𝑦) − 𝑐(𝑥, 𝑦)

𝜀

)
𝜇(d𝑥) 𝜈(d𝑦) . (3.5.3)

The expression (3.5.3) characterizes the optimal solution in the following sense. If 𝛾𝜀 is any
coupling of 𝜇 and 𝜈 of the form (3.5.3) for some 𝑓𝜀 , 𝑔𝜀 , then 𝛾𝜀 is the entropic optimal transport
plan, and ( 𝑓𝜀 , 𝑔𝜀) is a pair of optimal dual potentials.

Note that compared to the dual problem for Kantorovich duality in (1.3.7), we have replaced the
“hard” constraint of 𝑓 ⊕ 𝑔 ⩽ 𝑐 with the “soft” constraint of adding the Lagrangian penalty term∬

exp(( 𝑓 ⊕ 𝑔 − 𝑐)/𝜀) d(𝜇 ⊗ 𝜈) into the objective.
Let us now specialize to the case of quadratic cost, 𝑐(𝑥, 𝑦) = 1

2 ∥𝑥 − 𝑦∥
2. In this case, it is natural to

work with 𝜑𝜀 B 1
2 ∥·∥

2 − 𝑓𝜀 and 𝜓𝜀 B 1
2 ∥·∥

2 − 𝑔𝜀 , since then (provided that we fix a normalization
for the potentials, e.g.,

∫
𝜑𝜀 d𝜇 =

∫
𝜓𝜀 d𝜈) we have the convergence 𝜑𝜀 → 𝜑 and 𝜓𝜀 → 𝜓 of the

entropic potentials to their unregularized counterparts as 𝜀 ↘ 0 (see Nutz and Wiesel, 2022). The
condition that 𝛾𝜀 has marginals 𝜇 and 𝜈 yields the coupled equations

𝜑𝜀 (𝑥) = 𝜀 log
∫

exp
( ⟨𝑥, 𝑦⟩ − 𝜓𝜀 (𝑦)

𝜀

)
𝜈(d𝑦) ,

𝜓𝜀 (𝑦) = 𝜀 log
∫

exp
( ⟨𝑥, 𝑦⟩ − 𝜑𝜀 (𝑥)

𝜀

)
𝜇(d𝑥) .

(3.5.4)

From these expressions, one can prove the following lemma (see Exercise 3.10).
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Lemma 3.5.5. The following relations hold:

∇𝜑𝜀 (𝑥) = E𝛾𝜀 [𝑌 | 𝑋 = 𝑥] , ∇𝜓𝜀 (𝑦) = E𝛾𝜀 [𝑋 | 𝑌 = 𝑦] .

Also,

∇2𝜑𝜀 (𝑥) =
1
𝜀

cov𝛾𝜀 (𝑌 | 𝑋 = 𝑥) , ∇2𝜓𝜀 (𝑦) =
1
𝜀

cov𝛾𝜀 (𝑋 | 𝑌 = 𝑦) .

Since covariance matrices are always positive semidefinite, these expressions witness the convexity
of 𝜑𝜀 and 𝜓𝜀 , and provide another explanation for Brenier’s theorem (Theorem 1.3.8).

3.5.2 Caffarelli’s Contraction Theorem
We now provide an application of the theory of entropic optimal transport to functional inequalities.
We will establish bounds on the Hessian of entropic potential which, as 𝜀 ↘ 0, furnish bounds on
the Brenier potential for the unregularized optimal transport problem. This will yield a proof of
Caffarelli’s contraction theorem.

Theorem 3.5.6 (Chewi and Pooladian (2023)). Suppose that 𝜇 is 𝛽-log-smooth and that 𝜈 is
𝛼-strongly log-concave, i.e., ∇2 log(1/𝜇) ⪯ 𝛽𝐼𝑑 and ∇2 log(1/𝜈) ⪰ 𝛼𝐼𝑑. Then, the entropic
Brenier potential 𝜑𝜀 from 𝜇 to 𝜈 satisfies

∇2𝜑𝜀 ⪯
1
2
(√︁

4𝛽/𝛼 + 𝜀2𝛽2 − 𝜀𝛽
)
𝐼 .

Letting 𝜀 ↘ 0, one readily obtains (see Chewi and Pooladian, 2023):

Corollary 3.5.7 (Caffarelli’s contraction theorem, Caffarelli (2000)). Suppose that 𝜇 is 𝛽-log-
smooth and that 𝜈 is 𝛼-strongly log-concave, i.e., ∇2 log(1/𝜇) ⪯ 𝛽𝐼𝑑 and ∇2 log(1/𝜈) ⪰ 𝛼𝐼𝑑.
Then, the Brenier map ∇𝜑 from 𝜇 to 𝜈 is

√︁
𝛽/𝛼-Lipschitz.

The proof of Theorem 3.5.6 will exploit the representation of the Hessians of the entropic Brenier
potentials as covariance matrices (Lemma 3.5.5), together with a pair of covariance inequalities.

Theorem 3.5.8 (Cramér–Rao inequality). Let 𝜋 ∝ exp(−𝑉) be a probability measure over R𝑑 .
For any well-behaved function 𝑓 : R𝑑 → R, it holds that

var𝜋 𝑓 ⩾ ⟨E𝜋 𝑓 , (E𝜋 ∇2𝑉)−1 E𝜋 𝑓 ⟩ .

Proof Integration by parts and E𝜋 ∇𝑉 = 0 yield

E𝜋 ∇ 𝑓 =
∫
∇ 𝑓 d𝜋 =

∫ (
𝑓 ∇ log

1
𝜋

)
d𝜋 = E𝜋 [( 𝑓 − E𝜋 𝑓 ) ∇𝑉] .

Therefore,

⟨E𝜋 ∇ 𝑓 , (E𝜋 ∇2𝑉)−1 E𝜋 ∇ 𝑓 ⟩ = E𝜋
[
( 𝑓 − E𝜋 𝑓 ) ⟨∇𝑉, (E𝜋 ∇2𝑉)−1 E𝜋 ∇ 𝑓 ⟩

]
⩽
√︃
(var𝜋 𝑓 ) E𝜋

〈
E𝜋 ∇ 𝑓 , (E𝜋 ∇2𝑉)−1 (∇𝑉)⊗2 (E𝜋 ∇2𝑉)−1 E𝜋 ∇ 𝑓

〉
.
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Another integration by parts shows that E𝜋 [(∇𝑉)⊗2] = E𝜋 ∇2𝑉 , so the result follows by rearranging
the above expression. □

Corollary 3.5.9 (Covariance bounds). Let 𝜋 ∝ exp(−𝑉) be a probability measure over R𝑑 and
let cov𝜋 denote its covariance matrix. Then,

(E𝜋 ∇2𝑉)−1 ⪯ cov𝜋 ⪯ E𝜋 [(∇2𝑉)−1] ,

where the second bound holds if 𝜋 is strictly log-concave.

Proof The lower and upper bounds follow respectively from the Cramér–Rao inequality (Theo-
rem 3.5.8) and the Brascamp–Lieb inequality (Theorem 2.2.9) by taking test functions 𝑓 = ⟨𝑒, ·⟩ for
unit vectors 𝑒 ∈ R𝑑 . □

Proof of Theorem 3.5.6 In the proof, we write 𝜇 ∝ exp(−𝑉) and 𝜈 ∝ exp(−𝑊). For any point
𝑥 ∈ R𝑑 , from Lemma 3.5.5 and the upper bound in Corollary 3.5.9, we obtain

∇2𝜑𝜀 (𝑥) = 𝜀−1 cov
𝛾
𝑌 |𝑋=𝑥
𝜀
⪯ 𝜀−1 E

𝛾
𝑌 |𝑋=𝑥
𝜀
[(𝜀−1 ∇2𝜓𝜀 + ∇2𝑊)−1] ⪯ E

𝛾
𝑌 |𝑋=𝑥
𝜀
[(∇2𝜓𝜀 + 𝜀𝛼𝐼)−1] .

For any 𝑦 ∈ R𝑑 , from Lemma 3.5.5 and the lower bound in Corollary 3.5.9,

∇2𝜓𝜀 (𝑦) = 𝜀−1 cov
𝛾
𝑋|𝑌=𝑦
𝜀
⪰ 𝜀−1 (E

𝛾
𝑋|𝑌=𝑦
𝜀
[𝜀−1 ∇2𝜑𝜀 + ∇2𝑉]

)−1 ⪰
(
E
𝛾
𝑋|𝑌=𝑦
𝜀
[∇2𝜑𝜀 + 𝜀𝛽𝐼]

)−1
.

Let 𝐿 𝜀 B sup𝑥∈R𝑑 𝜆max(∇2𝜑𝜀 (𝑥)). From the two inequalities above, we can conclude that

𝜆max
(
∇2𝜑𝜀 (𝑥)

)
⩽

(
(𝐿 𝜀 + 𝜀𝛽)−1 + 𝜀𝛼

)−1

and hence

𝐿 𝜀 ⩽
(
(𝐿 𝜀 + 𝜀𝛽)−1 + 𝜀𝛼

)−1
.

Solving the quadratic inequality yields the upper bound on 𝐿 𝜀 in the theorem. □

As discussed in Section 2.3, if we apply Caffarelli’s contraction theorem taking 𝜇 as the standard
Gaussian measure (so 𝛽 = 1), we deduce that the optimal transport map from the standard Gaussian to
any 𝛼-strongly log-concave measure is 𝛼−1/2-Lipschitz. Together with the preservation of functional
inequalities under Lipschitz mappings (Proposition 2.3.3), it allows us to transfer functional inequalities
satisfied by the standard Gaussian measure to all strongly log-concave measures. In this way, Caffarelli’s
contraction theorem is a “universal blueprint” for proving such inequalities. This point was already
made in Caffarelli’s original paper (Caffarelli, 2000).

For example, one can use it to transfer the functional inequalities established for the standard
Gaussian in Section 3.4 to strongly log-concave measures. As another example, one can prove
the Gaussian isoperimetric inequality in Theorem 2.4.29 by first establishing it for Gaussians and
appealing to Caffarelli contraction. Another approach to constructing Lipschitz transport maps is
explored in Exercise 3.8.

Bibliographical Notes
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in Le Gall (2016). The study of functions of bounded variation and the relationship with absolute



114 Additional Topics in Stochastic Analysis

continuity and total variation can be found in any standard graduate text on real analysis, e.g., Folland
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Cameron–Martin space, which leads to the concept of the Malliavin derivative.

Girsanov’s theorem is also used heavily in mathematical finance, and for this purpose the book Steele
(2001) is warmly recommended.

The proof of Exercise 3.4 was first given in Arnaudon et al. (2006). See Altschuler and Chewi
(2024b) for further discussion.
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from Conforti et al. (2025).

Stochastic localization was introduced by R. Eldan in Eldan (2013), and he and other researchers
have subsequently used the Föllmer process and stochastic localization to great effect for various
applications; see, e.g., Eldan (2015, 2016); Lee and Vempala (2017); Eldan (2018); Eldan and Lee
(2018); Klartag (2018); Eldan (2020); Eldan et al. (2020); Klartag and Putterman (2021); Eldan
et al. (2022); Eldan and Shamir (2022); Eldan (2023); Klartag (2023). Algorithmic applications
were developed in El Alaoui et al. (2022); Montanari (2023) and are closely related to the proximal
sampler in Chapter 8. These ideas can be placed in the more general framework of localization
schemes (Chen and Eldan, 2022), and can be interpreted in terms of renormalization and the Polchinski
flow (Bauerschmidt et al., 2024).

The Kim–Milman map from Exercise 3.8 was introduced in Kim and Milman (2012). It has been
used to establish functional inequalities in subsequent works, e.g., Mikulincer and Shenfeld (2023);
Brigati and Pedrotti (2024); Chewi et al. (2024b); Fathi et al. (2024). See Exercise 3.9 and the closely
related approach of the Brownian transport map (Mikulincer and Shenfeld, 2024).

See Chewi (2024, Chapter 4) for background on entropic optimal transport, and Chen et al.
(2021b) for an introduction to the Schrödinger bridge problem. An entropic optimal transport
approach to Caffarelli’s contraction theorem was first given in Fathi et al. (2020), and the proof in
Section 3.5.2 was generalized in Gozlan and Sylvestre (2025). Entropic optimal transport was also
used to prove other functional inequalities in Ledoux (2018); Gentil et al. (2020). The entropic optimal
transport cost between Gaussians was computed in Janati et al. (2020); Mallasto et al. (2022), which
generalizes Exercise 3.11.

Exercises
Change of Measure in Path Space

⊵ Exercise 3.1 (Sobolev embedding)
Let ℎ ∈ H , where H is the Cameron–Martin space defined in (3.2.2). Prove that ℎ is 1/2-Hölder
continuous. Hint: Use the fundamental theorem of calculus and Cauchy–Schwarz.

This is quite suggestive, since Brownian paths are 𝑠-Hölder continuous for every 𝑠 < 1/2.

⊵ Exercise 3.2 (Proof of Girsanov’s theorem)
Let 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 ⩽ 𝑇 and 𝜃1, . . . , 𝜃𝑛 ∈ R𝑑. Let 𝑏, 𝐵, and �̃� be as in Theorem 3.2.8. Using
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the formula for the Radon–Nikodym derivative of P w.r.t. W, compute EP exp(i∑𝑛
𝑖=1⟨𝜃𝑖, �̃�𝑡𝑖 − �̃�𝑡𝑖−1⟩),

where i B
√
−1, and deduce that �̃� is a P-Brownian motion.

⊵ Exercise 3.3 (Girsanov’s theorem in discrete time)
To gain intuition for Girsanov’s theorem, consider the following discrete approximations to two SDEs:

𝑋𝑛+1 B 𝑋𝑛 − ℎ 𝑏𝑋𝑛 (𝑋𝑛) +
√
ℎ 𝜉𝑛 ,

𝑌𝑛+1 B 𝑌𝑛 − ℎ 𝑏𝑌𝑛 (𝑌𝑛) +
√
ℎ 𝜉𝑛 ,

where 𝑋0 = 𝑌0 = 𝑥 and (𝜉𝑛)𝑛∈N is a sequence of i.i.d. normal(0, 𝐼𝑑) variables. Let P, Q denote the
joint distributions of (𝑋0, 𝑋1, . . . , 𝑋𝑁 ) and (𝑌0, 𝑌1, . . . , 𝑌𝑁 ) respectively.

1 Write down an expression for the Radon–Nikodym derivative dP
dQ . Let ℎ↘ 0 and 𝑁 →∞ such that

𝑁ℎ→ 𝑇 , and compare the result with Girsanov’s theorem (Theorem 3.2.8).
2 Write down an expression for KL(P ∥ Q). Ensure that it makes sense (i.e., it should be manifestly

non-negative).

⊵ Exercise 3.4 (Harnack inequalities via shifted Girsanov)
In this exercise, we give another proof of the Harnack inequalities established in Exercise 2.16. Let 𝑉
be 𝛼-convex for some 𝛼 ∈ R, and let (𝑃𝑡 )𝑡⩾0 denote the Langevin semigroup with potential 𝑉 .

1 Let P′ be the path measure under which (𝐵′𝑡 )𝑡⩾0 is a standard Brownian motion, and consider the
coupled system of SDEs

d𝑋𝑡 = {−∇𝑉 (𝑋𝑡 ) + 𝜂𝑡 (𝑌𝑡 − 𝑋𝑡 )} d𝑡 +
√

2 d𝐵′𝑡 , 𝑋0 = 𝑥 ,

d𝑌𝑡 = −∇𝑉 (𝑌𝑡 ) d𝑡 +
√

2 d𝐵′𝑡 , 𝑌0 = 𝑦 ,

where (𝜂𝑡 )𝑡∈[0,𝑇 ] is a deterministic non-negative process to be chosen later. Assume that we can
choose (𝜂𝑡 )𝑡∈[0,𝑇 ] such that 𝑋𝑇 = 𝑌𝑇 . Finally, let P be the path measure under which (𝐵𝑡 )𝑡⩾0 is a
standard Brownian motion, where

d𝑋𝑡 = −∇𝑉 (𝑋𝑡 ) d𝑡 +
√

2 d𝐵𝑡 ,

that is, d𝐵𝑡 = d𝐵′𝑡 +
𝜂𝑡√

2
(𝑋𝑡 − 𝑌𝑡 ) d𝑡. Use the data-processing inequality (Theorem 1.5.6) and

Girsanov’s theorem (Theorem 3.2.8) to justify the inequality

KL(𝛿𝑦𝑃𝑇 ∥ 𝛿𝑥𝑃𝑇 ) ⩽ KL(P′ ∥ P) = 1
4
EP′

∫ 𝑇

0
𝜂2
𝑡 ∥𝑋𝑡 − 𝑌𝑡 ∥2 d𝑡 .

2 Use Itô’s formula to show that

∥𝑋𝑡 − 𝑌𝑡 ∥2 ⩽ exp
(
−2𝛼𝑡 − 2

∫ 𝑡

0
𝜂𝑠 d𝑠

)
∥𝑥 − 𝑦∥2 .

In particular, 𝑋𝑇 = 𝑌𝑇 provided
∫ 𝑇

0 𝜂𝑡 d𝑡 = ∞. Substitute this into the inequality above and optimize
over the choice of (𝜂𝑡 )𝑡∈[0,𝑇 ] in order to establish (2.E.8).

3 Can you extend the argument above in order to establish (2.E.10) as well? Hint: Use the fact that
the exponential martingale (3.2.7) is a supermartingale.
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Doob’s Transform
⊵ Exercise 3.5 (Fisher information bound via time reversal)
Let (𝑋𝑡 )𝑡⩾0 denote the Langevin diffusion, let 𝜇𝑡 B law(𝑋𝑡 ), and let (𝑋←𝑡 )𝑡∈[0,𝑇 ] denote the time
reversal on [0, 𝑇].

1 Show that

d𝑋←𝑡 = {∇𝑉 (𝑋←𝑡 ) + 2∇ log 𝜇𝑇−𝑡 (𝑋←𝑡 )} d𝑡 +
√

2 d𝐵𝑡 .

2 Using Itô’s formula and the Fokker–Planck equation, show that

d∇ log
𝜇𝑇−𝑡

𝜋
(𝑋←𝑡 ) = ∇2𝑉 (𝑋←𝑡 ) ∇ log

𝜇𝑇−𝑡

𝜋
(𝑋←𝑡 ) d𝑡 +

√
2∇2 log

𝜇𝑇−𝑡

𝜋
(𝑋←𝑡 ) d𝐵𝑡 .

Note that while we would naı̈vely expect Itô’s formula to produce a third derivative, there is a
miraculous cancellation, due to the time reversal, which removes this term!

3 Using Itô’s formula again, show that if ∇2𝑉 ⪰ 𝛼𝐼𝑑 for some 𝛼 ∈ R, then

FI(𝜇𝑇 ∥ 𝜋) ⩽ exp(−2𝛼𝑇) FI(𝜇0 ∥ 𝜋) .

Note that this provides a stochastic calculus proof of (2.2.16).

Föllmer Drift
⊵ Exercise 3.6 (Derivation of stochastic localization)
Derive the evolution equation (3.4.3) for stochastic localization.

⊵ Exercise 3.7 (Föllmer and stochastic localization)
Let BB𝑡 B (1− 𝑡) 𝐵𝑡/(1−𝑡 ) . By solving the SDE that we derived for Brownian bridge in Example 3.3.4
(with 𝑥1 = 0), show that BB is indeed a Brownian bridge. Then, verify that 𝐹𝑡 = (1 − 𝑡) 𝜃𝑡/(1−𝑡 ) .

⊵ Exercise 3.8 (Kim–Milman map)
In this exercise and the next, we construct a Lipschitz transport map from the standard Gaussian
𝛾 B normal(0, 𝐼𝑑) to 𝜇, under appropriate conditions on 𝜇. By Proposition 2.3.3, this implies
functional inequalities for 𝜇.

1 For 𝑡 ⩾ 0, let 𝜇𝑡 denote the law of the Ornstein–Uhlenbeck process at time 𝑡, started at 𝜇0 B 𝜇. Let
𝐹𝑡 : R𝑑 → R𝑑 denote the flow map at time 𝑡, corresponding to the following ODE:

𝜕𝑡𝐹𝑡 (𝑥) = −∇ log
𝜇𝑡

𝛾
(𝐹𝑡 (𝑥)) , 𝐹0 = id .

Argue that (𝐹𝑡 )#𝜇 = 𝜇𝑡 . Hint: Recall the ODE interpretation of the Wasserstein gradient flow,
e.g., Exercise 1.13.

2 Let𝑇𝑡 B 𝐹−1
𝑡 , so that (𝑇𝑡 )#𝜇𝑡 = 𝜇. Show that𝑇𝑡 is Lipschitz with constant

∫ 𝑡
0 𝜆max(∇2 log(𝜇𝑠/𝛾)) d𝑠.

Thus, we expect that (𝑇∞)#𝛾 = 𝜇, with Lipschitz constant bounded by
∫ ∞

0 𝜆max(∇2 log(𝜇𝑡/𝛾)) d𝑡.
(This requires justification, but we accept it as a fact here.)

3 Suppose that 𝜇 is 𝛼-strongly log-concave, 𝛼 > 1. (We may assume that the strong log-concavity
parameter is sufficiently large, since we can rescale the measure.) Use the explicit expression for the
marginal law of the OU process, together with Exercise 2.10, to compute the integral, and conclude
that there exists a Lipschitz transport map from 𝛾 to 𝜇 with constant at most 𝛼−1/2.
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⊵ Exercise 3.9 (Kim–Milman map II)
Here, we obtain further conditions for the existence of a Lipschitz transport map from 𝛾 to 𝜇.

1 Establish the identity

∇2 log
𝜇𝑡

𝛾
(𝑦) = 1

exp(2𝑡) − 1

( cov𝜈1−exp(−2𝑡 ) , exp(−𝑡 ) 𝑦

1 − exp(−2𝑡) − 𝐼𝑑
)
,

where for each 𝜏 > 0 and 𝑦 ∈ R𝑑 we define the probability measure 𝜈𝜏,𝑦 via

𝜈𝜏,𝑦 (d𝑥) ∝ exp
(
− ∥𝑥 − 𝑦∥

2

2𝜏
+ ∥𝑥∥

2

2

)
𝜇(d𝑥) .

2 Show that if diam supp 𝜇 ⩽ 𝑅, then

∇2 log
𝜇𝑡

𝛾
⪯ exp(−2𝑡)

( 𝑅2

(1 − exp(−2𝑡))2
− 1

1 − exp(−2𝑡)

)
𝐼𝑑 . (3.E.1)

3 Suppose that diam supp 𝜇 ⩽ 𝑅 and ∇2 log(1/𝜇) ⪰ 𝛼𝐼𝑑, where 𝛼 ⩽ 0. Using a similar estimate
as the preceding exercise, write down another bound for ∇2 log(𝜇𝑡/𝛾) which makes use of the
assumption ∇2 log(1/𝜇) ⪰ 𝛼𝐼𝑑. By taking the minimum of this estimate and (3.E.1), show that
there exists a Lipschitz transport map from 𝛾 to 𝜇 with constant at most 𝑅 exp((1 − 𝛼𝑅2)/2). In
particular, conclude that if 𝛼 = 0, then 𝜇 satisfies a log-Sobolev inequality with constant e𝑅2.

4 Next, suppose that 𝜇 = 𝜌 ∗ 𝛾, where diam supp 𝜌 ⩽ 𝑅. Prove that

∇2 log
𝜇𝑡

𝛾
⪯ 𝑅2 exp(−2𝑡) 𝐼𝑑 ,

and deduce that there is a Lipschitz transport map from 𝛾 to 𝜇 with constant exp(𝑅2/2). Compare
this with Example 2.3.15.

5 Next, suppose that 𝜇 ∝ exp(−𝑉 −𝑊), where 𝑉 is 𝛼-strongly convex (𝛼 > 1), and𝑊 is 𝐿-Lipschitz.
Argue that

∥cov𝜈𝜏,𝑦 ∥op ⩽
(√︃
∥cov�̃�𝜏,𝑦 ∥op +𝑊2(𝜈𝑡 ,𝑦 , �̃�𝜏,𝑦)

)2
,

where

�̃�𝜏,𝑦 (𝑥) ∝ exp
(
− ∥𝑥 − 𝑦∥

2

2𝜏
+ ∥𝑥∥

2

2
−𝑉 (𝑥)

)
,

i.e., �̃�𝑡 ,𝑦 omits the Lipschitz perturbation 𝑊 . Use Corollary 3.5.9 to control the first term,
and the log-Sobolev and T2 inequalities to control the second term, in order to deduce that
∥cov𝜈𝜏,𝑦 ∥op ⩽ (

√︁
1/(𝛼 + 1/𝜏)+𝐿/(𝛼+1/𝜏))2. Use this to prove that there exists a Lipschitz transport

map from 𝛾 to 𝜇 with constant 𝛼−1/2 exp(2𝐿/
√
𝛼 + 𝐿2/(2𝛼)), and thereby deduce Proposition 2.3.4.

Schrödinger Bridge
⊵ Exercise 3.10 (Entropic potentials)
Derive (3.5.4) and use it to prove Lemma 3.5.5 for the entropic potentials.

⊵ Exercise 3.11 (Entropic optimal transport between Gaussians)
Compute the entropic optimal transport cost between normal(0, 1) and normal(0, 𝛼) by making a
suitable ansatz for the entropic Brenier potentials.
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CHAPTER 4

Analysis of Langevin Monte Carlo

In this chapter, we will provide several analyses of the Langevin Monte Carlo (LMC) algorithm, i.e.,
the iteration

�̂�(𝑛+1)ℎ B �̂�𝑛ℎ − ℎ∇𝑉 ( �̂�𝑛ℎ) +
√

2 (𝐵 (𝑛+1)ℎ − 𝐵𝑛ℎ) . (LMC)

This is known as the Euler–Maruyama discretization of the Langevin diffusion.
Although LMC does not achieve state-of-the-art complexity bounds, it is one of the most fundamental

sampling algorithms. Through the quantitative convergence analysis of LMC, we will develop
techniques for discretization analysis that are broadly useful for studying more complex algorithms.
To emphasize the kinship of optimization and sampling as the core theme of this book, we also
include “optimization boxes” which provide background and context for the corresponding results in
optimization theory. Finally, 𝜅 always denotes the ratio 𝛽/𝛼.

Before proceeding, we state the following fundamental lemma, which will be used repeatedly.

Lemma 4.0.1 (Basic lemma). Let 𝜋 ∝ exp(−𝑉).

1 If ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0 and 𝑉 is minimized at 𝑥★, then E𝜋 [∥· − 𝑥★∥2] ⩽ 𝑑/𝛼.
2 If ∇2𝑉 ⪯ 𝛽𝐼𝑑 , then E𝜋 [∥∇𝑉 ∥2] ⩽ 𝛽𝑑.

Proof We use the fact that for the generator ℒ = Δ− ⟨∇𝑉,∇·⟩ of the Langevin diffusion, E𝜋 ℒ 𝑓 = 0
for all test functions 𝑓 : R𝑑 → R.

1 Take 𝑓 = 1
2 ∥· − 𝑥★∥

2. By strong convexity,

0 = E𝜋 ℒ 𝑓 = 𝑑 − E𝜋 ⟨∇𝑉, · − 𝑥★⟩ ⩽ 𝑑 − 𝛼 E𝜋 [∥· − 𝑥★∥2] .

2 Take 𝑓 = 𝑉 . Since ∇2𝑉 ⪯ 𝛽𝐼𝑑 , then Δ𝑉 ⩽ 𝛽𝑑, whence

0 = E𝜋 ℒ𝑉 = E𝜋 [Δ𝑉 − ∥∇𝑉 ∥2] ⩽ 𝛽𝑑 − E𝜋 [∥∇𝑉 ∥2] . □

A stronger sub-Gaussian concentration bound for ∇𝑉 is given as Lemma 6.2.7.
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4.1 Proof via Wasserstein Coupling
Perhaps the most straightforward analysis of LMC is based on coupling together the discrete-time
algorithm with the continuous-time diffusion, and using this coupling to bound the discretization error
in Wasserstein distance. The underlying continuous-time result we use here is the fact that strong
log-concavity implies contraction in the Wasserstein metric for the Langevin diffusion. On one hand,
this proof is robust and can be applied to more complicated processes; on the other hand, its reliance
on contractivity means it is not applicable under weaker assumptions such as an LSI.

Before proceeding, we review the corresponding result for gradient descent.

Optimization Box 4.1.1. Let 𝑉 : R𝑑 → R be strongly convex and smooth, i.e., 𝛼𝐼𝑑 ⪯
∇2𝑉 ⪯ 𝛽𝐼𝑑. The gradient descent (GD) algorithm with fixed step size ℎ > 0 is the iteration
𝑥𝑛+1 = 𝑥𝑛 − ℎ∇𝑉 (𝑥𝑛). Using strong convexity, we can show that GD converges exponentially fast
to the minimizer 𝑥★ of 𝑉 . First, note that for any 𝑦 ∈ R𝑑 , by expanding the square and applying
strong convexity,

∥𝑥𝑛+1 − 𝑦∥2 = ∥𝑥𝑛 − ℎ∇𝑉 (𝑥𝑛) − 𝑦∥2

= ∥𝑥𝑛 − 𝑦∥2 − 2ℎ ⟨∇𝑉 (𝑥𝑛), 𝑥𝑛 − 𝑦⟩ + ℎ2 ∥∇𝑉 (𝑥𝑛)∥2

⩽ (1 − 𝛼ℎ) ∥𝑥𝑛 − 𝑦∥2 − 2ℎ {𝑉 (𝑥𝑛) −𝑉 (𝑦)} + ℎ2 ∥∇𝑉 (𝑥𝑛)∥2 .

Using the smoothness of 𝑉 ,

𝑉 (𝑥𝑛+1) −𝑉 (𝑥𝑛) ⩽ ⟨∇𝑉 (𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛⟩ +
𝛽

2
∥𝑥𝑛+1 − 𝑥𝑛∥2 = −ℎ

(
1 − 𝛽ℎ

2
)
∥∇𝑉 (𝑥𝑛)∥2 .

For any ℎ ⩽ 1/𝛽, it yields ∥∇𝑉 (𝑥𝑛)∥2 ⩽ 2
ℎ
{𝑉 (𝑥𝑛) −𝑉 (𝑥𝑛+1)}, and hence

∥𝑥𝑛+1 − 𝑦∥2 ⩽ (1 − 𝛼ℎ) ∥𝑥𝑛 − 𝑦∥2 − 2ℎ {𝑉 (𝑥𝑛+1) −𝑉 (𝑦)} .

In particular, for 𝑦 = 𝑥★, it yields ∥𝑥𝑛+1 − 𝑥★∥2 ⩽ (1 − 𝛼ℎ) ∥𝑥𝑛 − 𝑥★∥2. Choosing ℎ = 1/𝛽, one
obtains ∥𝑥𝑁 − 𝑥★∥ ⩽ 𝜀 in 𝑁 = 𝑂 (𝜅 log( ∥𝑥0−𝑥★ ∥/𝜀)) iterations, where 𝜅 B 𝛽/𝛼.

We now consider the corresponding result for LMC.

Theorem 4.1.2 (Coupling analysis of LMC). For 𝑛 ∈ N, let �̂�𝑛ℎ denote the law of the 𝑛-th iterate
of LMC with step size ℎ > 0. Assume that the target 𝜋 ∝ exp(−𝑉) satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 .
Then, provided ℎ ≪ 1/𝛽𝜅, for all 𝑁 ∈ N,

𝑊2( �̂�𝑁ℎ, 𝜋) ⩽ exp
(
−𝛼𝑁ℎ

2

)
𝑊2(𝜇0, 𝜋) +𝑂

( 𝛽𝑑1/2ℎ1/2

𝛼

)
. (4.1.3)

If we set ℎ ≍ 𝜀2/𝛽𝜅𝑑, then for any 𝜀 ∈ [0,
√
𝑑] we obtain

√
𝛼𝑊2( �̂�𝑁ℎ, 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝜅2𝑑

𝜀2 log
𝛼𝑊2

2 (𝜇0, 𝜋)
𝜀2

)
iterations .

Remark 4.1.4. We pause to make a few comments about the assumptions and result.

1 Typically we assume that we have access to the mode 𝑥★ of 𝜋, since the complexity of finding the
minimizer of 𝑉 via convex optimization is typically less than the complexity of sampling. In this
case, we can initialize at 𝜇0 = 𝛿𝑥★ , which satisfies 𝛼𝑊2

2 (𝜇0, 𝜋) ⩽ 𝑑 by Lemma 4.0.1.
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2 It is convenient to use the metric
√
𝛼𝑊2 instead of 𝑊2 because it is scale-invariant. Namely, for

𝜆 > 0, if we define the scaling map 𝑠𝜆 : 𝑥 ↦→ 𝜆𝑥, then information divergences such as KL satisfy
KL((𝑠𝜆)#𝜇 ∥ (𝑠𝜆)#𝜋) = KL(𝜇 ∥ 𝜋), by the data-processing inequality (Theorem 1.5.6). On the other
hand,𝑊2 is not invariant,𝑊2((𝑠𝜆)#𝜇, (𝑠𝜆)#𝜋) = 𝜆𝑊2(𝜇, 𝜋), but

√
𝛼𝑊2 is (because the distribution

(𝑠𝜆)#𝜋 is 𝛼/𝜆2-strongly convex).
Recall also that the T2 transport inequality, implied by 𝛼-strong log-concavity, asserts that√
𝛼𝑊2(·, 𝜋) ⩽

√︁
2 KL(· ∥ 𝜋). Therefore,

√
𝛼𝑊2 is a more natural metric.

3 The result in (4.1.3) is not sharp; in Section 4.3, via a more sophisticated analysis and averaging,
we will improve the iteration complexity to 𝑂 (𝜅𝑑/𝜀2).

4 The inequality (4.1.3) has the following interpretation: for fixed ℎ > 0, the first term tends to zero
exponentially fast, which reflects the fact that LMC converges to its stationary distribution 𝜇∞.
However, the stationary distribution is biased, 𝜇∞ ≠ 𝜋, and the second term provides an upper
bound on the bias𝑊2(𝜇∞, 𝜋). Note the contrast with Optimization Box 4.1.1, in which there is no
bias; this will be discussed further in Section 4.3.

Proof of Theorem 4.1.2 1. One-step discretization bound. Suppose that the Langevin diffusion
and the LMC algorithm are both initialized at the same measure �̂�0. We will first bound the
discretization error𝑊2

2 ( �̂�ℎ, 𝜋ℎ) in one step.
We couple the two processes by taking �̂�0 = 𝑋0 and using the same Brownian motion:

�̂�ℎ = 𝑋0 − ℎ∇𝑉 (𝑋0) +
√

2 𝐵ℎ ,

𝑋ℎ = 𝑋0 −
∫ ℎ

0
∇𝑉 (𝑋𝑡 ) d𝑡 +

√
2 𝐵ℎ .

Then,

𝑊2
2 ( �̂�ℎ, 𝜋ℎ) ⩽ E[∥ �̂�ℎ − 𝑋ℎ∥2] ⩽ E

[∫ ℎ

0
∇𝑉 (𝑋𝑡 ) d𝑡 − ℎ∇𝑉 (𝑋0)

2]
⩽ ℎ

∫ ℎ

0
E[∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋0)∥2] d𝑡 .

Therefore, we just have to bound the movement ∥𝑋𝑡 − 𝑋0∥ = ∥−
∫ 𝑡

0 ∇𝑉 (𝑋𝑠) d𝑠 +
√

2 𝐵𝑡 ∥ of the
Langevin diffusion in time 𝑡. Roughly, we expect ∥

∫ 𝑡
0 ∇𝑉 (𝑋𝑠) d𝑠∥ = 𝑂 (

√
𝑑 𝑡) if the size of the gradient

is 𝑂 (
√
𝑑), and ∥𝐵𝑡 ∥ = 𝑂 (

√
𝑑𝑡). For small 𝑡, it is the Brownian motion term which is dominant, which

is a common intuition for discretization proofs.
To rigorously bound this term, we appeal to stochastic calculus, see Lemma 4.1.8. For 𝑡 ⩽ 1/3𝛽, it

yields the bound

E[∥𝑋𝑡 − 𝑋0∥2] ⩽ 8𝑡2 E[∥∇𝑉 (𝑋0)∥2] + 8𝑑𝑡

and hence

𝑊2
2 ( �̂�ℎ, 𝜋ℎ) ⩽ 𝛽2ℎ

∫ ℎ

0
E[∥𝑋𝑡 − 𝑋0∥2] d𝑡 ⩽ 3𝛽2ℎ4 E[∥∇𝑉 (𝑋0)∥2] + 4𝛽2𝑑ℎ3 .

2. Multi-step discretization bound. We produce a coupling of �̂� (𝑛+1)ℎ and 𝜋 as follows. First, let



124 Analysis of Langevin Monte Carlo

�̂�𝑛ℎ ∼ �̂�𝑛ℎ and 𝑋𝑛ℎ ∼ 𝜋 be optimally coupled. Using the same Brownian motion, we set

�̂�(𝑛+1)ℎ B �̂�𝑛ℎ − ℎ∇𝑉 ( �̂�𝑛ℎ) +
√

2 (𝐵 (𝑛+1)ℎ − 𝐵𝑛ℎ) ,

𝑋𝑡 B 𝑋𝑛ℎ −
∫ 𝑡

𝑛ℎ

∇𝑉 (𝑋𝑠) d𝑠 +
√

2 (𝐵𝑡 − 𝐵𝑛ℎ) , for 𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ] .

Clearly �̂�(𝑛+1)ℎ ∼ �̂� (𝑛+1)ℎ; also, since 𝜋 is stationary for the Langevin diffusion, then 𝑋(𝑛+1)ℎ ∼ 𝜋. We
also introduce an auxiliary process: let

�̄�𝑡 B �̂�𝑛ℎ −
∫ 𝑡

𝑛ℎ

∇𝑉 ( �̄�𝑠) d𝑠 +
√

2 (𝐵𝑡 − 𝐵𝑛ℎ) for 𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ]

denote the Langevin diffusion started at �̂�𝑘ℎ. We bound

𝑊2( �̂� (𝑛+1)ℎ, 𝜋) ⩽
√︃
E[∥ �̂�(𝑛+1)ℎ − 𝑋(𝑛+1)ℎ∥2]

⩽
√︃
E[∥ �̄�(𝑛+1)ℎ − 𝑋(𝑛+1)ℎ∥2] +

√︃
E[∥ �̂�(𝑛+1)ℎ − �̄�(𝑛+1)ℎ∥2] .

Now we examine the two terms. In the first term, both �̄� and 𝑋 evolve via the Langevin diffusion
for an 𝛼-strongly convex potential, so we have the following contraction (which is established by a
direct coupling argument, see Theorem 1.4.11):

E[∥ �̄�(𝑛+1)ℎ − 𝑋(𝑛+1)ℎ∥2] ⩽ exp(−2𝛼ℎ) E[∥ �̂�𝑛ℎ − 𝑋𝑘ℎ∥2] = exp(−2𝛼ℎ)𝑊2
2 ( �̂�𝑛ℎ, 𝜋) .

For the second term, �̂� is the LMC algorithm and �̄� is the continuous-time Langevin diffusion, both
initialized at the same distribution �̂�𝑛ℎ. Hence, we can apply our one-step discretization bound from
before and deduce that

E[∥ �̂�(𝑛+1)ℎ − �̄�(𝑛+1)ℎ∥2] ⩽ 3𝛽2ℎ4 E[∥∇𝑉 ( �̂�𝑛ℎ)∥2] + 4𝛽2𝑑ℎ3

≲ 𝛽4ℎ4 E[∥ �̂�𝑛ℎ − 𝑋𝑛ℎ∥2] + 𝛽2ℎ4 E𝜋 [∥∇𝑉 ∥2] + 𝛽2𝑑ℎ3

⩽ 𝛽4ℎ4𝑊2
2 ( �̂�𝑛ℎ, 𝜋) + 𝛽3𝑑ℎ4 + 𝛽2𝑑ℎ3 ,

where we used the basic lemma (Lemma 4.0.1). Note that the second term can be dropped since we
are assuming ℎ ≪ 1/𝛽.

Combining everything and using √𝑥 + 𝑦 ⩽
√
𝑥 + √𝑦 for 𝑥, 𝑦 ⩾ 0,

𝑊2( �̂� (𝑛+1)ℎ, 𝜋) ⩽ exp(−𝛼ℎ)𝑊2( �̂�𝑛ℎ, 𝜋) +𝑂
(
𝛽2ℎ2𝑊2( �̂�𝑛ℎ, 𝜋) + 𝛽𝑑1/2ℎ3/2) .

Provided ℎ ≪ 1/𝛽𝜅, we can ensure that exp(−𝛼ℎ) +𝑂 (𝛽2ℎ2) ⩽ exp(−𝛼ℎ/2), therefore absorbing the
extra Wasserstein error term. It yields

𝑊2( �̂� (𝑛+1)ℎ, 𝜋) ⩽ exp
(
−𝛼ℎ

2
)
𝑊2( �̂�𝑛ℎ, 𝜋) +𝑂 (𝛽𝑑1/2ℎ3/2) .

After iterating this recursion, it implies

𝑊2( �̂�𝑁ℎ, 𝜋) ⩽ exp
(
−𝛼𝑁ℎ

2

)
𝑊2( �̂�0, 𝜋) +𝑂

( 𝛽𝑑1/2ℎ1/2

𝛼

)
.

This finishes the proof. □
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Remark 4.1.5. By inspecting the proof, one can see that that the following stronger inequality holds.
Let us denote by �̂�LMC the transition kernel for one step of LMC, and 𝑃 the transition kernel for the
Langevin diffusion run for time ℎ. Then, under the assumptions of Theorem 4.1.2, for any 𝑥, 𝑦 ∈ R𝑑 ,

𝑊2
(
�̂�LMC(𝑥, ·), 𝑃(𝑦, ·)

)
⩽ exp

(
−𝛼ℎ

2
)
∥𝑥 − 𝑦∥ +𝑂

(
𝛽ℎ2 ∥∇𝑉 (𝑦)∥ + 𝛽𝑑1/2ℎ3/2) . (4.1.6)

If we square this inequality and apply Young’s inequality, it implies

𝑊2
2
(
�̂�LMC(𝑥, ·), 𝑃(𝑦, ·)

)
⩽ exp(−𝛼ℎ) ∥𝑥 − 𝑦∥2 +𝑂

(
𝛽2ℎ4 ∥∇𝑉 (𝑦)∥2 + 𝛽2𝑑ℎ3)

+𝑂
(
∥𝑥 − 𝑦∥ (𝛽ℎ2 ∥∇𝑉 (𝑦)∥ + 𝛽𝑑1/2ℎ3/2)

)
⩽ exp

(
−𝛼ℎ

2
)
∥𝑥 − 𝑦∥2 +𝑂

( 𝛽2ℎ3 ∥∇𝑉 (𝑦)∥2
𝛼

+ 𝛽
2𝑑ℎ2

𝛼

)
. (4.1.7)

Iterating either (4.1.6) or (4.1.7), together with a coupling argument, implies back the guarantee
of Theorem 4.1.2.

We finish by presenting the lemma we used in the proof of Theorem 4.1.2. The following proof is
very typical of stochastic calculus arguments, so it is worth internalizing.

Lemma 4.1.8 (Langevin movement bound). Let (𝑋𝑡 )𝑡⩾0 denote the Langevin diffusion and let
(𝜋𝑡 )𝑡⩾0 denote its law. Assume that ∇𝑉 is 𝛽-Lipschitz. Then, provided that 𝑡 ⩽ 1/3𝛽,

E[∥𝑋𝑡 − 𝑋0∥2] ⩽ 8𝑡2 E[∥∇𝑉 (𝑋0)∥2] + 8𝑑𝑡 .

Proof By definition,

E[∥𝑋𝑡 − 𝑋0∥2] = E
[−∫ 𝑡

0
∇𝑉 (𝑋𝑠) d𝑠 +

√
2 𝐵𝑡

2]
⩽ 2𝑡

∫ 𝑡

0
E[∥∇𝑉 (𝑋𝑠)∥2] d𝑠 + 4E[∥𝐵𝑡 ∥2] .

Using the 𝛽-Lipschitzness of ∇𝑉 , ∥∇𝑉 (𝑋𝑠)∥ ⩽ ∥∇𝑉 (𝑋0)∥ + 𝛽 ∥𝑋𝑠 − 𝑋0∥. Thus,

E[∥𝑋𝑡 − 𝑋0∥2] ⩽ 4𝛽2𝑡

∫ 𝑡

0
E[∥𝑋𝑠 − 𝑋0∥2] d𝑠 + 4𝑡2 E[∥∇𝑉 (𝑋0)∥2] + 4𝑑𝑡 .

Applying Grönwall’s inequality (Lemma 1.2.20), it implies

E[∥𝑋𝑡 − 𝑋0∥2] ⩽ {4𝑡2 E[∥∇𝑉 (𝑋0)∥2] + 4𝑑𝑡} exp(4𝛽2𝑡2) .

Finally, use the assumption 𝑡 ⩽ 1/3𝛽 to conclude. □

4.2 Proof via Interpolation Argument

We now give a guarantee for LMC that holds even when 𝑉 is possibly non-convex.
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Optimization Box 4.2.1. Suppose 𝑉 : R𝑑 → R is 𝛽-smooth but non-convex. Recall from Opti-
mization Box 4.1.1 that along the iterates of GD,

𝑉 (𝑥𝑛+1) −𝑉 (𝑥𝑛) ⩽ −
ℎ

2
∥∇𝑉 (𝑥𝑛)∥2 ,

provided that ℎ ⩽ 1/𝛽 (we only used smoothness to derive this inequality). This is known as the
descent lemma. We now combine this with an assumption that 𝑉 satisfies a Polyak– Lojasiewicz
(P L) inequality

∥∇𝑉 (𝑥)∥2 ⩾ 2𝛼 {𝑉 (𝑥) −𝑉 (𝑥★)} for all 𝑥 ∈ R𝑑 .

The P L inequality is implied by 𝛼-strong convexity (see Section 1.4.2), but it is weaker and
allows for non-convex 𝑉 . We then obtain

𝑉 (𝑥𝑛+1) −𝑉 (𝑥★) = 𝑉 (𝑥𝑛+1) −𝑉 (𝑥𝑛) +𝑉 (𝑥𝑛) −𝑉 (𝑥★)

⩽ − ℎ
2
∥∇𝑉 (𝑥𝑛)∥2 +𝑉 (𝑥𝑛) −𝑉 (𝑥★) ⩽ (1 − 𝛼ℎ) {𝑉 (𝑥𝑛) −𝑉 (𝑥★)} .

Setting ℎ = 1/𝛽, we can achieve 𝑉 (𝑥𝑁 ) −𝑉 (𝑥★) ⩽ 𝜀2 in 𝑂 (𝜅 log(𝑉 (𝑥0 )−𝑉 (𝑥★)/𝜀2)) iterations under
P L and smoothness.

Recall from Section 1.4.2 that the sampling analogue of the P L inequality is the log-Sobolev
inequality (LSI), which naturally raises the question of whether the LSI is enough to obtain sampling
guarantees. The next proof we give is from Vempala and Wibisono (2019) (slightly refined using a
lemma from Chewi et al., 2024a). Here, we mimic the continuous-time convergence proof in KL
divergence by first defining a continuous-time interpolation of the LMC iterates. Upon differentiating
the KL divergence along this interpolation, we discover two terms: the first is the Fisher information,
and the second is a discretization error term. By controlling the latter, we prove a convergence result
for LMC assuming only that 𝜋 satisfies LSI and that ∇𝑉 is Lipschitz.

The interpolation of LMC is defined as follows: we set

�̂�𝑡 B �̂�𝑡− − (𝑡 − 𝑡−) ∇𝑉 ( �̂�𝑡− ) +
√

2 (𝐵𝑡 − 𝐵𝑡− ) , (4.2.2)

where we have introduced the notation 𝑡− B ⌊𝑡/ℎ⌋ ℎ.

Proposition 4.2.3. Let ( �̂�𝑡 )𝑡⩾0 be the law of the interpolated process (4.2.2). Then,

𝜕𝑡 �̂�𝑡 = div
[
�̂�𝑡

(
∇ log

�̂�𝑡

𝜋
+ E[∇𝑉 ( �̂�𝑡− ) − ∇𝑉 ( �̂�𝑡 ) | �̂�𝑡 = ·]

)]
.

Proof Let �̂�𝑡 |𝑡− denote the law of �̂�𝑡 conditioned on �̂�𝑡− at time 𝑡−. Then, ( �̂�𝑡 |𝑡− )𝑡∈[𝑡− ,𝑡−+ℎ] satisfies
the Fokker–Planck equation

𝜕𝑡 �̂�𝑡 |𝑡− (· | �̂�𝑡− ) = Δ�̂�𝑡 |𝑡− (· | �̂�𝑡− ) + div
(
�̂�𝑡 |𝑡− (· | �̂�𝑡− ) ∇𝑉 ( �̂�𝑡− )

)
.

Next, we take the expectation of the above equation; since E �̂�𝑡 |𝑡− (· | �̂�𝑡− ) = �̂�𝑡 ,

𝜕𝑡 �̂�𝑡 = Δ�̂�𝑡 + divE[�̂�𝑡 |𝑡− (· | �̂�𝑡− ) ∇𝑉 ( �̂�𝑡− )] .
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Note that �̂�𝑡 |𝑡− (𝑥𝑡 | 𝑥𝑡− ) �̂�𝑡− (d𝑥𝑡− ) = �̂�𝑡 (𝑥𝑡 ) �̂�𝑡− |𝑡 (d𝑥𝑡− | 𝑥𝑡 ). So,

E[�̂�𝑡 |𝑡− (𝑥𝑡 | �̂�𝑡− ) ∇𝑉 ( �̂�𝑡− )] =
∫

�̂�𝑡 |𝑡− (𝑥𝑡 | 𝑥𝑡− ) ∇𝑉 (𝑥𝑡− ) �̂�𝑡− (d𝑥𝑡− )

= �̂�𝑡 (𝑥𝑡 )
∫
∇𝑉 (𝑥𝑡− ) �̂�𝑡− |𝑡 (d𝑥𝑡− | 𝑥𝑡 )

= �̂�𝑡 (𝑥𝑡 ) E[∇𝑉 ( �̂�𝑡− ) | �̂�𝑡 = 𝑥𝑡 ] .

Therefore,

𝜕𝑡 �̂�𝑡 = Δ�̂�𝑡 + div
(
�̂�𝑡 E[∇𝑉 ( �̂�𝑡− ) | �̂�𝑡 = ·]

)
= div

(
�̂�𝑡 ∇ log

�̂�𝑡

𝜋

)
+ div

(
�̂�𝑡 E[∇𝑉 ( �̂�𝑡− ) − ∇𝑉 ( �̂�𝑡 ) | �̂�𝑡 = ·]

)
. □

Corollary 4.2.4. Along the law ( �̂�𝑡 )𝑡⩾0 of the interpolated process (4.2.2),

𝜕𝑡 KL( �̂�𝑡 ∥ 𝜋) ⩽ −
3
4

FI( �̂�𝑡 ∥ 𝜋) + E[∥∇𝑉 ( �̂�𝑡 ) − ∇𝑉 ( �̂�𝑡− )∥2] .

Recall that the Fisher information is FI( �̂� ∥ 𝜋) B E�̂� [∥∇ log( �̂�/𝜋)∥2] if �̂� has a smooth density
with respect to 𝜋.

Proof Using Proposition 4.2.3,

𝜕𝑡 KL( �̂�𝑡 ∥ 𝜋) = −E�̂�𝑡
〈
∇ log

�̂�𝑡

𝜋
, ∇ log

�̂�𝑡

𝜋
+ E[∇𝑉 ( �̂�𝑡− ) − ∇𝑉 ( �̂�𝑡 ) | �̂�𝑡 = ·]

〉
= −FI( �̂�𝑡 ∥ 𝜋) + E�̂�𝑡

〈
∇ log

�̂�𝑡

𝜋
, E[∇𝑉 ( �̂�𝑡 ) − ∇𝑉 ( �̂�𝑡− ) | �̂�𝑡 = ·]

〉
.

Using Young’s inequality,

E�̂�𝑡

〈
∇ log

�̂�𝑡

𝜋
, E[∇𝑉 ( �̂�𝑡 ) − ∇𝑉 ( �̂�𝑡− ) | �̂�𝑡 = ·]

〉
⩽

1
4

FI( �̂�𝑡 ∥ 𝜋) + E
[
∥E[∇𝑉 ( �̂�𝑡 ) − ∇𝑉 ( �̂�𝑡− ) | �̂�𝑡 ] ∥2

]
⩽

1
4

FI( �̂�𝑡 ∥ 𝜋) + E[∥∇𝑉 ( �̂�𝑡 ) − ∇𝑉 ( �̂�𝑡− )∥2] . □

In the convergence proof for LMC, we will use the following lemma. It can be seen as an extension
of the second part of the basic lemma (Lemma 4.0.1).

Lemma 4.2.5 (Chewi et al. (2024a, Lemma 16)). Suppose that 𝜋 ∝ exp(−𝑉) where ∇2𝑉 ⪯ 𝛽𝐼𝑑 .
Then, for any probability measure 𝜇 ≪ 𝜋,

E𝜇 [∥∇𝑉 ∥2] ⩽ FI(𝜇 ∥ 𝜋) + 2𝛽𝑑 .

Proof For the generator ℒ of the Langevin diffusion (with potential 𝑉), we can calculate ℒ𝑉 =

Δ𝑉 − ∥∇𝑉 ∥2. Also, since ∇2𝑉 ⪯ 𝛽𝐼𝑑, then Δ𝑉 ⩽ 𝛽𝑑. Thus, using the fundamental integration by



128 Analysis of Langevin Monte Carlo

parts identity (Theorem 1.2.14),

E𝜇 [∥∇𝑉 ∥2] = E𝜇 [Δ𝑉 −ℒ𝑉] ⩽ 𝛽𝑑 +
∫
(−ℒ𝑉) d𝜇

d𝜋
d𝜋 = 𝛽𝑑 +

∫ 〈
∇𝑉,∇d𝜇

d𝜋
〉

d𝜋

= 𝛽𝑑 +
∫ 〈
∇𝑉,∇ log

d𝜇
d𝜋

〉
d𝜇

⩽ 𝛽𝑑 + 1
2
E𝜇 [∥∇𝑉 ∥2] +

1
2

FI(𝜇 ∥ 𝜋) .

Rearranging the inequality yields the result. □

Finally, recall that an LSI implies KL(· ∥ 𝜋) ⩽ 𝐶LSI
2 FI(· ∥ 𝜋).

Theorem 4.2.6 (Vempala and Wibisono (2019)). For 𝑛 ∈ N, let �̂�𝑛ℎ denote the law of the 𝑛-th
iterate of LMC with step size ℎ > 0. Assume that the target 𝜋 ∝ exp(−𝑉) satisfies 𝐶LSI(𝜋) ⩽ 1/𝛼
and that ∇𝑉 is 𝛽-Lipschitz. Then, for all ℎ ⩽ 1/4𝛽, for all 𝑁 ∈ N,

KL(𝜇𝑁ℎ ∥ 𝜋) ⩽ exp(−𝛼𝑁ℎ) KL(𝜇0 ∥ 𝜋) +𝑂
( 𝛽2𝑑ℎ

𝛼

)
.

In particular, if 𝜅 B 𝛽/𝛼, for all 𝜀 ∈ [0, 𝜅
√
𝑑] and for ℎ ≍ 𝜀2/𝛽𝜅𝑑, we obtain the guarantee√︁

KL( �̂�𝑁ℎ ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝜅2𝑑

𝜀2 log
KL( �̂�0 ∥ 𝜋)

𝜀2

)
iterations .

Proof In light of Corollary 4.2.4, we focus our attention on the discretization error term

E[∥∇𝑉 ( �̂�𝑡 ) − ∇𝑉 ( �̂�𝑡− )∥2] ⩽ 𝛽2 E[∥ �̂�𝑡 − �̂�𝑡− ∥2]
= 𝛽2ℎ2 E[∥∇𝑉 ( �̂�𝑡− )∥2] + 2𝛽2 E[∥𝐵𝑡 − 𝐵𝑡− ∥2] .

In order to apply Lemma 4.2.5, it is more convenient to have E[∥∇𝑉 ( �̂�𝑡 )∥2] instead of E[∥∇𝑉 ( �̂�𝑡− )∥2].
So, we use

E[∥∇𝑉 ( �̂�𝑡− )∥2] ⩽ 2E[∥∇𝑉 ( �̂�𝑡 )∥2] + 2E[∥∇𝑉 ( �̂�𝑡 ) − ∇𝑉 ( �̂�𝑡− )∥2] .

If ℎ ⩽ 1/2𝛽, we can combine this inequality with the previous one and rearrange to obtain

E[∥∇𝑉 ( �̂�𝑡 ) − ∇𝑉 ( �̂�𝑡− )∥2] ⩽ 4𝛽2ℎ2 E[∥∇𝑉 ( �̂�𝑡 )∥2] + 4𝛽2 E[∥𝐵𝑡 − 𝐵𝑡− ∥2]
= 4𝛽2ℎ2 E[∥∇𝑉 ( �̂�𝑡 )∥2] + 4𝛽2𝑑ℎ .

For the first term, we apply Lemma 4.2.5, yielding for ℎ ⩽ 1/4𝛽

4𝛽2ℎ2 E[∥∇𝑉 ( �̂�𝑡 )∥2] ⩽ 4𝛽2ℎ2 FI( �̂�𝑡 ∥ 𝜋) + 8𝛽3𝑑ℎ2 ⩽
1
4

FI( �̂�𝑡 ∥ 𝜋) + 2𝛽2𝑑ℎ .

Combining with our differential inequality from Corollary 4.2.4 and LSI,

𝜕𝑡 KL( �̂�𝑡 ∥ 𝜋) ⩽ −
1
2

FI( �̂�𝑡 ∥ 𝜋) + 6𝛽2𝑑ℎ ⩽ −𝛼 KL( �̂�𝑡 ∥ 𝜋) + 6𝛽2𝑑ℎ .

This implies that

𝜕𝑡 [exp(𝛼𝑡) KL( �̂�𝑡 ∥ 𝜋)] ⩽ 6𝛽2𝑑ℎ exp(𝛼𝑡) ,



4.3 Proof via Convex Optimization 129

and upon integration,

KL( �̂�𝑁ℎ ∥ 𝜋) ⩽ exp(−𝛼𝑁ℎ) KL( �̂�0 ∥ 𝜋) +𝑂
( 𝛽2𝑑ℎ

𝛼

)
. □

Recall from Theorem 2.2.25 that an LSI implies exponential decay in every Rényi divergence, not
just the KL divergence. Working with Rényi divergences of order 𝑞 > 1 introduces substantial new
difficulties for the discretization analysis, which is why it is remarkable that the above proof can be
adapted to the Rényi case with the introduction of some additional tricks; see Chapter 6.

4.3 Proof via Convex Optimization
Next, we turn towards an astonishing proof, due to Durmus et al. (2019), which is inspired by convex
optimization. This proof yields the state-of-the-art dependence of LMC on the condition number 𝜅 of
the target 𝜋, and in Chapter 10, we will also use it to analyze a “mirror” variant of LMC.

Let the target be 𝜋 = exp(−𝑉) (for this proof, we assume that𝑉 is normalized so that
∫

exp(−𝑉) = 1;
this just simplifies the notation but changes neither the algorithm nor the analysis). We now view
sampling as the composite optimization problem of minimizing the objective

KL(𝜇 ∥ 𝜋) B
∫
𝑉 d𝜇︸   ︷︷   ︸

CE(𝜇)

+
∫

𝜇 log 𝜇︸      ︷︷      ︸
CH(𝜇)

,

where the two terms are the energy and the (negative) entropy. Accordingly, we break up the iterates
of LMC into the steps

�̂�+𝑛ℎ B �̂�𝑛ℎ − ℎ∇𝑉 ( �̂�𝑛ℎ) ,
�̂�(𝑛+1)ℎ B �̂�+𝑛ℎ +

√
2 (𝐵 (𝑛+1)ℎ − 𝐵𝑛ℎ) .

The first step is simply a deterministic gradient descent update on the function 𝑉 . If we write �̂�+
𝑛ℎ

for
the law of �̂�+

𝑛ℎ
, then in the space of measures one can show that �̂�+

𝑛ℎ
is obtained from �̂�𝑛ℎ by taking

a gradient step for the energy functional E w.r.t. the Wasserstein geometry.1 On the other hand, the
second step applies the heat flow; in the space of measures, this is a Wasserstein gradient flow for
the entropy functional H. Since the gradient descent algorithm is sometimes known as the “forward”
method in optimization (as opposed to a proximal step which is the “backward” method), this has led
to LMC being dubbed the “forward–flow” algorithm.

We refer to Wibisono (2018) for more on this perspective. In particular, it suggests why the
LMC scheme is biased: the “forward–flow” discretization scheme is biased for optimization as well
(Exercise 4.7)! Generally speaking, when we split dynamics into its constituent parts and apply a
discretization method to each part, this is known as a splitting scheme, and it is the cornerstone of
numerical integration. Not all splitting schemes are born equal, however—it requires care to design
one that is asymptotically unbiased. Recall from Exercise 1.15 that E is smooth if 𝑉 is smooth, but H
is non-smooth. Wisdom from optimization theory tells us that the appropriate scheme to use here is the
“forward–backward” or “proximal gradient” method (see Optimization Box 8.0.1), but unfortunately
the “backward” step for the entropy cannot be easily implemented.

1Technically this is only true if the step size ℎ is chosen so that ℎ ∥∇2𝑉 ∥op ⩽ 1. This is because on any Riemannian
manifold in which geodesics cannot be extended indefinitely, the gradient descent steps must be short enough to ensure that
the iterates are still travelling along geodesics.
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This can be viewed as the blessing and curse of sampling. It is a blessing because for the non-smooth
term in sampling—namely, the entropy H—although we can implement neither the forward nor the
backward discretizations, we can implement the exact gradient flow, by sampling a Gaussian, and the
gradient flow thankfully succeeds even in the presence of non-smoothness. On the other hand, it is
a curse because the “mismatch” of the forward and flow operations as a splitting scheme leads to
asymptotic bias. We will revisit this issue of bias in Chapter 8 via the proximal sampler.

Nevertheless, we will leverage this splitting perspective to provide another analysis of LMC. The
strategy of the proof is to show that the forward step of LMC dissipates the energy while not increasing
the entropy too much, and that the flow step of LMC dissipates the entropy while not increasing the
energy too much.

Optimization Box 4.3.1. Let 𝑉 : R𝑑 → R satisfy 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 , and recall from Optimiza-
tion Box 4.1.1 that along GD,

∥𝑥𝑛+1 − 𝑦∥2 ⩽ (1 − 𝛼ℎ) ∥𝑥𝑛 − 𝑦∥2 − 2ℎ {𝑉 (𝑥𝑛) −𝑉 (𝑦)} + ℎ2 ∥∇𝑉 (𝑥𝑛)∥2 . (4.3.2)

Moreover, for ℎ ⩽ 1/𝛽,

∥𝑥𝑛+1 − 𝑦∥2 ⩽ (1 − 𝛼ℎ) ∥𝑥𝑛 − 𝑦∥2 − 2ℎ {𝑉 (𝑥𝑛+1) −𝑉 (𝑦)} . (4.3.3)

Inspired by Ambrosio et al. (2008), we refer to this as an evolution variational inequality
(EVI). It is quite a flexible tool for optimization. For example, we can set 𝑦 = 𝑥★, and if 𝛼 > 0,
use the fact that 𝑉 (𝑥𝑛) − 𝑉 (𝑥★) ⩾ 0 to conclude that ∥𝑥𝑛+1 − 𝑥★∥2 ⩽ (1 − 𝛼ℎ) ∥𝑥𝑛 − 𝑥★∥2,
recovering Optimization Box 4.1.1. However, even when 𝛼 = 0, we can set 𝑦 = 𝑥★, ℎ = 1/𝛽, and
telescope this inequality to conclude that

𝑉 (𝑥𝑁 ) −𝑉 (𝑥★) ⩽
1
𝑁

𝑁−1∑︁
𝑛=0

{𝑉 (𝑥𝑛+1) −𝑉 (𝑥★)} ⩽
𝛽 ∥𝑥0 − 𝑥★∥2

2𝑁
,

where the first inequality follows from the descent lemma.

Smooth case.

In analogy, we aim to prove the following key lemma.

Lemma 4.3.4 (EVI with error for LMC). Let 𝜋 = exp(−𝑉) be the target and assume that
0 ⪯ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Let ( �̂�𝑛ℎ)𝑛∈N be the marginal laws of LMC with step size ℎ ⩽ 1/𝛽. Then,

2ℎKL( �̂� (𝑛+1)ℎ ∥ 𝜋) ⩽ (1 − 𝛼ℎ)𝑊2
2 ( �̂�𝑛ℎ, 𝜋) −𝑊2

2 ( �̂� (𝑛+1)ℎ, 𝜋) + 2𝛽𝑑ℎ2 . (4.3.5)

From this, we deduce the following results.
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Theorem 4.3.6 (Durmus et al. (2019)). Suppose that 𝜋 = exp(−𝑉) is the target distribution and
that 𝑉 satisfies 0 ⪯ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Let ( �̂�𝑛ℎ)𝑛∈N denote the marginal laws of LMC.

1 (Weakly convex case) Suppose that 𝛼 = 0. For any 𝜀 ∈ [0,
√
𝑑], if we take step size ℎ ≍ 𝜀2/𝛽𝑑,

then for the mixture distribution �̄�𝑁ℎ B 𝑁−1 ∑𝑁
𝑛=1 �̂�𝑛ℎ it holds that

√︁
KL( �̄�𝑁ℎ ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝛽𝑑𝑊2
2 ( �̂�0, 𝜋)
𝜀4

)
iterations .

2 (Strongly convex case) Suppose that 𝛼 > 0 and let 𝜅 B 𝛽/𝛼 denote the condition number.
Then, for any 𝜀 ∈ [0,

√
𝑑], with step size ℎ ≍ 𝜀2/𝛽𝑑 we obtain

√
𝛼𝑊2( �̂�𝑁ℎ, 𝜋) ⩽ 𝜀 and√︁

KL( �̄�𝑁ℎ, 2𝑁ℎ ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝜅𝑑
𝜀2 log

𝛼𝑊2
2 ( �̂�0, 𝜋)
𝜀2

)
iterations ,

where �̄�𝑁ℎ, 2𝑁ℎ B 𝑁−1 ∑2𝑁
𝑛=𝑁+1 �̂�𝑛ℎ.

Proof We use Lemma 4.3.4.

1 By summing the inequality (4.3.5) and using the convexity of the KL divergence,

KL( �̄�𝑁ℎ ∥ 𝜋) ⩽
1
𝑁

𝑁∑︁
𝑛=1

KL( �̂�𝑛ℎ ∥ 𝜋) ⩽
𝑊2

2 ( �̂�0, 𝜋)
2𝑁ℎ

+ 𝛽𝑑ℎ .

The result follows from our choice of ℎ and 𝑁 .
2 First, we prove the 𝑊2 guarantee. Using the fact that KL( �̂� (𝑛+1)ℎ ∥ 𝜋) ⩾ 0 and iterating the

inequality (4.3.5) we obtain

𝑊2
2 ( �̂�𝑁ℎ, 𝜋) ⩽ (1 − 𝛼ℎ)

𝑁
𝑊2

2 ( �̂�0, 𝜋) + 2𝛽𝑑ℎ2
𝑁−1∑︁
𝑛=0

(1 − 𝛼ℎ)𝑛

⩽ exp(−𝛼𝑁ℎ)𝑊2
2 ( �̂�0, 𝜋) +𝑂 (𝜅𝑑ℎ) .

With our choice of ℎ and 𝑁 , we obtain
√
𝛼𝑊2( �̂�𝑁ℎ, 𝜋) ⩽ 𝜀.

Next, forget about the previous𝑁 iterations of LMC and consider �̂�𝑁ℎ to be the new initialization to
LMC. Applying the weakly convex result now yields the KL guarantee

√︁
KL( �̄�𝑁ℎ, 2𝑁ℎ ∥ 𝜋) ⩽ 𝜀. □

We next turn toward the proof of Lemma 4.3.4.

Proof of Lemma 4.3.4 We break the proof into three steps.
1. The forward step dissipates the energy. First, let 𝑍 ∼ 𝜋 be optimally coupled to �̂�𝑛ℎ. Then,

E( �̂�+
𝑛ℎ
) −E(𝜋) = E[𝑉 ( �̂�+

𝑛ℎ
) −𝑉 (𝑍)]. However, since �̂�+

𝑛ℎ
is obtained from �̂�𝑛ℎ via a gradient descent

step on 𝑉 , we can apply the EVI (4.3.3) to argue that

E( �̂�+𝑛ℎ) − E(𝜋) ⩽
1

2ℎ
E[(1 − 𝛼ℎ) ∥ �̂�𝑛ℎ − 𝑍 ∥2 − ∥ �̂�+𝑛ℎ − 𝑍 ∥2]

⩽
1

2ℎ
{(1 − 𝛼ℎ)𝑊2

2 ( �̂�𝑛ℎ, 𝜋) −𝑊2
2 ( �̂�+𝑛ℎ, 𝜋)} . (4.3.7)
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2. The flow step does not substantially increase the energy. Next, using the 𝛽-smoothness of 𝑉 ,

E( �̂� (𝑛+1)ℎ) − E( �̂�+𝑛ℎ) = E[𝑉 ( �̂�(𝑛+1)ℎ) −𝑉 ( �̂�+𝑛ℎ)]

⩽ E
[
⟨∇𝑉 ( �̂�+𝑛ℎ), �̂�(𝑛+1)ℎ − �̂�+𝑛ℎ⟩ +

𝛽

2
∥ �̂�(𝑛+1) − �̂�+𝑛ℎ∥2

]
= E[
√

2 ⟨∇𝑉 ( �̂�+𝑛ℎ), 𝐵 (𝑛+1)ℎ − 𝐵𝑛ℎ⟩ + 𝛽 ∥𝐵 (𝑛+1)ℎ − 𝐵𝑛ℎ∥2]
= 𝛽𝑑ℎ . (4.3.8)

3. The flow step dissipates the entropy. Let (𝑄𝑡 )𝑡⩾0 denote the heat semigroup, i.e., 𝑄𝑡 𝑓 (𝑥) B
E 𝑓 (𝑥 +

√
2 𝐵𝑡 ), so that �̂� (𝑛+1)ℎ = �̂�+𝑛ℎ𝑄ℎ. Then, since the heat flow is the Wasserstein gradient flow of

H, and the Wasserstein gradient of H is ∇𝑊2H(𝜇) = ∇ log 𝜇, one can show that

𝜕𝑡𝑊
2
2 ( �̂�+𝑛ℎ𝑄𝑡 , 𝜋) ⩽ 2E⟨∇ log �̂�+𝑛ℎ𝑄𝑡 ( �̂�+𝑛ℎ+𝑡 ), 𝑍 − �̂�+𝑛ℎ+𝑡⟩

where �̂�+
𝑛ℎ+𝑡 ∼ �̂�+𝑛ℎ𝑄𝑡 and 𝑍 ∼ 𝜋 are optimally coupled. This follows from the formula for the gradient

of the squared Wasserstein distance (Theorem 1.4.5); it may be justified more rigorously using,
e.g., Ambrosio et al. (2008, Theorem 10.2.2).

On the other hand, we showed that H is geodesically convex in (1.4.3), so

H(𝜋) −H( �̂�+𝑛ℎ𝑄𝑡 ) ⩾ E⟨∇ log �̂�+𝑛ℎ𝑄𝑡 ( �̂�+𝑛ℎ+𝑡 ), 𝑍 − �̂�+𝑛ℎ+𝑡⟩ .

Using the fact that 𝑡 ↦→ H( �̂�+
𝑛ℎ
𝑄𝑡 ) is decreasing (which also follows because 𝑡 ↦→ �̂�+

𝑛ℎ
𝑄𝑡 is the

gradient flow of H), we then have

𝑊2
2 ( �̂� (𝑛+1)ℎ, 𝜋) −𝑊2

2 ( �̂�+𝑛ℎ, 𝜋) ⩽ 2ℎ {H(𝜋) −H( �̂� (𝑛+1)ℎ)} . (4.3.9)

Concluding the proof. Combine (4.3.7), (4.3.8), and (4.3.9) to obtain (4.3.5). □

Non-smooth case.
The proof via convex optimization can also handle the non-smooth case in which we only assume that
𝑉 is convex and Lipschitz. As before, we deduce the convergence result from a key one-step inequality.

Lemma 4.3.10 (EVI with error for LMC, non-smooth case). Let 𝜋 = exp(−𝑉) be the target and
assume that 𝑉 is convex and 𝐿-Lipschitz. Let ( �̂�𝑛ℎ)𝑛∈N denote the marginal laws of LMC with
step size ℎ > 0. Then,

2ℎKL( �̂� (𝑛+1)ℎ ∥ 𝜋) ⩽ 𝑊2
2 ( �̂�+𝑛ℎ, 𝜋) −𝑊2

2 ( �̂�+(𝑛+1)ℎ, 𝜋) + 𝐿2ℎ2 .

Theorem 4.3.11 (Durmus et al. (2019)). Suppose that 𝜋 = exp(−𝑉) is the target distribution
and that 𝑉 is convex and 𝐿-Lipschitz. Let ( �̂�𝑛ℎ)𝑛∈N denote the marginal laws of LMC. For any
𝜀 > 0, if we take step size ℎ ≍ 𝜀2/𝐿2, then for the mixture distribution �̄�𝑁ℎ B 𝑁−1 ∑𝑁

𝑛=1 �̂�𝑛ℎ it
holds that

√︁
KL( �̄�𝑁ℎ ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝐿2𝑊2
2 ( �̂�+0 , 𝜋)
𝜀4

)
iterations .

Proof This follows from Lemma 4.3.10 in exactly the same way that the weakly convex case
of Theorem 4.3.6 follows from Lemma 4.3.4. □
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Proof of Lemma 4.3.10 The main task here is to obtain dissipation of the energy functional E under
our new assumptions. Let 𝑍 ∼ 𝜋 be optimally coupled to �̂�(𝑛+1)ℎ. From (4.3.2),

2ℎ {E( �̂� (𝑛+1)ℎ) − E(𝜋)} ⩽ E[∥ �̂�(𝑛+1)ℎ − 𝑍 ∥2 − ∥ �̂�+(𝑛+1)ℎ − 𝑍 ∥2 + ℎ2 ∥∇𝑉 ( �̂�(𝑛+1)ℎ)∥2] .

We no longer have the descent lemma (which requires smoothness) at our disposal, but we can instead
bound the last term by 𝐿2ℎ2 using the Lipschitz assumption. Hence,

2ℎ {E( �̂� (𝑛+1)ℎ) − E(𝜋)} ⩽ 𝑊2
2 ( �̂� (𝑛+1)ℎ, 𝜋) −𝑊2

2 ( �̂�+(𝑛+1)ℎ, 𝜋) + 𝐿2ℎ2 . (4.3.12)

On the other hand, recall from (4.3.9) that

2ℎ {H( �̂� (𝑛+1)ℎ) −H(𝜋)} ⩽ 𝑊2
2 ( �̂�+𝑛ℎ, 𝜋) −𝑊2

2 ( �̂� (𝑛+1)ℎ, 𝜋) .

Together with (4.3.12), this completes the proof. □

4.4 Proof via Girsanov’s Theorem
The idea behind the next proof is to control the discretization error KL( �̂�𝑁ℎ ∥ 𝜋𝑁ℎ), where �̂�𝑁ℎ is the
law of the LMC iterate �̂�𝑁ℎ and 𝜋𝑁ℎ is the law of the Langevin diffusion 𝑋𝑁ℎ initialized at �̂�0. This is
accomplished using Girsanov’s theorem (see Section 3.2.2).

Unlike the previous proofs, which assumed strong log-concavity or LSI for 𝜋, controlling this
discretization error will only require mild assumptions, namely the smoothness of 𝑉 . The point,
however, is that control of KL( �̂�𝑁ℎ ∥ 𝜋𝑁ℎ) does not immediately yield quantitative convergence of
�̂�𝑁ℎ → 𝜋; indeed, this also requires quantitative convergence of 𝜋𝑁ℎ → 𝜋, which does require some
kind of assumption such as strong log-concavity or a functional inequality.

Another remark is that the preceding proofs all had the following structure: for a fixed step size
ℎ > 0, as the number of iterations 𝑁 →∞, the error of LMC is at most a quantity depending on ℎ,
and which can be made as small as we like by taking ℎ small. In particular, to achieve a desired error
it suffices that the step size be sufficiently small and that the number of iterations be sufficiently large.
In contrast, for the following proof we will only be able to establish a bound on KL( �̂�𝑁ℎ ∥ 𝜋𝑁ℎ) which
grows with the iteration number 𝑁 . Consequently, in our final sampling guarantee, we will not be able
to take 𝑁 too large; our guarantee will only imply that the error of LMC is small if 𝑁 lies in some
range. Conceptually, this is unsatisfying because “running the Markov chain too long” should not be a
problem, and it only arises as an artefact of the proof. Nonetheless, it is worthwhile learning the proof
because it is broadly applicable. We remark that this shortcoming can be removed in the strongly
log-concave setting using a “shifted Girsanov” approach, similar to Exercise 3.4; see Altschuler and
Chewi (2024c) for details.

Historically, the Girsanov method was one of the first discretization techniques utilized in the
modern quantitative study of sampling (see Dalalyan and Tsybakov, 2012). The argument we present
here is similar in spirit to Dalalyan and Tsybakov (2012), although we have made a few refinements.

Theorem 4.4.1 (LMC discretization bound). Let 𝜋 ∝ exp(−𝑉) be the target and assume that ∇𝑉
is 𝛽-Lipschitz. Let ( �̂�𝑛ℎ)𝑛∈N denote the marginal laws of LMC, and let (𝜋𝑡 )𝑡⩾0 denote the law of
the Langevin diffusion initialized at �̂�0. Then, for ℎ ≲ 1/𝛽 and 𝑇 B 𝑁ℎ,

KL( �̂�𝑇 ∥ 𝜋𝑇 ) ≲ 𝛽2ℎ3
𝑁−1∑︁
𝑛=0

E�̂�𝑛ℎ [∥∇𝑉 ∥2] + 𝛽2𝑑ℎ𝑇 .
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Proof Let (𝐵𝑡 )𝑡∈[0,𝑇 ] be our standard Brownian motion and consider the SDE

d𝑋𝑡 = −∇𝑉 (𝑋𝑡 ) d𝑡 +
√

2 d𝐵𝑡 , 𝑋0 ∼ �̂�0 .

Let W𝑇 denote the Wiener measure on our path space, under which (𝑋𝑡 )𝑡∈[0,𝑇 ] becomes the Langevin
diffusion started at 𝑋0 ∼ 𝜇0. We would like to write

d𝑋𝑡 = −∇𝑉 (𝑋𝑡− ) d𝑡 +
√

2 d�̃�𝑡 ,

and to find a path measure P𝑇 under which (�̃�𝑡 )𝑡∈[0,𝑇 ] is a P𝑇 -Brownian motion. If so, then under
P𝑇 , we see that (𝑋𝑡 )𝑡∈[0,𝑇 ] is the interpolated LMC process. Noting that d�̃�𝑡 = d𝐵𝑡 − d[𝐵, 𝑀]𝑡 where
d𝑀𝑡 B

1√
2
⟨∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− ), d𝐵𝑡⟩, consider the exponential martingale E(𝑀) associated with 𝑀 .

By the data-processing inequality (Theorem 1.5.6), KL( �̂�𝑇 ∥ 𝜋𝑇 ) ⩽ KL(P𝑇 ∥W𝑇 ), so it suffices to
bound the latter. By Girsanov’s theorem (Theorem 3.2.8),2

KL(P𝑇 ∥W𝑇 ) = EP𝑇 log
dP𝑇
dW𝑇

= EP𝑇 log E(𝑀)𝑇

= EP𝑇

[ 1
√

2

∫ 𝑇

0
⟨∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− ), d𝐵𝑡⟩ −

1
4

∫ 𝑇

0
∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− )∥2 d𝑡

]
.

However, we must be cautious! Here, (𝐵𝑡 )𝑡∈[0,𝑇 ] is a W𝑇 -standard Brownian. As a sanity check, if
(𝐵𝑡 )𝑡∈[0,𝑇 ] were a P𝑇 -standard Brownian motion, then the first term would vanish (since stochastic
integrals have zero mean) and the KL divergence would be negative, which is absurd. Instead, we
rewrite the above expression in terms of �̃�, obtaining

KL(P𝑇 ∥W𝑇 ) =
1
4

∫ 𝑇

0
EP𝑇 [∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑡− )∥2] d𝑡 ⩽

𝛽2

4

∫ 𝑇

0
EP𝑇 [∥𝑋𝑡 − 𝑋𝑡− ∥2] d𝑡

=
𝛽2

4

∫ 𝑇

0
{(𝑡 − 𝑡−)2 EP𝑇 [∥∇𝑉 (𝑋𝑡− )∥2] + 2𝑑 (𝑡 − 𝑡−)} d𝑡

⩽
𝛽2ℎ3

12

𝑁−1∑︁
𝑛=0

EP𝑇 [∥∇𝑉 (𝑋𝑛ℎ)∥2] +
𝛽2𝑑ℎ2𝑁

4
. □

What sampling guarantee does Theorem 4.4.1 imply? Unfortunately, neither KL nor
√

KL satisfy
the triangle inequality, which poses a difficulty for bounding the distance of �̂�𝑁ℎ from the target 𝜋.
One way to skirt this difficulty is to simply use the fact that

√
KL ≳ ∥·∥TV (Pinsker’s inequality) and

the fact that the total variation distance satisfies the triangle inequality.

Corollary 4.4.2. Let 𝜋 ∝ exp(−𝑉) be the target, assume that 𝐶LSI(𝜋) ⩽ 1/𝛼 and that ∇𝑉
is 𝛽-Lipschitz, and let 𝜅 B 𝛽/𝛼. Let ( �̂�𝑛ℎ)𝑛∈N denote the marginal laws of LMC. Then, for
all sufficiently small 𝜀 > 0 and for an appropriate choice of ℎ, we obtain the guarantee
∥ �̂�𝑁ℎ − 𝜋∥TV ⩽ 𝜀 provided that

𝑁 = Θ

( 𝜅2𝑑

𝜀2 log2 KL( �̂�0 ∥ 𝜋)
𝜀2

)
iterations .

2Actually, as noted in the discussion in Section 3.2.2, to obtain the first equality one should check Novikov’s condition.
However, since all we desire is an upper bound on the KL divergence, this can be avoided with a localization argument. We
omit the details.
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For the Pinsker approach, we can leverage the fact that we can bound ∥ �̂�𝑁ℎ − 𝜋𝑁ℎ∥2TV either
by KL( �̂�𝑁ℎ ∥ 𝜋𝑁ℎ) or KL(𝜋𝑁ℎ ∥ �̂�𝑁ℎ), depending on which is easier. The latter KL divergence is
controlled in exactly the same way as in Theorem 4.4.1, except that in the resulting bound we replace
E�̂�𝑛ℎ [∥∇𝑉 ∥2] with E𝜋𝑛ℎ [∥∇𝑉 ∥2].

Proof of Corollary 4.4.2 The LSI implies exponential convergence of the Langevin diffusion to its
target in KL divergence (Theorem 1.2.26 and Theorem 1.2.30), and we obtain

√︁
KL(𝜋𝑁ℎ ∥ 𝜋) ⩽ 𝜀/√2

with the choice 𝑇 = 𝑁ℎ ≍ 𝛼−1 log(KL( �̂�0 ∥ 𝜋 )/𝜀2).
Next, if we simply apply the discretization bound for KL( �̂�𝑁ℎ ∥ 𝜋𝑁ℎ) in Theorem 4.4.1, it becomes

tricky to bound E�̂�𝑛ℎ [∥∇𝑉 ∥2] without further assumptions. Instead, as discussed above, we use a bound
for KL(𝜋𝑁ℎ ∥ �̂�𝑁ℎ). We apply Talagrand’s T2 inequality, which is implied by the LSI (Exercise 1.16),
and the data-processing inequality3 (Theorem 1.5.6):

E𝜋𝑛ℎ [∥∇𝑉 ∥2] ≲ E𝜋 [∥∇𝑉 ∥2] + 𝛽2𝑊2
2 (𝜋𝑛ℎ, 𝜋) ≲ 𝛽𝑑 +

𝛽2

𝛼
KL(𝜋𝑛ℎ ∥ 𝜋) ⩽ 𝛽𝑑 +

𝛽2

𝛼
KL( �̂�0 ∥ 𝜋) .

Similarly to Theorem 4.4.1, we then obtain

KL(𝜋𝑁ℎ ∥ �̂�𝑁ℎ) ≲ 𝛽3𝑑ℎ2𝑇 + 𝛽
4ℎ2𝑇

𝛼
KL( �̂�0 ∥ 𝜋) + 𝛽2𝑑ℎ𝑇 .

We now choose ℎ to make this at most 𝜀2/2. To simplify the calculation, we assume that 𝜀 is sufficiently
small so that the third term is dominant, as is typically the case in applications. This leads to the
choice ℎ = Θ(𝜀2/𝛽𝜅𝑑 log(KL( �̂�0 ∥ 𝜋 )/𝜀2 )).

By the triangle inequality and Pinsker’s inequality,

∥ �̂�𝑁ℎ − 𝜋∥TV ⩽ ∥ �̂�𝑁ℎ − 𝜋𝑁ℎ∥TV + ∥𝜋𝑁ℎ − 𝜋∥TV ⩽

√︂
1
2

KL(𝜋𝑁ℎ ∥ �̂�𝑁ℎ) +
√︂

1
2

KL(𝜋𝑁ℎ ∥ 𝜋) ⩽ 𝜀 .

Finally, plugging in the choice of ℎ into 𝑁ℎ ≍ 𝛼−1 log(KL( �̂�0 ∥ 𝜋 )/𝜀2) yields the result. □

Although the quantitative dependence in Corollary 4.4.2 matches prior results (e.g., via the
interpolation method in Theorem 4.2.6), the final result is unsatisfying because we have moved to a
weaker metric (TV rather than KL) for a seemingly silly reason (the failure of the triangle inequality
for the KL divergence). Indeed, we have a convergence result for the Langevin diffusion in KL, and
our discretization bound is in KL, yet our final result is in TV. Can we remedy this?

To address this, we can introduce the Rényi divergences, defined in (2.2.24); recall that KL = R1.
We have a continuous-time result for the Langevin diffusion in Rényi divergence (Theorem 2.2.25),
and it turns out that with some additional tricks it is possible to extend the Girsanov discretization
argument to any Rényi divergence. Moreover, the Rényi divergences satisfy a weak triangle inequality
(see Lemma 6.2.5). This allows us to combine a continuous-time Rényi result with a Rényi discretization
argument to yield a Rényi sampling guarantee. We provide the details for this approach in Chapter 6.

Bibliographical Notes
Historically, the LMC algorithm, which is called unadjusted because of the lack of a Metropolis–
Hastings filter, was only studied relatively recently in non-asymptotic settings. Before the work
of Dalalyan and Tsybakov (2012), it was more common to study MALA (which we introduce and

3The data-processing inequality is not available to us if we bound the KL divergence with the opposite order of arguments.
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study in Chapter 7). The ideas which go into the basic 𝑊2 coupling proof for Theorem 4.1.2 were
developed in a series of works on strongly log-concave sampling: Dalalyan and Tsybakov (2012);
Dalalyan (2017a,b); Durmus and Moulines (2017, 2019). The Girsanov argument of Theorem 4.4.1 is
also due to Dalalyan and Tsybakov (2012).

The coupling analysis of Section 4.1 will be generalized into a local error framework in Section 5.1.1.
Using this framework, Exercise 5.1 will show that the rate for LMC can be improved under higher-order
smoothness assumptions on 𝑉 . Guarantees in KL divergence under higher-order smoothness were
also obtained via the interpolation method of Section 4.2 in Mou et al. (2022).

The proof of Exercise 4.6 is taken from Altschuler and Chewi (2024b), and the examples
of Exercise 4.7 and Exercise 4.8 are from Wibisono (2018).

Another notable proof technique that we have omitted from this chapter is reflection cou-
pling (Eberle, 2011, 2016). Reflection coupling uses a carefully chosen coupling of the Brownian
motions rather than just taking the two Brownian motions to be the same as we have done (the latter
coupling is called the synchronous coupling).

Exercises

Proof via Wasserstein Coupling
⊵ Exercise 4.1 (Explicit computations for a Gaussian target)
Suppose that the target distribution is a Gaussian, 𝜋 = normal(0, Σ), and that LMC is initialized at
a Gaussian. Can you write down the iterates and stationary distribution of LMC explicitly? What
happens when Σ = 𝐼𝑑?

Perform some explicit computations for this example and compare them to the general results for
LMC that we derived in this chapter. In particular, for Σ = 𝐼𝑑 , show that the step size can be taken to
be ℎ ≍ 𝜀/𝑑1/2 to control the bias.

⊵ Exercise 4.2 (Second moment bounds for LMC)
Assume that 𝛽𝐼𝑑 ⪰ ∇2𝑉 ⪰ 𝛼𝐼𝑑 ≻ 0 and ∇𝑉 (0) = 0. Prove that if ℎ ⩽ 1/𝛽, then the LMC iterates
initialized at 𝛿0 with step size ℎ > 0 have uniformly bounded second moment: sup𝑛∈N E[∥ �̂�𝑛ℎ∥2] ≲
𝑑/𝛼. (Write a recursion for E[∥ �̂�(𝑛+1)ℎ∥2] in terms of E[∥ �̂�𝑛ℎ∥2]. In order to prove the result for all
step sizes ℎ ⩽ 1/𝛽, you may need to appeal to coercivity of the gradient, Lemma 5.2.3.)

⊵ Exercise 4.3 (LMC with decaying step size)
Consider LMC initialized at 𝛿𝑥★, where 𝑥★ is the mode of 𝜋 and 𝜋 satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑.
Show that by considering LMC with a decaying step size schedule ℎ𝑛 = 1/𝐶𝛽𝜅+𝑐𝛼𝑛, where 𝐶, 𝑐 > 0 are
appropriately chosen universal constants, one can obtain an iteration complexity which removes the
logarithmic factor in Theorem 4.1.2 for all 𝑁 ≳ 𝜅2.

Hint: The term 𝐶𝛽𝜅 in the choice of step size is so that the one-step bound in Remark 4.1.5 is valid.
However, the resulting computation is tedious, so here is a simpler exercise that still conveys the main
point. Take the step size schedule ℎ𝑛 = 1/𝑐𝛼𝑛 for 𝑐 > 0 sufficiently small and use the one-step bound
from Remark 4.1.5 (pretending that it is still valid) to obtain an iteration complexity bound without a
logarithmic term.
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Proof via Interpolation Argument
⊵ Exercise 4.4 (More general interpolations)
Let (𝑋𝑡 )𝑡⩾0 be a stochastic process with C1 sample paths, and let 𝜇𝑡 B law(𝑋𝑡 ). Prove that

𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑏𝑡 ) = 0 ,

where 𝑏𝑡 B E[ ¤𝑋𝑡 | 𝑋𝑡 = ·]. Note that this Fokker–Planck equation also describes the marginal laws
of the process ¤𝑌𝑡 = 𝑏𝑡 (𝑌𝑡 ), which is Markovian.

More generally, for any 𝛾 > 0, show that 𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑏𝛾𝑡 ) = 𝛾 Δ𝜇𝑡 , where 𝑏𝛾𝑡 B 𝑏𝑡 + 𝛾 ∇ log 𝜇𝑡 .
This corresponds to the SDE d𝑌𝑡 = 𝑏𝛾𝑡 (𝑌𝑡 ) d𝑡 +

√︁
2𝛾 d𝐵𝑡 .

⊵ Exercise 4.5 (Fokker–Planck vs. Girsanov’s theorem)
Consider the Fokker–Planck equations for two SDEs:

𝜕𝑡𝜇𝑡 + div(𝜇𝑡𝑏𝑡 ) = 𝛾 Δ𝜇𝑡 , 𝜕𝑡 �̄�𝑡 + div( �̄�𝑡 �̄�𝑡 ) = 𝛾 Δ�̄�𝑡 .

By differentiating 𝑡 ↦→ KL(𝜇𝑡 ∥ �̄�𝑡 ) (similarly to the calculation in Corollary 4.2.4) show that
KL(𝜇𝑇 ∥ �̄�𝑇 ) ⩽ 1

4𝛾

∫ 𝑇
0 E𝜇𝑡 [∥𝑏𝑡 − �̄�𝑡 ∥

2] d𝑡. Compare this with what can be obtained from Girsanov’s
theorem (Theorem 3.2.8).

⊵ Exercise 4.6 (Harnack inequalities via Fokker–Planck)
In this exercise, we provide yet another proof of the Harnack inequalities from Exercise 2.16
and Exercise 3.4. Consider Fokker–Planck equations for the Langevin diffusion and for an auxiliary
process, given as follows:

𝜕𝑡𝜇𝑡 = div
(
𝜇𝑡 ∇ log

𝜇𝑡

𝜋

)
, 𝜕𝑡𝜈𝑡 = div

(
𝜈𝑡 ∇ log

𝜈𝑡

𝜋

)
, 𝜕𝑡𝜇

′
𝑡 = div

(
𝜇′𝑡

(
∇ log

𝜇′𝑡
𝜋
− 𝜂𝑡 (𝑇𝜇′𝑡→𝜇𝑡 − id)

) )
with 𝜇′0 = 𝜈0 and (𝜂𝑡 )𝑡⩾0 chosen so that 𝜇′

𝑇
= 𝜇𝑇 . Here, 𝑇𝜇′𝑡→𝜇𝑡 is the optimal transport map from 𝜇′𝑡

to 𝜇𝑡 . Assuming that ∇2𝑉 ⪰ 𝛼𝐼, differentiate 𝑡 ↦→ KL(𝜇′𝑡 ∥ 𝜈𝑡 ) as in the preceding exercise, and use
this to again establish (2.E.8). Can you also adapt this argument to Rényi divergences?

Proof via Convex Optimization
⊵ Exercise 4.7 (Forward–flow discretization is biased)
Consider optimization of a composite objective 𝑓 +𝑔, where 𝑓 (𝑥) B 1

2 (𝑥 − 1)2 and 𝑔(𝑥) B 1
2 (𝑥 + 1)2.

Write down the “forward–flow” splitting scheme for minimizing 𝑓 + 𝑔, compute the limiting point of
the algorithm with step size ℎ, and deduce that this scheme is biased.

⊵ Exercise 4.8 (Proximal operator for the entropy)
As described further in Optimization Box 8.0.1, the sampling analogue of a “backward” discretization
step on the entropy would be to solve the following optimization problem:

proxℎH (𝜈) B arg min
𝜇∈P2 (R𝑑 )

{
H(𝜇) + 1

2ℎ
𝑊2

2 (𝜇, 𝜈)
}
.

In general, this is intractable. However, show that when 𝜈 = normal(0, Σ), the solution 𝜇 is also
Gaussian, and determine the mean and covariance of 𝜇.

⊵ Exercise 4.9 (LMC without a two-phase analysis)
In Theorem 4.3.6, we deduced the rate for the strongly convex case via a two-phase analysis; in
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particular, we throw away the first 𝑁 iterates and average the following 𝑁 iterates, which can be
interpreted as a “burn-in” phase. Here, we show that this is unnecessary, provided that we use a
different averaging scheme. Starting with (4.3.5), multiply both sides by (1 − 𝛼ℎ)−(𝑛+1) and sum
across the iterations. Show that a suitable average �̄�𝑁ℎ of the first iterates achieves the KL guarantee
in Theorem 4.3.6 for the strongly convex case.

Proof via Girsanov’s Theorem
⊵ Exercise 4.10 (Convergence under PI)
Follow the proof of Corollary 4.4.2, but instead of assuming that 𝐶LSI(𝜋) ⩽ 1/𝛼, assume instead that
𝐶PI(𝜋) ⩽ 1/𝛼. What is the final iteration complexity if log 𝜒2( �̂�0 ∥ 𝜋) = 𝑂 (𝑑)? (See Lemma 1.5.2.)

⊵ Exercise 4.11 (Diverging Girsanov bounds)
Consider the case where 𝜋 = normal(0, 𝐼𝑑) and show that for the path measures in the proof
of Theorem 4.4.1, KL(𝑷𝑇 ∥ 𝑾𝑇 ) necessarily grows linearly with 𝑇 ; thus, the diverging bound is a
fundamental limitation of the Girsanov-based approach. See, however, Altschuler and Chewi (2024c)
for how to circumvent this with the shifted Girsanov method. On the other hand, argue that KL( �̂�𝑇 ∥ 𝜋𝑇 )
remains bounded as 𝑇 →∞, so the data-processing inequality is a bit loose here.

⊵ Exercise 4.12 (Sharper Girsanov bound)
Show that in Theorem 4.4.1, the following sharper upper bound holds:

KL( �̂�𝑇 ∥ 𝜋𝑇 ) ⩽
1
4

∫ 𝑇

0
E
[E[∇𝑉 ( �̂�𝑡− ) | �̂�𝑡 ] − ∇𝑉 ( �̂�𝑡 )2] d𝑡 .

Thus, Girsanov’s theorem can also capture some of the benefits of the interpolation method. Hint:
Similarly to Exercise 4.4, use Proposition 4.2.3 to argue that there is a Markov process which is
different from the interpolation of LMC, yet has the same marginal laws as LMC. Apply Girsanov’s
theorem to this process instead.



CHAPTER 5

Faster Low-Accuracy Samplers

We now move beyond the basic LMC algorithm and consider samplers with better dependence on the
dimension and inverse accuracy. There are two main sources of improvement that we explore in this
chapter. The first is to use a more sophisticated discretization method than the basic Euler–Maruyama
discretization. The second is to consider a different stochastic process, called the underdamped
Langevin diffusion. By combining these two ideas, we arrive at the state-of-the-art complexity bounds
for low-accuracy samplers.

5.1 Randomized Midpoint Discretization
In this section, we study the randomized midpoint discretization, which was introduced in Shen
and Lee (2019). The application to the Langevin diffusion was carried out in He et al. (2020).

Consider the continuous-time Langevin diffusion from time 𝑘ℎ to (𝑘 + 1)ℎ:

𝑍 (𝑘+1)ℎ = 𝑍𝑘ℎ −
∫ (𝑘+1)ℎ

𝑘ℎ

∇𝑉 (𝑍𝑡 ) d𝑡 +
√

2 (𝐵 (𝑘+1)ℎ − 𝐵𝑘ℎ) .

In the Euler discretization, we approximate the second term via −ℎ∇𝑉 (𝑍𝑘ℎ). However, if we
want an unbiased estimator of the integral, then we can introduce an auxiliary random variable
𝑢𝑘 ∼ uniform( [0, 1]) and use

𝑍 (𝑘+1)ℎ ≈ 𝑍𝑘ℎ − ℎ∇𝑉 (𝑍 (𝑘+𝑢𝑘 )ℎ) +
√

2 (𝐵 (𝑘+1)ℎ − 𝐵𝑘ℎ) .

To compute this approximation, however, we need to know 𝑍 (𝑘+𝑢𝑘 )ℎ. We have

𝑍 (𝑘+𝑢𝑘 )ℎ = 𝑍𝑘ℎ −
∫ (𝑘+𝑢𝑘 )ℎ

𝑘ℎ

∇𝑉 (𝑍𝑡 ) d𝑡 +
√

2 (𝐵 (𝑘+𝑢𝑘 )ℎ − 𝐵𝑘ℎ) .

Note that we are in the same situation as before. In particular, if we desire, we can draw another
uniform random variable 𝑢′

𝑘
and approximate the second term above via −𝑢𝑘ℎ∇𝑉 (𝑍 (𝑘+𝑢𝑘𝑢′𝑘 )ℎ). In

principle, this procedure can be repeated indefinitely. However, we will see that just one step of this

139
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procedure suffices: further applications of this procedure do not improve the discretization error.
Instead, we will simply approximate 𝑍 (𝑘+𝑢𝑘 )ℎ via an Euler–Maruyama step:

𝑍 (𝑘+𝑢𝑘 )ℎ ≈ 𝑍𝑘ℎ − 𝑢𝑘ℎ∇𝑉 (𝑍𝑘ℎ) +
√

2 (𝐵 (𝑘+𝑢𝑘 )ℎ − 𝐵𝑘ℎ) .

To summarize, the randomized midpoint discretization of the Langevin diffusion, which we will
call RM-LMC, is the following update:

𝑋(𝑘+1)ℎ B 𝑋𝑘ℎ − ℎ∇𝑉 (𝑋(𝑘+𝑢𝑘 )ℎ) +
√

2 (𝐵 (𝑘+1)ℎ − 𝐵𝑘ℎ) ,
𝑋(𝑘+𝑢𝑘 )ℎ B 𝑋𝑘ℎ − 𝑢𝑘ℎ∇𝑉 (𝑋𝑘ℎ) +

√
2 (𝐵 (𝑘+𝑢𝑘 )ℎ − 𝐵𝑘ℎ) ,

(RM-LMC)

where (𝑢𝑘)𝑘∈N is a sequence of i.i.d. uniform( [0, 1]) random variables which are independent of 𝑋0
and the Brownian motion. The algorithm uses two gradient evaluations per iteration. Also, when
implementing this recursion, it is important to note that the two Brownian increments are coupled. To
sample the Brownian increments, draw two i.i.d. standard Gaussians 𝜉𝑘 and 𝜉′

𝑘
, and set

𝐵 (𝑘+𝑢𝑘 )ℎ − 𝐵𝑘ℎ B
√︁
𝑢𝑘ℎ 𝜉𝑘 ,

𝐵 (𝑘+1)ℎ − 𝐵𝑘ℎ B
√︁
𝑢𝑘ℎ 𝜉𝑘 +

√︁
(1 − 𝑢𝑘)ℎ 𝜉′𝑘 .

We now state the complexity bound for (RM-LMC).

Theorem 5.1.1. For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of the 𝑘-th iterate of RM-LMC with step size
ℎ > 0. Assume that the target 𝜋 ∝ exp(−𝑉) satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑. Then, provided
ℎ ≲ 1

𝛽𝜅1/2 , for all 𝑁 ∈ N,

𝑊2
2 (𝜇𝑁ℎ, 𝜋) ⩽ exp(−𝛼𝑁ℎ)𝑊2

2 (𝜇0, 𝜋) +𝑂
( 𝛽2𝑑ℎ2

𝛼
+ 𝛽

4𝑑ℎ3

𝛼2

)
.

In particular, if we choose ℎ appropriately, then for any 𝜀 ∈ [0, 𝑑1/2/𝜅1/4] we obtain the guarantee√
𝛼𝑊2(𝜇𝑁ℎ, 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝜅𝑑1/2

𝜀
∨ 𝜅

4/3𝑑1/3

𝜀2/3

)
iterations .

This result is a substantial improvement over the𝑂 (𝜅𝑑/𝜀2) rate obtained for LMC in Theorem 4.3.6.
To establish the theorem, we now introduce a powerful framework known as local error analysis,
which streamlines the analysis of RM-LMC as well as other sophisticated discretizations of SDEs.

5.1.1 Local Error Analysis
The intuition behind randomized midpoint is that the gradient evaluated at a uniformly random chosen
time is an “unbiased” estimator of the stochastic integral. But what exactly does “bias” mean in this
context? Suppose that the “error” incurred by a discretization method at iteration 𝑘 is denoted 𝜁𝑘 , and
for the sake of argument, suppose that 𝜁1, . . . , 𝜁𝑁 are i.i.d. with mean 𝑚 and variance 𝜎2. Then, the
total error over 𝑁 iterations,

∑𝑁
𝑘=1 𝜁𝑘 , has size roughly 𝑁𝑚 + 𝑁1/2𝜎, where the first term represents

systematic bias that adds up over the iterations and the second term represents stochastic fluctuations
which cancel out and hence only add up as the square root of the number of iterations. Although this
model for the errors is clearly unrealistic, it motivates the development of a framework that separates
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out the effects of “systematic bias” versus “stochastic fluctuations”, which in the sequel will be called
the “weak error” and the “strong error”.

The following framework, known as local error analysis or mean-squared error analysis, is
classical in the literature on numerical methods for SDEs Milstein and Tretyakov (2021).

Lemma 5.1.2 (local error analysis). Let �̂�, 𝑃 be two Markov kernels over R𝑑 and let 𝑥, 𝑦 ∈ R𝑑 .
Suppose that there are jointly defined random variables �̂� ∼ 𝛿𝑥 �̂�, 𝑋 ∼ 𝛿𝑥𝑃, 𝑌 ∼ 𝛿𝑦𝑃 satisfying
the following four conditions:

• (contractivity) ∥𝑋 − 𝑌 ∥𝐿2 ⩽ 𝐿 ∥𝑥 − 𝑦∥.
• (coupling) ∥(𝑋 − 𝑥) − (𝑌 − 𝑦)∥𝐿2 ⩽ 𝛾 ∥𝑥 − 𝑦∥.
• (weak error) ∥E �̂� − E 𝑋 ∥ ⩽ ℰweak (𝑥).
• (strong error) ∥ �̂� − 𝑋 ∥𝐿2 ⩽ ℰstrong(𝑥).

Then, the following one-step Wasserstein bound holds:

𝑊2
2 (𝛿𝑥 �̂�, 𝛿𝑦𝑃) ⩽ 𝐿2 ∥𝑥 − 𝑦∥2 + 2

(
ℰweak (𝑥) + 𝛾ℰstrong(𝑥)

)
∥𝑥 − 𝑦∥ +ℰstrong(𝑥)2 . (5.1.3)

In particular, if the above conditions hold for all 𝑥, 𝑦 ∈ R𝑑 for some 𝐿 < 1, then for any
probability measures 𝜇0, 𝜈0,

𝑊2
2 (𝜇0�̂�

𝑁 , 𝜈0𝑃
𝑁 ) ⩽ 𝐿𝑁 𝑊2

2 (𝜇0, 𝜈0) +
(ℰ̄weak + 𝛾ℰ̄strong)

2

𝐿 (1 − 𝐿)2
+
(ℰ̄strong)

2

1 − 𝐿 ,

where we set

ℰ̄weak B max
𝑛=0,1,...,𝑁−1

∥ℰweak∥𝐿2 (𝜇0 �̂�𝑛 ) ,

ℰ̄strong B max
𝑛=0,1,...,𝑁−1

∥ℰstrong∥𝐿2 (𝜇0 �̂�𝑛 ) .

Proof Expand out the square and apply Cauchy–Schwarz:

E[∥ �̂� − 𝑌 ∥2] = E[∥𝑋 − 𝑌 ∥2 + 2 ⟨�̂� − 𝑋, 𝑋 − 𝑌⟩ + ∥ �̂� − 𝑋 ∥2]
⩽ 𝐿2 ∥𝑥 − 𝑦∥2 + E[2 ⟨�̂� − 𝑋, 𝑥 − 𝑦⟩ + 2 ⟨�̂� − 𝑋, (𝑋 − 𝑥) − (𝑌 − 𝑦)⟩ + ∥ �̂� − 𝑋 ∥2]
⩽ 𝐿2 ∥𝑥 − 𝑦∥2 + 2

(
ℰweak (𝑥) + 𝛾ℰstrong(𝑥)

)
∥𝑥 − 𝑦∥ +ℰstrong(𝑥)2 .

To iterate this bound, we apply Young’s inequality to the middle term to obtain

2
(
ℰweak (𝑥) + 𝛾ℰstrong(𝑥)

)
∥𝑥 − 𝑦∥

⩽ 𝐿 (1 − 𝐿) ∥𝑥 − 𝑦∥2 + 1
𝐿 (1 − 𝐿)

(
ℰweak (𝑥) + 𝛾ℰstrong(𝑥)

)2
.

Hence,

𝑊2
2 (𝛿𝑥 �̂�, 𝛿𝑦𝑃) ⩽ 𝐿 ∥𝑥 − 𝑦∥2 +

1
𝐿 (1 − 𝐿)

(
ℰweak (𝑥) + 𝛾ℰstrong(𝑥)

)2 +ℰstrong(𝑥)2 .

A coupling argument (c.f. Lemma 8.2.2) and iteration yields the result. □

In applications, 𝑃 is taken to be an idealized process (e.g., the exact Langevin diffusion), whereas �̂�
is a numerical discretization. The lemma adopts four assumptions, two of which are solely properties
of the kernel 𝑃. The remaining two assumptions, which quantify the accuracy of the numerical scheme,
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are purely local in that they only consider one step of the algorithm and idealized process started from
the same starting point, and are therefore typically easy to compute.

Note that the effective time horizon arising from a contraction factor 𝐿 is 𝑁eff B 1/(1 − 𝐿). So, if
we disregard the term involving 𝛾 (which is often small), the final bound shows that the error over 𝑁
steps is bounded by 𝑁eff ℰ̄weak + 𝑁1/2

eff ℰ̄strong, in accordance with the intuition presented above.
Remark 5.1.4. It is often more convenient to have the weak and strong error terms depend on 𝑦 rather
than 𝑥, because the expectations are then taken under the idealized process {𝜈0𝑃

𝑛}𝑛⩾0. To handle this,
it is frequently the case thatℰweak,ℰstrong are 𝐿weak-, 𝐿strong-Lipschitz respectively, in which case (5.1.3)
implies

𝑊2
2 (𝛿𝑥 �̂�, 𝛿𝑦𝑃) ⩽ 𝐿′2 ∥𝑥 − 𝑦∥2 + 2

(
ℰweak (𝑦) + 𝛾ℰstrong(𝑦)

)
∥𝑥 − 𝑦∥ + 2ℰstrong(𝑦)2 ,

with 𝐿′2 = 𝐿2 + 2𝐿weak + 2𝛾𝐿strong + 2𝐿2
strong. If 𝐿′ < 1, this can be iterated to yield

𝑊2
2 (𝜇0�̂�

𝑁 , 𝜈0𝑃
𝑁 ) ⩽ 𝐿′𝑁 𝑊2

2 (𝜇0, 𝜈0) +
(ℰ̄weak + 𝛾ℰ̄strong)

2

𝐿′ (1 − 𝐿′)2
+

2 (ℰ̄strong)
2

1 − 𝐿′ ,

where now we take

ℰ̄weak = max
𝑛=0,1,...,𝑁−1

∥ℰweak∥𝐿2 (𝜈0𝑃𝑛 ) ,

ℰ̄strong = max
𝑛=0,1,...,𝑁−1

∥ℰstrong∥𝐿2 (𝜈0𝑃𝑛 ) .

Remark 5.1.5. If we do not wish to take advantage of the weak error, then we instead have the simpler
recursion𝑊2(𝛿𝑥 �̂�, 𝛿𝑦𝑃) ⩽ 𝐿 ∥𝑥 − 𝑦∥ +ℰstrong(𝑥). This is iterated to yield

𝑊2(𝜇0�̂�
𝑁 , 𝜈0𝑃

𝑁 ) ⩽ 𝐿𝑁 𝑊2(𝜇0, 𝜈0) +
max𝑛=0,1,...,𝑁−1 ∥ℰstrong∥𝐿2 (𝜇0 �̂�𝑛 )

1 − 𝐿 .

If ℰstrong is 𝐿strong-Lipschitz, then for 𝐿′ B 𝐿 + 𝐿strong,

𝑊2(𝜇0�̂�
𝑁 , 𝜈0𝑃

𝑁 ) ⩽ 𝐿′𝑁 𝑊2(𝜇0, 𝜈0) +
max𝑛=0,1,...,𝑁−1 ∥ℰstrong∥𝐿2 (𝜈0𝑃𝑛 )

1 − 𝐿′ .

To conclude this section, we show that the Langevin diffusion satisfies the first two assumptions
of Lemma 5.1.2.

Lemma 5.1.6. Let (𝑋𝑡 )𝑡⩾0, (𝑌𝑡 )𝑡⩾0 denote two copies of the Langevin diffusion with potential
𝑉 and started at 𝑥 and 𝑦 respectively. Assume that 0 ⪯ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑. Then, the following
statements hold.

1 ∥𝑋ℎ − 𝑌ℎ∥𝐿∞ ⩽ exp(−𝛼ℎ) ∥𝑥 − 𝑦∥.
2 ∥𝑋ℎ − 𝑥 − (𝑌ℎ − 𝑦)∥𝐿∞ ⩽ 𝛽ℎ ∥𝑥 − 𝑦∥.

Proof The first statement is Exercise 1.17. For the second statement,

∥𝑋ℎ − 𝑥 − (𝑌ℎ − 𝑦)∥ =
∫ ℎ

0
{∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑌𝑡 )} d𝑡

 ⩽ 𝛽 ∫ ℎ

0
∥𝑋𝑡 − 𝑌𝑡 ∥ d𝑡

⩽ 𝛽ℎ ∥𝑥 − 𝑦∥ . □
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5.1.2 Analysis of Randomized Midpoint
To prove Theorem 5.1.1, we compute the weak and strong errors for RM-LMC.

Lemma 5.1.7 (local errors for RM-LMC). Let �̂�, 𝑃 denote the kernels for RM-LMC and for
the Langevin diffusion run for time ℎ respectively. Assume that −𝛽𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑. There is a
coupling �̂�ℎ ∼ 𝛿𝑥 �̂�, 𝑋ℎ ∼ 𝛿𝑥𝑃 such that the following hold.

1 (weak error) ∥E �̂�ℎ − E 𝑋ℎ∥ ≲ 𝛽2ℎ3 ∥∇𝑉 (𝑥)∥ + 𝛽2𝑑1/2ℎ5/2.
2 (strong error) ∥ �̂�ℎ − 𝑋ℎ∥𝐿2 ≲ 𝛽ℎ2 ∥∇𝑉 (𝑥)∥ + 𝛽𝑑1/2ℎ3/2.

Proof We begin with the strong error.

∥ �̂�ℎ − 𝑋ℎ∥𝐿2 =

∫ ℎ

0
{∇𝑉 ( �̂�+𝑢ℎ) − ∇𝑉 (𝑋𝑡 )} d𝑡

 ⩽ 𝛽 ∫ ℎ

0
∥ �̂�+𝑢ℎ − 𝑋𝑡 ∥ d𝑡 .

Next,

∥ �̂�+𝑢ℎ − 𝑋𝑡 ∥𝐿2 =

∫ 𝑡

0
∇𝑉 (𝑋𝑠) d𝑠 − 𝑢ℎ∇𝑉 (𝑥) +

√
2 (𝐵𝑢ℎ − 𝐵𝑡 )


𝐿2

≲ ℎ ∥∇𝑉 (𝑥)∥ +
∫ 𝑡

0
∥∇𝑉 (𝑋𝑠)∥𝐿2 d𝑠 + 𝑑1/2ℎ1/2

≲ ℎ ∥∇𝑉 (𝑥)∥ + 𝛽
∫ 𝑡

0
∥𝑋𝑠 − 𝑥∥𝐿2 d𝑠 + 𝑑1/2ℎ1/2 ≲ ℎ ∥∇𝑉 (𝑥)∥ + 𝑑1/2ℎ1/2 ,

where we applied Lemma 4.1.8. This yields the strong error estimate.
For the weak error, note that by taking the expectation over the uniform random variable, we obtain

E[�̂�ℎ | (𝐵𝑡 )𝑡∈[0,ℎ]] = 𝑥 −
∫ ℎ

0
∇𝑉 ( �̂�+𝑡 ) d𝑡 +

√
2 𝐵ℎ .

This leads to substantial cancellations:

∥E �̂�ℎ − E 𝑋ℎ∥ =
E∫ ℎ

0
{∇𝑉 ( �̂�+𝑡 ) − ∇𝑉 (𝑋𝑡 )} d𝑡

 ⩽ 𝛽 ∫ ℎ

0
E∥ �̂�+𝑡 − 𝑋𝑡 ∥ d𝑡

= 𝛽

∫ ℎ

0
E
∫ 𝑡

0
{∇𝑉 (𝑋𝑠) − ∇𝑉 (𝑥)} d𝑠

 d𝑡 ⩽ 𝛽2
∫ ℎ

0

∫ 𝑡

0
E∥𝑋𝑠 − 𝑥∥ d𝑠 d𝑡

≲ 𝛽2ℎ2 {ℎ ∥∇𝑉 (𝑥)∥ + 𝑑1/2ℎ1/2} ,

where we again applied Lemma 4.1.8. □

Proof of Theorem 5.1.1 We apply Lemma 5.1.2 via Remark 5.1.4 and Lemma 5.1.6. In particular, for
ℎ ≲ 1

𝛽𝜅1/2 , we can take 𝐿′ = exp(−𝛼ℎ/2). By Lemma 4.0.1, we have the estimates ℰ̄weak ≲ 𝛽
2𝑑1/2ℎ5/2

and ℰ̄strong ≲ 𝛽𝑑
1/2ℎ3/2. The result follows after some algebraic simplifications.1 □

5.2 Hamiltonian Monte Carlo
The next algorithm we introduce, known as Hamiltonian Monte Carlo (HMC), was popularized in
the context of sampling by Neal Neal (2011). As the name suggests, it is inspired by Hamiltonian

1 Check this with paper and pen.
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mechanics. Although this algorithm is usually combined with a Metropolis–Hastings filter, we defer a
discussion of this until Chapter 7. In this section, we instead focus on an analysis of the ideal (i.e.,
continuous-time) dynamics.

5.2.1 Introduction to Ideal HMC
First, we augment the target distribution 𝜋 to add a momentum variable 𝑝. Specifically, define the
distribution 𝝅 on phase space R𝑑 × R𝑑 via

𝝅(𝑥, 𝑝) ∝ exp
(
−𝑉 (𝑥) − 1

2
∥𝑝∥2

)
.

The first marginal of 𝝅 is 𝜋 ∝ exp(−𝑉), so if we obtain a sample from 𝝅 then upon projecting to the
first coordinate we obtain a sample from 𝜋.

The augmented target can also be written as 𝝅 ∝ exp(−𝐻), where 𝐻 is the Hamiltonian
𝐻 (𝑥, 𝑝) B 𝑉 (𝑥) + 1

2 ∥𝑝∥
2. In Hamiltonian mechanics, which is a reformulation of classical mechanics,

the laws of motion are governed by Hamilton’s equations, a system of coupled first-order ODEs:2

¤𝑥𝑡 = ∇𝑝𝐻 (𝑥𝑡 , 𝑝𝑡 ) = 𝑝𝑡 ,
¤𝑝𝑡 = −∇𝑥𝐻 (𝑥𝑡 , 𝑝𝑡 ) = −∇𝑉 (𝑥𝑡 ) .

Introducing the antisymmetric matrix

𝑱 B

[
0 𝐼𝑑
−𝐼𝑑 0

]
,

Hamilton’s equations can be written succinctly as

( ¤𝑥𝑡 , ¤𝑝𝑡 ) = 𝑱 ∇𝐻 (𝑥𝑡 , 𝑝𝑡 ) .

Let 𝐹𝑡 : R𝑑 × R𝑑 → R𝑑 × R𝑑 denote the flow map, i.e., 𝐹𝑡 (𝑥0, 𝑝0) is the solution (𝑥𝑡 , 𝑝𝑡 ) to
Hamilton’s equations started from (𝑥0, 𝑝0). Then, we show that 𝐹𝑡 leaves the augmented target 𝝅
invariant: (𝐹𝑡 )#𝝅 = 𝝅. Indeed, if 𝑓 : R𝑑 ×R𝑑 → R is a function on phase space and (𝑥𝑡 , 𝑝𝑡 )𝑡⩾0 evolve
via Hamilton’s equations started at (𝑥0, 𝑝0) ∼ 𝝅,

𝜕𝑡
��
𝑡=0 E 𝑓 (𝑥𝑡 , 𝑝𝑡 ) = E⟨∇ 𝑓 (𝑥0, 𝑝0), ( ¤𝑥0, ¤𝑝0)⟩ =

∫
⟨∇ 𝑓 (𝑥0, 𝑝0), ( ¤𝑥0, ¤𝑝0)⟩ d𝝅(𝑥0, 𝑝0)

= −
∫

𝑓 div
( [

𝑝

−∇𝑉

]
𝝅
)

= −
∫

𝑓

{
div

[
𝑝

−∇𝑉

]
+
〈[

𝑝

−∇𝑉

]
,

[
∇𝑥 log 𝝅
∇𝑝 log 𝝅

]〉}
d𝝅 = 0 .

Further properties of the Hamiltonian dynamics are explored in Exercise 5.3.
However, simply running Hamilton’s equations does not yield a convergent sampling algorithm.

For example, suppose that 𝑉 (𝑥) = 1
2 ∥𝑥∥

2; then, each flow map 𝐹𝑡 is actually a diffeomorphism. This
implies, for example, that KL((𝐹𝑡 )#𝝁 ∥ (𝐹𝑡 )#𝝅) = KL(𝝁 ∥ 𝝅) for any initial distribution 𝝁 on phase
space. To get around this issue, we can “refresh” the momentum periodically. More specifically, we
pick an integration time 𝑇 > 0, and every 𝑇 units of time we draw a new momentum vector from the
standard Gaussian distribution (which is the distribution of the momentum under 𝝅).

2 In contrast, Newton’s law ¥𝑥𝑡 = −∇𝑉 (𝑥𝑡 ) is a second-order ODE.
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Ideal HMC: Pick an integration time 𝑇 > 0 and draw (𝑋0, 𝑃0) ∼ 𝝁0. For each iteration
𝑘 = 0, 1, 2, . . . :

1 Refresh the velocity by drawing 𝑃′
𝑘𝑇
∼ normal(0, 𝐼𝑑).

2 Integrate Hamilton’s equations: set (𝑋(𝑘+1)𝑇 , 𝑃(𝑘+1)𝑇 ) B 𝐹𝑇 (𝑋𝑘𝑇 , 𝑃′𝑘𝑇 ).

Since both steps of each iteration preserve 𝝅, the entire algorithm preserves 𝝅. At this stage, though,
this algorithm is still idealized because it assumes the ability to exactly integrate Hamilton’s equations.
This may be possible for very special cases, but it is not in general, and certainly not within our oracle
model. Nevertheless, it is instructive to first analyze the ideal algorithm.

5.2.2 Analysis of Ideal HMC

Theorem 5.2.1 (ideal HMC, Chen and Vempala (2019)). Assume that the target 𝜋 ∝ exp(−𝑉)
satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑. For 𝑘 ∈ N, let 𝜋𝑘𝑇 denote the law of the 𝑘-th iterate 𝑋𝑘𝑇 of ideal
HMC with integration time 𝑇 > 0. Then, if we set 𝑇 = 1

2
√
𝛽

, we obtain

𝑊2
2 (𝜇𝑁𝑇 , 𝜋) ⩽ exp

(
− 𝑁

16𝜅

)
𝑊2

2 (𝜇0, 𝜋) .

It is known that the convergence rate in this theorem is optimal, see Chen and Vempala (2019). We
now follow the proof, which is a purely deterministic analysis of Hamilton’s equations. First, we need
two lemmas.

Lemma 5.2.2 (a priori bound). Let (𝑥𝑡 , 𝑝𝑡 )𝑡⩾0 and (𝑥′𝑡 , 𝑝′𝑡 )𝑡⩾0 denote two solutions to Hamilton’s
equations of motion with 𝑝0 = 𝑝′0 and a potential 𝑉 satisfying ∥∇2𝑉 ∥op ⩽ 𝛽. Then, for all
𝑡 ∈ [0, 1

2
√
𝛽
], it holds that

1
2
∥𝑥0 − 𝑥′0∥2 ⩽ ∥𝑥𝑡 − 𝑥′𝑡 ∥2 ⩽ 2 ∥𝑥0 − 𝑥′0∥2 .

Proof First, note that 𝜕𝑡 ∥𝑝𝑡 − 𝑝′𝑡 ∥ ⩽ ∥∇𝑉 (𝑥𝑡 ) −∇𝑉 (𝑥′𝑡 )∥ ⩽ 𝛽 ∥𝑥𝑡 −𝑥′𝑡 ∥. It follows that |𝜕𝑡 ∥𝑥𝑡 −𝑥′𝑡 ∥| ⩽
∥𝑝𝑡 − 𝑝′𝑡 ∥ ⩽ 𝛽

∫ 𝑡
0 ∥𝑥𝑠 − 𝑥

′
𝑠 ∥ d𝑠 and hence

∥𝑥𝑡 − 𝑥′𝑡 ∥ ⩽ ∥𝑥0 − 𝑥′0∥ + 𝛽
∫ 𝑡

0

∫ 𝑠

0
∥𝑥𝑟 − 𝑥′𝑟 ∥ d𝑟 d𝑠 .

Applying an ODE comparison lemma, one may deduce that ∥𝑥𝑡 − 𝑥′𝑡 ∥ ⩽
√

2 ∥𝑥0 − 𝑥′0∥. The lower
bound is similar. □

Lemma 5.2.3 (coercivity). Suppose 𝑓 : R𝑑 → R satisfies 0 ⪯ ∇2 𝑓 ⪯ 𝛽𝐼𝑑 . Then, for all 𝑥, 𝑦 ∈ R𝑑 ,
it holds that

𝛽 ⟨∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦), 𝑥 − 𝑦⟩ ⩾ ∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥2 .

Proof See Exercise 5.4. □

We now prove the contraction result for the Hamiltonian dynamics.
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Proposition 5.2.4 (contraction of Hamilton’s equations). Consider any two solutions (𝑥𝑡 , 𝑝𝑡 )𝑡⩾0
and (𝑥′𝑡 , 𝑝′𝑡 )𝑡⩾0 to Hamilton’s equations of motion with 𝑝0 = 𝑝′0 and a potential 𝑉 satisfying
𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then, for all 𝑡 ∈ [0, 1

2
√
𝛽
], it holds that

∥𝑥𝑡 − 𝑥′𝑡 ∥2 ⩽ exp
(
−𝛼𝑡

2

4
)
∥𝑥0 − 𝑥′0∥2 .

Proof We compute

1
2
𝜕𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 = ⟨𝑥𝑡 − 𝑥′𝑡 , 𝑝𝑡 − 𝑝′𝑡⟩ ,

1
2
𝜕2
𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 = ∥𝑝𝑡 − 𝑝′𝑡 ∥2 − ⟨𝑥𝑡 − 𝑥′𝑡 ,∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 )⟩ = −𝜌𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 + ∥𝑝𝑡 − 𝑝′𝑡 ∥2 ,

where we define

𝜌𝑡 B
⟨∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 ), 𝑥𝑡 − 𝑥′𝑡⟩

∥𝑥𝑡 − 𝑥′𝑡 ∥2
.

To bound ∥𝑝𝑡 − 𝑝′𝑡 ∥2, we use |𝜕𝑡 ∥𝑝𝑡 − 𝑝′𝑡 ∥| ⩽ ∥∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 )∥. Also, by the coercivity lemma
(Lemma 5.2.3),

∥∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 )∥2 ⩽ 𝛽 ⟨∇𝑉 (𝑥𝑡 ) − ∇𝑉 (𝑥′𝑡 ), 𝑥𝑡 − 𝑥′𝑡⟩ = 𝛽𝜌𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 ⩽ 2𝛽𝜌𝑡 ∥𝑥0 − 𝑥′0∥2

where we used Lemma 5.2.2. Hence, by the Cauchy–Schwarz inequality,

∥𝑝𝑡 − 𝑝′𝑡 ∥2 ⩽
���∫ 𝑡

0

��𝜕𝑠 ∥𝑝𝑠 − 𝑝′𝑠 ∥�� d𝑠���2 ⩽ ���∫ 𝑡

0

√︁
2𝛽𝜌𝑠 ∥𝑥0 − 𝑥′0∥ d𝑠

���2
⩽ 2𝛽𝑡 ∥𝑥0 − 𝑥′0∥2

∫ 𝑡

0
𝜌𝑠 d𝑠 .

From this and Lemma 5.2.2, we deduce

𝜕2
𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 ⩽ −

(
𝜌𝑡 − 4𝛽𝑡

∫ 𝑡

0
𝜌𝑠 d𝑠

)
∥𝑥0 − 𝑥′0∥2 .

Integrating and using 𝜌 ⩾ 0,

𝜕𝑡 ∥𝑥𝑡 − 𝑥′𝑡 ∥2 ⩽ −
(∫ 𝑡

0
𝜌𝑠 d𝑠 − 4𝛽

∫ 𝑡

0
𝑠

∫ 𝑠

0
𝜌𝑟 d𝑟 d𝑠

)
∥𝑥0 − 𝑥′0∥2

⩽ −
(∫ 𝑡

0
𝜌𝑠 d𝑠 − 2𝛽𝑡2

∫ 𝑡

0
𝜌𝑠 d𝑠

)
∥𝑥0 − 𝑥′0∥2

= −(1 − 2𝛽𝑡2)
(∫ 𝑡

0
𝜌𝑠 d𝑠

)
∥𝑥0 − 𝑥′0∥2 ⩽ −

𝛼𝑡

2
∥𝑥0 − 𝑥′0∥2 .

Integrating again then yields

∥𝑥𝑡 − 𝑥′𝑡 ∥2 ⩽ ∥𝑥0 − 𝑦0∥2 −
𝛼𝑡2

4
∥𝑥0 − 𝑥′0∥2 ⩽ exp

(
−𝛼𝑡

2

4
)
∥𝑥0 − 𝑥′0∥2 . □

If we choose 𝑇 = 1
2
√
𝛽

, then the contraction factor is exp(− 1
16𝜅 ) ⩽ 1 − 1/(32𝜅). In particular, let
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𝑃 denote the transition kernel of one step of ideal HMC with integration time 𝑇 . We have the 𝑊1
contraction

𝑊1
(
𝑃((𝑥, 𝑝), ·), 𝑃((𝑥′, 𝑝′), ·)

)
⩽

(
1 − 1

32𝜅
)
∥(𝑥, 𝑝) − (𝑥′, 𝑝′)∥ ,

which, in the language of Section 2.6, says that the coarse Ricci curvature of 𝑃 is bounded below by
𝜅/32. Hence, by Theorem 2.6.6, we immediately obtain the following corollary.

Corollary 5.2.5. Assume that the target 𝜋 ∝ exp(−𝑉) satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑. Let 𝑃 be
the Markov kernel for ideal HMC with integration time 𝑇 = 1

2
√
𝛽

. Then, 𝑃 satisfies a Poincaré
inequality with constant at most 32𝜅, where 𝜅 B 𝛽/𝛼.

We conclude this section by observing that, since Hamilton’s equations are a deterministic system of
ODEs, we can approximately integrate them using any ODE solver; unlike for the Langevin diffusion,
there is no need to consider any SDE discretization here. By following this approach, Chen and
Vempala (2019) also provide the following sampling guarantee.

Theorem 5.2.6 (unadjusted HMC, Chen and Vempala (2019)). Assume that the target 𝜋 ∝
exp(−𝑉) satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and ∇𝑉 (0) = 0. Then, there is a sampling algorithm based
on a discretization of ideal HMC which outputs 𝜇 satisfying

√
𝛼𝑊2(𝜇, 𝜋) ⩽ 𝜀 using

𝑂

( 𝜅3/2𝑑1/2

𝜀

)
gradient queries .

5.3 The Underdamped Langevin Diffusion

In ideal HMC, the momentum is refreshed periodically. We now consider a variant in which the
momentum is refreshed continuously. The underdamped Langevin diffusion is the solution to the
SDE

d𝑋𝑡 = 𝑃𝑡 d𝑡 ,

d𝑃𝑡 = −∇𝑉 (𝑋𝑡 ) d𝑡 − 𝛾𝑃𝑡 d𝑡 +
√︁

2𝛾 d𝐵𝑡 .

Here, 𝛾 > 0 is a parameter known as the friction parameter; as the name suggests, the physical
interpretation is that the Hamiltonian system is damped by friction.

The underdamped Langevin diffusion is motivated by the acceleration phenomenon in optimization,
which we first recall in continuous time.
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Optimization Box 5.3.1. Consider the following ODE system with 𝑝0 = 0:

¤𝑥𝑡 = 𝑝𝑡 ,
¤𝑝𝑡 = −∇𝑉 (𝑥𝑡 ) − 𝛾𝑝𝑡 .

This is the deterministic analogue of the underdamped Langevin diffusion. If we assume that 𝑉
is 𝛼-strongly convex, then one can show that with the choice 𝛾 = 2

√
𝛼,

𝑉 (𝑥𝑡 ) −𝑉 (𝑥★) ⩽ 2 exp(−
√
𝛼 𝑡) {𝑉 (𝑥0) −𝑉 (𝑥★)} , (5.3.2)

see Exercise 5.5. Moreover, the ODE system is stable for integration times of order 𝑡 ≍ 1/
√
𝛽,

where 𝛽 is the smoothness of𝑉 , and hence one expects that the discretization of this system yields
an algorithm for optimization with a square root dependence on the condition number 𝜅. This is
indeed the case, but discretization is subtle; see, e.g., (Nesterov, 2018, §2.2) for an analysis of a
discrete-time scheme which achieves 𝑉 (𝑥𝑁 ) −𝑉 (𝑥★) ⩽ 𝜀2 in 𝑂 (

√
𝜅 log(𝜅 (𝑉 (𝑥0) −𝑉 (𝑥★))/𝜀2))

iterations.
This phenomenon is known as acceleration in optimization. Historically, the development

happened in the opposite order: Nesterov put forth his algorithm, now known as Nesterov’s
accelerated gradient descent, in Nesterov (1983), and his algorithm is optimal amongst all first-
order algorithms Nemirovsky and Yudin (1983). The continuous-time formulation of acceleration
was introduced later, in Su et al. (2016).

Motivated by the acceleration phenomenon in optimization, we undertake a detailed study of the
underdamped Langevin diffusion to see if such a phenomenon also holds for log-concave sampling.
At present, however, our understanding is inconclusive.

Unlike the Langevin diffusion, the underdamped Langevin diffusion is not a reversible Markov
process. Moreover, it is an example of hypocoercive dynamics, which means that the Markov
semigroup approach based on Poincaré and log-Sobolev inequalities fails, necessitating the use of
more sophisticated PDE analysis (see Section 5.3.4).

5.3.1 Continuous-Time Considerations
It is illuminating to write the dynamics in the space of measures. By computing the generator of this
Markov process and writing down the corresponding Fokker–Planck equation, we arrive at the PDE

𝜕𝑡𝝅𝑡 = 𝛾Δ𝑝𝝅𝑡 + div
(
𝝅𝑡

[
−𝑝

∇𝑉 + 𝛾𝑝

] )
for the evolution of the law (𝝅𝑡 )𝑡⩾0 of the underdamped Langevin diffusion. We can write this as the
continuity equation

𝜕𝑡𝝅𝑡 = div
(
𝝅𝑡

[
∇𝑝 log 𝝅

−∇𝑥 log 𝝅 − 𝛾∇𝑝 log 𝝅 + 𝛾∇𝑝 log 𝝅𝑡

] )
where 𝝅(𝑥, 𝑝) ∝ exp(−𝐻 (𝑥, 𝑝)) = exp(−𝑉 (𝑥) − 1

2 ∥𝑝∥
2). However, taking advantage of the fact that

div
(
𝝅𝑡

[
−∇𝑝 log 𝝅𝑡
∇𝑥 log 𝝅𝑡

] )
= 0 ,
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we have the more interpretable expression

𝜕𝑡𝝅𝑡 = div
(
𝝅𝑡 𝑱𝛾

[
∇𝑥 log(𝝅𝑡/𝝅)
∇𝑝 log(𝝅𝑡/𝝅)

] )
, 𝑱𝛾 B

[
0 −1
1 𝛾

]
⊗ 𝐼𝑑 ,

or

𝜕𝑡𝝅𝑡 = div
(
𝝅𝑡 𝑱𝛾 [∇𝑊2 KL(· ∥ 𝝅)] (𝝅𝑡 )

)
. (5.3.3)

This shows that the underdamped Langevin diffusion is not interpreted as a gradient flow of the KL
divergence, but rather a “damped Hamiltonian flow” for the KL divergence.

We begin with a contraction result for the continuous-time process based on Cheng et al. (2018).
Note that we use the same change of variables as in Exercise 5.5.

Theorem 5.3.4. Let (𝑋0
𝑡 , 𝑃

0
𝑡 )𝑡⩾0 and (𝑋1

𝑡 , 𝑃
1
𝑡 )𝑡⩾0 be two copies of the underdamped Langevin

diffusion, driven by the same Brownian motion. Assume that the potential satisfies 0 ⪯ 𝛼𝐼𝑑 ⪯
∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then, defining the modified norm

||| (𝑥, 𝑝) |||2 B
𝑥 +√︄ 2

𝛽
𝑝
2 + ∥𝑥∥2

and setting 𝛾 =
√︁

2𝛽, we obtain the contraction

||| (𝑋1
𝑡 , 𝑃

1
𝑡 ) − (𝑋0

𝑡 , 𝑃
0
𝑡 ) ||| ⩽ exp

(
− 𝛼𝑡√︁

2𝛽

)
||| (𝑋1

0 , 𝑃
1
0) − (𝑋0

0 , 𝑃
0
0) ||| .

Proof Write 𝛿𝑋𝑡 B 𝑋1
𝑡 − 𝑋0

𝑡 and 𝛿𝑃𝑡 B 𝑃1
𝑡 − 𝑃0

𝑡 . Then, by Itô’s formula (Theorem 1.1.19),

d(𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡 ) =
[
𝛿𝑃𝑡 − 𝜂 {∇𝑉 (𝑋1

𝑡 ) − ∇𝑉 (𝑋0
𝑡 )} − 𝛾𝜂 𝛿𝑃𝑡

]
d𝑡

=

[
−(𝛾𝜂 − 1) 𝛿𝑃𝑡 − 𝜂

(∫ 1

0
∇2𝑉

(
(1 − 𝑠) 𝑋0

𝑡 + 𝑠 𝑋1
𝑡

)
d𝑠
)

︸                                     ︷︷                                     ︸
C𝐻𝑡

𝛿𝑋𝑡

]
d𝑡

=

[
−
(
𝛾 − 1

𝜂

)
(𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡 ) +

(
𝛾 − 1

𝜂
− 𝜂𝐻𝑡

)
𝛿𝑋𝑡

]
d𝑡

as well as

d(𝛿𝑋𝑡 ) = 𝛿𝑃𝑡 d𝑡 =
[1
𝜂
(𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡 ) −

1
𝜂
𝛿𝑋𝑡

]
d𝑡

so that
1
2
𝜕𝑡 {∥𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡 ∥2 + ∥𝛿𝑋𝑡 ∥2}

= −
〈[
𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡

𝛿𝑋𝑡

]
,

[
𝛾 − 1

𝜂
𝐼𝑑

1
2 (𝜂𝐻𝑡 − 𝛾𝐼𝑑)

1
2 (𝜂𝐻𝑡 − 𝛾𝐼𝑑)

1
𝜂
𝐼𝑑

] [
𝛿𝑋𝑡 + 𝜂 𝛿𝑃𝑡

𝛿𝑋𝑡

]〉
.

We now check that if 𝛾 = 2
𝜂

and 𝜂 =

√︃
2
𝛽

, then the eigenvalues of the matrix above are lower bounded

by 𝛼𝜂/2 = 𝛼/
√︁

2𝛽. □

We check that the new norm we defined is equivalent to the Euclidean norm.
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Lemma 5.3.5. For all 𝑥, 𝑝 ∈ R𝑑 ,
1
3
(
∥𝑥∥2 + 2

𝛽
∥𝑝∥2

)
⩽ ||| (𝑥, 𝑝) |||2 ⩽ 3

(
∥𝑥∥2 + 2

𝛽
∥𝑝∥2

)
.

Proof The upper bound follows from

||| (𝑥, 𝑝) |||2 =
𝑥 +√︄ 2

𝛽
𝑝
2 + ∥𝑥∥2 ⩽ 2

(
∥𝑥∥2 + 2

𝛽
∥𝑝∥2

)
+ ∥𝑥∥2 .

The lower bound follows from

2
𝛽
∥𝑝∥2 ⩽ 2

𝑥 +√︄ 2
𝛽
𝑝
2 + 2 ∥𝑥∥2 . □

Consequently, the contraction result in Theorem 5.3.4 implies

∥𝑋1
𝑡 − 𝑋0

𝑡 ∥2 +
2
𝛽
∥𝑃1

𝑡 − 𝑃0
𝑡 ∥2 ⩽ 9 exp

(
−
√

2𝛼𝑡
√
𝛽

) (
∥𝑋1

0 − 𝑋0
0 ∥2 +

2
𝛽
∥𝑃1

0 − 𝑃0
0∥2

)
.

Remark 5.3.6. If we compare Theorem 5.3.4 with Optimization Box 5.3.1, we see that we had
to choose a larger value for the friction (𝛾 ≍

√
𝛽 rather than 𝛾 ≍

√
𝛼) and this leads to a slower

exponential contraction with rate 𝛼/
√
𝛽 (instead of

√
𝛼). Thus, Theorem 5.3.4 can be considered an

unaccelerated convergence rate.

5.3.2 Wasserstein Coupling Argument
We now discretize the underdamped Langevin diffusion. Of course, we could apply a simple Euler–
Maruyama discretization to the SDE, but there is a slightly better discretization here. We observe that
if we fix the value of the gradient term at time 𝑘ℎ, then the rest of the SDE is a linear SDE, and can be
integrated exactly. Namely, consider

d𝑋𝑡 = 𝑃𝑡 d𝑡 ,

d𝑃𝑡 = −∇𝑉 (𝑋𝑘ℎ) d𝑡 − 𝛾𝑃𝑡 d𝑡 +
√︁

2𝛾 d𝐵𝑡 ,
for 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] . (ULMC)

Then, the solution to the SDE is given explicitly in the following lemma.

Lemma 5.3.7. Conditioned on (𝑋𝑘ℎ, 𝑃𝑘ℎ), the law of (𝑋(𝑘+1)ℎ, 𝑃(𝑘+1)ℎ) is explicitly given as
normal(𝑀(𝑘+1)ℎ, Σ) where

𝑀(𝑘+1)ℎ =

[
𝑋𝑘ℎ + 𝛾−1 (1 − exp(−𝛾ℎ)) 𝑃𝑘ℎ − 𝛾−1 (ℎ − 𝛾−1 (1 − exp(−𝛾ℎ))) ∇𝑉 (𝑋𝑘ℎ)

𝑃𝑘ℎ exp(−𝛾ℎ) − 𝛾−1 (1 − exp(−𝛾ℎ)) ∇𝑉 (𝑋𝑘ℎ)

]
and

Σ =

[
2
𝛾
{ℎ − 2

𝛾
(1 − exp(−𝛾ℎ)) + 1

2𝛾 (1 − exp(−2𝛾ℎ))} ∗
1
𝛾
{1 − 2 exp(−𝛾ℎ) + exp(−2𝛾ℎ)} 1 − exp(−2𝛾ℎ)

]
⊗ 𝐼𝑑 .

The ∗ indicates that the entry is determined by symmetry.
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The lemma is an exercise in stochastic calculus (Exercise 5.6). The point is that the discretization
given as ULMC is implementable.

We now proceed to a discretization analysis which is a refinement of Cheng et al. (2018) (and
matches the guarantee obtained in Dalalyan and Riou-Durand (2020)).

Theorem 5.3.8. For 𝑘 ∈ N, let 𝝁𝑘ℎ denote the law of the 𝑘-th iterate of ULMC with step size
ℎ ≍ 𝜀/

√︁
𝛽𝜅𝑑, friction parameter 𝛾 =

√︁
2𝛽, and initialized at 𝜇0 ⊗ normal(0, 𝐼𝑑). Also, let 𝜇𝑘ℎ

denote the law of 𝑋𝑘ℎ. Assume that the target 𝜋 ∝ exp(−𝑉) satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Then, we
obtain the guarantee

√
𝛼𝑊2(𝜇𝑁ℎ, 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝜅3/2𝑑1/2

𝜀
log
√
𝛼𝑊2(𝜇0, 𝜋)

𝜀

)
iterations .

Proof We apply Remark 5.1.5, in the norm |||·|||. Let ( �̂�𝑡 , �̂�𝑡 )𝑡⩾0 denote ULMC and let (𝑋𝑡 , 𝑃𝑡 )𝑡⩾0
denote the continuous-time underdamped Langevin diffusion, both driven by the same Brownian
motion and started at (𝑥, 𝑝). We want to bound the distance E[||| ( �̂�ℎ, �̂�ℎ) − (𝑋ℎ, 𝑃ℎ) |||2]. According
to Lemma 5.3.5, it suffices to bound E[∥ �̂�ℎ − 𝑋ℎ∥2] and E[∥�̂�ℎ − 𝑃ℎ∥2] separately.

First,

E[∥ �̂�ℎ − 𝑋ℎ∥2] = E
[∫ ℎ

0
{�̂�𝑡 − 𝑃𝑡 } d𝑡

2]
⩽ ℎ

∫ ℎ

0
E[∥�̂�𝑡 − 𝑃𝑡 ∥2] d𝑡 .

Next,

E[∥�̂�𝑡 − 𝑃𝑡 ∥2] = E
[∫ 𝑡

0
{−∇𝑉 (𝑥) + ∇𝑉 (𝑋𝑠) − 𝛾 (�̂�𝑠 − 𝑃𝑠)} d𝑠

2]
≲ ℎ

∫ 𝑡

0

(
E[∥∇𝑉 (𝑋𝑠) − ∇𝑉 (𝑥)∥2] + 𝛾2 E[∥�̂�𝑠 − 𝑃𝑠 ∥2]

)
d𝑠 .

By Grönwall’s inequality, if ℎ ⩽ 1
𝛾
= 1√

2𝛽
, then

E[∥�̂�𝑡 − 𝑃𝑡 ∥2] ≲ ℎ
∫ 𝑡

0
E[∥∇𝑉 (𝑋𝑠) − ∇𝑉 (𝑥)∥2] d𝑠 ⩽ 𝛽2ℎ

∫ 𝑡

0
E[∥𝑋𝑠 − 𝑥∥2] d𝑡 .

Again, we need a movement bound for the underdamped Langevin diffusion, which is done
in Lemma 5.3.9. Substituting this in and assuming ℎ ≲ 1

𝛽1/2 ,

E[||| ( �̂�ℎ, �̂�ℎ) − (𝑋ℎ, 𝑃ℎ) |||2] ≲ E[∥ �̂�ℎ − 𝑋ℎ∥2] +
1
𝛽
E[∥�̂�ℎ − 𝑃ℎ∥2]

≲ 𝛽ℎ4 ∥𝑝∥2 + 𝛽3/2𝑑ℎ5 + 𝛽ℎ6 ∥∇𝑉 (𝑥)∥2 .

This is a bound on ℰstrong(𝑥, 𝑝). We now apply Remark 5.1.5 with 𝐿 = exp(−𝛼ℎ/
√︁

2𝛽) (by The-
orem 5.3.4) and 𝐿strong = 𝑂 (𝛽ℎ2), so that 𝐿′ ⩽ exp(−𝛼ℎ/(2

√
𝛽)) for ℎ ≲ 1

𝛽1/2𝜅
. Then, since

∥ℰstrong∥𝐿2 (𝝅) ≲ 𝛽
1/2𝑑1/2ℎ2, we obtain

W2(𝝁𝑁ℎ, 𝝅) ⩽ exp
(
−𝛼𝑁ℎ

2
√
𝛽

)
W2(𝝁0, 𝝅) +𝑂

( 𝛽𝑑1/2ℎ

𝛼

)
whereW2 denotes the 2-Wasserstein distance in the |||·||| norm. Choosing the step size appropriately
completes the proof. □
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The next lemma provides the movement bound (Exercise 5.7).

Lemma 5.3.9. Let (𝑋𝑡 , 𝑃𝑡 )𝑡⩾0 denote the underdamped Langevin diffusion with potential 𝑉
satisfying ∇2𝑉 ⪯ 𝛽𝐼𝑑 . If 𝑡 ⩽ 1√

𝛽
∧ 1

𝛾
, then

E[∥𝑋𝑡 − 𝑋0∥2] ≲ 𝑡2 E[∥𝑃0∥2] + 𝛾𝑑𝑡3 + 𝑡4 E[∥∇𝑉 (𝑋0)∥2] .

5.3.3 Randomized Midpoint Discretization
The randomized midpoint method of Section 5.1 can be applied to the underdamped Langevin
diffusion to yield an even better sampling guarantee. This was carried out in Shen and Lee (2019),
and we state the final result here.

Theorem 5.3.10. Assume that the target 𝜋 ∝ exp(−𝑉) satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and∇𝑉 (0) = 0.
Then, the randomized midpoint discretization of the underdamped Langevin diffusion outputs 𝜇
such that

√
𝛼𝑊2(𝜇, 𝜋) ⩽ 𝜀 using

𝑂

( 𝜅𝑑1/3

𝜀2/3
(
1 ∨ 𝜀

1/3𝜅1/6

𝑑1/6
) )

gradient queries .

Since the proof is a combination of the proof techniques introduced for the randomized midpoint
discretization (Theorem 5.1.1) and the analysis of underdamped Langevin (Theorem 5.3.8), we leave
it as an exercise.

With respect to the dimension dependence, this is the current state-of-the-art guarantee for sampling
from strongly log-concave distributions.

5.3.4 Hypocoercivity
Our study of the underdamped Langevin diffusion has produced samplers with substantially improved
sampling complexity, culminating in Theorem 5.3.10, but we have not addressed the motivating
question in this section. Namely, is there an acceleration phenomenon for sampling, in the sense of an
algorithm with a square root dependence on the condition number? (See Optimization Box 5.3.1.)

Toward this question and others, such as whether we can obtain KL divergence guarantees under
functional inequality assumptions (as we did in Section 4.2), we must now enter into a discussion
of the hypocoercivity arguments which until this point we had deferred due to the higher level of
technical sophistication.

We start by noting that the generator of the underdamped Langevin diffusion can be written
(see Exercise 5.9) as ℒ = 𝛾ℒOU +ℒHam, where ℒOU is the generator of the Ornstein–Uhlenbeck
process (Exercise 1.3) acting on the momentum coordinate,

ℒOU 𝑓 B Δ𝑝 𝑓 − ⟨𝑝,∇𝑝 𝑓 ⟩ ,

and ℒHam captures the Hamiltonian part of the dynamics,

ℒHam 𝑓 B ⟨𝑝,∇𝑥 𝑓 ⟩ − ⟨∇𝑉,∇𝑝 𝑓 ⟩ .
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If we write the Fokker–Planck equation for the underdamped Langevin diffusion in terms of the
relative density 𝜌𝑡 B d𝝅𝑡

d𝝅 , we obtain the differential equation

𝜕𝑡 𝜌𝑡 = ℒ𝜌𝑡 . (5.3.11)

Now suppose that we wish to prove convergence in the chi-squared divergence. The first approach
to try is to simply differentiate 𝑡 ↦→ ∥𝜌𝑡 − 1∥2

𝐿2 (𝝅) , as we did for the Langevin diffusion. We find that

𝜕𝑡 ∥𝜌𝑡 − 1∥2
𝐿2 (𝝅) = 2𝛾 ⟨𝜌𝑡 − 1,ℒOU (𝜌𝑡 − 1)⟩𝐿2 (𝝅) + 2 ⟨𝜌𝑡 − 1,ℒHam (𝜌𝑡 − 1)⟩𝐿2 (𝝅) .

Unfortunately, this naı̈ve calculation cannot succeed. To see why, note first that ℒHam is anti-symmetric
in 𝐿2(𝝅), i.e., ℒ∗

Ham = −ℒHam, so the second term above vanishes (Exercise 5.10). Moreover, the first
term is not coercive, in the sense that the putative inequality ⟨𝜌𝑡−1,ℒOU (𝜌𝑡−1)⟩𝐿2 (𝝅) ≲ −∥𝜌𝑡−1∥2

𝐿2 (𝝅)
generally fails, because ℒOU has a large kernel: namely, all test functions which depend only on the
position coordinate.

However, there is a certain intuition that the underdamped Langevin diffusion ought to converge
anyway: theℒOU operator is coercive when restricted to the momentum coordinate, and the Hamiltonian
dynamics encoded in ℒHam causes the position and momentum coordinates to “mix”. Indeed, it is the
interaction of the two parts of the dynamics that drives the system to equilibrium.

We now give an exposition to the theory of hypocoercivity, as treated in Villani’s monograph Villani
(2009a), which places the above intuition into a mathematical framework. The theory has two key
ingredients. First, the “interaction” between the two parts of the dynamics is handled by studying the
commutator of the two operators. Second, in order to take advantage of the non-zero commutator,
we perform an analysis in a modified norm (similar in spirit to the twisted metric in the coupling
argument of Theorem 5.3.4). We will establish the following theorem.

Theorem 5.3.12 (hypocoercivity). For 𝑡 > 0, let 𝑓𝑡 B 𝜌𝑡 − 1 B d𝝅𝑡

d𝝅 − 1 denote the centered
relative density along the underdamped Langevin diffusion with friction coefficient 𝛾 = 𝑐0

√
𝛽,

𝑐0 > 0. Assume that measure 𝜋 ∝ exp(−𝑉) on R𝑑 satisfies a Poincaré inequality with constant
𝛼−1, and that the potential 𝑉 is 𝛽-smooth. Then, there is a constant 𝑐′ > 0 depending only on 𝑐0
such that

∥ 𝑓𝑡 ∥2𝐿2 (𝝅) +
1
𝛽
∥∇𝑥 𝑓𝑡 ∥2𝐿2 (𝝅) + ∥∇𝑝 𝑓𝑡 ∥

2
𝐿2 (𝝅)

≲ exp
(
−𝑐
′𝛼𝑡
√
𝛽

) (
∥ 𝑓0∥2𝐿2 (𝝅) +

1
𝛽
∥∇𝑥 𝑓0∥2𝐿2 (𝝅) + ∥∇𝑝 𝑓0∥

2
𝐿2 (𝝅)

)
.

To better appreciate the core of the argument, we follow Villani (2009a) and switch to more abstract
notation. Although we are only concerned here with the underdamped Langevin diffusion, some
of the following discussion will be phrased more generally to emphasize its broader applicability.
We observe that ℒOU = −∇∗𝑝∇𝑝, which makes apparent its symmetry and non-positivity, and hence
study an operator ℒ of the form ℒ = −𝛾𝐴∗𝐴 + 𝐵, where 𝐴 and 𝐵 are linear operators and 𝐵 is
anti-symmetric. Thus, we will take

𝐴 B ∇𝑝 , 𝐵 B ℒHam , 𝐶 B [𝐴, 𝐵] .

Here, [𝐴, 𝐵] B 𝐴𝐵 − 𝐵𝐴 is the commutator. As a preliminary step, we must compute these
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commutators, which we leave as an important exercise (Exercise 5.10):

[𝐴, 𝐴∗] = id , 𝐶 = ∇𝑥 , [𝐵,𝐶] = ∇2𝑉 ∇𝑝 = ∇2𝑉 𝐴 . (Com)

Here, [𝐴, 𝐴∗] is interpreted as ( [𝜕𝑝1 ,∇∗𝑝], . . . , [𝜕𝑝𝑑 ,∇∗𝑝]). Also, 𝐶 commutes with 𝐴 and 𝐴∗. Finally,
we let ∥·∥ denote a Hilbert norm, which is taken to be ∥·∥𝐿2 (𝝅) for the application to underdamped
Langevin.

Already, the commutator calculation proves to be interesting. Indeed, due to the anti-symmetry
of 𝐵, the computation of the time derivative along the dynamics3 induced by ℒ yields 2 ⟨ 𝑓 ,ℒ 𝑓 ⟩ =
−2𝛾 ∥𝐴 𝑓 ∥2, and the problem is that the quantity ∥𝐴 𝑓 ∥ is not coercive, in the sense that it does not
control ∥ 𝑓 ∥ from above. In other words, 𝐴𝐴∗ may not be strictly positive definite. For underdamped
Langevin, this corresponds to ∥𝐴 𝑓 ∥ = ∥∇𝑝 𝑓 ∥𝐿2 (𝝅) and so we are missing a term—namely, the norm
of the position gradient. But this position gradient shows up precisely as the commutator 𝐶.

Motivated by this observation, the plan is to instead consider ∥ 𝑓 ∥2 + ∥𝐴 𝑓 ∥2 + ∥𝐶 𝑓 ∥2, which
corresponds to the usual squared Sobolev norm ∥ 𝑓 ∥2

𝐿2 (𝝅) + ∥∇ 𝑓 ∥
2
𝐿2 (𝝅) for underdamped Langevin.

Importantly, this quantity is coercive, as a consequence of the Poincaré inequality for 𝝅 (which follows
from the assumed Poincaré inequality for 𝜋, together with the Poincaré inequality for the standard
Gaussian). In other words, rather than requiring 𝐴𝐴∗ to be positive definite, we now only require
𝐴𝐴∗ + 𝐶𝐶∗ to be positive definite. In general, this process can be repeated: if 𝐴𝐴∗ + 𝐶𝐶∗ is still not
positive definite, we can take another commutator 𝐶1 = [𝐶, 𝐵] and add 𝐶1𝐶

∗
1 , etc., and the number of

times this process must be repeated corresponds to the degeneracy of the equation. For underdamped
Langevin, just the addition of 𝐶𝐶∗ is enough.

However, simply differentiating 𝑡 ↦→ ∥ 𝑓𝑡 ∥2 + ∥𝐴 𝑓𝑡 ∥2 + ∥𝐶 𝑓𝑡 ∥2 is still not enough to establish
convergence. The other crucial ingredient is to change the norm. Hence, we shall consider the
following Lyapunov functional

L𝑡 B ∥ 𝑓𝑡 ∥2 + 𝑎 ∥𝐴 𝑓𝑡 ∥2 −
2𝑏
√
𝛽
⟨𝐴 𝑓𝑡 , 𝐶 𝑓𝑡⟩ +

𝑐

𝛽
∥𝐶 𝑓𝑡 ∥2 .

We will choose 𝑎, 𝑏, 𝑐 > 0 to be universal constants such that 𝑎𝑐 > 𝑏2, which will ensure that the above
Lyapunov functional is equivalent up to universal constants to the norm ∥ 𝑓 ∥2 + ∥𝐴 𝑓 ∥2 + 𝛽−1 ∥𝐶 𝑓 ∥2.

As Villani writes, the key intuition is that the effect of ℒOU = −𝐴∗𝐴 is to dissipate the terms ∥ 𝑓 ∥2,
∥𝐴 𝑓 ∥2, and ∥𝐶 𝑓 ∥2, whereas the effect of 𝐵 is to dissipate the mixed term −⟨𝐴 𝑓 , 𝐶 𝑓 ⟩. To see this,
suppose that 𝑀 is an operator which commutes with 𝐴. Then, if 𝜕𝑡𝑔𝑡 = −𝐴∗𝐴𝑔𝑡 ,

𝜕𝑡 ∥𝑀𝑔𝑡 ∥2 = −2 ⟨𝑀𝑔𝑡 , 𝑀𝐴∗𝐴𝑔𝑡⟩ = −2 ⟨𝑀𝑔𝑡 , 𝐴∗𝐴𝑀𝑔𝑡⟩ = −2 ∥𝐴𝑀𝑔𝑡 ∥2 ⩽ 0 .

On the other hand, if 𝜕𝑡𝑔𝑡 = 𝐵𝑔𝑡 , from anti-symmetry, the definition of 𝐶, and (Com),

−𝜕𝑡 ⟨𝐴𝑔𝑡 , 𝐶𝑔𝑡⟩ = −⟨𝐴𝐵𝑔𝑡 , 𝐶𝑔𝑡⟩ − ⟨𝐴𝑔𝑡 , 𝐶𝐵𝑔𝑡⟩
= −⟨𝐴𝐵𝑔𝑡 , 𝐶𝑔𝑡⟩ − ⟨𝐴𝑔𝑡 , 𝐵𝐶𝑔𝑡⟩ − ⟨𝐴𝑔𝑡 , [𝐶, 𝐵]𝑔𝑡⟩
= −⟨𝐴𝐵𝑔𝑡 , 𝐶𝑔𝑡⟩ + ⟨𝐵𝐴𝑔𝑡 , 𝐶𝑔𝑡⟩ + ⟨𝐴𝑔𝑡 , [𝐵,𝐶]𝑔𝑡⟩
= −∥𝐶𝑔𝑡 ∥2 + ⟨𝐴𝑔𝑡 ,∇2𝑉 𝐴𝑔𝑡⟩ .

Up to an error term, we have obtained decay in the missing “𝐶 direction”!
We now proceed to the full calculation.

3 In the abstract setting, this refers to 𝑡 ↦→ exp(ℒ𝑡 ) 𝑓0, i.e., the semigroup with generator ℒ.
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Proof of Theorem 5.3.12 If we differentiate L𝑡 , we obtain −D( 𝑓𝑡 ), where we calculate

D( 𝑓 ) = 2𝛾 ∥𝐴 𝑓 ∥2 + 𝑎 (· · · )︸ ︷︷ ︸
I

+ 2𝑏
√
𝛽
(· · · )︸     ︷︷     ︸
II

+ 𝑐
𝛽
(· · · )︸  ︷︷  ︸
III

.

Our aim is to lower bound D( 𝑓𝑡 ) by a multiple of L𝑡 . Following Villani’s notation, we divide each of
the terms I, II, and III with subscripts, I𝐴, I𝐵, etc., to signify the part of the time derivative which
comes from −𝐴∗𝐴 or from 𝐵. We estimate each of these six terms. Based on the above intuition,
we expect I𝐴, II𝐵, and III𝐴 to contribute terms that help us, whereas the other terms are error terms.
Throughout, we repeatedly use the commutator calculations in (Com).

We start with the first term.

I𝐴 = 2𝑎𝛾 ⟨𝐴 𝑓 , 𝐴𝐴∗𝐴 𝑓 ⟩ = 2𝑎𝛾 (⟨𝐴 𝑓 , 𝐴∗𝐴2 𝑓 ⟩ + ∥𝐴 𝑓 ∥2) = 2𝑎𝛾 (∥𝐴2 𝑓 ∥2 + ∥𝐴 𝑓 ∥2) ,
I𝐵 = −2𝑎 ⟨𝐴 𝑓 , 𝐴𝐵 𝑓 ⟩ = −2𝑎 ⟨𝐴 𝑓 , 𝐵𝐴 𝑓 ⟩ − 2𝑎 ⟨𝐴 𝑓 , 𝐶 𝑓 ⟩ = −2𝑎 ⟨𝐴 𝑓 , 𝐶 𝑓 ⟩
⩾ −2𝑎 ∥𝐴 𝑓 ∥ ∥𝐶 𝑓 ∥ .

Next, for the second term, by the above calculations,

II𝐴 = −2𝑏𝛾
√
𝛽
(⟨𝐴𝐴∗𝐴 𝑓 , 𝐶 𝑓 ⟩ + ⟨𝐴 𝑓 , 𝐶𝐴∗𝐴 𝑓 ⟩)

= −2𝑏𝛾
√
𝛽
(⟨𝐴∗𝐴2 𝑓 , 𝐶 𝑓 ⟩ + ⟨𝐴 𝑓 , 𝐶 𝑓 ⟩ + ⟨𝐴 𝑓 , 𝐴∗𝐶𝐴 𝑓 ⟩)

= −2𝑏𝛾
√
𝛽
(2 ⟨𝐴2 𝑓 , 𝐴𝐶 𝑓 ⟩ + ⟨𝐴 𝑓 , 𝐶 𝑓 ⟩) ⩾ −2𝑏𝛾

√
𝛽
(2 ∥𝐴2 𝑓 ∥ ∥𝐴𝐶 𝑓 ∥ + ∥𝐴 𝑓 ∥∥𝐶 𝑓 ∥)

II𝐵 =
2𝑏
√
𝛽
(∥𝐶 𝑓 ∥2 − ⟨𝐴 𝑓 ,∇2𝑉 𝐴 𝑓 ⟩) ⩾ 2𝑏

√
𝛽
(∥𝐶 𝑓 ∥2 − 𝛽 ∥𝐴 𝑓 ∥2) .

Finally, for the third term,

III𝐴 =
2𝑐𝛾
𝛽
⟨𝐶 𝑓 , 𝐶𝐴∗𝐴 𝑓 ⟩ = 2𝑐𝛾

𝛽
∥𝐴𝐶 𝑓 ∥2 ,

III𝐵 = −2𝑐
𝛽
⟨𝐶 𝑓 , 𝐶𝐵 𝑓 ⟩ = −2𝑐

𝛽
(⟨𝐶 𝑓 , 𝐵𝐶 𝑓 ⟩ + ⟨𝐶 𝑓 , [𝐶, 𝐵] 𝑓 ⟩) = 2𝑐

𝛽
⟨𝐶 𝑓 ,∇2𝑉 𝐴 𝑓 ⟩

⩾ −2𝑐 ∥𝐴 𝑓 ∥ ∥𝐶 𝑓 ∥ .

Let 𝐷 ( 𝑓 ) B (∥𝐴 𝑓 ∥, 1√
𝛽
∥𝐶 𝑓 ∥, ∥𝐴2 𝑓 ∥, 1√

𝛽
∥𝐴𝐶 𝑓 ∥). Now assume that 𝛾 = 𝑐0

√
𝛽 for some constant

𝑐0 > 0. We have established the inequality D( 𝑓 ) ⩾ ⟨𝐷 ( 𝑓 ), Σ 𝐷 ( 𝑓 )⟩ where

Σ =
√︁
𝛽


2𝑐0 + 2𝑎𝑐0 − 2𝑏 −2𝑎 − 2𝑐

2𝑏
2𝑎𝑐0 −4𝑏𝑐0

2𝑐𝑐0

 .
Now we want to show that we can choose constants 𝑎, 𝑏, 𝑐 > 0 with 𝑎𝑐 > 𝑏2, depending only on 𝑐0,
such that the symmetric part of Σ is positive definite. In this case, since Σ is block diagonal, this
just amounts to 𝑎𝑐 > 𝑏2 as well as 4𝑏 (𝑐0 + 𝑎𝑐0 − 𝑏) − (𝑎 + 𝑐)2 > 0. If we scale 𝑎, 𝑏, 𝑐 down so that
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max{𝑎, 𝑏, 𝑐} ≪ 𝑐0 ∧ 1 then the second condition is clearly satisfied. With this, we have obtained

𝜕𝑡L𝑡 = −D( 𝑓𝑡 ) ≲ −
√︁
𝛽 ∥𝐴 𝑓𝑡 ∥2 −

1
√
𝛽
∥𝐶 𝑓𝑡 ∥2 .

Applying the Poincaré inequality for 𝝅 (in the norm given by ∥(𝑥, 𝑝)∥2 B ∥𝑥∥2 + ∥𝑝∥2/𝛼),

𝜕𝑡L𝑡 ≲ −
𝛼
√
𝛽

(
∥𝐴 𝑓𝑡 ∥2 +

1
𝛼
∥𝐶 𝑓𝑡 ∥2

)
⩽ − 𝛼

2
√
𝛽

(
∥ 𝑓𝑡 ∥2 + ∥𝐴 𝑓𝑡 ∥2 +

1
𝛼
∥𝐶 𝑓𝑡 ∥2

)
≲ − 𝛼√

𝛽
L𝑡 .

In the last line, we used the fact that L𝑡 is equivalent up to constants to the Sobolev norm ∥ 𝑓 ∥2 +
∥𝐴 𝑓 ∥2 + 1

𝛽
∥𝐶 𝑓 ∥2. □

Remarkably, there is a variant of this theorem which holds for KL convergence, which proceeds via
a twisted version of the Fisher information.

Theorem 5.3.13 (entropic hypocoercivity). In the setting of Theorem 5.3.12, suppose instead
that 𝜋 satisfies a log-Sobolev inequality with constant 𝛼−1. Then, there is a Lyapunov function

L𝑡 B KL(𝝅𝑡 ∥ 𝝅) + E𝝅𝑡

〈
∇ log

𝝅𝑡
𝝅
,

( [
𝑎/𝛽 𝑏/

√
𝛽

𝑏/
√
𝛽 𝑐

]
⊗ 𝐼𝑑

)
∇ log

𝝅𝑡
𝝅

〉
such that for all 𝑡 ⩾ 0,

L𝑡 ⩽ exp
(
−𝑐
′𝛼𝑡
√
𝛽

)
L0 .

This concludes our exposition to hypocoercivity. The study of hypocoercive dynamics is still an
active area of research, and there have been many developments since Villani’s original monograph;
see the bibliographical notes for a short discussion. However, Theorem 5.3.12 and Theorem 5.3.13
still only yield unaccelerated rates of convergence. Very recently, through different techniques (based
on a space-time Poincaré inequality), Cao, Lu, and Wang obtained the following remarkable result.

Theorem 5.3.14 (space-time Poincaré inequality, Cao et al. (2023)). Suppose that 𝜋 is log-
concave and satisfies a Poincaré inequality with constant 𝛼−1, and set 𝛾 =

√
𝛼. There is a

universal constant 𝑐 > 0 such that for all 𝑡 ⩾ 0, for underdamped Langevin,

𝜒2(𝝅𝑡 ∥ 𝝅) ≲ exp(−𝑐
√
𝛼 𝑡) 𝜒2(𝝅0 ∥ 𝝅) .

Note that this is indeed the accelerated rate! Unfortunately, this is a “Poincaré-type” result, which
leads to a worse dependence on the dimension (see the discussion in Section 1.5). Currently, it is
not known how to prove a “log-Sobolev” version of this result. Moreover, the current discretization
methods are lossy, and have not yet translated Theorem 5.3.14 into an accelerated discrete-time
guarantee.

Bibliographical Notes
The local error framework is classical Milstein and Tretyakov (2021) and has been widely used for the
analysis of sampling algorithms Li et al. (2019); Sanz-Serna and Zygalakis (2021); Li et al. (2022a,b).
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The improved complexity for LMC in Exercise 5.1 was obtained in Li et al. (2022b), whereas the rate
when ∇2𝑉 is Lipschitz in the operator norm goes back to earlier works.

HMC and its variants are some of the most popular algorithms employed in practice, especially
the no-U-turn sampler (NUTS) Hoffman and Gelman (2014) which adaptively sets the integration
time. In terms of complexity analysis, the paper Chen and Vempala (2019) (whose proof we followed
in Theorem 5.2.1) provided the tight analysis of ideal HMC. Other complexity results obtained for
HMC under various assumptions include Mangoubi and Vishnoi (2018); Mangoubi and Smith (2019);
Bou-Rabee et al. (2020).

The underdamped Langevin diffusion has been studied quantitatively in Cheng et al. (2018); Eberle
et al. (2019); Dalalyan and Riou-Durand (2020); Ma et al. (2021); Zhang et al. (2023).

Besides randomized midpoint, the (idealized) shifted ODE algorithm Foster et al. (2021) also
achieves iteration complexity of 𝑂 (𝜅𝑑1/3/𝜀2/3) when applied to the underdamped Langevin diffusion.
However, implementing the ODE requires the use of a numerical integrator, and it is currently not
known how to preserve the rate when fully discretized. Moreover, there is evidence that𝑂 (𝜅𝑑1/3/𝜀2/3)
is the optimal rate for discretization of underdamped Langevin Cao et al. (2021); see the Bibliographical
Details in Chapter 9.

The literature on hypocoercivity is large and we do not intend to comprehensively survey it here,
but we give a few pointers. Our treatment of hypocoercivity is inspired by the monograph Villani
(2009a), which was the first to develop the theory in a general framework. The illuminating work
of Baudoin (2017) relates the hypocoercive calculations to the Bakry–Émery calculus. The approach
to hypocoercivity taken here is sometimes called “𝐻1 hypocoercivity” because the constructed norm
is equivalent to the 𝐻1(𝝅) Sobolev norm, but there is another approach based on “𝐿2 hypocoercivity”.
The latter is called the “DMS framework” after Dolbeault et al. (2009); see Roussel and Stoltz (2018)
for the application to underdamped Langevin. Finally, we mention that the space-time Poincaré
approach of Cao et al. (2023) builds on the earlier work of Albritton et al. (2021).

Exercises
Randomized Midpoint Discretization

⊵ Exercise 5.1 (LMC under higher-order smoothness)
Assume that the potential satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and furthermore assume that ∥∇Δ𝑉 ∥ ⩽
𝜁0 + 𝜁1 ∥∇𝑉 ∥. Define the scale-invariant quantities 𝜅 B 𝛽/𝛼, 𝜅0 B 𝜁0/𝛼3/2, and 𝜅1 B 𝜁1/𝛼. Use the
local error framework to show that LMC achieves iteration complexity 𝑂 ((𝜅0 + (𝜅 + 𝜅1)

√
𝜅𝑑)/𝜀) in

this case. In particular, if 𝜅, 𝜅0, 𝜅1 = 𝑂 (1), then the iteration complexity becomes 𝑂 (𝑑1/2/𝜀), which
should match what was obtained for the Gaussian case in Exercise 4.1. Note that if we have a Lipschitz
condition in the operator norm, ∥∇2𝑉 (𝑥) − ∇2𝑉 (𝑦)∥op ⩽ 𝜌 ∥𝑥 − 𝑦∥, then ∥∇Δ𝑉 ∥ ⩽ 𝜌𝑑1/2, so in this
case it implies the iteration complexity 𝑂 ((𝜅3/2𝑑1/2 + 𝜅1/2𝜌𝑑/𝛼)/𝜀).

Hence, if the Hessian is Lipschitz in the operator norm, the complexity of LMC improves from
𝑂 (𝑑/𝜀2) to𝑂 (𝑑/𝜀), and under a more stringent condition (satisfied by Gaussians), it further improves
to 𝑂 (𝑑1/2/𝜀).

Hint: To bound the weak error, use Itô’s formula.

Hamiltonian Monte Carlo
⊵ Exercise 5.2 (Gaussian calculations for HMC)
Suppose that the target 𝜋 is a standard Gaussian distribution. Compute the flow map 𝐹𝑡 for the
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Hamiltonian dynamics. Also, if we start at the initial distribution 𝜇0 = normal(0, 𝜎2𝐼𝑑), show that the
distribution 𝝁𝑡 over phase space at time 𝑡 of ideal HMC is a Gaussian distribution, normal(0, Σ𝑡 ), and
compute Σ𝑡 ∈ R2𝑑×2𝑑 .

⊵ Exercise 5.3 (basic properties of Hamiltonian dynamics)
In this exercise, we explore some fundamental properties of the Hamiltonian dynamics.

1 (conservation of energy) Along the Hamiltonian dynamics, (𝑥𝑡 , 𝑝𝑡 )𝑡⩾0, show that 𝐻 (𝑥𝑡 , 𝑝𝑡 ) =
𝐻 (𝑥0, 𝑝0). In fact, for any function 𝑓 : R𝑑 × R𝑑 → R whose Poisson bracket with 𝐻 vanishes, i.e.,

{ 𝑓 , 𝐻} B ⟨∇𝑥 𝑓 ,∇𝑝𝐻⟩ − ⟨∇𝑝 𝑓 ,∇𝑥𝐻⟩ = 0 ,

it holds that 𝑓 (𝑥𝑡 , 𝑝𝑡 ) = 𝑓 (𝑥0, 𝑝0).
2 (conservation of volume) By differentiating 𝑡 ↦→ det∇𝐹𝑡 (𝑥, 𝑝) and using the flow map equation
𝜕𝑡𝐹𝑡 (𝑥, 𝑝) = 𝑱 ∇𝐻 (𝐹𝑡 (𝑥, 𝑝)), prove that det∇𝐹𝑡 (𝑥, 𝑝) = 1 for all 𝑡 ⩾ 0 and 𝑥, 𝑝 ∈ R𝑑 . This shows
that 𝐹𝑡 : R𝑑 → R𝑑 is a volume-preserving map.

3 (time reversibility) Suppose that (𝑥𝑡 , 𝑝𝑡 )𝑡∈[0,𝑇 ] solve Hamilton’s equations. Show that (𝑥𝑇−𝑡 ,−𝑝𝑇−𝑡 )𝑡∈[0,𝑇 ]
also solve Hamilton’s equations. In other words, if 𝑅 is the momentum reversal operator, i.e.,

𝑅 =

[
𝐼𝑑 0
0 −𝐼𝑑

]
,

then 𝐹−1
𝑇

= 𝑅 ◦ 𝐹𝑇 ◦ 𝑅.

⊵ Exercise 5.4 (coercivity)
Prove Lemma 5.2.3.

Hint: Let 𝑧 B 𝑦 − 1
𝛽
{∇ 𝑓 (𝑦) − ∇ 𝑓 (𝑥)}. Apply the convexity inequality to 𝑓 (𝑥) − 𝑓 (𝑧), and the

smoothness inequality to 𝑓 (𝑧) − 𝑓 (𝑦), in order to upper bound 𝑓 (𝑥) − 𝑓 (𝑦). Combine this with the
symmetric inequality for 𝑓 (𝑦) − 𝑓 (𝑥).

The Underdamped Langevin Diffusion
⊵ Exercise 5.5 (Nesterov’s algorithm in continuous time)
Consider the continuous-time formulation of Nesterov’s algorithm, as given in Optimization Box 5.3.1.
Assume that 𝑉 is 𝛼-strongly convex and 𝑝0 = 0. Prove the rate (5.3.2).

Hint: Let 𝑧𝑡 B 𝑥𝑡 + 2
𝛾
𝑝𝑡 . Consider the Lyapunov functional

L𝑡 B 𝑉 (𝑥𝑡 ) −𝑉 (𝑥★) +
𝛼

2
∥𝑧𝑡 − 𝑥★∥2 .

Prove that ¤L𝑡 ⩽ −
√
𝛼L𝑡 . You may find the following identity to be helpful: ⟨𝑧 − 𝑥, 𝑧 − 𝑥★⟩ =

1
2 (∥𝑧 − 𝑥∥

2 + ∥𝑧 − 𝑥★∥2 − ∥𝑥 − 𝑥★∥2).

⊵ Exercise 5.6 (derivation of the ULMC updates)
Solve the SDE for ULMC to prove Lemma 5.3.7.

⊵ Exercise 5.7 (movement bound for the underdamped Langevin diffusion)
Prove the movement bound for underdamped Langevin (Lemma 5.3.9).

⊵ Exercise 5.8 (analysis of RM-ULMC)
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Prove Theorem 5.3.10 (or at least write out enough of the analysis to convince yourself of the main
term 𝜅𝑑1/3/𝜀2/3 in the rate).

⊵ Exercise 5.9 (Fokker–Planck equation for the underdamped Langevin diffusion)
Check the expression ℒ = 𝛾ℒOU +ℒHam for the generator of the underdamped Langevin diffusion
given in Section 5.3.4. Then, check the various calculations leading up to the Fokker–Planck
equations (5.3.3) and (5.3.11).

⊵ Exercise 5.10 (computations with adjoints and commutators)
Prove that ℒ∗

Ham = −ℒHam and that ℒOU = −∇∗𝑝∇𝑝, where the adjoints are taken in 𝐿2(𝝅). Moreover,
verify the commutator relations (Com).

⊵ Exercise 5.11 (entropic hypocoercivity)
Adapt the proof of Theorem 5.3.12 to prove Theorem 5.3.13.



CHAPTER 6

Convergence in Rényi Divergence

In this chapter, we study sampling guarantees which hold in Rényi divergences. Recall from
Section 2.2.5 that the Rényi divergences are a family of information divergences, indexed by a
parameter 𝑞, such that the Rényi divergence of order 𝑞 = 1 is the KL divergence, and the Rényi
divergence of order 2 is related to the chi-squared divergence via R2 = log(1 + 𝜒2). Rényi divergence
guarantees are stronger than𝑊2 or KL guarantees, and they have been of interest in their own right in
differential privacy Mironov (2017). The results from this chapter will also be used to be used in the
subsequent Chapter 7.

In Section 2.2.5, we studied the continuous-time convergence of the Langevin diffusion in Rényi
divergence under either a Poincaré inequality or a log-Sobolev inequality. We will build upon these
results in order to study the discretized LMC algorithm. Then, we will consider the underdamped
Langevin diffusion, which was introduced in Section 5.3.

6.1 Analysis of LMC via Interpolation Argument

In this section, we follow ?, which generalizes the argument of Theorem 4.2.6 and provides a clean
Rényi convergence proof for LMC under the assumption of a log-Sobolev inequality (LSI).

As in Section 4.2, we begin by writing a differential inequality for the Rényi divergence along
the interpolation (4.2.2) of LMC. The proof is a combination of the proofs of Theorem 2.2.25
and Corollary 4.2.4, so it is left as Exercise 6.1. Throughout this section, let 𝑞 ⩾ 2 be fixed.

Proposition 6.1.1. Along the law (𝜇𝑡 )𝑡⩾0 of the interpolated process (4.2.2),

𝜕𝑡R𝑞 (𝜇𝑡 ∥ 𝜋) ⩽ −
3
𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+ 𝑞 E[𝜓𝑡 (𝑋𝑡 ) ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2] ,

where 𝜌𝑡 B d𝜇𝑡
d𝜋 and 𝜓𝑡 B 𝜌

𝑞−1
𝑡 /E𝜋 (𝜌

𝑞
𝑡 ).

160
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In analogy with the usual Fisher information, the quantity

FI𝑞 (𝜇 ∥ 𝜋) B
4
𝑞

E𝜋 [∥∇(𝜌𝑞/2)∥2]
E𝜋 (𝜌𝑞)

, 𝜌 B
d𝜇
d𝜋

,

may be considered the “Rényi Fisher information”. As in the proof of Theorem 2.2.25, under a
log-Sobolev inequality, we have

FI𝑞 (𝜇 ∥ 𝜋) ⩾
2

𝑞𝐶LSI
R𝑞 (𝜇 ∥ 𝜋) ,

so the first term in Proposition 6.1.1 provides a decay in the Rényi divergence. In the discretization
analysis, our task is to control the second term.

Note that

E𝜓𝑡 (𝑋𝑡 ) = E𝜇𝑡 𝜓𝑡 = E𝜋
[
𝜌𝑡

𝜌
𝑞−1
𝑡

E𝜋 (𝜌𝑞𝑡 )
]
= 1 ,

so 𝜓𝑡 (𝑋𝑡 ) acts as a change of measure. The main difficulty of the proof is that whereas we know how
to control the term ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2 under the original probability measure P (indeed, this
is precisely what we accomplished in Theorem 4.2.6), it is not straightforward to control this term
under the measure P defined by dP

dP = 𝜓𝑡 (𝑋𝑡 ). Towards this end, we shall employ change of measure
inequalities that allow us to relate expectations under P to expectations under P. Note that 𝜓𝑡 = 1
when 𝑞 = 1, which is why these difficulties can be avoided when working with the KL divergence.

The main theorem that we wish to prove is as follows.

Theorem 6.1.2 (?). For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of the 𝑘-th iterate of LMC with step size
ℎ > 0. Assume that the target 𝜋 ∝ exp(−𝑉) satisfies LSI and that ∇𝑉 is 𝛽-Lipschitz. Also, for
simplicity, assume that𝐶LSI, 𝛽 ⩾ 1. TODO: Check if this is necessary. Then, for all ℎ ⩽ 1

192𝐶LSI𝛽2𝑞2 ,
for all 𝑁 ⩾ 𝑁0, it holds that

R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ⩽ exp
(
− (𝑁 − 𝑁0)ℎ

4𝐶LSI

)
R2(𝜇0 ∥ 𝜋) +𝑂 (𝐶LSI𝛽

2𝑑ℎ𝑞) ,

where 𝑁0 B ⌈ 2𝐶LSI
ℎ

log(𝑞 − 1)⌉. In particular, for all 𝜀 ∈ [0,
√︁
𝑑/𝑞], if we choose the step size

ℎ = Θ̃( 𝜀2

𝛽2𝑑𝑞𝐶LSI
), then we obtain the guarantee

√︁
R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

(𝐶2
LSI𝛽

2𝑑𝑞

𝜀2 logR2(𝜇0 ∥ 𝜋)
)

iterations .

For clarity of exposition, we begin with a discretization analysis that incurs a worse dependence on
𝑞. Afterwards, we show how to improve the dependence on 𝑞 via a hypercontractivity argument.

Proof of Theorem 6.1.2 with suboptimal dependence on 𝑞 As in the proof of Theorem 4.2.6, our
aim is to control the error term E[𝜓𝑡 (𝑋𝑡 ) ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2], where from the 𝛽-smoothness of
𝑉 and from ℎ ⩽ 1

3𝛽 we have

∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2 ⩽ 9𝛽2 (𝑡 − 𝑘ℎ)2 ∥∇𝑉 (𝑋𝑡 )∥2 + 6𝛽2 (𝑡 − 𝑘ℎ) ∥𝐵𝑡 − 𝐵𝑘ℎ∥2 .

There are two terms to control. For the first term, applying the duality lemma for the Fisher
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information (Lemma 4.2.5) to the measure 𝜓𝑡𝜇𝑡 ,

E𝜓𝑡 𝜇𝑡 [∥∇𝑉 ∥2] ⩽ FI(𝜓𝑡𝜇𝑡 ∥ 𝜋) + 2𝛽𝑑 = E𝜇𝑡
[
𝜓𝑡

∇ log
(
𝜓𝑡

d𝜇𝑡
d𝜋

)2] + 2𝛽𝑑

=
E𝜋 [𝜌𝑞𝑡 ∥∇ log(𝜌𝑞𝑡 )∥2]

E𝜋 (𝜌𝑞𝑡 )
+ 2𝛽𝑑 =

4E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+ 2𝛽𝑑 ,

where we used the identity

E𝜇𝑡
[
𝜓𝑡

∇ log
(
𝜓𝑡

d𝜇𝑡
d𝜋

)2]
=

4E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

(6.1.3)

which follows from the chain rule from calculus.
For the second error term, we must control the term ∥𝐵𝑡 − 𝐵𝑘ℎ∥2 under the measure P, where

dP
dP = 𝜓𝑡 (𝑋𝑡 ). The difficulty is that under P, 𝐵 is no longer a standard Brownian motion, so it is
difficult to control this term directly. Instead, we apply the Donsker–Varadhan variational principle
(Theorem 1.5.7) to relate the expectation under P (denoted E) with the expectation under P. For any
random variable 𝜁 , it yields

E𝜁 ⩽ KL(P ∥ P) + logE exp 𝜁 .

Applying this to 𝜁 B 𝑐 (∥𝐵𝑡 − 𝐵𝑘ℎ∥ − E∥𝐵𝑡 − 𝐵𝑘ℎ∥)2 for a constant 𝑐 > 0 to be chosen later, we
obtain

E[∥𝐵𝑡 − 𝐵𝑘ℎ∥2] ⩽ 2E[∥𝐵𝑡 − 𝐵𝑘ℎ∥2] +
2
𝑐

E𝜁

⩽ 2𝑑 (𝑡 − 𝑘ℎ) + 2
𝑐

{
KL(P ∥ P) + logE exp

(
𝑐 (∥𝐵𝑡 − 𝐵𝑘ℎ∥ − E∥𝐵𝑡 − 𝐵𝑘ℎ∥)2

)}
.

Under P, 𝐵𝑡 − 𝐵𝑘ℎ ∼ normal(0, (𝑡 − 𝑘ℎ) 𝐼𝑑). Applying concentration of measure for the Gaussian
distribution (see, e.g., Theorem 2.4.3), if 𝑐 ≲ 1

𝑡−𝑘ℎ , then

E exp
(
𝑐 (∥𝐵𝑡 − 𝐵𝑘ℎ∥ − E∥𝐵𝑡 − 𝐵𝑘ℎ∥)2

)
⩽ 2 .

In fact, it suffices to take 𝑐 = 1
8 (𝑡−𝑘ℎ) . Next, using the LSI for 𝜋,

KL(P ∥ P) = E𝜓𝑡 𝜇𝑡 log𝜓𝑡 = E𝜓𝑡 𝜇𝑡 log
𝜌
𝑞−1
𝑡

E𝜇𝑡 (𝜌
𝑞−1
𝑡 )

=
𝑞 − 1
𝑞
E𝜓𝑡 𝜇𝑡 log

𝜌
𝑞
𝑡

E𝜇𝑡 (𝜌
𝑞−1
𝑡 )

𝑞/(𝑞−1)

=
𝑞 − 1
𝑞

{
E𝜓𝑡 𝜇𝑡 log

𝜌
𝑞
𝑡

E𝜇𝑡 (𝜌
𝑞−1
𝑡 )
− 1
𝑞 − 1

logE𝜇𝑡 (𝜌
𝑞−1
𝑡 )︸                   ︷︷                   ︸

⩾0

}
⩽
𝑞 − 1
𝑞

KL(𝜓𝑡𝜇𝑡 ∥ 𝜋)

⩽
(𝑞 − 1) 𝐶LSI

2𝑞
E𝜓𝑡 𝜇𝑡

[∇ log
(
𝜓𝑡

d𝜇𝑡
d𝜋

)2]
=

2 (𝑞 − 1) 𝐶LSI

𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

,
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where we applied the identity (6.1.3). Hence,

E[𝜓𝑡 (𝑋𝑡 ) ∥𝐵𝑡 − 𝐵𝑘ℎ∥2]

⩽ 2𝑑 (𝑡 − 𝑘ℎ) + 32𝐶LSIℎ (𝑞 − 1)
𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+ (16 log 2) (𝑡 − 𝑘ℎ)

⩽ 14𝑑 (𝑡 − 𝑘ℎ) + 32𝐶LSIℎ
E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

.

All in all, applying Proposition 6.1.1 and collecting the error terms,

𝜕𝑡R𝑞 (𝜇𝑡 ∥ 𝜋) ⩽ −
3
𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+ 9𝛽2𝑞 (𝑡 − 𝑘ℎ)2
{4E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]

E𝜋 (𝜌𝑞𝑡 )
+ 2𝛽𝑑

}
+ 6𝛽2𝑞

{
14𝑑 (𝑡 − 𝑘ℎ) + 32𝐶LSIℎ

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

}
.

From 𝐶LSI, 𝛽 ⩾ 1 and ℎ ⩽ 1
192𝐶LSI𝛽2𝑞2 , we can absorb some of the error terms into the decay term and

apply the LSI for 𝜋 (see Theorem 2.2.25), yielding

𝜕𝑡R𝑞 (𝜇𝑡 ∥ 𝜋) ⩽ −
1
𝑞

E𝜋 [∥∇(𝜌𝑞/2𝑡 )∥2]
E𝜋 (𝜌𝑞𝑡 )

+𝑂 (𝛽3𝑑ℎ2𝑞 + 𝛽2𝑑ℎ𝑞)

⩽ − 1
2𝑞𝐶LSI

R𝑞 (𝜇𝑡 ∥ 𝜋) +𝑂 (𝛽2𝑑ℎ𝑞) .

This implies the differential inequality

𝜕𝑡
{
exp

( 𝑡 − 𝑘ℎ
2𝑞𝐶LSI

)
R𝑞 (𝜇𝑡 ∥ 𝜋)

}
≲ exp

( 𝑡 − 𝑘ℎ
2𝑞𝐶LSI

)
𝛽2𝑑ℎ𝑞 ≲ 𝛽2𝑑ℎ𝑞 .

Integrating this over 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] yields

R𝑞 (𝜇 (𝑘+1)ℎ ∥ 𝜋) ⩽ exp
(
− ℎ

2𝑞𝐶LSI

)
R𝑞 (𝜇𝑘ℎ ∥ 𝜋) +𝑂 (𝛽2𝑑ℎ2𝑞) .

Unrolling the recursion,

R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ⩽ exp
(
− 𝑁ℎ

2𝑞𝐶LSI

)
R𝑞 (𝜇0 ∥ 𝜋) +𝑂 (𝐶LSI𝛽

2𝑑ℎ𝑞2) . □

We pause to reflect upon the proof. As discussed above, the key steps are to use change of measure
inequalities in order to relate expectations under P to expectations under P. This is accomplished via
the Fisher information duality lemma (Lemma 4.2.5) and the Donsker–Varadhan variational principle
(Theorem 1.5.7). These inequalities yield an additional error term of the form FI(𝜓𝑡𝜇𝑡 ∥ 𝜋) (for the
latter, this error term appears after an application of the LSI). The magical part of the calculation is
that FI(𝜓𝑡𝜇𝑡 ∥ 𝜋) is precisely equal to the Rényi Fisher information (up to constants), and when the
step size ℎ is sufficiently small it can be absorbed into the decay term of the differential inequality
in Proposition 6.1.1.

The proof above implies an iteration complexity whose dependence on 𝑞 scales as 𝑁 = 𝑂 (𝑞3). In
order to improve the dependence on 𝑞, we modify the differential inequality of Proposition 6.1.1 by
making the parameter 𝑞 time-dependent, similarly to the hypercontractivity principle (Exercise 2.9).
The proof is left as Exercise 6.1.
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Proposition 6.1.4 (hypercontractivity). Suppose that 𝜋 satisfies a log-Sobolev inequality.
Along the law (𝜇𝑡 )𝑡⩾0 of the interpolated process (4.2.2), if we define the parameter 𝑞(𝑡) B
1 + (𝑞0 − 1) exp 𝑡

2𝐶LSI
, then

𝜕𝑡

( 1
𝑞(𝑡) log

∫
𝜌
𝑞 (𝑡 )
𝑡 d𝜋

)
⩽ −2 (𝑞(𝑡) − 1)

𝑞(𝑡)2
E𝜋 [∥∇(𝜌𝑞 (𝑡 )/2𝑡 )∥2]
E𝜋 (𝜌𝑞 (𝑡 )𝑡 )

+
(
𝑞(𝑡) − 1

)
E[𝜓𝑡 (𝑋𝑡 ) ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑋𝑘ℎ)∥2] ,

where 𝜌𝑡 B d𝜇𝑡
d𝜋 and 𝜓𝑡 B 𝜌

𝑞 (𝑡 )−1
𝑡 /E𝜋 (𝜌𝑞 (𝑡 )𝑡 ).

Proof of Theorem 6.1.2 with improved dependence on 𝑞 Let 𝑞 ⩾ 3.
Initial waiting phase. We apply hypercontractivity (Proposition 6.1.4) with 𝑞0 = 2 and for 𝑡 ⩽ 𝑁0ℎ,

where 𝑁0 B ⌈ 2𝐶LSI
ℎ

log(𝑞 − 1)⌉. Note that 𝑞 ⩽ 𝑞(𝑁0ℎ) ⩽ 2𝑞. The bound on the error term from the
previous proof yields

𝜕𝑡

( 1
𝑞(𝑡) log

∫
𝜌
𝑞 (𝑡 )
𝑡 d𝜋

)
≲ 𝛽2𝑑ℎ𝑞(𝑡) .

Integrating this over 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] yields
1

𝑞((𝑘 + 1)ℎ) log
∫

𝜌
𝑞 ( (𝑘+1)ℎ)
(𝑘+1)ℎ d𝜋 − 1

𝑞(𝑘ℎ) log
∫

𝜌
𝑞 (𝑘ℎ)
𝑘ℎ

d𝜋 ≲ 𝛽2𝑑ℎ2𝑞 .

Unrolling the recursion yields
1

𝑞(𝑁0ℎ)
log

∫
𝜌
𝑞 (𝑁0ℎ)
𝑁0ℎ

d𝜋 − 1
2

log
∫

𝜌2
0 d𝜋 ≲ 𝛽2𝑑ℎ2𝑞𝑁0 ⩽ 𝑂 (𝐶LSI𝛽

2𝑑ℎ𝑞) .

Finishing the convergence analysis. Next, after shifting time indices and applying the previous
proof of Theorem 6.1.2 with 𝑞 = 2,

R�̄� (𝜇 (𝑁+𝑁0 )ℎ ∥ 𝜋) ⩽
1

𝑞(𝑁0ℎ) − 1
log

∫
𝜌
𝑞 (𝑁0ℎ)
(𝑁+𝑁0 )ℎ d𝜋 ⩽

3
4

log
∫

𝜌2
𝑁ℎ d𝜋 +𝑂 (𝐶LSI𝛽

2𝑑ℎ𝑞)

⩽
3
4

exp
(
− 𝑁ℎ

4𝐶LSI

)
R2(𝜇0 ∥ 𝜋) +𝑂 (𝐶LSI𝛽

2𝑑ℎ𝑞) .

This proves the desired result. □

The proof of Theorem 6.1.2 is rather specific to the LSI case because we use the LSI to bound the
KL term KL(𝜓𝑡𝜇𝑡 ∥ 𝜋) via the Rényi Fisher information, which is then absorbed into the differential
inequality of Proposition 6.1.1. However, it turns out that rather than assuming an LSI for 𝜋, it suffices
to have an LSI for 𝜇𝑡 for all 𝑡 ⩾ 0 (possibly with an LSI constant that grows with 𝑡). One situation in
which this holds is when we initialize LMC with a measure 𝜇0 that satisfies an LSI, and the potential
𝑉 is convex. Note that this situation is not included in the case when 𝜋 satisfies an LSI, because 𝑉 may
only have linear growth at infinity (whereas from Theorem 2.4.3, if 𝜋 ∝ exp(−𝑉) satisfies an LSI,
then 𝑉 necessarily has quadratic growth at infinity). We explore this in Exercise 6.2.

6.2 Analysis of LMC via Girsanov’s Theorem
We now provide a Rényi analysis for LMC based on Girsanov’s theorem; see Sections 3.2.2 and 4.4
for background. The advantage of this approach is that it is more generalizable, as it is less reliant on
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seemingly miraculous calculations. The results of this section will also be used for the analysis of
MALA in Chapter 7.

Discretization error.
Following the proof of Theorem 4.4.1 in Section 4.4, let P𝑇 , W𝑇 be path measures such that under
P𝑇 , (𝑋𝑡 )𝑡∈[0,𝑇 ] is the interpolated LMC process, and under W𝑇 , (𝑋𝑡 )𝑡∈[0,𝑇 ] is the Langevin diffusion.
Both processes are initialized at some measure 𝜇0. Our goal is to prove the following theorem.

Theorem 6.2.1. Assume that the potential𝑉 is 𝛽-smooth and that ℎ ≲ 1/(𝛽2𝑞2𝑇) where 𝑇 = 𝑁ℎ.
Then, for all 𝑞 ⩾ 2,

R𝑞 (P𝑇 ∥W𝑇 ) ≲
1
𝑞

max
𝑘=0,1,...,𝑁−1

logEW𝑇 exp
{
𝑂
(
𝛽2ℎ2𝑞2𝑇 ∥∇𝑉 (𝑋𝑘ℎ)∥2

)}
+ 𝛽2𝑑ℎ𝑞𝑇 .

Proof From Girsanov’s theorem (Theorem 3.2.8; see also Section 4.4), we have1

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞]
= EW𝑇 exp

( 𝑞
√

2

∫ 𝑇

0
⟨∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ), d𝐵𝑡⟩

− 𝑞
4

∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
.

Unlike the analysis in KL divergence, the stochastic integral is now inside the exponential. The first
step is to remove this term, which we accomplish as follows. First, by the Cauchy–Schwarz inequality
and for any 𝜆 > 0,{

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞]}2
⩽ EW𝑇 exp

(√
2 𝑞

∫ 𝑇

0
⟨∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ), d𝐵𝑡⟩

− 𝜆
∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
× EW𝑇 exp

( (
𝜆 − 𝑞

2
) ∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
.

Next, recall from Section 3.2.2 that for any martingale 𝑀, the exponential martingale E(𝑀) B
exp(𝑀 − 1

2 [𝑀, 𝑀]) is a local martingale. We apply this to the martingale 𝑀 given by 𝑀𝑡 B√
2 𝑞

∫ 𝑡
0 ⟨∇𝑉 (𝑋𝑠− ) − ∇𝑉 (𝑋𝑠), d𝐵𝑠⟩ by taking 𝜆 = 𝑞2. Then, E(𝑀) is a non-negative local martingale,

so it is a supermartingale, and EW𝑇 E(𝑀)𝑇 ⩽ 1. Finally, noting that the expectation above is at least 1,
we can drop the square and we obtain

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞]
⩽ EW𝑇 exp

(
𝑞2

∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
⩽ EW𝑇 exp

(
𝛽2𝑞2

∫ 𝑇

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡

)
.

Let us first consider a single iteration, over the time interval [0, ℎ], and suppose that the processes

1Again, we ignore Novikov’s condition, which can be avoided via localization.
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are started at 𝑥 ∈ R𝑑 . Then,

∥𝑋𝑡 − 𝑥∥ =
−∫ 𝑡

0
∇𝑉 (𝑋𝑠) d𝑠 +

√
2 𝐵𝑡

 ⩽ ∫ 𝑡

0
∥∇𝑉 (𝑋𝑠)∥ d𝑠 +

√
2 ∥𝐵𝑡 ∥

⩽ 𝛽

∫ 𝑡

0
∥𝑋𝑠 − 𝑥∥ d𝑠 + ℎ ∥∇𝑉 (𝑥)∥ +

√
2 ∥𝐵𝑡 ∥ .

By Grönwall’s inequality, if ℎ ⩽ 1/𝛽, it yields, for all 𝑡 ∈ [0, ℎ],

∥𝑋𝑡 − 𝑥∥ ⩽ 3ℎ ∥∇𝑉 (𝑥)∥ + 3
√

2 sup
𝑠∈[0,𝑡 ]

∥𝐵𝑠 ∥ . (6.2.2)

Therefore, for any 𝜂 > 0,

EW𝑇 exp
(
𝜂 sup
𝑡∈[0,ℎ]

∥𝑋𝑡 − 𝑥∥2
)
⩽ exp(18𝜂ℎ2 ∥∇𝑉 (𝑥)∥2) EW𝑇 exp

(
36𝜂 sup

𝑡∈[0,ℎ]
∥𝐵𝑡 ∥2

)
.

We require a tail bound for Brownian motion (Lemma 6.2.4 below), which yields

logEW𝑇 exp
(
𝜂 sup
𝑡∈[0,ℎ]

∥𝑋𝑡 − 𝑥∥2
)
≲ 𝜂ℎ2 ∥∇𝑉 (𝑥)∥2 + 𝜂𝑑ℎ , (6.2.3)

provided that 𝜂 ≲ 1/ℎ.
We must now iterate this bound. One approach is to condition on the process up until time (𝑁 − 1)ℎ

and apply (6.2.3), which yields

EW𝑇 exp
(
𝛽2𝑞2

∫ 𝑁ℎ

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡

)
⩽ EW𝑇 exp

(
𝛽2𝑞2

∫ (𝑁−1)ℎ

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡 +𝑂

(
𝛽2ℎ3𝑞2 ∥∇𝑉 (𝑋(𝑁−1)ℎ)∥2 + 𝛽2𝑑ℎ2𝑞2) )

but now the terms in the exponential are dependent and we cannot peel off the next term. To circumvent
this issue, we instead apply Jensen’s inequality (or equivalently, the AM–GM inequality):

EW𝑇 exp
(
𝛽2𝑞2

∫ 𝑇

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡

)
⩽

1
𝑇

∫ 𝑇

0
EW𝑇 exp(𝛽2𝑞2𝑇 ∥𝑋𝑡 − 𝑋𝑡− ∥2) d𝑡 .

Applying (6.2.3) conditionally, it yields

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞]
⩽

1
𝑇

∫ 𝑇

0
EW𝑇 exp

(
𝑂
(
𝛽2ℎ2𝑞2𝑇 ∥∇𝑉 (𝑋𝑡− )∥2 + 𝛽2𝑑ℎ𝑞2𝑇

) )
d𝑡

provided that 𝛽2𝑞2𝑇 ≲ 1/ℎ, i.e., ℎ ≲ 1/(𝛽2𝑞2𝑇). The result follows. □

In the proof, we used the following lemma; see Exercise 6.3.

Lemma 6.2.4. Let (𝐵𝑡 )𝑡⩾0 denote a standard Brownian motion in R𝑑. Then, for 𝜆, 𝑡 > 0 such
that 𝜆 < 1

2𝑡 ,

E exp
(
𝜆 sup
𝑠∈[0,𝑡 ]

∥𝐵𝑠 ∥2
)
⩽

( 1 + 2𝜆𝑡
1 − 2𝜆𝑡

)𝑑
.
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Sampling guarantees.
We now show how to combine the continuous-time Rényi analysis (Theorem 2.2.25) with the
discretization bound (Theorem 6.2.1) to obtain sampling guarantees. The first ingredient we need is a
weak triangle inequality (Exercise 6.4).

Lemma 6.2.5 (weak triangle inequality). For any 𝑞 > 1, 𝜆 ∈ (0, 1), and any probability
measures 𝜇, 𝜈, 𝜋:

R𝑞 (𝜇 ∥ 𝜋) ⩽
𝑞 − 𝜆
𝑞 − 1

R𝑞/𝜆(𝜇 ∥ 𝜈) + R(𝑞−𝜆)/(1−𝜆) (𝜈 ∥ 𝜋) . (6.2.6)

In particular, for 𝜆 = 1/2,

R𝑞 (𝜇 ∥ 𝜋) ⩽
𝑞 − 1/2
𝑞 − 1

R2𝑞 (𝜇 ∥ 𝜈) + R2𝑞−1(𝜈 ∥ 𝜋) .

Next, in order to apply Theorem 6.2.1, we also need a concentration inequality for ∥∇𝑉 ∥ under 𝜋.
The following result is taken from Negrea (2022); Altschuler and Chewi (2023).

Lemma 6.2.7 (score concentration). Let 𝜋 ∝ exp(−𝑉) and assume that ∇𝑉 is 𝛽-Lipschitz. Then,
∇𝑉 is

√
𝛽-sub-Gaussian under 𝜋, in the sense that for any 𝑣 ∈ R𝑑 ,

E𝜋 exp ⟨∇𝑉, 𝑣⟩ ⩽ exp
( 𝛽 ∥𝑣∥2

2
)
.

In particular, for any 0 < 𝛿 < 1/2, with probability at least 1 − 𝛿 under 𝜋,

∥∇𝑉 ∥ ≲
√︁
𝛽𝑑 +

√︂
𝛽 log

1
𝛿
.

We also need to transfer this concentration to different measures, which is accomplished via the
following general principle.

Lemma 6.2.8 (change of measure). Suppose that a test function 𝜙 satisfies

𝜋{𝜙 ⩾ 𝜂} ⩽ 𝜓(𝜂) , for all 𝜂 > 0 .

Then, for any measure 𝜇 and any 𝑞 > 1,

𝜇{𝜙 ⩾ 𝜂} ⩽ 𝜓(𝜂) (𝑞−1)/𝑞 exp
(𝑞 − 1
𝑞

R𝑞 (𝜇 ∥ 𝜋)
)
.

Proof We note the following simple calculation:

𝜇{𝜙 ⩾ 𝜂} =
∫

1{𝜙 ⩾ 𝜂} d𝜇
d𝜋

d𝜋 ⩽ 𝜋{𝜙 ⩾ 𝜂} (𝑞−1)/𝑞
{∫ (d𝜇

d𝜋
)𝑞 d𝜋

}1/𝑞
. □

We can now prove the following result.
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Theorem 6.2.9. For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of the 𝑘-th iterate of LMC with step size ℎ > 0.
Assume that ∇𝑉 is 𝛽-Lipschitz, 𝑞 ⩾ 2, and that 𝜀 is sufficiently small.

1 If 𝜋 satisfies a log-Sobolev inequality, then for an appropriate choice of ℎ we obtain
R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ⩽ 𝜀2 with

𝑁 = Θ

(𝐶2
LSI𝛽

2𝑑𝑞3

𝜀2 log2 R2𝑞−1(𝜇0 ∥ 𝜋)
𝜀2

)
iterations .

2 If 𝜋 satisfies a Poincaré inequality, then for an appropriate choice of ℎ we obtainR𝑞 (𝜇𝑁ℎ ∥𝜋) ⩽
𝜀2 with

𝑁 = Θ

(𝐶2
PI𝛽

2𝑑𝑞3

𝜀2

(
R2𝑞−1(𝜇0 ∥ 𝜋)2 + log2 1

𝜀

) )
iterations .

Proof Let (𝜋𝑡 )𝑡⩾0 denote the Langevin diffusion started at 𝜇0. By the weak triangle inequality
(Lemma 6.2.5),

R𝑞 (𝜇𝑇 ∥ 𝜋) ≲ R2𝑞 (𝜇𝑇 ∥ 𝜋𝑇 ) + R2𝑞−1(𝜋𝑇 ∥ 𝜋) .

By Theorem 2.2.25, the second term is at most 𝜀2 for 𝑇 ≍ 𝑞𝐶LSI log(R2𝑞−1(𝜇0 ∥ 𝜋)/𝜀2) in the LSI
case, and for 𝑇 ≍ 𝑞𝐶PI (R2𝑞−1(𝜇0 ∥ 𝜋) + log(1/𝜀)) in the PI case.

Next, Lemma 6.2.7 yields, for some universal 𝐶 > 0,

𝜋{∥∇𝑉 ∥ ⩾ 𝐶
√︁
𝛽 (
√
𝑑 + 𝜂)} ⩽ exp(−𝜂2) for all 𝜂 > 0 .

By Lemma 6.2.8, for any 𝑡 ∈ [0, 𝑇],

𝜋𝑡 {∥∇𝑉 ∥ ⩾ 𝐶
√︁
𝛽 (
√
𝑑 + 𝜂)} ⩽ exp

(
−2𝑞 − 1

2𝑞
(
𝜂2 − R2𝑞 (𝜋𝑡 ∥ 𝜋)

) )
.

By the data-processing inequality (Theorem 1.5.6), R2𝑞 (𝜋𝑡 ∥ 𝜋) ⩽ R2𝑞 (𝜇0 ∥ 𝜋). We can conclude that
with probability at least 1 − 𝛿 under 𝜋𝑡 ,

∥∇𝑉 ∥ ≲
√︃
𝛽
(
𝑑 + R2𝑞 (𝜇0 ∥ 𝜋)

)
+
√︂
𝛽 log

1
𝛿
.

From Theorem 6.2.1, provided that ℎ ≲ 1/(𝛽2𝑞2𝑇) and ℎ ≲ 1/(𝛽3/2𝑞𝑇1/2),

R2𝑞 (𝜇𝑇 ∥ 𝜋𝑇 ) ≲ 𝛽3ℎ2𝑞𝑇
(
𝑑 + R2𝑞 (𝜇0 ∥ 𝜋)

)
+ 𝛽2𝑑ℎ𝑞𝑇 .

For simplicity, we use the assumption that 𝜀 is sufficiently small in order to focus on the dominant
term (i.e., 𝛽2𝑑ℎ𝑞𝑇). The theorem follows by choosing ℎ appropriately. □

If we assume that R2𝑞−1(𝜇0 ∥ 𝜋) = 𝑂 (𝑑) (see ? for justification) and that 𝛽𝐶LSI, 𝛽𝐶PI = 𝑂 (1), then
the complexity reads 𝑂 (𝑑𝑞3/𝜀2) in the LSI case and 𝑂 (𝑑3𝑞3/𝜀2) in the PI case. In the LSI case, this
is worse than the result in Theorem 6.1.2 in two ways: first, the dependence on 𝑞 (because here we did
not take advantage of hypercontractivity); and second, Theorem 6.2.9 does not allow for taking an
unbounded number of steps of LMC (it suggests that if we run LMC for too long, then we will start to
drift farther away from 𝜋, which is absurd).

As mentioned above, however, the benefit of the Girsanov approach is its flexibility, which allowed
us to tackle the Poincaré case. This flexibility will be important when we study the underdamped
Langevin diffusion in the next section. Finally, we remark that the sampling guarantee under a Poincaré
inequality will be considerably improved via the proximal sampler in Chapter 8.
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6.3 Analysis of ULMC via Girsanov’s Theorem

In this section, we apply the Girsanov approach to provide Rényi divergence guarantees for ULMC,
which was introduced in Section 5.3. This result provides a “warm start” for MALA, as discussed in
Chapter 7.

Let W𝑇 be the path measure under which 𝐵 is a standard Brownian motion that drives the
underdamped Langevin diffusion:

d𝑋𝑡 = 𝑃𝑡 d𝑡 ,

d𝑃𝑡 = −𝛾𝑃𝑡 d𝑡 − ∇𝑉 (𝑋𝑡 ) d𝑡 +
√︁

2𝛾 d𝐵𝑡 .

Then, let P𝑇 be the path measure under which �̃� is a standard Brownian motion, which drives the
interpolated ULMC algorithm:

d𝑋𝑡 = 𝑃𝑡 d𝑡 ,

d𝑃𝑡 = −𝛾𝑃𝑡 d𝑡 − ∇𝑉 (𝑋𝑡− ) d𝑡 +
√︁

2𝛾 d�̃�𝑡 .

We will establish the following discretization bound.

Theorem 6.3.1. Assume that the potential 𝑉 is 𝛽-smooth and that the step size satisfies
ℎ ≲ 1√

𝛽
∧ 1

𝛾
∧ 1

𝛽2/3𝑞2/3𝑇1/3 , where 𝑇 = 𝑁ℎ. Then, for all 𝑞 ⩾ 2,

R𝑞 (𝑷𝑇 ∥𝑾𝑇 ) ≲
1
𝑞

max
𝑘=0,1,...,𝑁−1

logEW𝑇 exp
{
𝑂

( 𝛽2𝑞2𝑇

𝛾

(
ℎ2 ∥𝑃𝑘ℎ∥2 + ℎ4 ∥∇𝑉 (𝑋𝑘ℎ)∥2

) )}
+ 𝛽2𝑑ℎ3𝑞𝑇 .

Proof Since the argument is similar as the proof of Theorem 6.2.1, we omit some of the steps for
brevity. First, from Girsanov’s theorem (Theorem 3.2.8), we obtain

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞]
= EW𝑇 exp

( 𝑞√︁
2𝛾

∫ 𝑇

0
⟨∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 ), d𝐵𝑡⟩

− 𝑞

4𝛾

∫ 𝑇

0
∥∇𝑉 (𝑋𝑡− ) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡

)
.

By the same martingale and AM–GM argument as before, it implies

EW𝑇
[ ( dP𝑇

dW𝑇

)𝑞]
⩽ EW𝑇 exp

( 𝛽2𝑞2

𝛾

∫ 𝑇

0
∥𝑋𝑡 − 𝑋𝑡− ∥2 d𝑡

)
⩽

1
𝑇

∫ 𝑇

0
EW𝑇 exp

( 𝛽2𝑞2𝑇

𝛾
∥𝑋𝑡 − 𝑋𝑡− ∥2

)
d𝑡 .

Next, we need an almost-sure version of the movement bound in Lemma 5.3.9; we leave it for the
reader to check that if ℎ ≲ 1√

𝛽
∧ 1

𝛾
, then

∥𝑋𝑡 − 𝑋𝑡− ∥ ≲ ℎ ∥𝑃𝑡− ∥ + ℎ2 ∥∇𝑉 (𝑋𝑡− )∥ + 𝛾1/2ℎ sup
𝑠∈[𝑡− ,𝑡−+ℎ]

∥𝐵𝑠 ∥ .
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Using the Brownian tail bound from Lemma 6.2.4, it yields

exp
( 𝛽2𝑞2𝑇

𝛾
∥𝑋𝑡 − 𝑋𝑡− ∥2

)
⩽ EW𝑇 exp

(
𝑂

( 𝛽2𝑞2𝑇

𝛾

(
ℎ2 ∥𝑃𝑡− ∥2 + ℎ4 ∥∇𝑉 (𝑋𝑡− )∥2

) ))
× exp

(
𝑂 (𝛽2𝑑ℎ3𝑞2𝑇)

)
provided that ℎ3 ≲ 1/(𝛽2𝑞2𝑇). This completes the proof. □

As in the previous section, this discretization bound leads to sampling guarantees, which we leave
as an exercise.

Corollary 6.3.2. For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of 𝑋𝑘ℎ in ULMC with step size ℎ > 0. Assume
that ∇𝑉 is 𝛽-Lipschitz and for simplicity let us assume that R2(𝜇0 ∥ 𝜋) ⩽ 𝑂 (𝑑). The following
guarantees hold with appropriate choices of ℎ and 𝛾.

1 If 𝜋 satisfies a log-Sobolev inequality, then ∥𝜇𝑁ℎ − 𝜋∥TV ⩽ 𝜀 with

𝑁 = Θ̃

(𝐶3/2
LSI 𝛽

3/2𝑑1/2

𝜀

)
iterations .

2 If 𝜋 satisfies a Poincaré inequality, then we obtain R3/2(𝜇𝑁ℎ ∥ 𝜋) ⩽ 𝜀2 with

𝑁 = Θ

(𝐶3/2
PI 𝛽

3/2𝑑2

𝜀

)
iterations .

3 If 𝜋 satisfies a Poincaré inequality and is in addition log-concave, then we obtain R3/2(𝜇𝑁ℎ ∥
𝜋) ⩽ 𝜀2 with

𝑁 = Θ

(𝐶PI𝛽𝑑
2

𝜀

)
iterations .

Despite the fact that Theorem 6.3.1 holds for all Rényi orders 𝑞 ⩾ 2, Corollary 6.3.2 only provides
guarantees in TV and R3/2. This is because the hypocoercivity results of Section 5.3.4 hold in KL
and 𝜒2 (recalling that 𝜒2 = exp(R2) − 1), and we need to further weaken the Rényi order when we
apply Pinsker’s inequality or the weak triangle inequality. At present, it is not known how to obtain an
analogue of the Rényi convergence in Theorem 2.2.25 for the underdamped Langevin diffusion.

Moreover, this means that even in the strongly log-concave case, in order to retain the expected
𝑂 (𝑑1/2) dimension dependence, Corollary 6.3.2 only furnishes a result in total variation. With a bit
more work, Zhang et al. (2023) managed to obtain a result in KL divergence, but we cannot hope for
better as long as we rely on the entropic hypocoercivity result (Theorem 5.3.13).

Fortunately, there is another approach: one can argue that the underdamped Langevin diffusion is
regularizing, in the sense of the following theorem (see the bibliographical notes). In Exercise 6.6, we
outline an alternative approach which replaces the theorem below with the discrete-time analogue for
one step of ULMC.
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Theorem 6.3.3 (hypocoercive regularization, Guillin and Wang (2012)). Let (𝝁𝑡 )𝑡⩾0, ( �̄�𝑡 )𝑡⩾0
denote the marginal laws of two copies of the underdamped Langevin diffusion, started at (𝑥, 𝑝)
and (𝑥, 𝑝) respectively. Assume that the potential 𝑉 is 𝛽-smooth, and that 𝑡 ≲ 1√

𝛽
∧ 1

𝛾
. Then, for

all 𝑞 ⩾ 1, it holds that

R𝑞 (𝝁𝑡 ∥ �̄�𝑡 ) ≲
𝑞

𝛾

( ∥𝑥 − 𝑥∥2
𝑡3

+ ∥𝑝 − 𝑝∥
2

𝑡

)
.

This result then allows us to obtain convergence in Rényi divergence under strong log-concavity
via a coupling argument.

Theorem 6.3.4. Let (𝝅𝑡 )𝑡⩾0 denote the law of the underdamped Langevin diffusion for a potential
𝑉 satisfying 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and with friction parameter 𝛾 =

√︁
2𝛽. Assume that the diffusion

is initialized at 𝜋0 ⊗ normal(0, 𝐼𝑑), where 𝜋0 satisfies

inf
𝛾∈C(𝜋0 , 𝜋 )

∫
exp

( 𝛽 ∥𝑥 − 𝑥∥2
𝜎2

)
𝛾(d𝑥, d𝑥) ⩽ 2 (6.3.5)

for some 𝜎 > 0. Then, for all 𝑞 ⩾ 2, we have R𝑞 (𝝅𝑡 ∥ 𝝅) ⩽ 𝜀2 ⩽ 1/𝑞 for all

𝑡 ≳
1
√
𝛽
+
√
𝛽

𝛼
log

𝜎2𝑞

𝜀2 .

Proof Write 𝜂𝑥,𝑝𝑡 for the law of the underdamped Langevin diffusion at time 𝑡, started from (𝑥, 𝑝).
Let 𝑓𝑞 (·) B (·)𝑞 − 1, and let D 𝑓𝑞 denote the associated divergence. We take 𝑇0 ≍ 1/

√
𝛽 and invoke

the joint convexity of 𝑓 -divergences (Theorem 1.5.6) as well as Theorem 6.3.3 as follows. For any
coupling 𝜸 of 𝝅𝑇 and 𝝅,

exp
(
(𝑞 − 1)R𝑞 (𝝅𝑇+𝑇0 ∥ 𝝅)

)
= 1 + D 𝑓𝑞 (𝝅𝑇+𝑇0 ∥ 𝝅)

= 1 + D 𝑓𝑞

(∫
𝜂
𝑥,𝑝

𝑇0
𝜸(d𝑥, d𝑝, d𝑥, d𝑝)

 ∫ 𝜂
�̄�, �̄�

𝑇0
𝜸(d𝑥, d𝑝, d𝑥, d𝑝)

)
⩽ 1 +

∫
D 𝑓𝑞 (𝜂

𝑥,𝑝

𝑇0
∥ 𝜂 �̄�, �̄�

𝑇0
) 𝜸(d𝑥, d𝑝, d𝑥, d𝑝)

=

∫
exp

(
(𝑞 − 1)R𝑞 (𝜂𝑥,𝑝𝑇0

∥ 𝜂 �̄�, �̄�
𝑇0
)
)
𝜸(d𝑥, d𝑝, d𝑥, d𝑝)

⩽

∫
exp

{
𝑂

(𝑞 (𝑞 − 1)
𝛾

( ∥𝑥 − 𝑥∥2
𝑇3

0
+ ∥𝑝 − 𝑝∥

2

𝑇0

) )}
𝜸(d𝑥, d𝑝, d𝑥, d𝑝)

=

∫
exp

{
𝑂
(
𝑞2 (𝛽 ∥𝑥 − 𝑥∥2 + ∥𝑝 − 𝑝∥2)

)}
𝜸(d𝑥, d𝑝, d𝑥, d𝑝) .

This is a “sub-Gaussian” coupling cost between 𝝅𝑇 and 𝝅. However, recall from Theorem 5.3.4 that we
can find a coupling of two copies of the underdamped Langevin diffusion which yields an almost-sure
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contraction in the |||·||| norm. Hence, if 𝛾0 denotes the coupling that realizes the infimum in (6.3.5),

R𝑞 (𝝅𝑇+𝑇0 ∥ 𝝅) ≲
1
𝑞

log
∫

exp
{
𝑂
(
𝛽𝑞2 ||| (𝑥, 𝑝) − (𝑥, 𝑝) |||2

)}
𝜸(d𝑥, d𝑝, d𝑥, d𝑝)

⩽
1
𝑞

log
∫

exp
{
𝑂

(
exp

(
− 𝛼𝑇√︁

2𝛽
)
𝛽𝑞2 ∥𝑥 − 𝑥∥2

)}
𝛾0(d𝑥, d𝑥)

≲ 𝜎2𝑞 exp
(
− 𝛼𝑇√︁

2𝛽
)

log
∫

exp
( 𝛽 ∥𝑥 − 𝑥∥2

𝜎2

)
𝛾0(d𝑥, d𝑥) ,

where the last inequality follows from (reverse) Jensen’s inequality provided that the condition
𝜎2𝑞2 exp(−𝛼𝑇/

√︁
2𝛽) ≲ 1 holds. The desired result follows. □

We are now in a position to obtain Rényi guarantees under strong log-concavity.

Theorem 6.3.6 (Altschuler and Chewi (2024a)). For 𝑘 ∈ N, let 𝜇𝑘ℎ denote the law of 𝑋𝑘ℎ in ULMC
with friction parameter 𝛾 =

√︁
2𝛽 and initialized at 𝝁0 = normal(𝑥★, 𝛽−1𝐼𝑑) ⊗ normal(0, 𝐼𝑑),

where 𝑥★ = arg min𝑉 . Assume that the potential 𝑉 satisfies 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑. Then, for any
𝑞 ⩾ 2 and for step size ℎ = Θ̃( 𝜀√

𝛽𝜅𝑑𝑞
), we obtain R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ⩽ 𝜀2 after

𝑁 = Θ̃

( 𝜅3/2𝑑1/2𝑞1/2

𝜀

)
iterations .

Proof sketch With this choice of initialization, we can check that (6.3.5) holds with 𝜎2 ≍ 𝜅𝑑

(see Theorem 2.4.3 and Lemma 4.0.1). From Theorem 6.3.4 we can run the diffusion for a total
time of 𝑇 ≍ 𝜅√

𝛽
log(𝜅𝑑𝑞/𝜀2) to obtain R2𝑞−1(𝝅𝑇 ∥ 𝝅) ≲ 𝜀2, where (𝝅𝑡 )𝑡⩾0 denotes the underdamped

Langevin diffusion initialized at 𝝁0. Next, we apply the discretization bound of Theorem 6.3.1 to
control R2𝑞 (𝝁𝑇 ∥ 𝝅𝑇 ). Since R2𝑞 (𝝁0 ∥ 𝝅) ⩽ 𝑑

2 log 𝜅 (Exercise 1.19), the concentration and change of
measure lemmas (Lemma 6.2.7 and Lemma 6.2.8) can be used to further simplify the bound, similarly
to the proof of Theorem 6.2.9, eventually yielding R2𝑞 (𝝁𝑇 ∥ 𝝅𝑇 ) ≲ 𝛽3/2𝑑ℎ2𝑞𝑇 . Choosing the step size
ℎ appropriately and applying the weak triangle inequality (Lemma 6.2.5) concludes the proof. □

Bibliographical Notes
Rényi guarantees for LMC were first considered in Vempala and Wibisono (2019), which proved
convergence of LMC to its biased stationary distribution provided that the biased limit satisfies a
Poincaré or log-Sobolev inequality. However, this does not lead to a sampling guarantee unless the
size of the “Rényi bias” (the Rényi divergence between the biased stationary distribution and the true
target distribution) can be estimated.

Motivated by applications to differential privacy, Ganesh and Talwar (2020) provided the first
Rényi sampling guarantees for LMC under strong log-concavity by using a technique based on the
adaptive composition lemma for Rényi divergences. This result was refined in Erdogdu et al. (2022)
via a two-phase analysis, still relying on the adaptive composition lemma. Subsequently, building off
the earlier work of Chewi et al. (2021) (which essentially contains a one-step Rényi discretization
argument), it was realized in ? that the earlier arguments of Ganesh and Talwar (2020); Erdogdu et al.
(2022) can be streamlined by replacing the adaptive composition lemma entirely with Girsanov’s



6.3 Analysis of ULMC via Girsanov’s Theorem 173

theorem. The proofs of Theorem 6.1.2 and Exercise 6.2 are also from ?. The proof of Theorem 6.2.9
given here is a further refinement of ?.

The use of Girsanov’s theorem to obtain Rényi discretization bounds for ULMC first appeared
in Zhang et al. (2023), which considered a variety of settings (including weakly smooth potentials). In
the strongly log-concave case, the argument was simplified in Altschuler and Chewi (2024a).

The hypocoercive regularization result (Theorem 6.3.3) is an example of a reverse transport
inequality, which is dual to a (dimension-free, parabolic) Harnack inequality. Such Harnack inequalities
were first introduced in Wang (1997), and have subsequently become the focal point of a large literature;
see Altschuler and Chewi (2024b) for a recent treatment and references. The result of Theorem 6.3.3
is simplified from (Guillin and Wang, 2012, Corollary 4.6).

The Rényi sampling guarantee for ULMC in Theorem 6.3.6 was established first in Altschuler and
Chewi (2024a) via the approach outlined in Exercise 6.6. The presentation of the arguments here is
inspired by the treatment in Altschuler and Chewi (2024b).

Exercises
Analysis of LMC via Interpolation Argument

⊵ Exercise 6.1 (Rényi differential inequality)
Prove Proposition 6.1.1 and Proposition 6.1.4.

⊵ Exercise 6.2 (Rényi discretization bound for log-concave targets)
Suppose that 𝜋 ∝ exp(−𝑉) is log-concave, that ∇𝑉 (0) = 0, and that ∇𝑉 is 𝛽-Lipschitz. Also, suppose
that we initialize LMC at 𝜇0 = normal(0, 𝛽−1𝐼𝑑). The goal of this exercise is to prove a Rényi
discretization bound for LMC under these assumptions.

1 First, show that 𝜇𝑡 satisfies an LSI for all 𝑡 ⩾ 0, and write down a bound for 𝐶LSI(𝜇𝑡 ) (the bound
should grow linearly with 𝑡).

Hint: See Section 2.3.
2 Follow the proof of Theorem 6.1.2 (the first proof which incurs a suboptimal dependence on 𝑞).

Note that in Theorem 6.1.2, we bounded KL(P ∥ P) ⩽ 𝑞−1
𝑞

KL(𝜓𝑡𝜇𝑡 ∥ 𝜋) and we applied the LSI for
𝜋. This time, use KL(P ∥ P) = KL(𝜓𝑡𝜇𝑡 ∥ 𝜇𝑡 ) and apply the LSI for 𝜇𝑡 instead.

Also, instead of using the decay of the Rényi divergence under a LSI, use the decay of the Rényi
divergence under a PI (Theorem 2.2.25). (Since 𝜋 is log-concave, it necessarily satisfies a Poincaré
inequality with some constant 𝐶PI, see the Bibliographical Notes to Chapter 2.)

Prove that if 𝜀 ⩽
√︁

1/𝑞 ∧
√︁
𝐶PI𝑑/𝛽, then with an appropriate choice of step size ℎ and with

𝑁 = Θ̃(𝐶2
PI𝛽

2𝑑2𝑞3/𝜀2) iterations of LMC, we obtain
√︁
R𝑞 (𝜇𝑁ℎ ∥ 𝜋) ⩽ 𝜀. (Unlike the guarantee

of Theorem 6.1.2, here the guarantee does not allow 𝑁 to be too large, due to the growing LSI
constant of the iterates.)

Analysis of LMC via Girsanov’s Theorem
⊵ Exercise 6.3 (sub-Gaussian bound for Brownian motion)
Prove Lemma 6.2.4.

Hint: The reflection principle states that if (�̃�𝑡 )𝑡⩾0 is a one-dimensional Brownian motion, then for
every 𝜂 > 0, P(sup𝑠∈[0,𝑡 ] �̃�𝑠 > 𝜂) = 2P(�̃�𝑡 > 𝜂).

⊵ Exercise 6.4 (weak triangle inequality)
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Prove the weak triangle inequality (Lemma 6.2.5). What happens if we take 𝑞 = 1 + 𝜀, 𝜆 = 1 − 𝜀, and
send 𝜀 ↘ 0?

Analysis of ULMC via Girsanov’s Theorem
⊵ Exercise 6.5 (Rényi guarantees for ULMC)
This question fills some omitted details from the proofs.

1 Prove Corollary 6.3.2 by combining Theorem 6.3.1 with the hypocoercivity results from Sec-
tion 5.3.4.

2 Fill in the details in the proof of Theorem 6.3.6.

⊵ Exercise 6.6 (discrete-time version of hypocoercive regularization)
In this exercise, we outline a simpler, discrete-time alternative to the hypocoercive regularization
result (Theorem 6.3.3) which suffices to prove Theorem 6.3.6. Let Σ denote the covariance matrix for
a single step of ULMC, as given in Lemma 5.3.7. Recall, however, that for the contraction result we
work with the twisted coordinates (𝑥, 𝑥 + 2

𝛾
𝑝). LetM denote the matrix corresponding to the change

of coordinates (𝑥, 𝑝) ↦→ (𝑥, 𝑥 + 2
𝛾
𝑝), so that the covariance matrix in this system of coordinates is

Σ̄ BMΣMT. Also, let 𝑷 denote the Markov kernel corresponding to one iteration of ULMC.

1 Prove that for ℎ ≲ 1/𝛾, 𝜆min(Σ̄) ≳ 𝛾ℎ3.
2 Using the explicit expression for the Rényi divergence between Gaussians, prove the following

regularization bound:

R𝑞 (𝛿𝑥,𝑝𝑷, 𝛿 �̄�, �̄�𝑷) ≲
𝑞

𝛾ℎ3 ||| (𝑥, 𝑝) − (𝑥, 𝑝) |||
2
.

3 Although we proved that the diffusion contracts in this coordinate system (Theorem 5.3.4),
our aim now is to work with the discrete-time algorithm. Adapt the proof of Theorem 5.3.4,
using Lemma 5.3.7, to show that if 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and ℎ ≲ 1

𝛽1/2𝜅
, then 𝑷 is an almost-sure

contraction:

𝑊∞, ||| · ||| (𝛿𝑥,𝑝𝑷, 𝛿 �̄�, �̄�𝑷) ⩽
(
1 −Ω

( 𝛼ℎ
√
𝛽

) )
||| (𝑥, 𝑝) − (𝑥, 𝑝) ||| ,

where𝑊∞, ||| · ||| denotes the𝑊∞ metric with respect to |||·|||.
4 Similarly to the proof of Theorem 6.3.4, prove that R𝑞 (𝝁0𝑷

𝑁 ∥ 𝝅𝑷𝑁 ) ⩽ 𝜀2, where 𝝁0 =

normal(𝑥★, 𝛽−1𝐼𝑑) ⊗ normal(0, 𝐼𝑑), provided that

𝑁 ≳

√
𝛽

𝛼ℎ
log

𝛽3/2𝜅𝑑𝑞

𝜀2ℎ3 .

5 Combine this with Theorem 6.3.1 to give another proof of Theorem 6.3.6.



CHAPTER 7

High-Accuracy Samplers

So far, we have focused on discretizations of diffusions. Discretization of a continuous-time Markov
process yields a discrete-time Markov chain whose stationary distribution is no longer equal to the
target 𝜋; the algorithm is biased. Nevertheless, we showed that the size of the bias can be made smaller
than any desired accuracy 𝜀 by choosing a small step size ℎ, which then leads to quantitative sampling
guarantees.

However, the number of iterations of the algorithm is proportional to the inverse step size 1/ℎ, and
consequently the complexity of the algorithms scaled as poly(1/𝜀). In this section, we address the
problem of designing high-accuracy samplers, i.e., samplers whose complexity scales as polylog(1/𝜀).
To accomplish this, we must fix the bias of the sampling algorithm, which is accomplished via the
Metropolis–Hastings filter.

7.1 Rejection Sampling
Before introducing the Metropolis–Hastings filter, we begin with a warm up and introduce the concept
of rejection via the rejection sampling algorithm.

Rejection Sampling: Let 𝜋 be the target distribution and let �̃� be an unnormalized version of 𝜋,
i.e., �̃� ∝ 𝜋. Suppose we can sample from a distribution 𝜇 and that an unnormalized version 𝜇 of 𝜇
satisfies 𝜇 ⩾ �̃�. Then, repeat until acceptance:

1 Draw 𝑋 ∼ 𝜇.
2 Accept 𝑋 with probability �̃�(𝑋)/𝜇(𝑋).

Unlike the other sampling algorithms we have considered thus far, rejection sampling always
terminates with an exact sample from 𝜋.

Theorem 7.1.1. The output of rejection sampling is a sample drawn exactly from 𝜋. Also, the
number of samples drawn from 𝜇 until a sample is accepted follows a geometric distribution with
mean 𝑍𝜇/𝑍𝜋 , where 𝑍𝜇 B

∫
𝜇 and 𝑍𝜋 B

∫
�̃�.

175
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Proof The probability of acceptance is

P(acceptance) =
∫

�̃�

𝜇
d𝜇 =

𝑍𝜋

𝑍𝜇

∫
𝜋

𝜇
d𝜇 =

𝑍𝜋

𝑍𝜇

and clearly the number of samples drawn until acceptance is geometrically distributed.
To show that the output 𝑋 of rejection sampling is drawn exactly according to 𝜋, let (𝑈𝑖)∞𝑖=1

i.i.d.∼
uniform[0, 1] and (𝑋𝑖)∞𝑖=1

i.i.d.∼ 𝜇 be independent. Then, for any event 𝐴,

P(𝑋 ∈ 𝐴) =
∞∑︁
𝑛=0

P
(
𝑋𝑛+1 ∈ 𝐴, 𝑈𝑖 >

�̃�(𝑋𝑖)
𝜇(𝑋𝑖)

∀𝑖 ∈ [𝑛], 𝑈𝑛+1 ⩽
�̃�(𝑋𝑛+1)
𝜇(𝑋𝑛+1)

)
=

∞∑︁
𝑛=0

P
(
𝑋𝑛+1 ∈ 𝐴, 𝑈𝑛+1 ⩽

�̃�(𝑋𝑛+1)
𝜇(𝑋𝑛+1)

)
P
(
𝑈1 >

�̃�(𝑋1)
𝜇(𝑋1)

)𝑛
=

∞∑︁
𝑛=0

(∫
𝐴

�̃�

𝜇
d𝜇

) (∫ (
1 − �̃�

𝜇

)
d𝜇

)𝑛
=
𝑍𝜋

𝑍𝜇
𝜋(𝐴)

∞∑︁
𝑛=0

(
1 − 𝑍𝜋

𝑍𝜇

)𝑛
= 𝜋(𝐴) . □

The rejection sampling algorithm requires the construction of the upper envelope 𝜇. We now
demonstrate how to construct this envelope for our usual class of distributions. Namely, suppose
that 𝜋 ∝ exp(−𝑉) satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑, and that ∇𝑉 (0) = 0. We can assume that our
unnormalized version �̃� = exp(−𝑉) of 𝜋 satisfies 𝑉 (0) = 0 (if not, replace 𝑉 by 𝑉 − 𝑉 (0)). Then,
by strong convexity of 𝑉 , we see that �̃� ⩽ exp(− 𝛼2 ∥·∥

2), and we can take 𝜇 B exp(− 𝛼2 ∥·∥
2), which

means that the normalized distribution is 𝜇 = normal(0, 𝛼−1𝐼𝑑). To understand the efficiency of
rejection sampling, we need to bound the ratio 𝑍𝜇/𝑍𝜋 of normalizing constants. By smoothness of 𝑉 ,

𝑍𝜇

𝑍𝜋
=
(2π/𝛼)𝑑/2∫

exp(−𝑉)
⩽

(2π/𝛼)𝑑/2∫
exp(− 𝛽2 ∥·∥2)

=
(2π/𝛼)𝑑/2

(2π/𝛽)𝑑/2
= 𝜅𝑑/2 ,

with 𝜅 B 𝛽/𝛼. We summarize this result in the following proposition.

Proposition 7.1.2. Let the target 𝜋 ∝ exp(−𝑉) on R𝑑 satisfy 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑, 𝑉 (0) = 0,
and ∇𝑉 (0) = 0. Then, rejection sampling with the envelope 𝜇 B exp(− 𝛼2 ∥·∥

2) returns an exact
sample from 𝜋 with a number of iterations that is a geometric random variable with mean at
most 𝜅𝑑/2, where 𝜅 B 𝛽/𝛼.

The rejection sampling guarantee can be formulated in one of two ways. We can think of the
algorithm as returning an exact sample from 𝜋, with a random number of iterations (the number of
iterations is geometrically distributed). Alternatively, if we place an upper bound 𝑁 on the number
of iterations of the algorithm and output “FAIL” if we have not terminated by iteration 𝑁 , then the
probability of “FAIL” is at most 𝜀 B (1 − 1/𝜅𝑑/2)𝑁 , and if 𝜇𝑁 denotes the law of the output of the
algorithm, then ∥𝜇𝑁 − 𝜋∥TV ⩽ 𝜀. If we flip this around and fix the target accuracy 𝜀, we see that the
number of iterations required to achieve this guarantee is 𝑁 ⩾ 𝜅𝑑/2 log(1/𝜀).

Although this result is acceptable in low dimension, the complexity of this approach quickly
becomes intractable even for moderately high-dimensional problems. In the next section, we will
see that by combining the idea of rejection with local proposals, we can obtain tractable sampling
algorithms in high dimension.
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7.2 The Metropolis–Hastings Filter
A Metropolis–Hastings algorithm consists of proposing moves from a proposal kernel 𝑄, and then
accepting or rejecting each move with a carefully chosen probability which ensures that the resulting
Markov chain has the desired stationary distribution 𝜋.

In more detail, let 𝑄 be a kernel on R𝑑 × R𝑑, that is: for each 𝑥 ∈ R𝑑, 𝑄(𝑥, ·) is a probability
measure on R𝑑 . We will mostly consider proposals such that each 𝑄(𝑥, ·) has a density with respect to
Lebesgue measure, and via an abuse of notation we will write 𝑄(𝑥, 𝑦) for this density evaluated at 𝑦
(an exception is when we consider MHMC below).

Starting from 𝑋 ∈ R𝑑 , we tentatively propose a new point 𝑌 ∼ 𝑄(𝑋, ·). We then accept the point 𝑌
with probability 𝐴(𝑋,𝑌 ) (called the acceptance probability); otherwise, we stay at the old point 𝑋 .
Iterate this process until convergence.

There are different possible choices for the acceptance probability 𝐴, but the choice we consider
here is the Metropolis–Hastings filter

𝐴(𝑥, 𝑦) B 1 ∧ 𝜋(𝑦)𝑄(𝑦, 𝑥)
𝜋(𝑥)𝑄(𝑥, 𝑦) . (7.2.1)

The overall algorithm is summarized as follows.
Metropolis–Hastings algorithm (with proposal 𝑄): initialize at a point 𝑋0 ∈ R𝑑 . Then, iterate the

following steps for 𝑘 = 1, 2, 3, . . . :

1 Propose a new point 𝑌𝑘 ∼ 𝑄(𝑋𝑘−1, ·).
2 With probability 𝐴(𝑋𝑘−1, 𝑌𝑘), set 𝑋𝑘 B 𝑌𝑘; otherwise, set 𝑋𝑘 B 𝑋𝑘−1. Here, 𝐴 is the acceptance

probability defined via (7.2.1).

This algorithm defines a discrete-time Markov chain whose transition kernel 𝑃 can be written
explicitly as

𝑃(𝑥, d𝑦) = 𝑄(𝑥, d𝑦) 𝐴(𝑥, 𝑦) +
(
1 −

∫
𝑄(𝑥, d𝑦′) 𝐴(𝑥, 𝑦′)

)
︸                              ︷︷                              ︸

rejection probability

𝛿𝑥 (d𝑦) . (7.2.2)

A discrete-time Markov chain with transition kernel 𝑃 is called reversible with respect to 𝜋 if it
holds that 𝜋(d𝑥) 𝑃(𝑥, d𝑦) = 𝜋(d𝑦) 𝑃(𝑦, d𝑥). Similarly to our discussion in Section 1.2, discrete-time
reversible Markov chains can be studied via spectral theory.

Theorem 7.2.3. The Metropolis–Hastings algorithm with proposal 𝑄 is reversible with respect
to 𝜋.

Proof We want to check that 𝜋(𝑥) 𝑃(𝑥, 𝑦) = 𝜋(𝑦) 𝑃(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ R𝑑 with 𝑥 ≠ 𝑦. We can write

𝜋(𝑥) 𝑃(𝑥, 𝑦) = 𝜋(𝑥)𝑄(𝑥, 𝑦) 𝐴(𝑥, 𝑦) = 𝜋(𝑥)𝑄(𝑥, 𝑦)min
{
1,
𝜋(𝑦)𝑄(𝑦, 𝑥)
𝜋(𝑥)𝑄(𝑥, 𝑦)

}
= min{𝜋(𝑥)𝑄(𝑥, 𝑦), 𝜋(𝑦)𝑄(𝑦, 𝑥)}

and this expression is symmetric in 𝑥 and 𝑦. □

Take note of the flexibility of the Metropolis–Hastings algorithm! Regardless of the choice of
proposal kernel 𝑄, the filter always makes the algorithm unbiased. Of course, the choice of 𝑄 will be
crucial later in order to guarantee rapid convergence to stationarity.
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Implementability of the Metropolis–Hastings algorithm.
To implement the algorithm, the proposal 𝑄 must be simple enough such that (1) we can sample from
𝑄(𝑥, ·) easily, and (2) we can compute the density 𝑄(𝑥, 𝑦) easily (which is required to compute the
acceptance probability). Note that although the target density 𝜋 appears in the expression (7.2.1) for
the acceptance probability, it only appears as a ratio, and in particular we do not need to know the
normalization constant of 𝜋. Hence, the Metropolis–Hastings filter can be implemented using queries
to the density of 𝜋 up to normalization, which are “zeroth-order queries” (unlike, e.g., LMC, which
uses first-order information through queries to the gradient ∇𝑉).

Metropolis–Hastings as a projection.
There is a nice geometric interpretation of the Metropolis–Hastings filter as a projection, due to Billera
and Diaconis (2001). Given a proposal kernel 𝑄, let 𝑃(𝑄) denote the Metropolis–Hastings kernel
obtained from 𝑄 (see (7.2.2)). Then, the mapping 𝑄 ↦→ 𝑃(𝑄) is a projection of the proposal kernel 𝑄
onto the space of reversible Markov chains with stationary distribution 𝜋 with respect to an 𝐿1 notion
of distance.

The distance is defined as follows:

d(𝑃, 𝑃′) B
∫
(R𝑑×R𝑑 )\diag

|𝑃(𝑥, 𝑦) − 𝑃′ (𝑥, 𝑦) | 𝜋(d𝑥) d𝑦 (7.2.4)

where diag B {(𝑥, 𝑥) | 𝑥 ∈ R𝑑} is the diagonal in R𝑑 × R𝑑 .

Theorem 7.2.5 (Billera and Diaconis (2001)). Let ℛ(𝜋) denote the space of kernels 𝑃 which are
reversible with respect to 𝜋, and such that for each 𝑥 ∈ R𝑑 , 𝑃(𝑥, ·) admits a density with respect
to Lebesgue measure (except possibly having an atom at 𝑥). Then,

𝑃(𝑄) ∈ arg min
𝑃∈ℛ(𝜋 )

d(𝑃,𝑄) .

Proof Let 𝑃 ∈ ℛ(𝜋), and let 𝑆 B {(𝑥, 𝑦) ∈ R𝑑 × R𝑑 | 𝜋(𝑥)𝑄(𝑥, 𝑦) > 𝜋(𝑦)𝑄(𝑦, 𝑥)}. Then,

d(𝑃,𝑄) =
∫
(R𝑑×R𝑑 )\diag

|𝑃(𝑥, 𝑦) −𝑄(𝑥, 𝑦) | 𝜋(d𝑥) d𝑦

=

∫
𝑆

|𝑃(𝑥, 𝑦) −𝑄(𝑥, 𝑦) | 𝜋(d𝑥) d𝑦 +
∫
(R𝑑×R𝑑 )\(𝑆∪diag)

|𝑃(𝑥, 𝑦) −𝑄(𝑥, 𝑦) | 𝜋(d𝑥) d𝑦

=

∫
𝑆

|𝑃(𝑥, 𝑦) −𝑄(𝑥, 𝑦) | 𝜋(d𝑥) d𝑦 +
∫
𝑆

|𝑃(𝑦, 𝑥) −𝑄(𝑦, 𝑥) | 𝜋(d𝑦) d𝑥 .

Using reversibility of 𝑃, the second term is∫
𝑆

|𝑃(𝑦, 𝑥) −𝑄(𝑦, 𝑥) | 𝜋(d𝑦) d𝑥 =
∫
𝑆

|𝜋(𝑥) 𝑃(𝑥, 𝑦) − 𝜋(𝑦)𝑄(𝑦, 𝑥) | d𝑥 d𝑦

⩾

∫
𝑆

|𝜋(𝑥)𝑄(𝑥, 𝑦) − 𝜋(𝑦)𝑄(𝑦, 𝑥) | d𝑥 d𝑦 −
∫
𝑆

|𝑃(𝑥, 𝑦) −𝑄(𝑥, 𝑦) | 𝜋(d𝑥) d𝑦 . (7.2.6)

Putting this together, d(𝑃,𝑄) ⩾
∫
𝑆
|𝜋(𝑥)𝑄(𝑥, 𝑦) − 𝜋(𝑦)𝑄(𝑦, 𝑥) | d𝑥 d𝑦, so we have obtained a lower

bound which does not depend on 𝑃. On the other hand, we can check that the only inequality (7.2.6)
that we used is an equality for 𝑃 = 𝑃(𝑄). □
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7.3 An Overview of High-Accuracy Samplers
As we already discussed, the Metropolis–Hastings framework is quite flexible: by instantiating it with
different choices for the proposal 𝑄, we obtain several different algorithms.

Metropolized random walk (MRW).
Perhaps the simplest proposal is to simply take 𝑄(𝑥, ·) = normal(𝑥, ℎ 𝐼𝑑), which yields the
Metropolized random walk (MRW) algorithm. This corresponds to simply taking a random
walk around the state space, where some steps are occasionally rejected. Note that since the proposal
is independent of the target 𝜋, the overall algorithm only uses queries to the density of 𝜋 up to
normalization (to implement the filter); thus, it is the only algorithm we have discussed so far (besides
rejection sampling) which uses only a zeroth-order oracle for the potential 𝑉 .

Metropolis-adjusted Langevin algorithm (MALA).
A better choice of proposal is

𝑄(𝑥, ·) = normal
(
𝑥 − ℎ∇𝑉 (𝑥), 2ℎ 𝐼𝑑

)
which is simply one step of the LMC algorithm; this yields the Metropolis-adjusted Langevin
algorithm (MALA). We will carefully study the convergence guarantees for MALA in this chapter.

Metropolized Hamiltonian Monte Carlo (MHMC).
Recall the Hamiltonian Monte Carlo (HMC) algorithm that we introduced in Section 5.2. The ideal
HMC algorithm is not implementable because it requires the ability to exactly integrate Hamilton’s
equations, and this is generally not possible outside of a few special cases.

We now consider approximately implementing Hamilton’s equations through the use of a numerical
integrator. Although several choices are available, for Hamilton’s equations it is preferable to use a
symplectic integrator.1 We will focus on the simplest and most well-known such integrator, called
the leapfrog integrator.

Leapfrog Integrator: Pick a step size ℎ > 0 and a total number of iterations 𝐾 , corresponding to
the total integration time via 𝑇 = 𝐾ℎ. Let (𝑥0, 𝑝0) be the initial point. For 𝑘 = 0, 1, 2, . . . , 𝐾 − 1:

1 Set 𝑝 (𝑘+ 1
2 )ℎ B 𝑝𝑘ℎ − ℎ

2 ∇𝑉 (𝑥𝑘ℎ).
2 Set 𝑥 (𝑘+1)ℎ B 𝑥𝑘ℎ + ℎ 𝑝 (𝑘+ 1

2 )ℎ.
3 Set 𝑝 (𝑘+1)ℎ B 𝑝 (𝑘+ 1

2 )ℎ −
ℎ

2 ∇𝑉 (𝑥 (𝑘+1)ℎ).

Once we apply the leapfrog integrator to HMC, we obtain a discrete-time sampling algorithm
which is once again biased. We then correct the bias through the use of the Metropolis–Hastings filter.
Specifically, for an integration time 𝑇 = 𝐾ℎ, let

𝐹leap(𝑥, 𝑝) = output 𝑥𝑇 of the leapfrog integrator with 𝐾 steps,
started at (𝑥, 𝑝) .

Remarkably, the acceptance probability can be computed in closed form, and this relies on specific
properties of the leapfrog integrator. The full algorithm is summarized as follows.

1When placed within the framework of geometry, Hamiltonian mechanics is encoded via symplectic geometry, which is
the study of manifolds equipped with a symplectic 2-form. The flow map for Hamilton’s equations preserves this symplectic
form, and is therefore known as a symplectomorphism. Symplectic integrators are special integrators which also preserve the
symplectic form. This property leads to stability, especially for long integration times.
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Metropolized Hamiltonian Monte Carlo (MHMC): Initialize at 𝑋0 ∼ 𝜇0. For iterations 𝑘 =

0, 1, 2, . . . :

1 Refresh the momentum: draw 𝑃𝑘 ∼ normal(0, 𝐼𝑑).
2 Propose a trajectory: let (𝑋 ′

𝑘
, 𝑃′

𝑘
) B 𝐹leap(𝑋𝑘 , 𝑃𝑘).

3 Accept the trajectory with probability 1∧exp{𝐻 (𝑋𝑘 , 𝑃𝑘) −𝐻 (𝑋 ′𝑘 , 𝑃′𝑘)}. If the trajectory is accepted,
set 𝑋𝑘+1 B 𝑋 ′

𝑘
; otherwise, we set 𝑋𝑘+1 B 𝑋𝑘 .

It turns out that when 𝐾 = 1, the MHMC algorithm reduces to MALA (Exercise 7.1).
We next justify why the MHMC algorithm leaves 𝝅 invariant. Actually, although we have written

down the MHMC algorithm in the form which is easiest to implement, it obscures the underlying
structure of the algorithm. The proof of the next theorem will clarify this point.

Theorem 7.3.1. The augmented target distribution 𝝅 ∝ exp(−𝐻) is invariant for the MHMC
algorithm.

Proof First, we note that the step of refreshing the momentum leaves 𝝅 invariant, so it suffices to
study the proposal and acceptance steps.

For the moment, let us pretend that the proposal actually uses the true flow map 𝐹𝑇 (which exactly
integrates Hamilton’s equations for time 𝑇) rather than the leapfrog integrator 𝐹leap. Then, the proposal
kernel is deterministic, 𝑄((𝑥, 𝑝), ·) = 𝛿𝐹𝑇 (𝑥,𝑝) .2

If we naı̈vely apply the Metropolis–Hastings filter, the probability of accepting a proposal (𝑥′, 𝑝′)
starting from (𝑥, 𝑝) involves a ratio 𝑄((𝑥′, 𝑝′), (𝑥, 𝑝))/𝑄((𝑥, 𝑝), (𝑥′, 𝑝′)), but this ratio is ill-defined
in our setting. The problem is that if (𝑥′, 𝑝′) = 𝐹𝑇 (𝑥, 𝑝), then it is not the case that (𝑥, 𝑝) = 𝐹𝑇 (𝑥′, 𝑝′);
the proposal is not reversible. Hence, we would be led to reject every single trajectory.

To fix this, recall from Exercise 5.3 that we have the following time reversibility property: if 𝑅
denotes the momentum flip operator (𝑥, 𝑝) ↦→ (𝑥,−𝑝), then it holds that 𝐹−1

𝑇
= 𝑅 ◦ 𝐹𝑇 ◦ 𝑅. It implies

that 𝐹𝑇 ◦ 𝑅 = 𝑅 ◦ 𝐹−1
𝑇

= (𝐹𝑇 ◦ 𝑅)−1, so 𝐹𝑇 ◦ 𝑅 is idempotent. In other words, if we use the proposal
𝐹𝑇 ◦ 𝑅 (i.e., first flip the momentum before integrating Hamilton’s equations), then the proposal would
be reversible and the above issue does not arise, as the ratio 𝑄((𝑥′, 𝑝′), (𝑥, 𝑝))/𝑄((𝑥, 𝑝), (𝑥′, 𝑝′))
would equal 1. Observe also that using 𝐹𝑇 ◦ 𝑅 instead of 𝐹𝑇 does not change the algorithm since we
refresh the momentum at each step (and if 𝑃𝑘 ∼ normal(0, 𝐼𝑑), then −𝑃𝑘 ∼ normal(0, 𝐼𝑑) as well).

Once we use the proposal (𝑥′, 𝑝′) = (𝐹𝑇 ◦ 𝑅) (𝑥, 𝑝) = 𝐹𝑇 (𝑥,−𝑝), the Metropolis–Hastings
acceptance probability is calculated to be

1 ∧ 𝝅(𝑥′, 𝑝′)
𝝅(𝑥, 𝑝) = 1 ∧ exp{𝐻 (𝑥, 𝑝) − 𝐻 (𝑥′, 𝑝′)} . (7.3.2)

When we use the exact flow map 𝐹𝑇 , then the Hamiltonian is conserved (Exercise 5.3) so the above
probability is one; every trajectory is accepted. However, the above expression is indeed meaningful if
we instead use the leapfrog integrator 𝐹leap.

So far, we have motivated the expression (7.3.2) based on the exact flow map 𝐹𝑇 , but clearly the
above argument holds just as well for the leapfrog integrator 𝐹leap as soon as we verify the property
𝐹−1

leap = 𝑅 ◦ 𝐹leap ◦ 𝑅, and this is where we use the specific form of the leapfrog integrator. We leave
the verification as Exercise 7.2. □

2 Up until now, we have been assuming that the proposal kernel admits a density w.r.t. Lebesgue measure, which certainly
does not hold here, but we will brush over this technicality as it is not the key point here.
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Remark 7.3.3. The proof shows that the proposal of MHMC should really be thought of as 𝐹leap ◦ 𝑅,
instead of 𝐹leap. In fact, if we did not refresh the momentum, then repeatedly applying the idempotent
operator 𝐹leap ◦ 𝑅 would just cause the algorithm to jump back and forth between two points (𝑥, 𝑝) and
(𝑥′, 𝑝′), which is silly; hence one should also apply another momentum flip after the filter. In symbols,
if MH denotes the Metropolis–Hastings filter step, and Refresh denotes the momentum refreshment
step, we should think of MHMC as the composition

MHMC = 𝑅 ◦MH(𝐹leap ◦ 𝑅) ◦ Refresh .

This is simplified to

MHMC = MH(𝐹leap ◦ 𝑅) ◦ Refresh .

because Refresh ◦ 𝑅 = Refresh.

Lazy chains.
Technically, many of the convergence results actually hold for lazy versions of the Markov chain.
Specifically, for ℓ ∈ [0, 1], the ℓ-lazy version of a Markov chain replaces its transition kernel 𝑃 with
the modified kernel 𝑃ℓ given by

𝑃ℓ (𝑥, d𝑦) = (1 − ℓ) 𝑃(𝑥, d𝑦) + ℓ 𝛿𝑥 (d𝑦) .

The laziness condition is familiar from the study of discrete-time Markov chains on discrete state
spaces, in which laziness is useful for avoiding periodic behavior. For the remainder of this chapter,
we will generally be considering 1

2 -lazy versions of the Metropolis–Hastings chains without explicitly
mentioning this. In any case, this modification only multiplies the mixing time by a factor of 2, so it
does not significantly alter the results.

Feasible start vs. warm start.
When discussing Metropolis–Hastings algorithms, we must distinguish between convergence rates
when initialized at a feasible start, vs. a warm start. These terms are not precisely defined, but loosely
speaking a feasible start refers to an easily computable distribution which works well uniformly over
the class of target distributions under consideration. In this section, a feasible start usually refers to the
normal(0, 𝛽−1𝐼𝑑) distribution, where 𝛽 is the smoothness of 𝑉 and we assume that the minimizer of 𝑉
is 0. On the other hand, a warm start is a distribution which is already somewhat close to the target 𝜋;
for this section, it can be taken to mean a distribution 𝜇0 such that 𝜒2(𝜇0 ∥ 𝜋) = 𝑂 (1). Unsurprisingly,
the rates are faster with a warm start.

One obvious benefit of a warm start is simply that we start closer to stationarity, so it takes less time
to approach 𝜋. This aspect of the situation is similar to the discussion in Section 1.5. Basically, the
simplest way to study Markov chains is via spectral theory, which is related to Poincaré inequalities
and hence to the chi-squared divergence at initialization. Since the initial chi-squared divergence
tends to be quite large—of order exp(𝑑)—the resulting analysis incurs slow mixing. This source of
slow mixing, however, is sometimes illusory, as it can be addressed via stronger methods such as
a log-Sobolev inequality. For example, in the case of LMC, the guarantee of Theorem 4.2.6 only
improves by a logarithmic factor if we assume the warm start condition KL(𝜇0 ∥ 𝜋) = 𝑂 (1).

On the other hand, for Metropolis–Hastings algorithms, we will see another crucial benefit of a
warm start: it allows us to choose a larger step size while maintaining a decent acceptance probability.
The latter effect is more intrinsic and necessitates carefully delineating the two regimes (cold vs.
warm).
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State-of-the-art results.
We now give the current state-of-the-art convergence guarantees for the Metropolis–Hastings algorithms
that we have introduced.

Theorem 7.3.4 (feasible start case, Dwivedi et al. (2019); Chen et al. (2020); Lee et al. (2020);
Andrieu et al. (2024)). Suppose that the target 𝜋 ∝ exp(−𝑉) satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯
𝛽𝐼𝑑 and ∇𝑉 (0) = 0. Consider the following Metropolis–Hastings algorithms initialized at
normal(0, 𝛽−1𝐼𝑑) and with an appropriately tuned choice of parameters.

1 MRW outputs a measure 𝜇𝑁 satisfying
√︁
𝜒2(𝜇𝑁 ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂
(
𝜅𝑑 polylog

1
𝜀

)
iterations .

2 MALA outputs a measure 𝜇𝑁 satisfying
√︁
𝜒2(𝜇𝑁 ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂
(
𝜅𝑑 polylog

1
𝜀

)
iterations .

3 Assume in addition that ∇3𝑉 is bounded and that 𝜅 ≪
√
𝑑. Then, MHMC outputs a measure

𝜇𝑁 satisfying
√︁
𝜒2(𝜇𝑁 ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂
(
𝜅3/4𝑑 polylog

1
𝜀

)
gradient queries .

Note that the result for MHMC is not directly comparable because it makes a stronger higher-order
smoothness assumption.

Next, we present the results under a warm start.

Theorem 7.3.5 (warm start case, Chewi et al. (2021); Wu et al. (2021); Chen and Gatmiry
(2023a,b)). Suppose that 𝜋 ∝ exp(−𝑉) satisfies 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 . Consider the following
Metropolis–Hastings algorithms initialized at a distribution satisfying 𝜒2(𝜇0 ∥ 𝜋) = 𝑂 (1) and
with an appropriately tuned choice of parameters.

1 MALA outputs a measure 𝜇𝑁 satisfying ∥𝜇𝑁 − 𝜋∥TV ⩽ 𝜀 after

𝑁 = 𝑂
(
𝜅𝑑1/2 polylog

1
𝜀

)
iterations .

2 Assume in addition that ∇3𝑉 is bounded. Then, MHMC outputs a measure 𝜇𝑁 satisfying
∥𝜇𝑁 − 𝜋∥TV ⩽ 𝜀 after

𝑁 = 𝑂
(
𝜅𝑑1/4 polylog

1
𝜀

)
iterations .

In keeping with the theme of the rest of the book, we will focus on the results which do not assume
higher-order smoothness. As we shall see, the results for MALA in both the feasible and warm start
cases are sharp in a suitable sense. In other words, the improved guarantees under a warm start are
not a failure of the analysis technique, but are intrinsic to the problem. Hence, it is also important to
study how we can obtain a warm start, i.e., a measure satisfying 𝜒2(𝜇0 ∥ 𝜋) = 𝑂 (1). In Chapter 6,
or more specifically Corollary 6.3.2, we accomplished this goal via our analysis of ULMC in Rényi



7.4 Markov Chains in Discrete Time 183

divergence. Critically, the cost of computing the warm start is not larger (at least with respect to
dimension dependence) than the cost of running MALA afterwards using the warm start, leading to
the following high-accuracy guarantee.

Corollary 7.3.6 (Altschuler and Chewi (2024a)). Suppose that 𝜋 ∝ exp(−𝑉) satisfies 0 ≺ 𝛼𝐼𝑑 ⪯
∇2𝑉 ⪯ 𝛽𝐼𝑑 and ∇𝑉 (0) = 0. There is sampler which outputs 𝜇 satisfying

√︁
KL(𝜇 ∥ 𝜋) ⩽ 𝜀 using

𝑁 = 𝑂
(
𝜅3/2𝑑1/2 + 𝜅𝑑1/2 polylog

1
𝜀

)
first-order queries .

This result will be extended and refined in various ways through the use of the proximal sampler
in Chapter 8: we will relax the assumption of strong log-concavity to a log-Sobolev inequality; we
will eliminate the 𝜅3/2𝑑1/2 term from the rate; and we will show how to obtain this result using the
proximal sampler alone.

The goal for the rest of the chapter is to prove the convergence results for MALA.

7.4 Markov Chains in Discrete Time
As discussed in the introduction to this chapter, the key advantage of Metropolis–Hastings algorithms
is that they are unbiased and hence lead to high-accuracy algorithms. In order to prove complexity
bounds that scale as polylog(1/𝜀), where 𝜀 is the target accuracy, it is important that we do not simply
bound the distance between MALA and, e.g., the continuous-time Langevin diffusion, as we did in
Chapter 4. This is not to say that tools from Chapter 4 are completely irrelevant, only that we must
first develop some new techniques for studying discrete-time Markov chains.

7.4.1 Markov Semigroup Theory
Let 𝑃 be a Markov kernel. It generates a discrete-time semigroup (𝑃𝑘)𝑘∈N, and some of the ideas
from Markov semigroup theory (Section 1.2) can be adapted to the present context.

Generator.
We define the generator of the semigroup to be the operator ℒ B 𝑃 − id, acting on 𝐿2(𝜋) via
𝑃 𝑓 (𝑥) B

∫
𝑓 (𝑦) 𝑃(𝑥, d𝑦) (where 𝜋 is the stationary distribution for 𝑃). Note that since the operator

norm of 𝑃 is at most 1, then 𝑃− id is always a negative operator (similarly to the infinitesimal generator
ℒ from Section 1.2).

Reversibility.
We defined reversibility in Section 7.2 and showed that Metropolis–Hastings algorithms are reversible
w.r.t. the target distribution 𝜋. For the rest of the section, we will focus on reversible Markov chains.

Spectral gap.
The spectral gap of 𝑃 is the largest 𝜆 > 0 such that for all 𝑓 ∈ 𝐿2(𝜋) with E𝜋 𝑓 = 0,

⟨ 𝑓 , (−ℒ) 𝑓 ⟩𝐿2 (𝜋 ) ⩾ 𝜆 ∥ 𝑓 ∥2𝐿2 (𝜋 ) .
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Equivalently, if (𝑋0, 𝑋1) are two successive iterates of the chain started at stationarity, it is equivalent
to require

2𝜆 var 𝑓 (𝑋0) ⩽ E[| 𝑓 (𝑋1) − 𝑓 (𝑋0) |2] . (7.4.1)

In analogy with Section 1.2, we also say that 𝑃 satisfies a Poincaré inequality with constant 1/𝜆. We
already saw in Section 2.6 that a Poincaré inequality is implied by a lower bound on the coarse Ricci
curvature.

The right-hand side of (7.4.1) can be interpreted as a Dirichlet energy,

ℰ( 𝑓 , 𝑓 ) B ⟨ 𝑓 , (−ℒ) 𝑓 ⟩𝐿2 (𝜋 ) ,

and the Markov chain can be viewed as an 𝐿2(𝜋) gradient descent on the Dirichlet energy; see Exer-
cise 7.3. We have the following convergence result.

Theorem 7.4.2. Suppose that the spectral gap of 𝑃 is 𝜆 > 0. Then, for the law (𝜇𝑘)𝑘∈N of the
iterates of the 1

2 -lazy version of 𝑃, we have

𝜒2(𝜇𝑁 ∥ 𝜋) ⩽ exp(−𝜆𝑁) 𝜒2(𝜇0 ∥ 𝜋) .

Modified log-Sobolev inequality.
We say that 𝑃 satisfies a modified log-Sobolev inequality (MLSI) with constant 𝐶MLSI if for all
𝑓 ∈ 𝐿2(𝜋) with 𝑓 ⩾ 0,

ent𝜋 𝑓 ⩽
𝐶MLSI

2
ℰ( 𝑓 , log 𝑓 ) .

We have already encountered this inequality as Definition 1.2.25, although there we simply called it
the log-Sobolev inequality. In the context of discrete Markov processes, however, since the chain rule
fails and the different variants of the log-Sobolev inequality are no longer equivalent, it is worth being
careful about the terminology.

It is trickier to deduce entropy decay from the MLSI in discrete time, and to avoid this issue we shall
work in continuous time instead. The Markov kernel 𝑃 gives rise to the generator ℒ B 𝑃 − id, which
in turn generates a continuous-time semigroup (𝑃𝑡 )𝑡⩾0 via 𝑃𝑡 B exp(𝑡ℒ). Note that the generator of
(𝑃𝑡 )𝑡⩾0 is also ℒ and hence the Dirichlet energy for (𝑃𝑡 )𝑡⩾0 coincides with the Dirichlet energy for
(𝑃𝑘)𝑘∈N. Now, if we apply the calculation (1.2.24) to the semigroup (𝑃𝑡 )𝑡⩾0, we find that under an
MLSI,

KL(𝜇𝑃𝑡 ∥ 𝜋) ⩽ exp
(
− 2𝑡
𝐶MLSI

)
KL(𝜇 ∥ 𝜋) ,

see Theorem 1.2.26.
Moreover, the continuous-time semigroup (𝑃𝑡 )𝑡⩾0 can be simulated. Namely, let (𝜏𝑘)𝑘∈N+

i.i.d.∼
exponential(1), 𝑇𝑘 B

∑𝑘
𝑗=1 𝜏𝑗 , and consider the following algorithm. Initialize at 𝑋0 ∼ 𝜇0, and for

𝑘 = 0, 1, 2, . . . , let 𝑋𝑇𝑘+1 ∼ 𝑃(𝑋𝑇𝑘 , ·), so that (𝑋𝑇𝑘 )𝑘∈N are the iterates of the discrete-time Markov
chain with kernel 𝑃. Also, for 𝑡 ⩾ 0, if 𝑇𝑘 ⩽ 𝑡 < 𝑇𝑘+1, then set 𝑋𝑡 B 𝑋𝑇𝑘 . This yields a continuous-time
Markov process (𝑋𝑡 )𝑡⩾0, and one can check that the associated Markov semigroup is exactly (𝑃𝑡 )𝑡⩾0.
Moreover, by concentration of i.i.d. sums, it holds that 𝑇𝑘 ≈ 𝑘 , so that if the semigroup (𝑃𝑡 )𝑡⩾0 requires
time 𝑇mix in order to mix to a desired level of accuracy, then the algorithm which simulates (𝑋𝑡 )𝑡⩾0
requires ≈ 𝑇mix iterations to reach the same level of mixing.
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This argument can even be made rigorous, using concentration inequalities for the Poisson random
variable, in order to argue that a MLSI for 𝑃 implies a mixing time bound (in total variation distance,
say) for the discrete-time chain (𝑃𝑘)𝑘∈N. We omit the details and content ourselves with the knowledge
that an MLSI for 𝑃 at least leads to the existence of an implementable algorithm (simulating (𝑋𝑡 )𝑡⩾0)
with good mixing.

We leave the converse implication (that entropy decay for the discrete-time Markov chain generated
by 𝑃 implies an MLSI for 𝑃) as Exercise 7.4.

7.4.2 Conductance

Unfortunately, it is usually quite challenging to prove either a Poincaré inequality or a modified
log-Sobolev inequality for discrete-time Markov chains, which motivates the use of conductance.

The conductance of 𝑃 is the greatest number 𝔠 > 0 such that for all events 𝐴 ⊆ R𝑑 ,∫
𝐴

𝑃(𝑥, 𝐴c) 𝜋(d𝑥) ⩾ 𝔠 𝜋(𝐴) 𝜋(𝐴c) .

A small conductance implies the presence of bottlenecks in the space: subsets 𝐴 of the state space
from which it is difficult for the Markov chain to exit. On the other hand, it is a remarkable fact that
once the presence of these bottlenecks is eliminated, then there is a positive spectral gap. This is the
content of a celebrated result of Cheeger.

Theorem 7.4.3 (Cheeger’s inequality, Lawler and Sokal (1988)). The conductance 𝔠 and the
spectral gap 𝜆 satisfy the inequalities

1
8
𝔠2 ⩽ 𝜆 ⩽ 𝔠 .

Both inequalities are sharp up to constants. The upper bound on 𝜆 is fairly immediate (see Exer-
cise 7.3), so we focus on the lower bound. We begin by reformulating the conductance as a functional
inequality.

Lemma 7.4.4. Let the conductance of the chain be 𝔠 > 0. Then, for all 𝑓 ∈ 𝐿1(𝜋),

E𝜋 | 𝑓 − E𝜋 𝑓 | ⩽
1
𝔠
E| 𝑓 (𝑋1) − 𝑓 (𝑋0) | , (7.4.5)

where (𝑋0, 𝑋1) are two successive iterates of the chain started at stationarity.

Proof Let 𝑋 ′0 be an i.i.d. copy of 𝑋0. Then,

E𝜋 | 𝑓 − E𝜋 𝑓 | = E| 𝑓 (𝑋 ′0) − E 𝑓 (𝑋0) | ⩽ E| 𝑓 (𝑋 ′0) − 𝑓 (𝑋0) | .
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On the other hand, by reversibility,

E| 𝑓 (𝑋1) − 𝑓 (𝑋0) | =
∬
| 𝑓 (𝑥1) − 𝑓 (𝑥0) | 𝑃(𝑥0, d𝑥1) 𝜋(d𝑥0)

= 2
∬

1{ 𝑓 (𝑥1) > 𝑓 (𝑥0)} [ 𝑓 (𝑥1) − 𝑓 (𝑥0)] 𝑃(𝑥0, d𝑥1) 𝜋(d𝑥0)

= 2
∭

1{ 𝑓 (𝑥1) > 𝑡 ⩾ 𝑓 (𝑥0)} 𝑃(𝑥0, d𝑥1) 𝜋(d𝑥0) d𝑡

= 2
∫ (∫

{ 𝑓 ⩽𝑡 }
𝑃(𝑥0, { 𝑓 ⩽ 𝑡}c) 𝜋(d𝑥0)

)
d𝑡

⩾ 2𝔠
∫

𝜋({ 𝑓 ⩽ 𝑡}) 𝜋({ 𝑓 > 𝑡}) d𝑡

= 2𝔠
∭

1{ 𝑓 (𝑥′0) > 𝑡 ⩾ 𝑓 (𝑥0)} 𝜋(d𝑥0) 𝜋(d𝑥′0) d𝑡

= 2𝔠
∬

1{ 𝑓 (𝑥′0) > 𝑓 (𝑥0)} [ 𝑓 (𝑥′0) − 𝑓 (𝑥0)] 𝜋(d𝑥0) 𝜋(d𝑥′0)

= 𝔠

∬
| 𝑓 (𝑥′0) − 𝑓 (𝑥0) | 𝜋(d𝑥0) 𝜋(d𝑥′0) = 𝔠 E| 𝑓 (𝑋 ′0) − 𝑓 (𝑋0) | . □

Compare this with the relationship between the Cheeger isoperimetric inequality and the 𝐿1–𝐿1

Poincaré inequality in Theorem 2.4.18. Indeed, the trick above of passing to the level sets of 𝑓 is the
discrete version of the coarea inequality (Theorem 2.4.16).

Recall also that an 𝐿1–𝐿1 Poincaré inequality implies an 𝐿2–𝐿2 Poincaré inequality with𝐶2,2 ≲ 𝐶1,1,
see Proposition 2.4.21. On the other hand, 𝐶2,2 is the square root of the usual Poincaré constant,
𝐶2,2 = 1/

√
𝜆, where 𝜆 is the spectral gap. To prove Cheeger’s inequality, we are going to follow the

same principle in discrete time. This is exactly the source of the square in the lower bound 𝜆 ≳ 𝔠2 of
Cheeger’s inequality.

We need one more lemma (Exercise 7.5).

Lemma 7.4.6 (Lawler and Sokal (1988)). Let 𝑋 , 𝑋 ′ be i.i.d. random variables with finite variance
𝜎2. Then, it holds that

sup
𝑐∈R

{E| (𝑋 + 𝑐)2 − (𝑋 ′ + 𝑐)2 |}2

E[(𝑋 + 𝑐)2]
⩾ 𝜎2 . (7.4.7)

Proof of Cheeger’s inequality (Theorem 7.4.3) For 𝑓 : R𝑑 → R with mean zero, applying the
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lemma and Cauchy–Schwarz,

var𝜋 𝑓 ⩽ sup
𝑐∈R

{E| ( 𝑓 (𝑋0) + 𝑐)2 − ( 𝑓 (𝑋 ′0) + 𝑐)
2 |}2

E[( 𝑓 (𝑋0) + 𝑐)2]

⩽ sup
𝑐∈R

{E| ( 𝑓 (𝑋1) + 𝑐)2 − ( 𝑓 (𝑋0) + 𝑐)2 |}
2

𝔠2 {var𝜋 𝑓 + 𝑐2}

⩽ sup
𝑐∈R

E[| 𝑓 (𝑋1) − 𝑓 (𝑋0) |2] E[| 𝑓 (𝑋0) + 𝑓 (𝑋1) + 2𝑐 |2]
𝔠2 {var𝜋 𝑓 + 𝑐2}

=
2ℰ( 𝑓 , 𝑓 )

𝔠2 sup
𝑐∈R

E[| 𝑓 (𝑋0) + 𝑓 (𝑋1) |2] + 4𝑐2

var𝜋 𝑓 + 𝑐2 ⩽
8ℰ( 𝑓 , 𝑓 )

𝔠2 . □

A lower bound on the conductance via overlaps.
At this stage, it may not seem that we have gained anything by moving from the spectral gap to
the conductance. We now introduce a key lemma, which provides a tractable lower bound on the
conductance in terms of two geometric quantities: a Cheeger isoperimetric inequality for target 𝜋 (we
introduced this inequality in Section 2.4.3), and overlap bounds on the Markov chain. Recall that an
𝛼-strongly log-concave measure 𝜋 satisfies the Cheeger isoperimetric inequality with Ch ≲ 1/

√
𝛼

(Corollary 2.4.23).

Lemma 7.4.8. Assume the following:

1 The target 𝜋 satisfies a Cheeger isoperimetric inequality with constant Ch > 0.
2 There exists 𝑟 > 0 such that for any points 𝑥, 𝑦 ∈ R𝑑 with ∥𝑥 − 𝑦∥ ⩽ 𝑟, it holds that
∥𝑃(𝑥, ·) − 𝑃(𝑦, ·)∥TV ⩽

1
2 .

Then, 𝔠 ⩾ min{ 1
8 ,

𝑟

32 Ch }.

Proof Let 𝐴0 ⊆ R𝑑; for symmetry of notation, write 𝐴1 B 𝐴c
0. By reversibility,∫

𝐴0

𝑃(𝑥, 𝐴1) 𝜋(d𝑥) =
∫
𝐴1

𝑃(𝑦, 𝐴0) 𝜋(d𝑦) =
1
2

(∫
𝐴0

𝑃(𝑥, 𝐴1) 𝜋(d𝑥) +
∫
𝐴1

𝑃(𝑦, 𝐴0) 𝜋(d𝑦)
)
.

We want to lower bound this by a constant times 𝜋(𝐴0) 𝜋(𝐴1).
Define bad sets and a good set:

𝐵0 B
{
𝑥 ∈ 𝐴0

�� 𝑃(𝑥, 𝐴1) <
1
4
}
,

𝐵1 B
{
𝑦 ∈ 𝐴1

�� 𝑃(𝑦, 𝐴0) <
1
4
}
,

𝐺 B R𝑑 \ (𝐵0 ∪ 𝐵1) .

We can assume that 𝜋(𝐵0) ⩾ 𝜋(𝐴0)/2 and 𝜋(𝐵1) ⩾ 𝜋(𝐴1)/2. Indeed, if we have, e.g., 𝜋(𝐵0) ⩽
𝜋(𝐴0)/2, then 𝜋(𝐴0 \ 𝐵0) ⩾ 𝜋(𝐴0)/2, and∫

𝐴0

𝑃(𝑥, 𝐴1) 𝜋(d𝑥) ⩾
∫
𝐴0\𝐵0

𝑃(𝑥, 𝐴1) 𝜋(d𝑥) ⩾
1
4
𝜋(𝐴0 \ 𝐵0) ⩾

1
8
𝜋(𝐴0) .

Next, suppose that 𝑥 ∈ 𝐵0 and 𝑦 ∈ 𝐵1. Then, 𝑃(𝑥, 𝐴0) ⩾ 3
4 , whereas 𝑃(𝑦, 𝐴0) < 1

4 . It follows that
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∥𝑃(𝑥, ·) − 𝑃(𝑦, ·)∥TV > 1
2 . By our second assumption, ∥𝑥 − 𝑦∥ > 𝑟. This shows that 𝐵1 ⊆ (𝐵𝑟0)

c,
or 𝐵c

1 ⊇ 𝐵𝑟0. On the other hand, 𝐺 = 𝐵c
0 ∩ 𝐵c

1 ⊇ 𝐵𝑟0 \ 𝐵0. Integrating the isoperimetric inequality
in (2.4.14) shows that

𝜋(𝐺) ⩾ 𝜋(𝐵𝑟0) − 𝜋(𝐵0) ⩾
𝑟

Ch
𝜋(𝐵0) 𝜋((𝐵𝑟0)

c) ⩾ 𝑟

Ch
𝜋(𝐵0) 𝜋(𝐵1) ⩾

𝑟

4 Ch
𝜋(𝐴0) 𝜋(𝐴1) .

Hence,

1
2

(∫
𝐴0

𝑃(𝑥, 𝐴1) 𝜋(d𝑥) +
∫
𝐴1

𝑃(𝑦, 𝐴0) 𝜋(d𝑦)
)

⩾
1
2

(∫
𝐴0∩𝐺

𝑃(𝑥, 𝐴1) 𝜋(d𝑥) +
∫
𝐴1∩𝐺

𝑃(𝑦, 𝐴0) 𝜋(d𝑦)
)

⩾
1
8
(
𝜋(𝐴0 ∩ 𝐺) + 𝜋(𝐴1 ∩ 𝐺)

)
=

1
8
𝜋(𝐺) ⩾ 𝑟

32 Ch
𝜋(𝐴0) 𝜋(𝐴1) . □

From conductance to 𝑠-conductance.
Unfortunately, the framework that we have developed so far is not flexible enough to study MALA. In
particular, requiring that the second condition in Lemma 7.4.8 hold for all pairs of points 𝑥, 𝑦 ∈ R𝑑 is
rather restrictive, especially because there are many points which we are unlikely to ever visit in the
course of running the sampling algorithm. To address these issues, many variants of conductance have
been proposed in the literature. Here we will introduce only one other variant, the 𝑠-conductance,
which seems reasonably flexible.

For 𝑠 ∈ [0, 1], the 𝑠-conductance of 𝑃 is the largest 𝔠𝑠 > 0 such that for all events 𝐴 ⊆ R𝑑 , it holds
that ∫

𝐴

𝑃(𝑥, 𝐴c) 𝜋(d𝑥) ⩾ 𝔠𝑠
(
𝜋(𝐴) − 𝑠

) (
𝜋(𝐴c) − 𝑠

)
.

Observe that if 𝜋(𝐴) ⩽ 𝑠, then the above inequality holds trivially. Hence, this definition allows us to
restrict attention to events which are reasonably probable under 𝜋.

For the conductance, we had Cheeger’s inequality which relates conductance to the spectral gap and
ultimately to convergence. For the 𝑠-conductance, the following theorem is an appropriate substitute.

Theorem 7.4.9 ((Lovász and Simonovits, 1993, Corollary 1.6)). For any 0 < 𝑠 ⩽ 1
2 , let

Δ𝑠 B sup{|𝜇0(𝐴) − 𝜋(𝐴) | : 𝐴 ⊆ R𝑑 , 𝜋(𝐴) ⩽ 𝑠} .

Then, the law 𝜇𝑁 of the 𝑁-th iterate of a Markov chain with 𝑠-conductance 𝔠𝑠 and initialized at
𝜇0 satisfies

∥𝜇𝑁 − 𝜋∥TV ⩽ Δ𝑠 +
Δ𝑠

𝑠
exp

(
−
𝔠2
𝑠 𝑁

2

)
.

In particular,

∥𝜇𝑁 − 𝜋∥TV ⩽
√︁
𝑠 𝜒2(𝜇0 ∥ 𝜋) +

√︂
𝜒2(𝜇0 ∥ 𝜋)

𝑠
exp

(
−
𝔠2
𝑠 𝑁

2

)
.

Proof The first statement is from (Lovász and Simonovits, 1993, Corollary 1.6) and the proof is
omitted, as the proof is not particularly straightforward. TODO



7.5 Analysis of MALA for a Feasible Start 189

The second statement follows from the first: indeed, for 𝐴 ⊆ R𝑑 with 𝜋(𝐴) ⩽ 𝑠,

|𝜇0(𝐴) − 𝜋(𝐴) | =
���∫ 1𝐴 d(𝜇0 − 𝜋)

��� = ���∫ 1𝐴

(d𝜇0

d𝜋
− 1

)
d𝜋

��� ⩽ √︁
𝜋(𝐴) 𝜒2(𝜇0 ∥ 𝜋)

so that Δ𝑠 ⩽
√︁
𝑠 𝜒2(𝜇0 ∥ 𝜋). □

This result says that if 𝑠 = 𝜀2/(4 𝜒2(𝜇0 ∥ 𝜋)), then we obtain ∥𝜇𝑁 − 𝜋∥TV ⩽ 𝜀 after

𝑁 = 𝑂

( 1
𝔠2
𝑠

log
𝜒2(𝜇0 ∥ 𝜋)

𝜀2

)
iterations .

Although this mixing time guarantee is stated in the TV metric, the guarantee can often be “boosted”
to stronger metrics, see Exercise 7.7.

The key advantage of the 𝑠-conductance is that it allows for a version of the key lemma with weaker
assumptions; the proof is left as Exercise 7.6.

Lemma 7.4.10. Assume the following:

1 The target 𝜋 satisfies a Cheeger isoperimetric inequality with constant Ch > 0.
2 There exists 𝑟 ∈ [0,Ch] and an event 𝐸 ⊆ R𝑑 with probability 𝜋(𝐸) ⩾ 1 − 𝑟𝑠

16 Ch such that

∀𝑥, 𝑦 ∈ 𝐸, ∥𝑥 − 𝑦∥ ⩽ 𝑟 =⇒ ∥𝑃(𝑥, ·) − 𝑃(𝑦, ·)∥TV ⩽
1
2
.

Then, 𝔠𝑠 ≳ 𝑟/Ch.

7.5 Analysis of MALA for a Feasible Start
Using the tools we have developed, we now proceed to analyze the mixing time of MALA under the as-
sumptions of Theorem 7.3.4. However, we will not prove the full strength of the result in Theorem 7.3.4;
at the end of this section, we will indicate the extra steps needed to reach Theorem 7.3.4.

Basic decomposition.
The overall plan is to lower bound the 𝑠-conductance using the key lemma (Lemma 7.4.10), which then
upper bounds the mixing time via Theorem 7.4.9. By strong log-concavity of 𝜋, the first hypothesis
of Lemma 7.4.10 is verified, so it remains to bound the overlaps. For a kernel 𝑃, we use the shorthand
𝑃𝑥 B 𝑃(𝑥, ·).

By the triangle inequality, we have the decomposition

∥𝑃𝑥 − 𝑃𝑦 ∥TV ⩽ ∥𝑃𝑥 −𝑄𝑥 ∥TV + ∥𝑄𝑥 −𝑄𝑦 ∥TV + ∥𝑃𝑦 −𝑄𝑦 ∥TV . (7.5.1)

The middle term ∥𝑄𝑥 −𝑄𝑦 ∥TV measures the overlap for the proposal kernel, and we will shortly see
that this term is easy to bound. Then, controlling the first and third terms essentially amounts to lower
bounding the acceptance probability of MALA, since the only difference between 𝑃 and 𝑄 is the
Metropolis–Hastings filter.

Overlap of the proposal kernel.
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Lemma 7.5.2. For 𝑥 ∈ R𝑑 , let𝑄𝑥 B normal(𝑥−ℎ∇𝑉 (𝑥), 2ℎ 𝐼𝑑), and assume that ∥∇2𝑉 ∥op ⩽ 𝛽.
Then, provided ℎ ⩽ 1

𝛽
, we have

∥𝑄𝑥 −𝑄𝑦 ∥TV ⩽
∥𝑥 − 𝑦∥
√

2ℎ
.

Proof By Pinsker’s inequality,

∥𝑄𝑥 −𝑄𝑦 ∥2TV ⩽
1
2

KL(𝑄𝑥 ∥ 𝑄𝑦) =
∥𝑥 − ℎ∇𝑉 (𝑥) − 𝑦 + ℎ∇𝑉 (𝑦)∥2

8ℎ
⩽
∥𝑥 − 𝑦∥2

2ℎ
where the last inequality uses the fact that id − ℎ∇𝑉 is 2-Lipschitz. □

Control of the acceptance probability.
Next, consider the term ∥𝑃𝑥 −𝑄𝑥 ∥TV. Computing this term is slightly tricky because 𝑃𝑥 has an atom
at 𝑥, but in the end we obtain

∥𝑃𝑥 −𝑄𝑥 ∥TV =
1
2

[
1 −

∫
𝑄(𝑥, d𝑦) 𝐴(𝑥, 𝑦)︸                         ︷︷                         ︸

from the atom of 𝑃𝑥

+
∫
R𝑑\{𝑥}

|𝑃(𝑥, 𝑦) −𝑄(𝑥, 𝑦) | d𝑦
]

=
1
2

[
1 −

∫
𝑄(𝑥, d𝑦) 𝐴(𝑥, 𝑦) +

∫
𝑄(𝑥, d𝑦) {1 − 𝐴(𝑥, 𝑦)} d𝑦

]
= 1 −

∫
𝑄(𝑥, d𝑦) 𝐴(𝑥, 𝑦) . (7.5.3)

This has a very clear interpretation: it is the probability that the proposed move starting at 𝑥 is rejected.
If we let 𝜉 ∼ normal(0, 𝐼𝑑) and 𝑌 B 𝑥 − ℎ∇𝑉 (𝑥) +

√
2ℎ 𝜉, we want a lower bound on the quantity

E 𝐴(𝑥,𝑌 ), which comes from Markov’s inequality:

E 𝐴(𝑥,𝑌 ) = Emin
{
1,
𝜋(𝑌 )𝑄(𝑌, 𝑥)
𝜋(𝑥)𝑄(𝑥,𝑌 )

}
⩾ 𝜆 P

{ 𝜋(𝑌 )𝑄(𝑌, 𝑥)
𝜋(𝑥)𝑄(𝑥,𝑌 ) ⩾ 𝜆

}
for all 0 < 𝜆 < 1 .

The approach now is to write out the ratio more explicitly, and then carefully group together and
bound the terms.

Explicitly, we have

𝜋(𝑌 )𝑄(𝑌, 𝑥)
𝜋(𝑥)𝑄(𝑥,𝑌 ) = exp

(
−𝑉 (𝑌 ) − ∥𝑥 − 𝑌 + ℎ∇𝑉 (𝑌 )∥

2

4ℎ
+𝑉 (𝑥) + ∥𝑌 − 𝑥 + ℎ∇𝑉 (𝑥)∥

2

4ℎ

)
.

After some careful algebra,

4 log
𝜋(𝑌 )𝑄(𝑌, 𝑥)
𝜋(𝑥)𝑄(𝑥,𝑌 ) = ℎ {∥∇𝑉 (𝑥)∥

2 − ∥∇𝑉 (𝑌 )∥2} (7.5.4)

− 2 {𝑉 (𝑌 ) −𝑉 (𝑥) − ⟨∇𝑉 (𝑥), 𝑌 − 𝑥⟩} (7.5.5)
+ 2 {𝑉 (𝑥) −𝑉 (𝑌 ) − ⟨∇𝑉 (𝑌 ), 𝑥 − 𝑌⟩} . (7.5.6)

Note that the terms are grouped to more easily apply the strong convexity and smoothness of 𝑉 . It
yields

(7.5.5) ⩾ −𝛽 ∥𝑥 − 𝑌 ∥2 and (7.5.6) ⩾ 𝛼 ∥𝑥 − 𝑌 ∥2 ⩾ 0 .
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Also, for ℎ ⩽ 1
𝛽

,

(7.5.4) = ℎ ⟨∇𝑉 (𝑥) − ∇𝑉 (𝑌 ),∇𝑉 (𝑥) + ∇𝑉 (𝑌 )⟩
⩾ −ℎ ∥∇𝑉 (𝑥) − ∇𝑉 (𝑌 )∥ ∥∇𝑉 (𝑥) + ∇𝑉 (𝑌 )∥
⩾ −𝛽ℎ ∥𝑥 − 𝑌 ∥ (2 ∥∇𝑉 (𝑥)∥ + 𝛽 ∥𝑥 − 𝑌 ∥) ⩾ −𝛽ℎ2 ∥∇𝑉 (𝑥)∥2 − 2𝛽 ∥𝑥 − 𝑌 ∥2 .

Therefore,

log
𝜋(𝑌 )𝑄(𝑌, 𝑥)
𝜋(𝑥)𝑄(𝑥,𝑌 ) ≳ −𝛽ℎ

2 ∥∇𝑉 (𝑥)∥2 − 𝛽 ∥𝑥 − 𝑌 ∥2 ≳ −𝛽ℎ2 ∥∇𝑉 (𝑥)∥2 − 𝛽ℎ ∥𝜉∥2 .

At this stage, observe that we cannot lower bound this quantity (with high probability) uniformly
over 𝑥, since ∥∇𝑉 (𝑥)∥ → ∞ as ∥𝑥∥ → ∞. This is why it is helpful to restrict to 𝑥 belonging to some
high-probability event 𝐸 , which is ultimately achieved by working with 𝑠-conductance rather than
conductance.

By standard concentration bounds, ∥𝜉∥2 ⩽ 2𝑑 with probability at least 1 − exp(−𝑑/2). Also, let
𝐸𝐵 B {𝑥 ∈ R𝑑 : ∥∇𝑉 (𝑥)∥ ⩽

√
𝛽𝐵}. It follows that for all 𝑥 ∈ 𝐸𝐵, if we take ℎ ≲ 1

𝛽 (𝑑∨𝐵) with a
sufficiently small constant, then

E 𝐴(𝑥,𝑌 ) ⩾ 11
12
P
{ 𝜋(𝑌 )𝑄(𝑌, 𝑥)
𝜋(𝑥)𝑄(𝑥,𝑌 ) ⩾

11
12

}
⩾

11
12

(
1 − exp

(
−𝑑

2
) )
⩾

5
6
,

for sufficiently large 𝑑. Hence, for 𝑥 ∈ 𝐸𝐵, we have ∥𝑃𝑥 −𝑄𝑥 ∥TV ⩽
1
6 .

Completing the analysis.
We have shown: if the step size is ℎ ≲ 1

𝛽 (𝑑∨𝐵) , then for all 𝑥, 𝑦 ∈ 𝐸𝐵 with ∥𝑥 − 𝑦∥ ⩽ 𝑟,

∥𝑃𝑥 − 𝑃𝑦 ∥TV ⩽ ∥𝑃𝑥 −𝑄𝑥 ∥TV + ∥𝑄𝑥 −𝑄𝑦 ∥TV + ∥𝑃𝑦 −𝑄𝑦 ∥TV ⩽
1
6
+ 𝑟
√

2ℎ
+ 1

6
⩽

1
2

provided we take 𝑟 =
√

2ℎ/6. Applying Lemma 7.4.10 (assuming ℎ ≲ 1
𝛼

), we deduce that 𝔠𝑠 ≳
√
𝛼ℎ

provided 𝜋(𝐸𝐵) ⩾ 1 − 𝑐0𝑠
√
𝛼ℎ, where 𝑐0 > 0 is a universal constant. Since we want the step size ℎ to

be as large as possible, we take ℎ ≍ 1
𝛽 (𝑑∨𝐵) , where 𝐵 is chosen to satisfy 𝜋(𝐸c

𝐵
) ≲ 𝑠/

√︁
𝜅 (𝑑 ∨ 𝐵) and

𝑠 ≍ 𝜀2/𝜒2(𝜇0 ∥ 𝜋). By the gradient concentration inequality in Lemma 6.2.7, 𝜋(𝐸c
𝐵
) ≲ exp(−Ω(𝐵)),

so we can choose 𝐵 = 𝑂 (log 𝜒2 (𝜇0/𝜋 )
𝜀2 ). The final mixing time bound implied by Theorem 7.4.9 is then

𝑂 (𝜅𝑑 log2(𝜒2(𝜇0 ∥ 𝜋)/𝜀2)).

From warm start to feasible start.
The factor of log 𝜒2(𝜇0 ∥ 𝜋) in the bound incurs additional dimension dependence under a feasible
start, since with a Gaussian initialization we can only show 𝜒2(𝜇0 ∥ 𝜋) ⩽ 𝜅Ω(𝑑) . The problem is
that the conductance-based analysis relies upon Poincaré-type inequalities, instead of log-Sobolev
inequalities. To address this issue, we can replace the assumption of a Cheeger isoperimetric inequality
with a Gaussian isoperimetric inequality (see Section 2.4.5). The essential difference is that under a
Cheeger isoperimetric inequality, as 𝑝 B 𝜋(𝐴) ↘ 0 we have 𝜋+(𝐴) ≳ 𝑝, whereas under a Gaussian
isoperimetric inequality we have 𝜋+(𝐴) ≳ 𝑝

√︃
log 1

𝑝
. Using this stronger assumption, Chen et al.

(2020) show that the dependence on the initialization can be improved to log log 𝜒2(𝜇0 ∥ 𝜋). A similar
effect can be achieved via the blocking conductance Kannan et al. (2006), which was used in Lee et al.
(2020). We omit the details.
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Lower bound.
Finally, the analysis of MALA in Theorem 7.3.4 is tight, as shown in the following lower bound.

Theorem 7.5.7 (Lee et al. (2021a)). For every choice of step size ℎ > 0, there exists a target
distribution 𝜋 ∝ exp(−𝑉) on R𝑑 with 𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝜅𝐼𝑑, as well as an initialization 𝜇0 with
𝜒2(𝜇0 ∥ 𝜋) ⩽ exp 𝑑, such that the number of iterations required for MALA to reach total variation
at most 1

4 from 𝜋 is at least Ω̃(𝜅𝑑).

This theorem is a lower bound in the sense that all of the known proofs for MALA do not use any
property of the initialization 𝜇0 except through 𝜒2(𝜇0 ∥ 𝜋). Thus, in order to improve the analysis of
MALA under a feasible start, one must use more specific properties of the initialization, or use some
other modification that bypasses the lower bound (e.g., random step sizes).

7.6 Analysis of MALA for a Warm Start

We next turn towards the warm start case (Theorem 7.3.5). The improvement under a warm start was
first shown in Chewi et al. (2021), with subsequent refinements in Wu et al. (2021); Chen and Gatmiry
(2023a) via completely different techniques. In this section, we follow Chewi et al. (2021) because the
proof is more conceptual and closer to the stochastic calculus arguments of Chapter 6.

We still follow the 𝑠-conductance framework of the previous section, including the basic de-
composition (7.5.1). The main difference lies in the control of ∥𝑃𝑥 −𝑄𝑥 ∥TV, which was previously
accomplished by lower bounding the acceptance probability. Surprisingly, the following proof never
works directly with the acceptance probability, despite the fact that ∥𝑃𝑥 − 𝑄𝑥 ∥TV is precisely the
rejection probability at 𝑥 (see (7.5.3)).

Using the projection property.
The key insight is to use projection characterization of the Metropolis–Hastings filter (Theorem 7.2.5):
the MALA kernel 𝑃 is the closest kernel to the proposal 𝑄 (in an appropriate 𝐿1 distance) among all
reversible Markov chains with stationary distribution 𝜋. Concretely, for any other kernel �̄� which is
reversible w.r.t. 𝜋,∬

(R𝑑×R𝑑 )\diag
|𝑃(𝑥, 𝑦) −𝑄(𝑥, 𝑦) | 𝜋(d𝑥) d𝑦 ⩽

∬
(R𝑑×R𝑑 )\diag

|𝑄(𝑥, 𝑦) − �̄�(𝑥, 𝑦) | 𝜋(d𝑥) d𝑦 .

Now supposing that �̄� has no atoms, this inequality is the same as∫
∥𝑃𝑥 −𝑄𝑥 ∥TV 𝜋(d𝑥) ⩽ 2

∫
∥𝑄𝑥 − �̄�𝑥 ∥TV 𝜋(d𝑥) . (7.6.1)

Thus, we can indirectly bound ∥𝑄𝑥 − 𝑃𝑥 ∥TV, at least on average. Moreover, there is a very natural
choice of �̄� here: since 𝑄 is obtained from a discretization of the Langevin diffusion, we can take �̄�
to be the continuous-time Langevin diffusion run for time ℎ, which is indeed reversible with respect to
𝜋. The right-hand side of the above expression then simply measures the discretization error, which
we have already studied in detail.
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Pointwise projection property.
The projection property is not enough for our purposes, however, since it only bounds ∥𝑃𝑥 −𝑄𝑥 ∥TV
in average, whereas we really need high-probability bounds. Thankfully, we can extend the projection
property.

Theorem 7.6.2 (pointwise projection property, (Chewi et al., 2021, Theorem 6)). Let 𝑄 be an
atomless proposal kernel and let 𝑃 be the corresponding Metropolis–Hastings kernel with target
𝜋. Then, for any atomless kernel �̄� which is reversible with respect to 𝜋, and for every 𝑥 ∈ R𝑑 ,

∥𝑃𝑥 −𝑄𝑥 ∥TV ⩽ 2 ∥𝑄𝑥 − �̄�𝑥 ∥TV +
∫

𝜋(𝑦) �̄�(𝑦, 𝑥)
𝜋(𝑥)

��𝑄(𝑦, 𝑥)
�̄�(𝑦, 𝑥)

− 1
�� d𝑦 .

Consequently, for any convex increasing function Φ : R+ → R+,∫
Φ(∥𝑃𝑥 −𝑄𝑥 ∥TV) 𝜋(d𝑥) ⩽

1
2

∫
Φ(4 ∥𝑄𝑥 − �̄�𝑥 ∥TV) 𝜋(d𝑥)

+ 1
2

∬
Φ
(
2
��𝑄(𝑥, 𝑦)
�̄�(𝑥, 𝑦)

− 1
��) �̄�(𝑥, d𝑦) 𝜋(d𝑥) . (7.6.3)

We will not need the inequality (7.6.3), so the proof is left as Exercise 7.9. The reason why (7.6.3)
is included in the theorem is because it makes it clear why we can expect the pointwise projection
property to imply high-probability bounds for ∥𝑃𝑥−𝑄𝑥 ∥TV. Note that when we integrate the projection
property w.r.t. 𝜋(d𝑥), we recover (7.6.1) with a factor of 4 on the right-hand side instead of 2.

Proof We can write

∥𝑃𝑥 −𝑄𝑥 ∥TV = 1 −
∫

𝑄(𝑥, d𝑦) 𝐴(𝑥, 𝑦) =
∫ [

1 −
(
1 ∧ 𝜋(𝑦)𝑄(𝑦, 𝑥)

𝜋(𝑥)𝑄(𝑥, 𝑦)

)]
𝑄(𝑥, d𝑦)

⩽

∫ ���1 − 𝜋(𝑦)𝑄(𝑦, 𝑥)
𝜋(𝑥)𝑄(𝑥, 𝑦)

���𝑄(𝑥, d𝑦)
⩽

∫ ���1 − 𝜋(𝑦) �̄�(𝑦, 𝑥)
𝜋(𝑥)𝑄(𝑥, 𝑦)

���𝑄(𝑥, d𝑦) + ∫ 𝜋(𝑦) �̄�(𝑦, 𝑥)
𝜋(𝑥)

���𝑄(𝑦, 𝑥)
�̄�(𝑦, 𝑥)

− 1
��� d𝑦 .

Using reversibility of �̄�, the first term is∫ ���1 − 𝜋(𝑦) �̄�(𝑦, 𝑥)
𝜋(𝑥)𝑄(𝑥, 𝑦)

���𝑄(𝑥, d𝑦) = ∫
|𝑄(𝑥, 𝑦) − �̄�(𝑥, 𝑦) | d𝑦 = 2 ∥𝑄𝑥 − �̄�𝑥 ∥TV ,

which completes the proof. □

Applying the pointwise projection property.
Our goal is to bound ∥𝑃𝑥 −𝑄𝑥 ∥TV for all 𝑥 which lies in an event 𝐸 of very high probability under 𝜋.
We proceed by controlling the two terms in the pointwise projection property separately.

The first term, ∥𝑄𝑥 − �̄�𝑥 ∥TV, is more straightforward. It is helpful to apply Pinsker’s inequality,
leaving us to control KL(�̄�𝑥 ∥ 𝑄𝑥). This is precisely the kind of discretization error that we
controlled via Girsanov’s theorem in Section 4.4. In particular, it follows from Theorem 4.4.1 that
∥𝑄𝑥 − �̄�𝑥 ∥TV ≲ 𝛽ℎ

3/2 ∥∇𝑉 (𝑥)∥ + 𝛽𝑑1/2ℎ. By the gradient concentration bound in Lemma 6.2.7, for
ℎ ≲ 1/𝛽, we have ∥𝑄𝑥 − �̄�𝑥 ∥TV ≲ 𝛽𝑑

1/2ℎ + 𝛽3/2ℎ3/2
√︁

log(1/𝛿) with probability 1 − 𝛿 under 𝜋. In
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particular, we expect a step size of ℎ ≍ 1/(𝛽
√
𝑑) to suffice to control this term, which is certainly

encouraging.
To control the second term with high probability, it suffices to control the moments of this quantity

under 𝜋: for 𝑝 ⩾ 1,

∫ ���∫ 𝜋(𝑦) �̄�(𝑦, 𝑥)
𝜋(𝑥)

��𝑄(𝑦, 𝑥)
�̄�(𝑦, 𝑥)

− 1
�� d𝑦���𝑝 𝜋(d𝑥) ⩽ ∬ ��𝑄(𝑦, 𝑥)

�̄�(𝑦, 𝑥)
− 1

��𝑝 �̄�(𝑦, d𝑥) 𝜋(d𝑦) .
Let �̄�𝑥 denote the measure on path space C([0, ℎ];R𝑑) of the Langevin diffusion started at 𝑥. Similarly,
let 𝑸𝑥 denote the same for the interpolation of LMC. By the data-processing inequality, we obtain

∬ ��𝑄(𝑦, 𝑥)
�̄�(𝑦, 𝑥)

− 1
��𝑝 �̄�(𝑦, d𝑥) 𝜋(d𝑦) ⩽ ∫

E�̄�𝑥

[��d𝑸𝑥

d�̄�𝑥

− 1
��𝑝] 𝜋(d𝑥) .

We can again approach this term via stochastic calculus, although the arguments become more
involved. First, via Girsanov’s theorem (Theorem 3.2.8),

d𝑸𝑥

d�̄�𝑥

= exp
( 1
√

2

∫ ℎ

0
⟨∇𝑉 (𝑥) − ∇𝑉 (𝑋𝑡 ), d𝐵𝑡⟩ −

1
4

∫ ℎ

0
∥∇𝑉 (𝑥) − ∇𝑉 (𝑋𝑡 )∥2 d𝑡︸                                                                                 ︷︷                                                                                 ︸

B𝐿ℎ

)
,

where (𝐵𝑡 )𝑡⩾0 is the �̄�𝑥-Brownian motion and (𝑋𝑡 )𝑡⩾0 is the Langevin diffusion driven by (𝐵𝑡 )𝑡⩾0
and started at 𝑥. By applying Itô’s formula (Theorem 1.1.19),

exp(𝐿ℎ) − 1 =
1
√

2

∫ ℎ

0
(exp 𝐿𝑡 ) ⟨∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑥), d𝐵𝑡⟩ .

We need to control the 𝑝-th moment of this stochastic integral; we can take 𝑝 to be an even integer.
For 𝑝 = 2, we can apply the Itô isometry (1.1.9). For larger values of 𝑝, the appropriate substitute is
the Burkholder–Davis–Gundy inequality with optimal constants.

Lemma 7.6.4 (Burkholder–Davis–Gundy, Burkholder (1973); Davis (1976)). There is a universal
constant 𝐶 > 0 such that for any even integer 𝑝 ⩾ 2,

E
[

sup
𝑡∈[0,𝑇 ]

���∫ 𝑡

0
⟨𝜂𝑠, d𝐵𝑠⟩

���𝑝] ⩽ (𝐶𝑝) 𝑝/2 E[���∫ 𝑇

0
∥𝜂𝑡 ∥2 d𝑡

���𝑝/2] .
We have stated this inequality in a form that is convenient for our purposes, although it applies

more generally to local martingales. The growth of the optimal constants with 𝑝 implies that the
stochastic integral has sub-Gaussian tails.
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Applying this to the problem at hand,

E�̄�𝑥

[��d𝑸𝑥

d�̄�𝑥

− 1
��𝑝] ⩽ (𝐶𝑝) 𝑝/2 E�̄�𝑥

[���∫ ℎ

0
exp(2𝐿𝑡 ) ∥∇𝑉 (𝑋𝑡 ) − ∇𝑉 (𝑥)∥2 d𝑡

���𝑝/2]
⩽ (𝐶𝛽2𝑝) 𝑝/2 E�̄�𝑥

[���∫ ℎ

0
exp(4𝐿𝑡 ) d𝑡

���𝑝/4 ���∫ ℎ

0
∥𝑋𝑡 − 𝑥∥4 d𝑡

���𝑝/4]
⩽ (𝐶𝛽2𝑝) 𝑝/2

√︄
E�̄�𝑥

[���∫ ℎ

0
exp(4𝐿𝑡 ) d𝑡

���𝑝/2] E�̄�𝑥

[���∫ ℎ

0
∥𝑋𝑡 − 𝑥∥4 d𝑡

���𝑝/2]
⩽ (𝐶𝛽2𝑝) 𝑝/2 ℎ𝑝/2−1

√︄(
E�̄�𝑥

∫ ℎ

0
exp(2𝑝𝐿𝑡 ) d𝑡

) (
E�̄�𝑥

∫ ℎ

0
∥𝑋𝑡 − 𝑥∥2𝑝 d𝑡

)
.

We bound each of the remaining expectation terms in turn. We start by observing that E�̄�𝑥 exp(2𝑝𝐿𝑡 ) =
exp((2𝑝 − 1)R2𝑝 (𝑸𝑥 | [0,𝑡 ] ∥ �̄�𝑥 | [0,𝑡 ])), so by Theorem 6.2.1 we obtain

E�̄�𝑥

∫ ℎ

0
exp(2𝑝𝐿𝑡 ) d𝑡 ⩽ ℎ exp𝑂

(
𝛽2ℎ3𝑝2 ∥∇𝑉 (𝑥)∥2 + 𝛽2𝑑ℎ2𝑝2)

provided ℎ ≲ 1/(𝛽𝑝). Next, by (6.2.2) and Lemma 6.2.4,

E�̄�𝑥

∫ ℎ

0
∥𝑋𝑡 − 𝑥∥2𝑝 d𝑡 ⩽ 𝐶 𝑝ℎ

(
ℎ2𝑝 ∥∇𝑉 (𝑥)∥2𝑝 + E�̄�𝑥 sup

𝑡∈[0,ℎ]
∥𝐵𝑡 ∥2𝑝

)
⩽ 𝐶 𝑝ℎ

(
ℎ2𝑝 ∥∇𝑉 (𝑥)∥2𝑝 + 𝑑 𝑝ℎ𝑝𝑝𝑝

)
.

Therefore,

E�̄�𝑥

[��d𝑸𝑥

d�̄�𝑥

− 1
��𝑝]

⩽ (𝐶𝛽2ℎ2𝑝) 𝑝/2
(
ℎ𝑝/2 ∥∇𝑉 (𝑥)∥ 𝑝 + 𝑑 𝑝/2𝑝𝑝/2

)
exp𝑂

(
𝛽2ℎ3𝑝2 ∥∇𝑉 (𝑥)∥2 + 𝛽2𝑑ℎ2𝑝2) .

We integrate w.r.t. 𝜋(d𝑥) and apply Cauchy–Schwarz:∫
E�̄�𝑥

[��d𝑸𝑥

d�̄�𝑥

− 1
��𝑝] 𝜋(d𝑥) ⩽ (𝐶𝛽2ℎ2𝑝) 𝑝/2

(
ℎ𝑝/2

√︄∫
∥∇𝑉 (𝑥)∥2𝑝 𝜋(d𝑥) + 𝑑 𝑝/2𝑝𝑝/2

)
×
∫

exp𝑂
(
𝛽2ℎ3𝑝2 ∥∇𝑉 (𝑥)∥2 + 𝛽2𝑑ℎ2𝑝2) 𝜋(d𝑥) .

If we again apply the gradient concentration inequality (Lemma 6.2.7), we obtain{∫
E�̄�𝑥

[��d𝑸𝑥

d�̄�𝑥

− 1
��𝑝] 𝜋(d𝑥)}1/𝑝

≲ 𝛽ℎ
√
𝑝
(√︁
𝛽𝑑ℎ𝑝 +

√︁
𝑑𝑝

)
≲ 𝛽ℎ𝑑1/2𝑝

provided that ℎ ≲ 1/(𝛽𝑑1/3𝑝2/3). By Markov’s inequality, it implies that the second term arising from
the pointwise projection property is at most 𝑂 (𝛽𝑑1/2ℎ𝑝/𝛿1/𝑝) with probability at least 1 − 𝛿 under 𝜋.
In particular, if we take 𝑝 ≍ log(1/𝛿), the bound reads 𝑂 (𝛽𝑑1/2ℎ log(1/𝛿)).

Conductance argument.
We now finish with a conductance argument, similarly to Section 7.5. Namely, we must take 𝛿 so that
𝛿 ≲ 𝑠

√
𝛼ℎ ≍ 𝜀2

√
𝛼ℎ/𝜒2(𝜇0 ∥ 𝜋) and ℎ so that ℎ ≲ 1/(𝛽𝑑1/2 log(1/𝛿)). This is satisfied by taking
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ℎ ≍ 1/{𝛽
√
𝑑 log(𝜒2(𝜇0/𝜋)/𝜀2)}. Then, Lemma 7.4.10 yields 𝔠𝑠 ≳

√
𝛼ℎ. Finally, Theorem 7.4.9

yields mixing in total variation in 𝑂 (𝜅
√
𝑑 log2(𝜒2(𝜇0/𝜋)/𝜀2)) iterations.

Lower bound.
Finally, we complement the analysis with a matching lower bound. Under a warm start, Chewi et al.
(2021) showed a lower bound of roughly Ω̃(

√
𝑑), which was improved in Wu et al. (2021) to Ω̃(𝜅

√
𝑑).

We state the result here.

Theorem 7.6.5 (Wu et al. (2021)). For every choice of step size ℎ > 0, there exists a target
distribution 𝜋 ∝ exp(−𝑉) on R𝑑 with 𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝜅𝐼𝑑, as well as an initialization 𝜇0 with
𝜒2(𝜇0 ∥ 𝜋) ≲ 1, such that the number of iterations required for MALA to reach total variation 𝜀
from 𝜋 is at least Ω̃(𝜅

√
𝑑 log(1/𝜀)).

Bibliographical Notes
The Metropolis–Hastings algorithm dates back to the birth of MCMC itself Metropolis et al. (1953);
Hastings (1970), whereas rejection sampling can be traced back to Ulam and von Neumann von
Neumann (1951); Eckhardt (1987). Moreover, MALA and MHMC were introduced in Besag et al.
(1995) and Neal (2011) respectively. Traditionally, these algorithms were studied in an asymptotic
framework in which a scaling ℎ ∝ 1/𝑑 𝜃 is sought so that the algorithm admits a non-degenerate
diffusion limit as 𝑑 →∞; see Roberts and Rosenthal (1998) for a particularly influential work in this
direction. Part of the appeal lies in the precise calculation of the limiting acceptance probabilities,
leading to an effective tuning strategy: set the step size of the algorithm so that the proportion of
accepted moves equals the limit value.

The quantity 𝑑 𝜃 is interpreted as a proxy for the mixing time, and in this way the following
predictions were made for the complexities: Θ(𝑑1/3) for MALA, and Θ(𝑑1/4) for MHMC. There
are notable limitations of the scaling limit approach, however: it imposes stringent assumptions,
such as higher-order smoothness or that the target is a product measure, and the analysis is often
conducted at stationarity. There are further works aimed at addressing these issues, but a precise
determination of the mixing time requires a non-asymptotic framework. The paper Chewi et al. (2021)
further emphasized this point by proving a Ω̃(𝑑1/2) lower bound for MALA (stated as Theorem 7.6.5),
which seemingly contradicts the Θ(𝑑1/3) dependence predicted by the scaling limit. Of course, the
contradiction is illusory; the scaling limit requires more assumptions (e.g., higher-order smoothness).
Still, this presents a cautionary tale for interpreting asymptotic results with the non-asymptotic,
minimax lens that we adopt in this book.

The overlap lemma (Lemma 7.4.8) was refined by a suggestion from Kexin Zhang.
The 𝑂 (𝜅𝑑) rate for MALA was first obtained in Dwivedi et al. (2019) with a warm start, and

then in Chen et al. (2020) for a feasible start. Initially, these rates also had an additional 𝑂 (𝜅3/2𝑑1/2)
term, which was removed via a gradient concentration bound in Lee et al. (2020). Our analysis in
Section 7.5 is based on Dwivedi et al. (2019), except that we use the gradient bound from Lemma 6.2.7
(which improves, in some respects, the bound used in Chen et al. (2020)). The rate for MRW stated
in Theorem 7.3.4 was proven in Andrieu et al. (2024).

The paper Chewi et al. (2021) showed that under standard assumptions, the dimension dependence of
MALA improves to 𝑑1/2 under a warm start. However, due to a typo in the paper, the condition number
dependence of the result was unclear. Subsequently, the optimal bound of 𝑂 (𝜅𝑑1/2) was obtained
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in Wu et al. (2021) via a different approach, which avoids stochastic calculus but relies on rather
delicate calculations for the acceptance probability. These papers were later revisited: the rate of Chewi
et al. (2021) was clarified to be 𝑂 (𝜅𝑑1/2 + 𝜅2) in the PhD thesis Chewi (2023), and the approach
of Wu et al. (2021) was further simplified in Chen and Gatmiry (2023a). In Section 7.6, we follow
the approach of Chewi et al. (2021); Chewi (2023), except that we further refine it via Lemma 6.2.7
which to reach the optimal 𝑂 (𝜅𝑑1/2) bound. The warm start for MALA used to prove Corollary 7.3.6
was attained in Altschuler and Chewi (2024a).

Currently, the state-of-the-art for MHMC is Chen and Gatmiry (2023b), which obtains a 𝑂 (𝜅𝑑1/4)
rate under third-order smoothness and a warm start. It is not known if the third-order smoothness can
be relaxed, or if the warm start can be obtained using 𝑂 (𝜅𝑑1/4) queries.

The following lower bounds for MALA have been obtained: Ω̃(𝑑1/2) from a warm start Chewi
et al. (2021); Ω̃(𝜅𝑑) from a feasible start Lee et al. (2021a); Ω̃(𝜅𝑑1/2) from a warm start Wu et al.
(2021), improving upon Chewi et al. (2021). Together with the upper bounds, we now have a thorough
understanding of the complexity of MALA for feasible vs. warm initializations. We note that Lee et al.
(2021a) also contains some lower bounds for MHMC.

There is an extensive literature on variants of these algorithms and analyses which do not fit within
the framework considered in this book, and we do not attempt to comprehensively survey it here.

Exercises
An Overview of High-Accuracy Samplers

⊵ Exercise 7.1 (MALA is a special case of MHMC)
Show that when 𝐾 = 1, the MHMC algorithm reduces to MALA.

⊵ Exercise 7.2 (MH filter for the leapfrog integrator)
For the leapfrog integrator 𝐹leap, verify that 𝐹−1

leap = 𝑅 ◦ 𝐹leap ◦ 𝑅.
Hint: First show that it suffices to consider 𝑇 = ℎ (i.e., 𝐾 = 1).

Markov Chains in Discrete Time
⊵ Exercise 7.3 (reversible Markov chains as gradient descent on the Dirichlet energy)
Consider the setting of Section 7.4.

1 Show that ℰ( 𝑓 , 𝑓 ) = 1
2 E[| 𝑓 (𝑋1) − 𝑓 (𝑋0) |2], where (𝑋0, 𝑋1) are two successive iterates of the

Markov chain started at stationarity. We also write ℰ( 𝑓 ) B ℰ( 𝑓 , 𝑓 ) as a useful shorthand.
2 Show that if (𝜇𝑘)𝑘∈N are the laws of the iterates of the ℓ-lazy version of 𝑃, then the relative densities
( 𝜇𝑘
𝜋
)
𝑘∈N are the iterates of gradient descent on the Dirichlet energy ℰ in 𝐿2(𝜋). How does the

laziness parameter ℓ relate to the step size of the gradient descent?
3 Observe that ℰ is a convex quadratic functional; show that 0 ⪯ ∇2

𝐿2 (𝜋 )ℰ ⪯ 4. What does the theory
of convex optimization suggest for the value of the laziness parameter ℓ?

4 Next, prove a generalization of Theorem 7.4.2 for any value of the laziness parameter ℓ ∈ [ 1
2 , 1] by

showing that the spectral gap condition is equivalent to strong convexity of ℰ. Why do we want
ℓ ⩾ 1

2 here?
5 Show that the conductance of the chain can also be described as the largest 𝔠 > 0 such that for all

events 𝐴 ⊆ R𝑑 , it holds thatℰ(1𝐴) ⩾ 𝔠 ∥1𝐴 − 𝜋(𝐴)∥2𝐿2 (𝜋 ) . Hence, conductance can be viewed as a
restricted strong convexity condition (restricting the space of functions to indicators of events). In
particular, show the bound 𝜆 ⩽ 𝔠 in Cheeger’s inequality (Theorem 7.4.3).
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⊵ Exercise 7.4 (entropy decay implies MLSI)
Suppose that 𝑃 satisfies the following entropy decay condition: there exists 𝑐 ∈ (0, 1) such that for all
probability measures 𝑃,

KL(𝜇𝑃 ∥ 𝜋) ⩽ (1 − 𝑐) KL(𝜇 ∥ 𝜋) .

Prove that 𝑃 satisfies a MLSI with constant 𝐶MLSI ⩽ 2/𝑐.

⊵ Exercise 7.5 (completing the proof of Cheeger’s inequality)
In this exercise, we prove Lemma 7.4.6. We can normalize the random variables so that E 𝑋 = 0 and
𝜎2 = 1.

1 Show that as 𝑐 →∞, the ratio on the left-hand side of (7.4.7) tends to 4 {E|𝑋 − 𝑋 ′ |}2. Thus, we
are done in the case E|𝑋 | ⩾ 1/2.

2 Otherwise, set 𝑐 = 0 and prove that E|𝑋2 − 𝑋 ′2 | ⩾ 2 (1 − E|𝑋 |).
Hint: Work over the event {𝑋2 ⩾ 1, 𝑋 ′2 < 1} ∪ {𝑋 ′2 ⩾ 1, 𝑋2 < 1}.

⊵ Exercise 7.6 (𝑠-conductance lemma)
Prove the 𝑠-conductance lemma (Lemma 7.4.10).

⊵ Exercise 7.7 (boosting from TV to 𝜒2)
The mixing time guarantee in Theorem 7.4.9 is stated for the TV distance, but guarantees for
high-accuracy samplers can often be “upgraded” to hold in stronger metrics. To illustrate, suppose
that in the setting of Theorem 7.4.9, the Markov chain is initialized at a measure 𝜇0 with d𝜇0

d𝜋 ⩽ 𝑀.
Show that 𝜒2(𝜇𝑁 ∥ 𝜋) ⩽ 𝜀2 after 𝑁 = 𝑂 ( 1

𝔠2
𝑠

log 𝑀

𝜀
) iterations, where 𝑠 = 𝜀2/(4𝑀2).

Hint: Show that Δ𝑠 ⩽ 𝑀𝑠 and that d𝜇𝑛
d𝜋 ⩽ 𝑀 for all 𝑛 ∈ N. Bound 𝜒2(𝜇𝑁 ∥ 𝜋) in terms of 𝑀

and ∥𝜇𝑁 − 𝜋∥TV, and then apply Theorem 7.4.9. More generally, this approach shows that if the
initialization to the Markov chain satisfies R𝑞 (𝜇0 ∥ 𝜋) < ∞ for some 𝑞 > 1, then one obtains guarantees
for R𝑞′ (𝜇𝑁 ∥ 𝜋) for all 𝑞′ < 𝑞.

Analysis of MALA for a Feasible Start
⊵ Exercise 7.8 (analysis of MRW)
Follow the analysis in this section and adapt it to the Metropolized random walk (MRW) algorithm.
What mixing time bound can you prove?

Analysis of MALA for a Warm Start
⊵ Exercise 7.9 (pointwise projection property)
Prove (7.6.3) from the pointwise projection property.

⊵ Exercise 7.10 (mixing time for a Gaussian target)
Adapt the analysis in this section to the case when the target distribution is the standard Gaussian.
Here, it is possible to do a much more refined analysis; see if you can show that the mixing time of
MALA is 𝑂 (𝑑1/3 polylog(1/𝜀)) from a warm start. See (Chewi et al., 2021, Appendix C) for hints.



CHAPTER 8

The Proximal Sampler

In this chapter, we discuss the proximal sampler, which was introduced in Lee et al. (2021b) although
similar ideas date back earlier. The applications of the proximal sampler include improving the
condition number dependence of high-accuracy samplers and extending the sampling guarantees
beyond strong log-concavity. Besides these applications, the proximal sampler is interesting in its own
right due to its remarkable convergence analysis and its connections with the proximal point method
in optimization.

199
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Optimization Box 8.0.1. Given𝑉 : R𝑑 → R, the proximal oracle associated with𝑉 and step size
ℎ > 0 is defined as the mapping proxℎ𝑉 : R𝑑 → R𝑑 given by proxℎ𝑉 (𝑥) B arg min𝑦∈R𝑑 {𝑉 (𝑦) +
1

2ℎ ∥𝑦 − 𝑥∥
2}.

Implementing the proximal oracle. Note that the proximal oracle can be viewed as a
regularized version of the original optimization problem. In particular, if ∥∇2𝑉 ∥op ⩽ 𝛽 and
ℎ ⩽ 1

2𝛽 , then the proximal oracle is the solution to a ( 1
ℎ
− 𝛽)-strongly convex and ( 1

ℎ
+ 𝛽)-smooth

optimization problem, with condition number 1/ℎ+𝛽
1/ℎ−𝛽 ⩽ 3. Therefore, it can be approximately

implemented via convex optimization.
Using the proximal oracle. Given access to the proximal oracle for 𝑉 , the simplest way

to use it to minimize 𝑉 is to iterate it: 𝑥𝑘+1 B proxℎ𝑉 (𝑥𝑘). This is known as the proximal
point method (PPM). If 𝑉 is 𝛼-strongly convex, then we can obtain a convergence rate for the
PPM as follows. First, note that the first-order optimality condition for the PPM can be written
proxℎ𝑉 (𝑥) = (id + ℎ∇𝑉)−1(𝑥). From this, one can show that proxℎ𝑉 is 1/(1 + 𝛼ℎ)-Lipschitz,
and proxℎ𝑉 (𝑥★) = 𝑥★. Therefore, ∥𝑥𝑁 − 𝑥★∥ ⩽ (1 + 𝛼ℎ)−𝑁 ∥𝑥0 − 𝑥★∥. Note that unlike gradient
descent, the convergence of the PPM does not require smoothness of 𝑉 .

Application to composite optimization. Arguably, the most well-known application of
the proximal oracle is the minimization of a convex composite objective 𝑓 + 𝑔, where 𝑓 is
smooth and 𝑔 is non-smooth but “simple” so that the proximal oracle for 𝑔 can be evaluated
in closed form. The canonical example is when 𝑔 = ∥·∥1 is the ℓ1-norm, in which case this
composite objective encompasses computation of the LASSO estimator for sparse regression.
In this case, the proximal gradient algorithm consists of GD steps for 𝑓 and PPM steps for 𝑔:
𝑥𝑘+1 = proxℎ𝑔 (𝑥𝑘 − ℎ∇ 𝑓 (𝑥𝑘)). Crucially, this algorithm can be shown to converge at the same
rate as GD for convex smooth optimization, despite the presence of the non-smooth term.

The PPM can be written 𝑥𝑘+1 = 𝑥𝑘 − ℎ∇𝑉 (𝑥𝑘+1) which shows that it is an implicit discretization of
the gradient flow. Implicit discretizations are more stable (indeed, note that the convergence rate for
the PPM given above holds for all choices of ℎ > 0, whereas GD typically requires ℎ < 2/𝛽), but
at the cost of being harder to implement. We will see that similar intuitions hold in the context of
sampling.

8.1 Introduction to the Proximal Sampler
Let 𝜋 ∝ exp(−𝑉) denote the target distribution. We fix ℎ > 0 and define the augmented target
distribution

𝝅(𝑥, 𝑦) ∝ exp
(
−𝑉 (𝑥) − ∥𝑦 − 𝑥∥

2

2ℎ

)
.

To avoid confusion, we will explicitly write 𝜋𝑋 = 𝜋 for the 𝑋-marginal, and 𝜋𝑌 for the 𝑌 -marginal.
Similarly, 𝜋𝑋 |𝑌 and 𝜋𝑌 |𝑋 denote the conditional distributions.

The proximal sampler applies Gibbs sampling to the augmented target. Explicitly, the updates of
the proximal sampler are as follows.

Proximal Sampler: Initialize 𝑋0 ∼ 𝜇0. For 𝑘 = 0, 1, 2, . . . :

1 Draw 𝑌𝑘 ∼ 𝜋𝑌 |𝑋 (· | 𝑋𝑘) = normal(𝑋𝑘 , ℎ𝐼𝑑).
2 Draw 𝑋𝑘+1 ∼ 𝜋𝑋 |𝑌 (· | 𝑌𝑘).
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Since Gibbs sampling always forms a reversible Markov chain with respect to the target distribution,
we conclude that the proximal sampler is unbiased: its stationary distribution of the proximal sampler
is 𝝅. As written, however, the proximal sampler is an idealized algorithm because it is not yet clear
how to implement the second step of sampling from 𝜋𝑋 |𝑌 . Note that

𝜋𝑋 |𝑌 (𝑥 | 𝑦) ∝𝑥 exp
(
−𝑉 (𝑥) − ∥𝑦 − 𝑥∥

2

2ℎ

)
.

Also, recall that in optimization, we wish to minimize the function 𝑉 , whereas in sampling we want
to sample from 𝜋 ∝ exp(−𝑉). Via this correspondence, we see that the optimization analogue of
sampling from 𝜋𝑋 |𝑌 , which is known as the restricted Gaussian oracle (RGO), is precisely the
computation of the proximal oracle. See Exercise 8.1 for another connection between the proximal
sampler and the PPM.

Interpretation of the proximal sampler.
At this stage, it may be unclear why the proximal sampler should be interpreted as the PPM for
sampling. Part of the justification lies in the convergence results we establish in subsequent sections
that are exactly analogous to optimization guarantees for the PPM.

Here, we present another justification in the spirit of the discussion from Section 4.3. There, we
observed that sampling, which can be viewed as the minimization of the KL divergence KL(· ∥ 𝜋), is a
composite optimization problem over the space of probability measures consisting of a smooth term
(the “energy”) and a non-smooth term (the “entropy”). The optimization wisdom from Optimization
Box 8.0.1 suggests considering a proximal gradient method in the Wasserstein space, which would
require computation of proxℎH (𝜇) B arg min𝜈∈P2 (R𝑑 ) {H(𝜈) +

1
2 𝑊

2
2 (𝜇, 𝜈)}. Such a scheme can be

shown to enjoy strong convergence guarantees—see Salim et al. (2020)—but unfortunately the
proximal oracle for the entropy functional is not easily implementable.

Recall from Section 4.3 that LMC is a splitting scheme which applies GD to the energy, and
gradient flow to the entropy, but that this scheme is biased. The paper Salim et al. (2020) shows that if
we keep the GD step for the energy, then the “natural” (but intractable) method to apply to the entropy
to make the whole algorithm unbiased is the proximal oracle proxℎH. On the other hand, what if we
keep the gradient flow for the entropy—i.e., the heat flow—and ask what method we can apply to
the energy to keep the algorithm unbiased? In a sense, the proximal sampler is the answer to this
question, since the first step of sampling from a Gaussian is indeed the heat flow. See Exercise 8.2 for
an interpretation of the RGO as the adjoint to the heat flow in a precise sense.

This discussion highlights that even when 𝑉 is smooth, there are potential advantages to be gained
by consideration of proximal methodology, since the sampling problem carries with it an inherent
non-smoothness from the entropy functional.

Implementability of the RGO.
In order to obtain an actual algorithm from the proximal sampler, an implementation of the RGO
must be provided. Obviously, we have

complexity of
the proximal sampler =

number of iterations of
the proximal sampler × complexity of

implementing the RGO .

The next few sections will be devoted to studying the iteration complexity for the proximal
sampler under various assumptions, including strong log-concavity and functional inequalities such a
log-Sobolev inequality.
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Implementations of the RGO will be discussed in Section 8.6. Similarly as in Optimization Box 8.0.1,
as soon as ∥∇2𝑉 ∥op ⩽ 𝛽 and ℎ ⩽ 1

2𝛽 , the RGO is a strongly log-concave and log-smooth distribution
with condition number at most 3. Therefore, the cost of implementing the RGO will boil down to the
cost of sampling from well-conditioned strongly log-concave distributions.

Notation.
We write 𝜇𝑋

𝑘
for the law of 𝑋𝑘 and 𝜇𝑌

𝑘
for the law of𝑌𝑘 for the iterates of the proximal sampler. Observe

that if (𝑄𝑡 )𝑡⩾0 denotes the standard heat semigroup, i.e. 𝜇𝑄𝑡 = 𝜇 ∗ normal(0, 𝑡 𝐼𝑑), then 𝜇𝑌
𝑘
= 𝜇𝑋

𝑘
𝑄ℎ

and 𝜋𝑌 = 𝜋𝑋𝑄ℎ.
We also abbreviate 𝜋𝑋 |𝑌 (· | 𝑦) as 𝜋𝑋 |𝑌=𝑦 .

8.2 Convergence under Strong Log-Concavity
One of the most remarkable features of the proximal sampler is that its convergence analysis closely
mirrors the continuous-time theory for the Langevin diffusion. In this section, we initiate this study
starting with the strongly log-concave case.

Recall that under strong log-concavity, we have contraction of the Langevin diffusion (Theo-
rem 1.4.11). We prove the analogue of this fact for the proximal sampler.

Theorem 8.2.1. Assume that the target 𝜋𝑋 is 𝛼-strongly log-concave. Also, let (𝜇𝑋
𝑘
)
𝑘∈N and

( �̄�𝑋
𝑘
)
𝑘∈N denote two runs of the proximal sampler with target 𝜋𝑋. Then,

𝑊2(𝜇𝑋𝑘 , �̄�𝑋𝑘 ) ⩽
𝑊2(𝜇𝑋0 , �̄�𝑋0 )
(1 + 𝛼ℎ)𝑘

.

The contraction factor matches the contraction for the proximal point method in optimization,
see Exercise 8.3. Since 𝜋𝑋 is left invariant by the proximal sampler, the contraction result also implies
a convergence result in𝑊2.

We will give two proofs of this theorem. First, note that it suffices to consider one iteration and
to prove 𝑊2(𝜇𝑋1 , �̄�𝑋1 ) ⩽ 1

1+𝛼ℎ 𝑊2(𝜇𝑋0 , �̄�𝑋0 ). Next, since the heat flow is a Wasserstein contraction
(which follows from (??) but can also be proven by a straightforward coupling), it holds that
𝑊2(𝜇𝑌0 , �̄�𝑌0 ) ⩽ 𝑊2(𝜇𝑋0 , �̄�𝑋0 ), so it suffices to show𝑊2(𝜇𝑋1 , �̄�𝑋1 ) ⩽ 1

1+𝛼ℎ 𝑊2(𝜇𝑌0 , �̄�𝑌0 ).
We will use the following coupling lemma.

Lemma 8.2.2. Suppose that for all 𝑦, �̄� ∈ R𝑑 , we have

𝑊2(𝜋𝑋 |𝑌=𝑦 , 𝜋𝑋 |𝑌=�̄�) ⩽ 𝐶 ∥𝑦 − �̄�∥ . (8.2.3)

Then,𝑊2(𝜇𝑋1 , �̄�𝑋1 ) ⩽ 𝐶𝑊2(𝜇𝑌0 , �̄�𝑌0 ).

The intuition is that since 𝜇𝑋1 and �̄�𝑋1 are obtained from 𝜇𝑌0 and �̄�𝑌0 by sampling from the RGO
𝜋𝑋 |𝑌 , the contraction statement in (8.2.3) can be used to bound𝑊2(𝜇𝑋1 , �̄�𝑋1 ). The proof of the lemma
is relatively straightforward and good practice for working with couplings, so it is left as Exercise 8.4.

The first proof we present is from Lee et al. (2021c).

Proof of Theorem 8.2.1 via functional inequalities To prove (8.2.3), we note that 𝜋𝑋 |𝑌 (· | �̄�) is
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(𝛼 + 1
ℎ
)-strongly log-concave. Recall that by the Bakry–Émery theorem (Theorem 1.2.30) and the

Otto–Villani theorem (Exercise 1.16) this implies the log-Sobolev inequality (1.4.14) and Talagrand’s
T2 inequality (1.4.15). Applying these inequalities,

𝑊2
2 (𝜋𝑋 |𝑌=𝑦 , 𝜋𝑋 |𝑌=�̄�) ⩽

2
𝛼 + 1

ℎ

KL(𝜋𝑋 |𝑌=𝑦 ∥ 𝜋𝑋 |𝑌=�̄�) ⩽ 1
(𝛼 + 1

ℎ
)2

FI(𝜋𝑋 |𝑌=𝑦 ∥ 𝜋𝑋 |𝑌=�̄�) .

We can compute the Fisher information explicitly. Indeed,

∇ log
𝜋𝑋 |𝑌=𝑦

𝜋𝑋 |𝑌=�̄�
= ∇

( ∥ �̄� − ·∥2
2ℎ

− ∥𝑦 − ·∥
2

2ℎ

)
=
𝑦 − �̄�
ℎ

so that

FI(𝜋𝑋 |𝑌=𝑦 ∥ 𝜋𝑋 |𝑌=�̄�) = E𝜋𝑋|𝑌=𝑦

[∇ log
𝜋𝑋 |𝑌=𝑦

𝜋𝑋 |𝑌=�̄�

2]
=
∥𝑦 − �̄�∥2
ℎ2 .

Hence,

𝑊2
2 (𝜋𝑋 |𝑌=𝑦 , 𝜋𝑋 |𝑌=�̄�) ⩽

1
(𝛼 + 1

ℎ
)2
∥𝑦 − �̄�∥2
ℎ2 =

1
(1 + 𝛼ℎ)2

∥𝑦 − �̄�∥2 . □

The next proof, from Chen et al. (2022), directly uses strong convexity in Wasserstein space.

Proof of Theorem 8.2.1 via Wasserstein calculus This proof rests on the following interpretation of
the RGO. Let F(𝜇) B KL(𝜇 ∥ 𝜋𝑋). Then, by Exercise 8.1,

𝜋𝑋 |𝑌=𝑦 = arg min
𝜇∈P2 (R𝑑 )

{
F(𝜇) + 1

2ℎ
𝑊2

2 (𝜇, 𝛿𝑦)
}
C proxℎF (𝛿𝑦) .

The first-order optimality conditions on Wasserstein space (Ambrosio et al., 2008, Lemma 10.1.2)
reads

0 ∈ 𝜕F(𝜋𝑋 |𝑌=𝑦) + 1
ℎ
(id − 𝑦) , 𝜋𝑋 |𝑌=𝑦-a.s.

where 𝜕F is the subdifferential of F on Wasserstein space.
Using this, we obtain

id ∈ 𝑦 − ℎ 𝜕F(𝜋𝑋 |𝑌=𝑦) , 𝜋𝑋 |𝑌=𝑦-a.s.
id ∈ �̄� − ℎ 𝜕F(𝜋𝑋 |𝑌=�̄�) , 𝜋𝑋 |𝑌=�̄�-a.s.

Let 𝑇 be the optimal transport map from 𝜋𝑋 |𝑌=𝑦 to 𝜋𝑋 |𝑌=�̄� . The second condition above can then be
rewritten as

𝑇 ∈ �̄� − ℎ 𝜕F(𝜋𝑋 |𝑌=�̄�) ◦ 𝑇 , 𝜋𝑋 |𝑌=𝑦-a.s.

We now abuse notation and write 𝜕F(𝜋𝑋 |𝑌=𝑦) for a particular element of the subdifferential and
similarly for 𝜕F(𝜋𝑋 |𝑌=�̄�). Then, 𝜋𝑋 |𝑌=𝑦-a.s.,

∥𝑇 − id∥2 = ∥ �̄� − 𝑦∥2 − 2ℎ ⟨𝜕F(𝜋𝑋 |𝑌=�̄�) ◦ 𝑇 − 𝜕F(𝜋𝑋 |𝑌=𝑦), 𝑇 − id⟩
− ℎ2 ∥𝜕F(𝜋𝑋 |𝑌=�̄�) ◦ 𝑇 − 𝜕F(𝜋𝑋 |𝑌=𝑦)∥2 .

We now integrate w.r.t. 𝜋𝑋 |𝑌=𝑦 and apply strong convexity of F in Wasserstein space:

𝑊2
2 (𝜋𝑋 |𝑌=𝑦 , 𝜋𝑋 |𝑌=�̄�) ⩽ ∥𝑦 − �̄�∥2 − 2𝛼ℎ𝑊2

2 (𝜋𝑋 |𝑌=𝑦 , 𝜋𝑋 |𝑌=�̄�) − 𝛼2ℎ2𝑊2
2 (𝜋𝑋 |𝑌=𝑦 , 𝜋𝑋 |𝑌=�̄�)
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and hence

𝑊2
2 (𝜋𝑋 |𝑌=𝑦 , 𝜋𝑋 |𝑌=�̄�) ⩽

1
(1 + 𝛼ℎ)2

∥𝑦 − �̄�∥2 . □

The point of the second proof is that, although it uses some heavy machinery, it is just a translation
of a Euclidean optimization proof into the language of Wasserstein space (see Exercise 8.3).

8.3 Simultaneous Flow and Time Reversal
We now introduce two new techniques in order to further analyze the proximal sampler.

Simultaneous flow.
The first technique is based on the observation that in going from 𝜇𝑋

𝑘
to 𝜇𝑌

𝑘
, and from 𝜋𝑋 to 𝜋𝑌 , we are

applying the heat flow. Given any 𝑓 -divergence D 𝑓 (· ∥ ·), we will compute its time derivative when
both arguments undergo simultaneous heat flow. Remarkably, the result will be almost the same as the
time derivative of the 𝑓 -divergence to the target along the continuous-time Langevin diffusion, in a
sense to be made precise. The upshot is that the analysis of the proximal sampler closely resembles
the analysis of the continuous-time Langevin diffusion.

The simultaneous heat flow calculation is inspired by Vempala and Wibisono (2019), and was
carried out for the proximal sampler in Chen et al. (2022). Here, we place the calculation in the
framework of abstract Markov semigroup theory in order to show that the final result is a consequence
of general principles rather than surprising coincidences.

Let 𝑓 : R+ → R+ be a convex function with 𝑓 (1) = 0, and let D 𝑓 be the associated 𝑓 -divergence
(see Section 1.5). We prove the following abstract result.

Theorem 8.3.1 (simultaneous flow). Suppose that we have two processes evolving via

𝜕𝑡𝜇𝑡 = ℒ
∗
𝑡 𝜇𝑡 , 𝜕𝑡𝜈𝑡 = ℒ

∗
𝑡 𝜈𝑡 ,

where ∗ denotes the adjoint with respect to some reference measure 𝔪. Let Γ𝑡 denote the carré
du champ operator associated with ℒ𝑡 ,

Γ𝑡 ( 𝑓 , 𝑔) B
1
2
(
ℒ𝑡 ( 𝑓 𝑔) − 𝑓 ℒ𝑡𝑔 − 𝑔ℒ𝑡 𝑓

)
, Γ𝑡 ( 𝑓 ) B Γ𝑡 ( 𝑓 , 𝑓 ) .

Assume that ℒ𝑡 satisfies the diffusion chain rule (Definition 2.2.13) for all 𝑡 ⩾ 0. Then,

𝜕𝑡D 𝑓 (𝜇𝑡 ∥ 𝜈𝑡 ) = −
∫

𝑓 ′′
(d𝜇𝑡
d𝜈𝑡

)
Γ𝑡
(d𝜇𝑡
d𝜈𝑡

)
d𝜈𝑡 .

Proof We identify 𝜇𝑡 and 𝜈𝑡 with their densities w.r.t. 𝔪, and all of the following integrals are w.r.t.
𝔪 (although we do not write this explicitly to keep the notation light). By the definition of the adjoint,

𝜕𝑡

∫
𝑓
( 𝜇𝑡
𝜈𝑡

)
𝜈𝑡 =

∫
𝑓 ′
( 𝜇𝑡
𝜈𝑡

) (
𝜕𝑡𝜇𝑡 −

𝜇𝑡

𝜈𝑡
𝜕𝑡𝜈𝑡

)
+
∫

𝑓
( 𝜇𝑡
𝜈𝑡

)
𝜕𝑡𝜈𝑡

=

∫
𝑓 ′
( 𝜇𝑡
𝜈𝑡

) (
ℒ
∗
𝑡 𝜇𝑡 −

𝜇𝑡

𝜈𝑡
ℒ
∗
𝑡 𝜈𝑡

)
+
∫

𝑓
( 𝜇𝑡
𝜈𝑡

)
ℒ
∗
𝑡 𝜈𝑡

=

∫ (
ℒ𝑡 𝑓

′ ( 𝜇𝑡
𝜈𝑡

)
𝜇𝑡 −ℒ𝑡

(
𝑓 ′
( 𝜇𝑡
𝜈𝑡

) 𝜇𝑡
𝜈𝑡

)
𝜈𝑡 +ℒ𝑡 𝑓

( 𝜇𝑡
𝜈𝑡

)
𝜈𝑡

)
.



8.3 Simultaneous Flow and Time Reversal 205

For the second term, we apply the definition of the carré du champ to obtain

ℒ𝑡

(
𝑓 ′
( 𝜇𝑡
𝜈𝑡

) 𝜇𝑡
𝜈𝑡

)
𝜈𝑡 = 2Γ𝑡

(
𝑓 ′
( 𝜇𝑡
𝜈𝑡

)
,
𝜇𝑡

𝜈𝑡

)
𝜈𝑡 + 𝜇𝑡 ℒ𝑡 𝑓

′ ( 𝜇𝑡
𝜈𝑡

)
+ 𝑓 ′

( 𝜇𝑡
𝜈𝑡

)
𝜈𝑡 ℒ𝑡

𝜇𝑡

𝜈𝑡
.

For the third term, the diffusion chain rule says that for any function 𝑓 ,

ℒ𝑡 𝑓 (𝜌) = 𝑓 ′ (𝜌)ℒ𝑡 𝜌 + 𝑓 ′′ (𝜌) Γ𝑡 (𝜌)

hence

ℒ𝑡 𝑓
( 𝜇𝑡
𝜈𝑡

)
= 𝑓 ′

( 𝜇𝑡
𝜈𝑡

)
ℒ𝑡

𝜇𝑡

𝜈𝑡
+ 𝑓 ′′

( 𝜇𝑡
𝜈𝑡

)
Γ𝑡
( 𝜇𝑡
𝜈𝑡

)
.

Substituting this in and taking advantage of a cancellation,

𝜕𝑡

∫
𝑓
( 𝜇𝑡
𝜈𝑡

)
𝜈𝑡 = −2

∫
Γ𝑡
(
𝑓 ′
( 𝜇𝑡
𝜈𝑡

)
,
𝜇𝑡

𝜈𝑡

)
𝜈𝑡 +

∫
𝑓 ′′

( 𝜇𝑡
𝜈𝑡

)
Γ𝑡
( 𝜇𝑡
𝜈𝑡

)
𝜈𝑡 .

Finally, to simplify this further, the diffusion chain rule implies

Γ𝑡 ( 𝑓 (𝜌), 𝜎) = 𝑓 ′ (𝜌) Γ𝑡 (𝜌, 𝜎) ,

and it finishes the proof. □

Let us now parse the content of the theorem in several important cases. First, suppose that
(𝜇𝑡 )𝑡⩾0 is the Langevin diffusion and 𝜈𝑡 = 𝜋 is the stationary distribution for all 𝑡 ⩾ 0. In this
case, ℒ𝑡 = ℒ is the Langevin generator for all 𝑡 ⩾ 0, Γ𝑡 (𝜌) = ∥∇𝜌∥2, and we obtain the following
formula: 𝜕𝑡D 𝑓 (𝜇𝑡 ∥ 𝜋) = −

∫
𝑓 ′′ (𝜇𝑡/𝜋) ∥∇(𝜇𝑡/𝜋)∥2 d𝜋. In particular, for 𝑓 (𝑥) = 𝑥 log 𝑥, it recovers

𝜕𝑡 KL(𝜇𝑡 ∥ 𝜋) = −FI(𝜇𝑡 ∥ 𝜋).
Now suppose that (𝜇𝑡 )𝑡⩾0, (𝜈𝑡 )𝑡⩾0 are two copies of the Langevin diffusion, where (𝜈𝑡 )𝑡⩾0 is not nec-

essarily stationary. Then, we can obtain the formula 𝜕𝑡D 𝑓 (𝜇𝑡 ∥ 𝜈𝑡 ) = −
∫
𝑓 ′′ (𝜇𝑡/𝜈𝑡 ) ∥∇(𝜇𝑡/𝜈𝑡 )∥2 d𝜈𝑡 ,

which contains 𝜕𝑡 KL(𝜇𝑡 ∥ 𝜈𝑡 ) = −FI(𝜇𝑡 ∥ 𝜈𝑡 ) as a special case. The evolution of the KL divergence as
both arguments evolve is hardly any more complicated than the case where only one of the arguments
evolves!

A further special case is obtained when (𝜇𝑡 )𝑡⩾0, (𝜈𝑡 )𝑡⩾0 evolve by the heat flow, which corresponds
to the Langevin diffusion with potential 𝑉 = 0 (up to time rescaling). The theorem still applies, we
obtain 𝜕𝑡 KL(𝜇𝑡 ∥ 𝜈𝑡 ) = − 1

2 FI(𝜇𝑡 ∥ 𝜈𝑡 ) (the factor of 1
2 arises because the generator for the heat flow is

ℒ = 1
2 Δ, which then yields Γ = 1

2 ∥∇·∥
2). Note that Theorem 8.3.1 explains why: the formula for

the derivative in time of the 𝑓 -divergence only depends on the diffusion through its carré du champ,
which is the same (up to rescaling) for both the heat flow and for the Langevin diffusion. This shows
that the heat flow is not really that special and that much of the following discussion on the proximal
sampler would equally well apply if we replaced the heat flow with, e.g., the OU process, but the heat
flow is convenient for both calculation and implementation.

Although this theorem is already enough to prove new convergence results for the proximal sampler,
the rates will be slightly suboptimal. The reason for this is because we have only considered one step
of the proximal sampler, in which the algorithm goes from 𝜇𝑋

𝑘
to 𝜇𝑌

𝑘
(and the target goes from 𝜋𝑋

to 𝜋𝑌 ). In order to obtain the sharp convergence rates, we also need to consider the second step, in
which we go from 𝜇𝑌

𝑘
to 𝜇𝑋

𝑘+1 (and the target returns from 𝜋𝑌 to 𝜋𝑋). For reasons that will become
clear shortly, we refer to these steps as the “forward step” and the “backward step” respectively.

First, consider the evolution of the target along the heat semigroup 𝑡 ↦→ 𝜋𝑋𝑄𝑡 , so that at time ℎ
we arrive at 𝜋𝑌 . The stochastic process representation of this evolution is d𝑍𝑡 = d𝐵𝑡 , with 𝑍0 ∼ 𝜋𝑋
and 𝑍ℎ ∼ 𝜋𝑌 , thus describing the forward step. So far so good, but how should we think about the
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backward step? By definition, 𝜋𝑋 is obtained from 𝜋𝑌 by the relation 𝜋𝑋 =
∫
𝜋𝑋 |𝑌=𝑦 d𝜋𝑌 (𝑦), but this

is not as helpful because we lose the stochastic process view which allows us to apply calculus. Instead,
we will think of 𝜋𝑋 as being obtained from 𝜋𝑌 by the time reversal of the diffusion (𝑍𝑡 )𝑡∈[0,ℎ] .

Time reversal and simultaneous backward flow.
We now apply the result of Section 3.3.2, which implies that the time reversal of the SDE

d𝑍𝑡 = d𝐵𝑡 , 𝑍0 ∼ 𝜋𝑋

is given by the SDE

d𝑍←𝑡 = ∇ log(𝜋𝑋𝑄ℎ−𝑡 ) (𝑍←𝑡 ) d𝑡 + d𝐵𝑡 (8.3.2)

in the sense that if we initialize the SDE at 𝑍←0 = 𝑦, then 𝑍←
ℎ
∼ 𝜋𝑋 |𝑌=𝑦 .

In particular, if we initialize the process at 𝑍←0 ∼ 𝜋𝑌 , then 𝑍←
ℎ
∼ 𝜋𝑋. On the other hand, if we

initialize the process at 𝑍←0 ∼ 𝜇𝑌𝑘 , then the law of 𝑍←
ℎ

is
∫
𝜋𝑋 |𝑌=𝑦 𝜇𝑌

𝑘
(d𝑦) = 𝜇𝑋

𝑘+1. Thus, we have
successfully exhibited a stochastic process representation which takes us from 𝜇𝑌

𝑘
to 𝜇𝑋

𝑘+1.
For any measure 𝜇, write 𝜇←𝑡 B 𝜇𝑄←𝑡 for the law of 𝑍←𝑡 initialized at 𝑍←0 ∼ 𝜇. If we have two such

processes (𝜇←𝑡 )𝑡∈[0,ℎ] , (𝜈←𝑡 )𝑡∈[0,ℎ] , then instantaneously at time 𝑡 they evolve according a generator
ℒ𝑡 , which corresponds to the carré du champ Γ𝑡 (𝜌) = 1

2 ∥∇𝜌∥
2. So once again, by Theorem 8.3.1 we

obtain 𝜕𝑡 KL(𝜇←𝑡 ∥ 𝜈←𝑡 ) = − 1
2 FI(𝜇←𝑡 ∥ 𝜈←𝑡 ), which leads to a pleasing symmetry between the forward

and backward steps of the proximal sampler.

8.4 Convergence under Log-Concavity
Next, we present a convergence proof for the proximal sampler under log-concavity, following Chen
et al. (2022). The proof can be compared to the 1/𝑡 convergence rate for the Langevin diffusion under
log-concavity (1.4.13), which was obtained via a Lyapunov function argument.

Theorem 8.4.1. Assume that the target 𝜋𝑋 is log-concave. Then, for the law 𝜇𝑋
𝑘

of the 𝑘-th iterate
of the proximal sampler,

KL(𝜇𝑋𝑘 ∥ 𝜋𝑋) ⩽
𝑊2

2 (𝜇𝑋0 , 𝜋𝑋)
𝑘ℎ

.

Proof Forward step. Along the simultaneous heat flow, Theorem 8.3.1 shows that

𝜕𝑡 KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) = −
1
2

FI(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )

so we need to lower bound the Fisher information. Also, log-concavity is preserved by convolution,
so 𝜋𝑋𝑄𝑡 is log-concave (Exercise 2.10). Hence, by convexity of the KL divergence to a log-concave
target along Wasserstein geodesics (??),

0 = KL(𝜋𝑋𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) ⩾ KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) + E𝜇𝑋
0 𝑄𝑡

〈
∇ log

𝜇𝑋0 𝑄𝑡

𝜋𝑋𝑄𝑡
, 𝑇𝜇𝑋

0 𝑄𝑡→𝜋𝑋𝑄𝑡
− id

〉
.
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Rearranging this and using the Cauchy–Schwarz inequality,

E𝜇𝑋
0 𝑄𝑡

[∇ log
𝜇𝑋0 𝑄𝑡

𝜋𝑋𝑄𝑡

2]
︸                        ︷︷                        ︸

FI(𝜇𝑋
0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )

𝑊2
2 (𝜇𝑋0 𝑄𝑡 , 𝜋𝑋𝑄𝑡 ) ⩾ KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )

2
.

Combining this with the fact that the Wasserstein distance is decreasing along the simultaneous heat
flow,

𝜕𝑡 KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) ⩽ −
1
2

KL(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )
2

𝑊2
2 (𝜇𝑋0 , 𝜋𝑋)

.

Solving this differential inequality,

1
KL(𝜇𝑌0 ∥ 𝜋𝑌 )

=
1

KL(𝜇𝑋0 𝑄ℎ ∥ 𝜋𝑋𝑄ℎ)
⩾

1
KL(𝜇𝑋0 ∥ 𝜋𝑋)

+ ℎ

2𝑊2
2 (𝜇𝑋0 , 𝜋𝑋)

.

Backward step. Along the simultaneous backward heat flow, Theorem 8.3.1 gives

𝜕𝑡 KL(𝜇𝑌0𝑄←𝑡 ∥ 𝜋𝑌𝑄←𝑡 ) = −
1
2

FI(𝜇𝑌0𝑄←𝑡 ∥ 𝜋𝑌𝑄←𝑡 ) .

Since 𝜋𝑌𝑄←𝑡 = 𝜋𝑋𝑄ℎ−𝑡 is log-concave and 𝑡 ↦→ 𝑊2
2 (𝜇𝑌0𝑄←𝑡 , 𝜋𝑌𝑄←𝑡 ) is decreasing (which is checked

via a coupling argument using the diffusion (8.3.2)), a similar calculation as the forward step leads to
the inequality

1
KL(𝜇𝑋1 ∥ 𝜋𝑋)

=
1

KL(𝜇𝑌0𝑄←ℎ ∥ 𝜋𝑌𝑄←ℎ )
⩾

1
KL(𝜇𝑌0 ∥ 𝜋𝑌 )

+ ℎ

2𝑊2
2 (𝜇𝑋0 , 𝜋𝑋)

.

We iterate these inequalities, using the fact that 𝑊2(𝜇𝑋𝑘 , 𝜋𝑋) ⩽ 𝑊2(𝜇𝑋0 , 𝜋𝑋) for all 𝑘 ∈ N (which
follows from Theorem 8.2.1) to obtain

1
KL(𝜇𝑋

𝑘
∥ 𝜋𝑋)

⩾
1

KL(𝜇𝑋0 ∥ 𝜋𝑋)
+ 𝑘ℎ

𝑊2
2 (𝜇𝑋0 , 𝜋𝑋)

or

KL(𝜇𝑋𝑘 ∥ 𝜋𝑋) ⩽
KL(𝜇𝑋0 ∥ 𝜋𝑋)

1 + 𝑘ℎKL(𝜇𝑋0 ∥ 𝜋𝑋)/𝑊2
2 (𝜇𝑋0 , 𝜋𝑋)

⩽
𝑊2

2 (𝜇𝑋0 , 𝜋𝑋)
𝑘ℎ

. □

8.5 Convergence under Functional Inequalities
We now prove convergence guarantees for the proximal sampler when the target satisfies either a
Poincaré inequality or a log-Sobolev inequality, following Chen et al. (2022).

Theorem 8.5.1. Suppose that the target 𝜋𝑋 satisfies a Poincaré inequality with constant 𝐶PI.
Then, for the law 𝜇𝑋

𝑘
of the 𝑘-th iterate of the proximal sampler,

𝜒2(𝜇𝑋𝑘 ∥ 𝜋𝑋) ⩽
𝜒2(𝜇𝑋0 ∥ 𝜋𝑋)
(1 + ℎ/𝐶PI)2𝑘

.
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Proof Forward step. Along the simultaneous heat flow, by Theorem 8.3.1,

𝜕𝑡 𝜒
2(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) = −E𝜋𝑋𝑄𝑡

[∇ 𝜇𝑋0 𝑄𝑡
𝜋𝑋𝑄𝑡

2]
.

Since 𝜋𝑋 satisfies a Poincaré inequality with constant 𝐶PI, by subadditivity of the Poincaré constant
under convolution (Proposition 2.3.8), 𝜋𝑋𝑄𝑡 satisfies a Poincaré inequality with constant at most
𝐶PI + 𝑡. It therefore yields

𝜕𝑡 𝜒
2(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 ) ⩽ −

1
𝐶PI + 𝑡

var𝜋𝑋𝑄𝑡

𝜇𝑋0 𝑄𝑡

𝜋𝑋𝑄𝑡
= − 1

𝐶PI + 𝑡
𝜒2(𝜇𝑋0 𝑄𝑡 ∥ 𝜋𝑋𝑄𝑡 )

and hence

𝜒2(𝜇𝑌0 ∥ 𝜋𝑌 ) = 𝜒2(𝜇𝑋0 𝑄ℎ ∥ 𝜋𝑋𝑄ℎ) ⩽ exp
(
−
∫ ℎ

0

1
𝐶PI + 𝑡

d𝑡
)
𝜒2(𝜇𝑋0 ∥ 𝜋𝑋) =

𝜒2(𝜇𝑋0 ∥ 𝜋𝑋)
1 + ℎ/𝐶PI

.

Backward step. Along the simultaneous backward heat flow, Theorem 8.3.1 yields

𝜕𝑡 𝜒
2(𝜇𝑌0𝑄←𝑡 ∥ 𝜋𝑌𝑄←𝑡 ) = −E𝜋𝑌𝑄←𝑡

[∇ 𝜇𝑌0𝑄←𝑡
𝜋𝑌𝑄←𝑡

2]
.

Using the fact that 𝜋𝑌𝑄←𝑡 = 𝜋𝑋𝑄ℎ−𝑡 satisfies the Poincaré inequality with constant at most 𝐶PI + ℎ − 𝑡,
we deduce similarly that

𝜒2(𝜇𝑋1 ∥ 𝜋𝑋) = 𝜒2(𝜇𝑌0𝑄←ℎ ∥ 𝜋𝑌𝑄←ℎ ) ⩽
𝜒2(𝜇𝑌0 ∥ 𝜋𝑌 )

1 + ℎ/𝐶PI
.

Iterating this pair of inequalities yields the result. □

A similar result holds for the log-Sobolev inequality; since the proof is entirely analogous, we leave
it as Exercise 8.5.

Theorem 8.5.2. Suppose that the target 𝜋𝑋 satisfies a log-Sobolev inequality with constant 𝐶LSI.
Then, for the law 𝜇𝑋

𝑘
of the 𝑘-th iterate of the proximal sampler,

KL(𝜇𝑋𝑘 ∥ 𝜋𝑋) ⩽
KL(𝜇𝑋0 ∥ 𝜋𝑋)
(1 + ℎ/𝐶LSI)2𝑘

.

Recall that if 𝜋𝑋 is 𝛼-strongly log-concave, then it satisfies a log-Sobolev inequality with constant
𝐶LSI ⩽ 1/𝛼 (Theorem 1.2.30). Thus, the contraction factor of 1

(1+𝛼ℎ)2 in KL divergence matches the
contraction factor in𝑊2

2 distance (Theorem 8.2.1). To get this sharp result, it is necessary to utilize
the backward step.

Similarly to Theorem 2.2.25, it is also possible to obtain guarantees for Rényi divergences,
see Exercise 8.6.
Remark 8.5.3. It is a curious observation that in the𝑊2 guarantee of Theorem 8.2.1, the contraction
factor of 1

(1+𝛼ℎ)2 occurs solely in the backward step, whereas in Theorem 8.5.2 the forward and
backward steps each contribute a contraction factor of 1

1+𝛼ℎ .
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8.6 Implementations of the RGO and Applications
In this section, we discuss various implementation strategies for the RGO, thereby obtaining concrete
sampling guarantees.

Implementation via naı̈ve rejection sampling.
First, we consider a simple implementation of the RGO based on rejection sampling, which we studied
in Section 7.1. Suppose that the potential 𝑉 is 𝛽-smooth. Recall that for 𝑉𝑦 (𝑥) B 𝑉 (𝑥) + 1

2ℎ ∥𝑦 − 𝑥∥
2,

we have ( 1
ℎ
− 𝛽) 𝐼𝑑 ⪯ ∇2𝑉𝑦 ⪯ ( 1

ℎ
+ 𝛽) 𝐼𝑑. In particular, for ℎ < 1

𝛽
, the condition number of 𝑉𝑦

is 𝜅 = ( 1
ℎ
+ 𝛽)/( 1

ℎ
− 𝛽). If we now choose ℎ = 1

𝛽𝑑
, we can check that 𝜅 ⩽ exp(4/𝑑) for 𝑑 ⩾ 2.

By Proposition 7.1.2, if we have access to the minimizer of 𝑉𝑦 (which is equivalent to being able
to compute the proximal oracle for ℎ𝑉), we can construct an upper envelope for which the average
number of iterations of rejection sampling is bounded by 𝜅𝑑/2 ⩽ exp(2) ⩽ 8. We summarize this
discussion as follows.

Implementing the RGO via Rejection Sampling: To sample from 𝜋𝑋 |𝑌 (· | 𝑦), where 𝑉 is
𝛽-smooth, we proceed via the following steps.

1 Compute the minimizer 𝑥★𝑦 of𝑉𝑦 defined via𝑉𝑦 (𝑥) B 𝑉 (𝑥) + 1
2ℎ ∥𝑦−𝑥∥

2, and compute the minimum
value 𝑉★𝑦 . This can be done exactly if we assume access to a proximal oracle for 𝑉 (which is a
natural assumption when designing a proximal algorithm for sampling); otherwise, if ℎ < 1

𝛽
, then

this is a strongly convex optimization problem and can be implemented using standard algorithms.
2 Let �̃�𝑋 |𝑌 (· | 𝑦) B exp{−(𝑉𝑦 − 𝑉★𝑦 )} and 𝜇𝑦 B exp(− 1/ℎ−𝛽

2 ∥· − 𝑥★𝑦 ∥2). Use rejection sampling to
sample from 𝜋𝑋 |𝑌 with the envelope 𝜇𝑦 .

Each iteration of rejection sampling requires one call to an evaluation oracle for𝑉 (in order to compute
the acceptance probability). We summarize the guarantees for this implementation of the RGO in the
following theorem.

Theorem 8.6.1. Assume that 𝑉 is 𝛽-smooth. Then, if ℎ ⩽ 1
𝛽𝑑

, rejection sampling implements the
RGO for 𝜋𝑋 exactly using one computation to a proximal oracle for 𝑉 and 𝑂 (1) expected calls
to an evaluation oracle for 𝑉 .

Although the rejection sampling strategy is naı̈ve, it yields surprisingly strong results with a
simple analysis. If we assume that 𝜋𝑋 satisfies an LSI with constant 1/𝛼, then by Theorem 8.5.2
yields an iteration complexity of roughly 𝑂 ( 1

𝛼ℎ
log(1/𝜀)) = 𝑂 (𝜅𝑑 log(1/𝜀)), where 𝜅 B 𝛽/𝛼 and

each iteration requires 𝑂 (1) queries in expectation. This result already matches the guarantees for
MALA under a feasible start (Theorem 7.3.4), and under a weaker assumption (LSI rather than strong
log-concavity)! It is also straightforward to obtain guarantees in Rényi divergence (Exercise 8.6),
which are stronger than Theorem 6.1.2 (by a factor of 𝜅, and because the result only has a logarithmic
dependence on 1/𝜀). Finally, under a Poincaré inequality, Theorem 8.5.1 yields an iteration complexity
of roughly 𝑂 (𝜅𝑑2 log(1/𝜀)) (assuming that 𝜒2(𝜇0 ∥ 𝜋) ⩽ exp(𝑂 (𝑑))), which moreover can be shown
to hold in any Rényi divergence, and which can be compared to the 𝑂 (𝜅2𝑑3/𝜀2) rate obtained via
LMC (Theorem 6.2.9) or the 𝑂 (𝜅3/2𝑑2/𝜀) rate obtained via ULMC (Corollary 6.3.2) in this setting.

Implementation via high-accuracy samplers.
Next, we consider the RGO with step size ℎ = 1

2𝛽 , so that the RGO is a strongly log-concave and
log-smooth distribution with condition number 𝜅. In this regime, the iteration complexity of the
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proximal sampler is roughly 𝑂 (𝜅 log(1/𝜀)) under an LSI, or 𝑂 (𝜅𝑑 log(1/𝜀)) under a PI, but we also
have to take into account the per-iteration complexity of implementing the RGO.

Here, the implementation of the RGO will be handled by one of the high-accuracy samplers
from Chapter 7. However, in order to complete the analysis, we also need to analyze how the error
propagates due to the imperfect implementation. Here, we state a very simple version of the error
analysis, which is proven via coupling (Exercise 8.8).

Lemma 8.6.2. Let 𝜇𝑋
𝑁

denote the law of the 𝑁-th iterate of the proximal sampler with perfect
implementation of the RGO. Suppose that instead, in each step of the proximal sampler, we use a
sample from a distribution which is 𝛿-close to the RGO in total variation distance; let �̂�𝑋

𝑁
denote

the law of the 𝑁-th iterate of the proximal sampler with imperfect implementation of the RGO.
Then,

∥ �̂�𝑋𝑁 − 𝜇𝑋𝑁 ∥TV ⩽ 𝑁𝛿 .

In any case, we only need to run the proximal sampler for a number of iterations 𝑁 which is
polynomial in the various problem parameters, which means 𝛿 can be taken to be inverse polynomially
small. But the high-accuracy guarantees from Chapter 7 can sample from the RGO to accuracy 𝛿
with a number of iterations that only scales logarithmically with 1/𝛿, which ultimately contributes a
negligible overhead to the analysis if we ignore logarithmic factors. Therefore, the total complexity
of the proximal sampler is roughly given by its iteration complexity, multiplied by the dimension
dependence of the high-accuracy sampler (note that the condition number of the RGO is 𝑂 (1) so it
does not play a role here). In summary, the use of a high-accuracy sampler allows us to safely neglect
the errors arising from inexact implementation, but one could also consider other implementations
with a more careful error analysis.

In particular, let us consider the state-of-the-art high-accuracy sampler—MALA initialized with a
ULMC warm start—from Corollary 7.3.6. That result required knowing the mode of the distribution,
which for the RGO amounts to a call to a proximal oracle for 𝑉 . The complexity of implementing the
RGO is then 𝑂 (

√
𝑑 polylog(1/𝜀)), which readily yields the following corollaries. We focus solely on

total variation guarantees for simplicity; see Altschuler and Chewi (2024a) for more detailed results.

Corollary 8.6.3. Let 𝜋𝑋 ∝ exp(−𝑉), where 𝑉 is 𝛽-smooth. Take ℎ = 1
2𝛽 and assume we have an

evaluation and proximal oracle for 𝑉 . Let 𝜇𝑋
𝑁

denote the law of the 𝑁-th iterate of the proximal
sampler, in which the RGO is implemented via Corollary 7.3.6.

1 (Theorem 8.4.1) If𝑉 is convex, we obtain the guarantee ∥𝜇𝑋
𝑁
−𝜋𝑋∥TV ⩽ 𝜀 using𝑂 (𝛽

√
𝑑𝑊2

2 (𝜇𝑋0 , 𝜋𝑋)/𝜀2)
queries to the oracle.

2 (Theorem 8.5.1) If 𝜋𝑋 satisfies a Poincaré inequality with constant 1/𝛼, and we write 𝜅 B 𝛽/𝛼
for the condition number, we obtain ∥𝜇𝑋

𝑁
− 𝜋𝑋∥TV ⩽ 𝜀 using 𝑂 (𝜅

√
𝑑 {log 𝜒2(𝜇𝑋0 ∥ 𝜋) +

polylog(1/𝜀)}) queries to the oracle.
3 (Theorem 8.5.2) If 𝜋𝑋 satisfies a log-Sobolev inequality with constant 1/𝛼, and we write
𝜅 B 𝛽/𝛼 for the condition number, we obtain ∥𝜇𝑋

𝑁
−𝜋𝑋∥TV ⩽ 𝜀 using𝑂 (𝜅

√
𝑑 polylog(KL(𝜇𝑋0 ∥

𝜋)/𝜀2)) queries to the oracle.

These guarantees are state-of-the-art for each of their corresponding settings. Besides extending
the guarantees of Corollary 7.3.6 to more general assumptions, note that the proximal sampler
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automatically improves the dependence on the condition number to 𝑂 (𝜅) (whereas the dependence
in Corollary 7.3.6 was 𝑂 (𝜅3/2)).

Implementation via approximate rejection sampling.
In a surprising work, Fan et al. (2023) developed an approximate rejection sampling scheme, inspired
by the one in Gopi et al. (2022), which succeeds at implementing the RGO with nearly constant
query complexity, for step size ℎ ≍ 1/(𝛽

√
𝑑). By combining this with the convergence results for the

proximal sampler established in this chapter, this yields another approach to obtaining the guarantees
of Corollary 8.6.3 while completely bypassing the analysis of MALA!

TODO: Present this result in detail.
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The optimization results in Exercise 8.3 obtained in analogy with the proximal sampler are given
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Exercises
Introduction to the Proximal Sampler

⊵ Exercise 8.1 (RGO as a proximal operator on the Wasserstein space)
Given a functional F : P2(R𝑑) → R ∪ {∞}, the proximal operator for F on the Wasserstein space is
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defined via

proxF (𝜇) B arg min
𝜇′∈P2 (R𝑑 )

{
F(𝜇′) + 1

2
𝑊2

2 (𝜇, 𝜇′)
}
.

The proximal operator was used in the seminal work Jordan et al. (1998) in order to rigorously make
sense of gradient flows on the Wasserstein space. Prove that the RGO satisfies

𝜋𝑋 |𝑌=𝑦 = proxℎKL( · ∥ 𝜋 ) (𝛿𝑦) .

Hence, the assumption that we can implement the RGO is the same as assuming that we can evaluate
the proximal operator for the KL divergence on any Dirac measure.

⊵ Exercise 8.2 (RGO as an adjoint)
Let 𝑄ℎ denote the Markov kernel corresponding to the heat flow for time ℎ, i.e., 𝑄ℎ 𝑓 (𝑥) B
E 𝑓 (𝑥+

√
ℎ 𝜉), where 𝜉 ∼ normal(0, 𝐼𝑑). Show that𝑄ℎ defines a bounded linear map 𝐿2(𝜋𝑌 ) → 𝐿2(𝜋𝑋)

(in fact, with operator norm equal to 1). Show that the adjoint 𝑄∗
ℎ

of this linear map is precisely the
RGO.

Convergence under Strong Log-Concavity
⊵ Exercise 8.3 (comparison with optimization results)
This exercise compares the results for the proximal sampler with the proximal point method in
optimization.

1 Suppose that 𝑉 is 𝛼-strongly convex. Prove that proxℎ𝑉 is 1
1+𝛼ℎ -Lipschitz.

Hint: Show that proxℎ𝑉 = (id + ℎ∇𝑉)−1. Argue via convex duality by considering the convex
conjugate ( ∥ · ∥

2

2 + ℎ𝑉)
∗.

2 Suppose that 𝑉 is 𝛼-strongly convex. Translate both of the proofs in Section 8.2 to Euclidean
optimization.

3 Suppose that 𝑉 satisfies the gradient domination condition

∥∇𝑉 (𝑥)∥2 ⩾ 2𝛼 {𝑉 (𝑥) − inf𝑉} , for all 𝑥 ∈ R𝑑 .

Also, let 𝑥′ B proxℎ𝑉 (𝑥). Inspired by Theorem 8.5.2, we can ask whether or not it holds that

𝑉 (𝑥′) − inf𝑉 ⩽
1

(1 + 𝛼ℎ)2
{𝑉 (𝑥) − inf𝑉} .

Prove that this is indeed the case.
Hint: Define 𝑉𝑡 ,𝑥 (𝑧) B 𝑉 (𝑧) + 1

2𝑡 ∥𝑧 − 𝑥∥
2 and let 𝑥𝑡 B arg min𝑉𝑡 ,𝑥; then, differentiate 𝑡 ↦→

𝑉𝑡 ,𝑥 (𝑥𝑡 ).

⊵ Exercise 8.4 (first coupling lemma)
Prove Lemma 8.2.2.

Simultaneous Flow and Time Reversal
⊵ Exercise 8.5 (convergence under LSI)
Verify that the result under LSI (Theorem 8.5.2) holds.
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⊵ Exercise 8.6 (convergence in Rényi divergence)
Following Theorem 2.2.25, extend Theorem 8.5.1 and Theorem 8.5.2 to provide Rényi divergence
guarantees.

⊵ Exercise 8.7 (Gaussian case)
In this exercise, we consider the Gaussian case for intuition.

1 Suppose that 𝜋𝑋 = normal(0, Σ) and 𝜇𝑋0 = normal(𝑚0, Σ0). Show that the iterates of the proximal
sampler all have Gaussian distributions, and explicitly compute the means and variances.

2 In particular, show that 𝜇𝑋1 = normal(𝑚1, Σ1), where the mean satisfies 𝑚1 = proxℎ𝑉 (𝑚0) and
𝑉 (𝑥) B 1

2 ⟨𝑥,Σ
−1 𝑥⟩. In other words, the mean of the iterate of the proximal sampler evolves

according to the proximal point method. Use this to show that the contraction factors in Theorem 8.2.1
and Theorem 8.5.2 are sharp.

Implementations of the RGO and Applications
⊵ Exercise 8.8 (second coupling lemma)
Prove Lemma 8.6.2.



CHAPTER 9

Lower Bounds for Sampling

In order to determine if our sampling guarantees are optimal, we need to pair them with matching
lower bounds. However, the problem of establishing query complexity lower bounds for sampling has
been challenging and the work on this topic is nascent. Here, we will give an overview of the current
progress in this direction.

Optimization Box 9.0.1. In convex optimization, the situation is better understood. For example,
in the high-dimensional regime, the complexity of finding an 𝜀-minimizer of a function𝑉 : R𝑑 →
R with 0 ≺ 𝛼𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝛽𝐼𝑑 and minimizer 𝑥★ satisfying ∥𝑥★∥ ⩽ 𝑅 is Ω(

√
𝜅 log(𝑅2/(𝛼𝜀))),

where 𝜅 B 𝛽/𝛼 Nemirovsky and Yudin (1983). This matches the complexity of accelerated
gradient descent (Optimization Box 5.3.1), which is therefore optimal for this function class.
In this case, the lower bound was actually a motivating force which led to the discovery of the
optimal algorithm.

Subsequently, lower bounds for convex optimization have been established for a host of
function classes and oracle models.

9.1 A Brief Discussion of Query Complexity
Before turning to the results, recall the discussion and interpretation of query complexity (or oracle
complexity) from the Preface, although here we present the model in more detail. Let Π be a family of
probability measures over R𝑑 with continuously differentiable densities. A first-order oracle for 𝜋 ∈ Π
with density 𝜋 ∝ exp(−𝑉) is the mapping 𝒪𝜋 : R𝑑 → R × R𝑑 given by 𝑥 ↦→ (𝑉 (𝑥) − 𝑉 (0),∇𝑉 (𝑥)).
A first-order sampling algorithm interacts with the oracle 𝒪𝜋 by querying 𝑁 points 𝑥1, . . . , 𝑥𝑁 , where
each query point 𝑥 𝑗 depends on the previous query points and query values {𝑥𝑖,𝒪𝜋 (𝑥𝑖)}𝑖∈[ 𝑗−1] as well
as an independent source of randomness, and outputs a “sample” 𝑥out. If 𝑥out is the random output of
the sampling algorithm when run on oracle 𝒪𝜋 , we say that the sampling algorithm computes the
measure law(𝑥out).

The first-order complexity 𝒞(Π, d, 𝜀) of the class Π is the minimum number 𝑁 for which there
exists a sampling algorithm with the following property: for any 𝜋 ∈ Π, when given 𝑁 queries to

214
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oracle 𝒪𝜋 , the sampling algorithm computes �̂� with d(�̂�, 𝜋) ⩽ 𝜀. Here, d can be taken to be total
variation distance or the Wasserstein distance, or even an asymmetric measure such as

√
KL. Our goal

is to characterize 𝒞(Π, d, 𝜀) up to universal constants for important classes Π. In particular, we will
be interested in the class of strongly log-concave and log-smooth distributions over R𝑑 with known
mode at 0, since we view this class as a fundamental benchmark with which to test our understanding
of acceleration, discretization, etc.

One can also consider various extensions, e.g., by changing the class of measures Π or by changing
the oracle to allow for different information structures (zeroth-order oracles, second-order oracles,
etc.), finite sum structures, stochasticity, and so on. It is important to eventually understand the
complexities for all of these settings—and indeed they have been carefully mapped out in the sister
field of optimization—but we emphasize that for sampling, even the canonical case of well-conditioned
log-concave measures with an exact oracle is still not fully understood.

We also recall that query complexity is not computational complexity: our model allows the
algorithm to perform an unbounded amount of computation in between queries to the oracle. This is
precisely the strength of this model: due to its information-theoretic nature, it is possible to establish
unconditional lower bounds. In practice, the two are closely connected. If the only access one has to
the target density is through the oracle (as opposed to other forms of access, such as integrals of certain
test functions, etc.), then query complexity is a lower bound for the computational complexity. On the
other hand, reasonable algorithms with small query complexity tend to also have small computational
complexity (indeed this is true for all of the algorithms we have encountered in this book thus far),
and so we treat query complexity as a useful proxy for computation time.

Finally, we briefly discuss differences with the setting of optimization. Optimization lower bounds
are often first established for simple models of deterministic algorithms, e.g., algorithms whose
iterates always lie in the span of the queried gradients Nesterov (2018). These lower bounds can
sometimes be extended to randomized algorithms with additional tricks. In sampling, we do not have
this luxury, since randomness is an integral part of any sampler. Moreover, whereas lower bound
constructions for optimization must hide the location of the minimizer from the algorithm, lower
bound constructions for sampling must hide the bulk of the distribution’s mass from the algorithm,
which may explain the difficulty of the constructions.

9.2 Query Complexity in One Dimension

The first query complexity result for well-conditioned log-concave sampling is from the work of Chewi
et al. (2022), which established a sharp result in dimension one. In this section, we present this result
in detail because it is simple enough to do so.

Define the class

Π𝜅,1 B {𝜋 ∈ Pac(R) | 𝜋 ∝ exp(−𝑉), 1 ⩽ 𝑉 ′′ ⩽ 𝜅, 𝑉 ′ (0) = 0} .

In our definition of Π𝜅,1, we have enforced the requirement 𝑉 ′ (0) = 0 in order to cleanly separate out
the complexity of optimization (finding the minimizer of 𝑉) from the intrinsic complexity of sampling.
Note that some restriction of this nature is needed, since without any prior knowledge of the mode it
is impossible to find it.
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Theorem 9.2.1 (Chewi et al. (2022)). The query complexity of outputting a sample which is
1

64 close in total variation distance to the target 𝜋, uniformly over the choice of 𝜋 ∈ Π𝜅,1, is
Θ(log log 𝜅). In other words, 𝒞(Π𝜅,1, ∥·∥TV,

1
64 ) ≍ log log 𝜅.

Lower bound.
The lower bound will proceed in two stages.

1 First, we reduce the sampling problem to a statistical testing problem. Namely, we will construct a
family 𝜋1, . . . , 𝜋𝑚 ∈ Π𝜅,1, and suppose that 𝒊 ∼ uniform( [𝑚]) is drawn randomly. The statistical
testing problem is defined as follows: given query access to 𝜋𝑖 (through the oracle), guess the value
of 𝒊.

We will show that an algorithm to sample from 𝜋𝒊 can be used to solve the statistical testing
problem; thus, “sampling is harder than testing”.

2 Next, we will prove a lower bound on the number of queries required to solve the statistical testing
problem: “testing is hard”. This relies on standard information-theoretic techniques for proving
minimax lower bounds for statistical problems. The main difference between this problem and the
usual statistical setting is that rather than having i.i.d. samples from some data distribution, we
instead have query access and the algorithm is allowed to be adaptive.

Combining the two steps then yields our query complexity lower bound for sampling. We begin with
the construction of 𝜋1, . . . , 𝜋𝑚, which is slightly tricky.

Let 𝑚 be the largest integer such that exp(− 22𝑚−2

2𝜅 ) ⩾
1
2 (and note that 𝑚 = Θ(log 𝜅)). We

define a family {𝑉𝑖}𝑖∈[𝑚] of 1-strongly convex and 𝜅-smooth potentials as follows. We require that
𝑉𝑖 (0) = 𝑉 ′𝑖 (0) = 0 and that 𝑉𝑖 be an even function. The second derivative is

𝑉 ′′𝑖 (𝑥) B
{
𝜅 ,
√
𝜅 |𝑥 | ∈ [2𝑖−1, 2𝑖) ∪⋃𝑚+1

𝑗=𝑖+1 [2 𝑗 , 5
4 2 𝑗) ,

1 , otherwise .

Although the construction seems complicated, the basic idea is to make 𝑉 ′′𝑖 oscillate between its
minimum and maximum allowable values 1 and 𝜅; see Figure 9.1 for a visual.

There are two key properties of this construction. First, we will show in Lemma 9.2.2 that each
𝜋𝑖 places a substantial amount of mass on the interval (𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]. This implies that if we

can sample from 𝜋𝑖, it is likely that the sample will land in this interval, which is used to reduce the
sampling task to the statistical testing task. Then, we will show in Lemma 9.2.4 that 𝑉𝑖 and 𝑉𝑖+1 agree
exactly outside of a small interval which is approximately located at 𝜅− 1

2 2𝑖 . This implies that for any
given value 𝑥 ∈ R𝑑 , there are only 𝑂 (1) possible values of (𝑉𝑖 (𝑥), 𝑉 ′𝑖 (𝑥)) as 𝑖 ranges in [𝑚], which in
turn will be used to show that the oracle is not very informative (and hence prove a lower bound for
the statistical testing task).

The intuition behind the following lemma is that at 𝜅− 1
2 2𝑖−1, 𝑉 ′′𝑖 = 𝜅 for the first time and so the

density 𝜋𝑖 drops off rapidly after this point.

Lemma 9.2.2. For each 𝑖 ∈ [𝑚],

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
⩾

1
32
.
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𝑥

𝑉 ′′
𝑖
(𝑥/
√
𝜅)

1

𝜅

2𝑖−1 2𝑖 2𝑖+1 5
4 2𝑖+1 2𝑖+2 5

4 2𝑖+2 . . . 5
4 2𝑚+1

Figure 9.1 The horizontal axis is distorted for clarity.

Proof According to the definition of 𝜋𝑖, we have

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
=

∫ 𝜅
− 1

2 2𝑖−1

𝜅
− 1

2 2𝑖−2 exp(−𝑥2/2) d𝑥
𝑍𝜋𝑖

, 𝑍𝜋𝑖 B

∫
exp(−𝑉𝑖) .

Recalling that 𝑚 is chosen so that exp(−𝑥2/2) ⩾ 1/2 whenever |𝑥 | ⩽ 𝜅− 1
2 2𝑚−1,∫ 𝜅

− 1
2 2𝑖−1

𝜅
− 1

2 2𝑖−2
exp

(
−𝑥

2

2
)

d𝑥 ⩾
1
2
𝜅−

1
2 2𝑖−2 .

For the normalizing constant, observe that∫ ∞

0
exp(−𝑉𝑖) =

∫ 𝜅
− 1

2 2𝑖

0
exp(−𝑉𝑖) +

∫ ∞

𝜅
− 1

2 2𝑖
exp(−𝑉𝑖) ⩽ 𝜅−

1
2 2𝑖 +

∫ ∞

𝜅
− 1

2 2𝑖
exp(−𝑉𝑖) .

Since 𝑉 ′′𝑖 = 𝜅 on [𝜅− 1
2 2𝑖−1, 𝜅−

1
2 2𝑖], it follows that 𝑉 ′𝑖 (𝜅−

1
2 2𝑖) ⩾ 𝜅− 1

2 2𝑖−1, and so

𝑉𝑖 (𝑥) ⩾ 𝜅−
1
2 2𝑖−1 (𝑥 − 𝜅− 1

2 2𝑖) + (𝑥 − 𝜅
− 1

2 2𝑖)2

2
, 𝑥 ⩾ 𝜅−

1
2 2𝑖 .

Therefore, ∫ ∞

𝜅
− 1

2 2𝑖
exp(−𝑉𝑖) ⩽

∫ ∞

𝜅
− 1

2 2𝑖
exp

(
−𝜅− 1

2 2𝑖−1 (𝑥 − 𝜅− 1
2 2𝑖) − (𝑥 − 𝜅

− 1
2 2𝑖)2

2

)
d𝑥

⩽
1

𝜅−
1
2 2𝑖−1

⩽
1
√
𝜅
,

where we applied a standard tail estimate for Gaussian densities (Lemma 9.2.3). Then,

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
⩾

2𝑖−3

2 (2𝑖 + 1) ⩾
1
32
,

which proves the result. □
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In the above proof, we used the following elementary lemma.

Lemma 9.2.3. Let 𝑎, 𝑥0 > 0. Then,∫ ∞

𝑥0

exp
(
−𝑎 (𝑥 − 𝑥0) −

1
2
(𝑥 − 𝑥0)2

)
d𝑥 ⩽

∫ ∞

0
exp(−𝑎𝑥) d𝑥 = 1

𝑎
.

The next lemma is the main reason why we used an oscillating construction for 𝑉 ′′𝑖 .

Lemma 9.2.4. We have the equalities

𝑉𝑖 = 𝑉𝑖+1 , 𝑉 ′𝑖 = 𝑉
′
𝑖+1 , 𝑉 ′′𝑖 = 𝑉 ′′𝑖+1 ,

outside of the set {𝑥 ∈ R : 𝜅− 1
2 2𝑖−1 ⩽ |𝑥 | ⩽ 5

4 𝜅
− 1

2 2𝑖+1}.

𝑥

1

𝜅

2𝑖−1 2𝑖 2𝑖+1 5
4 2𝑖+1 2𝑖+2 5

4 2𝑖+2

Figure 9.2 We plot 𝑉 ′′
𝑖
(𝑥/
√
𝜅) (in blue) and 𝑉 ′′

𝑖+1 (𝑥/
√
𝜅) (in

orange). In this figure, we do not distort the horizontal axis lengths
to make it easier to visually compare the relative lengths of
intervals on which the second derivatives are constant.

Proof Refer to Figure 9.2 for a visual aid for the proof.
Clearly the potentials and derivatives match when |𝑥 | ⩽ 𝜅− 1

2 2𝑖−1. Since the second derivatives
match when |𝑥 | ⩾ 5

4 𝜅
− 1

2 2𝑖+1, it suffices to show that

𝑉 ′𝑖
(5
4
𝜅−

1
2 2𝑖+1

)
= 𝑉 ′𝑖+1

(5
4
𝜅−

1
2 2𝑖+1) and 𝑉𝑖

(5
4
𝜅−

1
2 2𝑖+1

)
= 𝑉𝑖+1

(5
4
𝜅−

1
2 2𝑖+1

)
.

To that end, note that for 𝑥 ⩾ 0,

𝑉 ′′𝑖+1(𝑥) −𝑉 ′′𝑖 (𝑥) =


−(𝜅 − 1) , 𝜅−

1
2 2𝑖−1 ⩽ 𝑥 ⩽ 𝜅−

1
2 2𝑖 ,

+(𝜅 − 1) , 𝜅−
1
2 2𝑖 ⩽ 𝑥 ⩽ 𝜅− 1

2 2𝑖+1 ,
−(𝜅 − 1) , 𝜅−

1
2 2𝑖+1 ⩽ 𝑥 ⩽ 5

4 𝜅
− 1

2 2𝑖+1 ,
0 , otherwise .

A little algebra shows that the above expression integrates to zero, hence we deduce the equality
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𝑉 ′𝑖 ( 5
4 𝜅
− 1

2 2𝑖+1) = 𝑉 ′
𝑖+1( 5

4 𝜅
− 1

2 2𝑖+1). Also, by integrating this expression twice,

𝑉𝑖+1
(5
4
𝜅−

1
2 2𝑖+1

)
−𝑉𝑖

(5
4
𝜅−

1
2 2𝑖+1

)
= − 𝜅 − 1

2
(𝜅− 1

2 2𝑖−1)2︸                  ︷︷                  ︸
integral on [𝜅−

1
2 2𝑖−1 , 𝜅−

1
2 2𝑖 ]

− (𝜅 − 1) 𝜅− 1
2 2𝑖−1 𝜅−

1
2 2𝑖 + 𝜅 − 1

2
(𝜅− 1

2 2𝑖)2︸                                                   ︷︷                                                   ︸
integral on [𝜅−

1
2 2𝑖 , 𝜅−

1
2 2𝑖+1 ]

+ (𝜅 − 1) 𝜅− 1
2 2𝑖−1 1

4
𝜅−

1
2 2𝑖+1 − 𝜅 − 1

2
(1
4
𝜅−

1
2 2𝑖+1

)2︸                                                              ︷︷                                                              ︸
integral on [𝜅−

1
2 2𝑖+1 , 5

4 𝜅
− 1

2 2𝑖+1 ]

=
𝜅 − 1
𝜅
{−22𝑖−3 − 22𝑖−1 + 22𝑖−1 + 22𝑖−2 − 22𝑖−3}

= 0 . □

We need one final ingredient: Fano’s inequality, which is the standard tool for establishing
information-theoretic lower bounds.

Theorem 9.2.5 (Fano’s inequality). Let 𝒊 ∼ uniform( [𝑚]). Then, for any estimator �̂� of 𝒊, where
�̂� is measurable with respect to some data 𝑌 ,

P
{
�̂� ≠ 𝒊

}
⩾ 1 − I(𝒊;𝑌 ) + log 2

log𝑚
,

where I is the mutual information I(𝒊;𝑌 ) B KL(law(𝒊, 𝑌 ) ∥ law(𝒊) ⊗ law(𝑌 )).

Proof Let H(·) denote the entropy of a discrete random variable, i.e., if 𝑋 has law 𝑝 on a discrete
alphabet X, then H(𝑋) =

∑
𝑥∈X 𝑝(𝑥) log(1/𝑝(𝑥)). We refer to (Cover and Thomas, 2006, §2)

and Exercise 9.1 for the basic properties of entropy (and related quantities).
Let 𝐸 B 1{ �̂� ≠ 𝒊 } denote the indicator of an error. Using the chain rule for entropy in two different

ways,

H( 𝒊, 𝐸 | �̂� ) = H( 𝒊 | �̂� ) + H( 𝐸 | 𝒊, �̂� )︸       ︷︷       ︸
=0

= H( 𝐸 | �̂� ) + H( 𝒊 | 𝐸, �̂� ) .

Since conditioning reduces entropy, H( 𝐸 | �̂� ) ⩽ H( 𝐸 ) ⩽ log 2. Also,

H( 𝒊 | 𝐸, �̂� ) = P{ �̂� = 𝒊 } H( 𝒊 | �̂�, 𝐸 = 0 )︸             ︷︷             ︸
=0

+ P{ �̂� ≠ 𝒊 }H( 𝒊 | �̂�, 𝐸 = 1 ) ⩽ P{ �̂� ≠ 𝒊 } log𝑚 .

Hence,

P{ �̂� ≠ 𝒊 } log𝑚 + log 2 ⩾ H( 𝒊 | �̂� ) = H( 𝒊 ) − I( 𝒊 ; �̂� ) ⩾ log𝑚 − I( 𝒊 ; 𝑌 )

where the last inequality is the data-processing inequality. Rearranging the inequality completes the
proof of Fano’s inequality. □
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Proof of Theorem 9.2.1, lower bound We follow the general outline described above.
1. Reduction to statistical testing. Let 𝒊 ∼ uniform( [𝑚]) and suppose that for each 𝑖 ∈ [𝑚], �̂�𝑖 is

a distribution with ∥�̂�𝑖 − 𝜋𝑖 ∥TV ⩽
1
64 . Suppose that we have a sample 𝑋 ∼ �̂�𝒊 (more precisely, this

means that conditioned on 𝒊 = 𝑖, we have 𝑋 ∼ �̂�𝑖). In light of Lemma 9.2.2, a good candidate estimator
�̂� for 𝒊 is

�̂� B 𝑖 ∈ N such that 𝑋 ∈ (𝜅− 1
2 2𝑖−2, 𝜅−

1
2 2𝑖−1] if such an 𝑖 exists .

The probability that the estimator is correct is at least

P
{
�̂� = 𝒊

}
=

1
𝑚

𝑚∑︁
𝑖=1

P
{
�̂� = 𝑖

�� 𝒊 = 𝑖 } =
1
𝑚

𝑚∑︁
𝑖=1

P
{
𝑋 ∈ (𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

�� 𝒊 = 𝑖 }
=

1
𝑚

𝑚∑︁
𝑖=1

�̂�𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
⩾

1
𝑚

𝑚∑︁
𝑖=1

𝜋𝑖
(
(𝜅− 1

2 2𝑖−2, 𝜅−
1
2 2𝑖−1]

)
− 1

64
⩾

1
64
. (9.2.6)

Hence, a sampling can be used to solve the statistical testing problem.
2. A lower bound for the statistical testing problem. Next, we want to show for any algorithm

which uses 𝑛 queries to the oracle for 𝜋𝒊 and outputs an estimator �̂� of 𝒊, there is a lower bound for the
probability of error P{ �̂� ≠ 𝒊 }.

First, suppose that the algorithm is deterministic, i.e., we assume that each query point 𝑥 𝑗
of the algorithm is a deterministic function of the previous query points and query values. Let
𝒪𝑖 (𝑥) B (𝑉𝑖 (𝑥), 𝑉 ′𝑖 (𝑥), 𝑉 ′′𝑖 (𝑥)) denote the output of the oracle on input 𝑥 when the target is 𝜋𝑖 . Since
the estimator �̂� is a function of {𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗)} 𝑗∈[𝑛] , then Fano’s inequality (Theorem 9.2.5) yields

P
{
�̂� ≠ 𝒊

}
⩾ 1 −

I(𝒊; {𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗)} 𝑗∈[𝑛]) + log 2
log𝑚

.

By the chain rule for mutual information,

I
(
𝒊; {𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗)} 𝑗∈[𝑛]

)
=

𝑛∑︁
𝑗=1

I
(
𝒊; 𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗)

�� {𝑥 𝑗 ′ ,𝒪𝒊 (𝑥 𝑗 ′)} 𝑗 ′∈[ 𝑗−1]
)
. (9.2.7)

By our assumption, conditioned on {𝑥 𝑗 ′ ,𝒪𝒊 (𝑥 𝑗 ′)} 𝑗 ′∈[ 𝑗−1] , the query point 𝑥 𝑗 is deterministic. Also, for
a fixed point 𝑥 𝑗 , Lemma 9.2.4 implies that 𝒪𝑖 (𝑥 𝑗) can only take on a constant number of possible
values as 𝑖 ranges over [𝑚] (the careful reader can check that the number of possible values for 𝒪𝑖 (𝑥 𝑗)
is at most 5). Together with (9.2.7),

I
(
𝒊; {𝑥 𝑗 ,𝒪𝒊 (𝑥 𝑗)} 𝑗∈[𝑛]

)
⩽ 𝑛 log 5 .

Fano’s inequality then yields

P
{
�̂� ≠ 𝒊

}
⩾ 1 − 𝑛 log 5 + log 2

log𝑚
. (9.2.8)

In general, for a possibly randomized algorithm, we can still deduce (9.2.8) by applying the previous
argument conditioned on the random seed of the algorithm (which is independent of 𝒊).

3. Finishing the argument. By combining together (9.2.6) and (9.2.8), and recalling that 𝑚 =

Θ(log 𝜅), we have shown that 𝑛 ≳ log log 𝜅. □
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The argument above makes rigorous the following intuition: since there are 𝑚 distributions in our
lower bound construction, there are log2 𝑚 bits of information to learn. On the other hand, Lemma 9.2.4
implies that each oracle query only reveals 𝑂 (1) bits of information. Hence, the number of queries
required is at least Ω(log𝑚) = Ω(log log 𝜅).

Upper bound.
To show that the lower bound is tight, we exhibit an algorithm, based on rejection sampling, which
achieves the lower complexity bound. As per our discussion in Section 7.1, to implement rejection
sampling we must specify the construction of an upper envelope 𝜇 ⩾ �̃�, where 𝜋 ∈ Π𝜅 .

Without loss of generality, we assume that 𝑉 (0) = 0 (if not, replace the output 𝑉 (𝑥) of an oracle
query with 𝑉 (𝑥) −𝑉 (0)). The upper bound algorithm only requires a zeroth-order oracle, and it is as
follows.

1 Find the first index 𝑖− ∈ {0, 1, . . . , ⌈ 1
2 log2 𝜅⌉} such that 𝑉 (−2𝑖−/

√
𝜅) ⩾ 1

2 .
2 Find the first index 𝑖+ ∈ {0, 1, . . . , ⌈ 1

2 log2 𝜅⌉} such that 𝑉 (+2𝑖+/
√
𝜅) ⩾ 1

2 .
3 Set 𝑥− B −2𝑖−/

√
𝜅 and 𝑥+ B +2𝑖+/

√
𝜅; then, set

𝜇(𝑥) B


exp

(
−𝑥 − 𝑥−

2𝑥−
− (𝑥 − 𝑥−)

2

2

)
, 𝑥 ⩽ 𝑥− ,

1 , 𝑥− ⩽ 𝑥 ⩽ 𝑥+ ,

exp
(
−𝑥 − 𝑥+

2𝑥+
− (𝑥 − 𝑥+)

2

2

)
, 𝑥 ⩾ 𝑥+ .

To see why 𝑖− and 𝑖+ exist, from 𝑉 ′′ ⩾ 1 and 𝑉 (0) = 𝑉 ′ (0) = 0 we have 𝑉 (𝑥) ⩾ 𝑥2/2. Hence, if
|𝑥 | = 2𝑖/

√
𝜅 where 𝑖 ⩾ 1

2 log 𝜅, we have 𝑉 (𝑥) ⩾ 1/2.
Since 𝑉 is decreasing (resp. increasing) on R− (resp. R+), the first two steps can be implemented by

running binary search over arrays of size 𝑂 (log 𝜅), which therefore only requires 𝑂 (log log 𝜅) queries.
We will prove that 𝜇 is a valid upper envelope for the unnormalized target �̃� B exp(−𝑉), and that
𝑍𝜇/𝑍𝜋 ≲ 1. In turn, Theorem 7.1.1 shows that once 𝜇 is constructed, an exact sample can be drawn
from 𝜋 using 𝑂 (1) additional queries in expectation.

Alternatively, if we require that the algorithm use a fixed (non-random) number of iterations, then
note that in order to make the failure probability (the probability that rejection sampling fails to
terminate within the allotted number of iterations) at most 𝜀, it suffices to run rejection sampling for
𝑂 (log(1/𝜀)) steps. Combining this with the cost of constructing 𝜇, we conclude that we can output a
sample whose law is 𝜀-close to 𝜋 in total variation distance using 𝑂 (log log 𝜅 + log(1/𝜀)) queries.

Proof of Theorem 9.2.1, upper bound First, we prove that 𝜇 is a valid upper envelope. Since �̃� is
decreasing on R+ with �̃�(0) = exp(−𝑉 (0)) = 1, then �̃� ⩽ 1 ⩽ 𝜇 on [0, 𝑥+]. Next, since 𝑉 (𝑥+) ⩾ 1/2
(by the definition of 𝑥+), convexity of 𝑉 yields

𝑉 ′ (𝑥+) ⩾
𝑉 (𝑥+) −𝑉 (0)

𝑥+
⩾

1
2𝑥+

.

Thus, for 𝑥 ⩾ 𝑥+,

𝑉 (𝑥) ⩾ 𝑉 (𝑥+) +𝑉 ′ (𝑥+) (𝑥 − 𝑥+) +
1
2
(𝑥 − 𝑥+)2 ⩾

1
2𝑥+
(𝑥 − 𝑥+) +

1
2
(𝑥 − 𝑥+)2 ,

which shows that �̃�(𝑥) ⩽ 𝜇(𝑥). By a symmetric argument on R−, we conclude that �̃� ⩽ 𝜇.
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By Theorem 7.1.1, it suffices to bound 𝑍𝜇/𝑍𝜋 . First, we claim that
∫ 𝑥+

0 𝜇 ≳ 𝑥+. When 𝑖+ = 0, this
holds ∫ 𝑥+

0
𝜇 =

∫ 1/
√
𝜅

0
exp(−𝑉) ⩾

∫ 1/
√
𝜅

0
exp

(
− 𝜅𝑥

2

2
)

d𝑥 ⩾
1

3
√
𝜅
=
𝑥+

3
.

When 𝑖+ > 0, then by the definition of 𝑖+ we have 𝑉 (𝑥+/2) ⩽ 1/2, so∫ 𝑥+

0
𝜇 ⩾

∫ 𝑥+/2

0
exp(−𝑉) ⩾ 𝑥+

4
.

On the other hand, by Lemma 9.2.3,∫
R+

𝜇 =

∫ 𝑥+

0
𝜇 +

∫ ∞

𝑥+

𝜇 ⩽ 𝑥+ +
∫ ∞

𝑥+

exp
(
− 1

2𝑥+
(𝑥 − 𝑥+) −

1
2
(𝑥 − 𝑥+)2

)
d𝑥 ⩽ 3𝑥+ .

Hence,
∫
R+
𝜇 ⩽ 3𝑥+ ⩽ 12

∫
R+
�̃�, and similarly

∫
R−
𝜇 ⩽ 12

∫
R−
�̃�. Therefore, 𝑍𝜇/𝑍𝜋 ⩽ 12. □

The obtained complexity Θ(log log 𝜅) is surprisingly small; in particular, the upper bound uses a
tailor-made algorithm based on rejection sampling, rather than any of the other existing algorithms
(such as those based on Langevin dynamics). This is perhaps the best-case scenario for a lower bound:
it helps us to determine if our existing algorithms are optimal, and if not, it gives guidance on how to
design a better one.

9.3 Query Complexity in Constant Dimension
What about higher dimension? In particular, consider

Π𝜅,𝑑 B {𝜋 ∈ Pac(R𝑑) | 𝜋 ∝ exp(−𝑉), 𝐼𝑑 ⪯ ∇2𝑉 ⪯ 𝜅𝐼𝑑 , ∇𝑉 (0) = 0} .

Theorem 9.3.1 (Chewi et al. (2023)). There exists a universal constant 𝜀0 > 0 such that for any
𝑑 ⩾ 2, 𝒞(Π𝜅,𝑑 , ∥·∥TV, 𝜀0) ≍𝑑 log 𝜅.

This result characterizes the low-dimensional complexity of log-concave sampling. The lower
bound is based on a two-dimensional construction witnessing 𝒞(Π𝜅,2, ∥·∥TV, 𝜀0) ≳ log 𝜅, which
implies the lower bound in any dimension 𝑑 ⩾ 2 because we can freely embed lower-dimensional
distributions into higher-dimensional space (take the product with the Gaussian measure, for instance).
On the other hand, the lower bound is tight in constant dimension because there is an algorithm
witnessing 𝒞(Π𝜅,𝑑 , ∥·∥TV, 𝜀0) ≲𝑑 log 𝜅 for any 𝑑 (here, the notation ≲𝑑 hides a large dependence on
𝑑).

Since the construction is rather technical, we will not present this result in detail and instead proceed
on a more intuitive level.

Lower bound.
Let us revisit the intuition behind the one-dimensional construction. Due to Lemma 9.2.2, 𝜋𝑖
concentrates its mass on the interval 𝜅−1/2 [−2𝑖−1, +2𝑖−1]. Therefore, consider instead the idealization
�̃�𝑖 = uniform(𝜅−1/2 [−2𝑖−1, +2𝑖−1]) for 𝑖 ∈ [𝑚]. This family has the following desirable properties: (1)
each �̃�𝑖 is log-concave; (2) the distributions are well-separated, in the sense that ∥�̃�𝑖 − �̃� 𝑗 ∥TV ≳ 1
for 𝑖, 𝑗 ∈ [𝑚], 𝑖 ≠ 𝑗 (this follows from Lemma 9.2.2 and it is the reason why the intervals are
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Figure 9.3 Uniform distributions over thin rectangles emanating
from the origin.

chosen to double in size as 𝑖 increases); (3) querying a distribution �̃�𝑖 only yields a single bit of
information (whether or not the query lands in the support of �̃�𝑖). Moreover, since a distribution in
Π𝜅,1 is “effectively supported” on an interval of length at least Ω(𝜅−1/2) and at most𝑂 (1) (think about
the upper bound algorithm from Section 9.2), we can take 𝑚 = Θ(log 𝜅) and still have the family
{�̃�𝑖}𝑖∈[𝑚] “resemble” members of Π𝜅,1. Since the number of queries needed to identify a member of
the family is the logarithm of the size of the family, i.e., Θ(log log 𝜅), this predicts the correct lower
bound in dimension one. Of course, the fatal flaw is that the family {�̃�𝑖}𝑖∈[𝑚] is not a subset of Π𝜅,1,
being neither strongly log-concave nor log-smooth, and most of the work in the construction is to find
a true subset of Π𝜅,1 that suitably mimics the idealized family {�̃�𝑖}𝑖∈[𝑚] .

Now we move to two dimensions. Here, our model for an element of Π𝜅,2 is the uniform distribution
over a rectangle of dimensions 𝜅−1/2 × 1. If we place these rectangles pointing away from the origin
and spreading out like a fan, we can now fit Θ(𝜅1/2) of them in R2 while remaining well-separated
(Figure 9.3). This family of uniform distributions still satisfies the three points listed above, and now
we expect a query lower bound of Ω(log 𝜅) due to the larger size of the family.

The challenge is to now modify this family so that it lies in Π𝜅,2, which is unfortunately quite
involved. The first step is to note that strong log-concavity does not pose an issue: if we have a family
of potentials which are convex and 𝜅-smooth, then we can add a quadratic term 𝜅−𝑂 (1) ∥·∥2/2 to each
of the potentials, where 𝜅−𝑂 (1) is chosen so that this term has a negligible effect in the region of
interest. The condition number now becomes 𝜅𝑂 (1) , but this polynomial blow-up is acceptable since
we are shooting for a Ω(log 𝜅) lower bound (it only affects the bound by a constant factor).

Let us restrict to rectangles in the positive quadrant and index them via bit strings 𝑏 ∈ {0, 1}𝑁
corresponding to slope [𝑏] B 0.𝑏1 . . . 𝑏𝑁 (represented in binary). Thus, we have 2𝑁 distributions
(eventually, 𝑁 ≍ log 𝜅), where the 𝑏-th distribution will be concentrated on the sector 𝒵𝑏 B {(𝑥, 𝑦) ∈
R2 | 𝑥 ⩾ 0, |𝑦 − [𝑏] 𝑥 | ⩽ 2−𝑁 , ∥(𝑥, 𝑦)∥ ⩽ 1}. In other words, 𝒵𝑏 will be the zero set of the potential
𝑉𝑏 corresponding to the distribution 𝜋𝑏 ∝ exp(−𝑉𝑏). In Figure 9.3, we essentially took 𝜋𝑏 to be
uniform over 𝒵𝑏 (with the immaterial difference that we now work with sectors rather than rectangles),
but now we need to smooth out these distributions. We can do this by by letting 𝑉𝑏 grow slowly away
from 𝒵𝑏, or by mollifying 𝑉𝑏; eventually we will need to do both. As we will see, however, the former
is convenient for controlling information leakage.

Indeed, as a first attempt, suppose we let𝑉𝑏 = dist(·,𝒵𝑏). Then,𝑉𝑏 is convex because 𝒵𝑏 is convex,
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but it is non-smooth. We can fix the latter problem later via smoothing, but the bigger problem is that
this distribution reveals too much information via queries. Indeed, the gradient of 𝑉𝑏 immediately
reveals the direction toward 𝒵𝑏, and once we locate 𝒵𝑏 we can identify 𝑏 and thus 𝜋𝑏. (Note that since
our lower bound rests on finding a subfamily {𝜋𝑏}𝑏∈{0,1}𝑁 ⊆ Π𝜅,2 that is already hard to sample, when
proving our lower bound we have to contend with algorithms which “know” the family {𝜋𝑏}𝑏∈{0,1}𝑁
in advance, hence identifying 𝑏 suffices to output an exact sample from 𝜋𝑏.)

The main idea is to design the potential 𝑉𝑏 so that querying at a distance of roughly 2−𝑘 away from
𝒵𝑏 reveals only the first 𝑘 bits of 𝑏. If this property holds, then heuristically the “probability” of
learning 𝑘 bits is only 2−𝑘 , so in expectation we only learn 𝑂 (1) bits per query. Moreover, we can
ensure this property as follows: let [𝑏]𝑘 B 0.𝑏1 . . . 𝑏𝑘 denote the slope corresponding to the first 𝑘
bits of 𝑏, and define

𝒵𝑏,𝑘 B {(𝑥, 𝑦) ∈ R2 | 𝑥 ⩾ 0, |𝑦 − [𝑏]𝑘 𝑥 | ⩽ 2−𝑘 , ∥(𝑥, 𝑦)∥ ⩽ 1} .

Then, we define

𝑉𝑏 (𝑥, 𝑦) B max
𝑘=1,...,𝑁

2−𝑘 dist((𝑥, 𝑦),𝒵𝑏,𝑘) .

To see why this works, note that if we query at a large distance away from all of the 𝒵𝑏,𝑘’s, then “the
larger slope wins” in the maximum defining 𝑉𝑏, so 𝑉𝑏 = 2−1 dist(·,𝒵𝑏,1): at this distance, the query
to 𝑉𝑏 only depends on the first bit of 𝑏. Similarly, convince yourself that a query at distance ≈ 2−𝑘
away from 𝒵𝑏 only depends on 𝑘 + 𝑂 (1) bits of 𝑏. Importantly, since 𝑉𝑏 is a maximum of convex
functions, it is convex.

Since 𝑉𝑏 is still not smooth (its gradient is discontinuous), we still need to smooth further. For
this, we can use the standard analysis trick of mollification, i.e., convolution with a smooth bump
function which is supported on a ball of radius 𝜅−𝑂 (1) . After mollifying and adding a quadratic
term as discussed above, all potentials are 𝜅−𝑂 (1)-strongly convex and 𝜅𝑂 (1)-smooth as desired.
Unfortunately, mollification introduces a further complication: it “blurs” out the distribution, which
causes information to “leak” between adjacent parts of the distribution. This is particularly harmful at
the origin, where all of the zero sets intersect (Figure 9.3). As a result, it is conceivable that a single
query near the origin, within the scale of the mollification, could reveal all of the bits of 𝑏 at once.

Handling this last issue requires care, and this is addressed in Chewi et al. (2023) with another
multiscale construction. We refer to the paper for the full proof of the lower bound.

Upper bound.
Finally, to check that the lower bound is tight, we need to exhibit an algorithm with query complexity
𝑂 (log 𝜅) in constant dimension. Such a result is folklore in the literature on sampling from convex
bodies, which shows how to “round” a convex body with a number of steps that is logarithmic in the
condition number of the body (see, e.g., Kannan et al. (1997)). We refer to Chewi et al. (2023) for a
self-contained analysis based on rejection sampling for our setting of interest, albeit with exponential
dependence on 𝑑.

9.4 Query Complexity for Gaussians
Bibliographical Notes

The lower bounds in this chapter are from Chewi et al. (2021, 2023). Below, we survey lower bounds
in related settings and other approaches.
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The paper Gopi et al. (2022) obtained a zeroth-order query complexity result for distributions over
the unit ball whose potentials 𝑉 are of the form 𝑉 =

∑∞
𝑖=1 𝑓𝑖 + 𝛼

2 ∥·∥
2, where each 𝑓𝑖 is 𝐿-Lipschitz

and the complexity is measured in terms of the number of queries to the individual 𝑓𝑖’s. In the regime
𝑑 ≪ 𝐿2/𝛼, the query complexity is Θ̃(𝐿2/𝛼), where the upper bound is based on the proximal sampler
(Section 8.1), and the lower bound is based on a reduction to optimization.

In Chatterji et al. (2022), the authors obtained a lower bound on the complexity of sampling using
a stochastic oracle. Namely, in order to output an 𝜀-approximate sample (in TV distance) from an
𝛼

2 -strongly log-concave and 𝛼-log-smooth distribution whose mean lies in the ball B(0, 1/𝛼), with an
oracle that given 𝑥 ∈ R𝑑 outputs ∇𝑉 (𝑥) + 𝜉 with 𝜉 ∼ normal(0, Σ) and trΣ ⩽ 𝜎2𝑑, the number of
queries required is at least Ω(𝜎2𝑑/𝜀2). On the other hand, when 𝛼, 𝜎 ≍ 1, this complexity is achieved
via stochastic gradient Langevin Monte Carlo.

Other works have focused on obtaining lower bounds against specific families of algorithms. As
already discussed in Section 7.3, the works Chewi et al. (2021); Lee et al. (2021a); Wu et al. (2021)
proved lower bounds for MALA, culminating in a precise understanding of the runtime of MALA both
from feasible and warm start initializations. On the other hand, the paper Cao et al. (2021) studied
the complexity of discretization. In their setup, there is a stochastic process (𝑍𝑡 )𝑡⩾0, driven by some
underlying Brownian motion (𝐵𝑡 )𝑡⩾0; for example, the process (𝑍𝑡 )𝑡⩾0 could be the underdamped
Langevin diffusion (Section 5.3). The algorithm is allowed to make queries to the potential 𝑉 , as well
as certain queries to the driving Brownian motion (𝐵𝑡 )𝑡⩾0, and the goal of the algorithm is to output a
point 𝑍𝑇 which is close to 𝑍𝑇 in mean squared error: E[∥𝑍𝑇 − 𝑍𝑇 ∥2] ⩽ 𝜀2. Within this framework,
they prove that the randomized midpoint discretization (Section 5.1) is optimal for simulating the
underdamped Langevin dynamics (see Theorem 5.3.10 for the upper bound). It is unclear whether
their framework encompasses all possible discretization schemes.

Finally, another line of work considers the complexity of estimating the normalization constant (or
partition function). In Rademacher and Vempala (2008), the authors studied the number of membership
queries needed to estimate the volume of a convex body 𝐾 ⊆ R𝑑 such that B(0, 1) ⊆ 𝐾 ⊆ B(0, 𝑂 (𝑑8))
to within a small multiplicative constant; their lower bound for this problem is Ω̃(𝑑2). In comparison,
the state-of-the-art upper bound for volume computation is 𝑂 (𝑑3) (see Cousins and Vempala (2018);
Jia et al. (2021)).

In Ge et al. (2020), the authors considered the problem of estimating the normalizing constant
𝑍𝜋 B

∫
�̃� from queries to the unnormalized density �̃�. Based on a multilevel Monte Carlo scheme,

they showed that sampling algorithms can be turned into approximation algorithms for the normalizing
constant, with the cost of an extra 𝑂 (𝑑) dimension dependence in the reduction. By combining this
with the upper bound from Theorem 5.3.10, they showed that a 1 ± 𝜀 multiplicative approximation to
𝑍𝜋 can be obtained using 𝑂 ((𝑑4/3𝜅 + 𝑑7/6𝜅7/6)/𝜀2) queries (in the strongly log-concave case). They
then proved that Ω(𝑑1−𝑜 (1)/𝜀2−𝑜 (1) ) queries are necessary. Unfortunately, due to the 𝑂 (𝑑) loss in the
reduction from estimating the normalizing constant to sampling, this does not imply a non-trivial
lower bound for the task of sampling.

Exercises
Query Complexity in One Dimension

⊵ Exercise 9.1 (basics of information theory)
Let 𝑋 , 𝑌 be random variables taking values in finite alphabets X, Y respectively. Let 𝑝𝑋,𝑌 denote the
joint distribution, 𝑝𝑋 denote the marginal distribution of 𝑋 , etc. We make the following definitions.
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• The entropy of 𝑋 is H(𝑋) B ∑
𝑥∈X 𝑝𝑋 (𝑥) log(1/𝑝𝑋 (𝑥)).

• The joint entropy of (𝑋,𝑌 ) is H(𝑋,𝑌 ) B ∑
𝑥∈X, 𝑦∈Y 𝑝𝑋,𝑌 (𝑥, 𝑦) log(1/𝑝𝑋,𝑌 (𝑥, 𝑦)).

• The conditional entropy of 𝑋 given 𝑌 is H(𝑋 | 𝑌 ) B ∑
𝑦∈Y 𝑝𝑌 (𝑦) H(𝑋 | 𝑌 = 𝑦), where we define

H(𝑋 | 𝑌 = 𝑦) B ∑
𝑥∈X 𝑝𝑋 |𝑌 (𝑥 | 𝑦) log(1/𝑝𝑋 |𝑌 (𝑥 | 𝑦)).

• The mutual information of 𝑋 and 𝑌 is I(𝑋;𝑌 ) B KL(𝑝𝑋,𝑌 ∥ 𝑝𝑋 ⊗ 𝑝𝑌 ).

Prove the following facts.

1 0 ⩽ H(𝑋) ⩽ log |X|.
2 Chain rule for entropy: H(𝑋,𝑌 ) = H(𝑋) + H(𝑌 | 𝑋) = H(𝑌 ) + H(𝑋 | 𝑌 ).
3 The mutual information satisfies I(𝑋;𝑌 ) = H(𝑋) − H(𝑋 | 𝑌 ) = H(𝑌 ) − H(𝑌 | 𝑋).
4 Chain rule for mutual information: if 𝑋1, . . . , 𝑋𝑛 are random variables taking values in X, then

I(𝑋1, . . . , 𝑋𝑛;𝑌 ) =
∑𝑛
𝑖=1 I(𝑋𝑖;𝑌 | 𝑋1, . . . , 𝑋𝑖−1), where the conditional mutual information is given

by I(𝑋2;𝑌 | 𝑋1) = H(𝑌 | 𝑋1) − H(𝑌 | 𝑋1, 𝑋2).



CHAPTER 10

Structured Sampling

So far, we have only considered sampling within the black-box model, in which we only have access to
oracle queries to the potential and its gradient. We will now consider several new sampling algorithms
which go beyond the black-box model.

10.1 Coordinate Langevin
10.2 Mirror Langevin

The mirror descent method in optimization changes the geometry of the algorithm via the use of a
mirror map 𝜙 : R𝑑 → R ∪ {∞}. Here, 𝜙 is a convex function and we denote X B int dom 𝜙; we
assume that X ≠ ∅, that 𝜙 is strictly convex and differentiable on X, and that 𝜙 is a barrier for X in
the sense that ∥∇𝜙(𝑥𝑘)∥ → ∞ whenever (𝑥𝑘)𝑘∈N ⊆ X converges to a point on 𝜕X. Then, rather than
following the gradient descent iteration

𝑥𝑘+1 B 𝑥𝑘 − ℎ∇𝑉 (𝑥𝑘) , 𝑘 = 0, 1, 2, . . . (10.2.1)

we can instead consider the mirror descent iteration

∇𝜙(𝑥𝑘+1) B ∇𝜙(𝑥𝑘) − ℎ∇𝑉 (𝑥𝑘) , 𝑘 = 0, 1, 2, . . . (10.2.2)

The assumptions on the mirror map 𝜙 ensure that the iteration (10.2.2) is well-defined. When 𝜙 =
∥ · ∥2

2 ,
then mirror descent coincides with gradient descent.

Historically, mirror descent was introduced by Nemirovsky and Yudin Nemirovsky and Yudin
(1983) with the following intuition. Suppose we are optimizing a function 𝑉 which is not defined over
the Euclidean space R𝑑 , but rather over a Banach space B. Then, the gradient of 𝑉 is not an element
of B but rather of the dual space B∗, and so the gradient descent iteration (10.2.1) does not even
make sense. On the other hand, the mirror descent iteration (10.2.2) works because the primal point
𝑥𝑘 ∈ B is first mapped to the dual space B∗ via the mapping ∇𝜙. This reasoning is not so esoteric as it
may seem, because even for a function 𝑉 defined over R𝑑 its natural geometry may correspond to a
different norm (e.g., the ℓ1 norm), in which case R𝑑 is better viewed as a Banach space.

Our aim is to understand the sampling analogue of mirror descent, known as mirror Langevin. We

227
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will keep in mind the key example of constrained sampling. Here, the potential 𝑉 : R𝑑 → R ∪ {∞}
has domain X ⊊ R𝑑 . In this case, the standard Langevin algorithm leaves the constraint set X which is
undesirable; in particular, it is not possible to obtain guarantees in metrics such as KL divergence
because the law of the iterate of the algorithm is not absolutely continuous with respect to the target.
Projecting the iterates onto X does not solve this issue because the law of the iterate will then have
positive mass on the boundary 𝜕X. Besides, projection may not adapt well to the shape of the constraint
set X. Instead, the use of a mirror map 𝜙 which is a barrier for X can automatically enforce the
constraint.

10.2.1 Continuous-Time Considerations
In continuous time, the mirror Langevin diffusion (𝑍𝑡 )𝑡⩾0 is the solution to the stochastic differential
equation

𝑍∗𝑡 = ∇𝜙(𝑍𝑡 ) , d𝑍∗𝑡 = −∇𝑉 (𝑍𝑡 ) d𝑡 +
√

2 [∇2𝜙(𝑍𝑡 )]
1/2 d𝐵𝑡 . (10.2.3)

Here, the diffusion term is no longer an isotropic Brownian motion but rather involves the matrix
[∇2𝜙(𝑍𝑡 )]1/2; this is necessary in order to ensure that the stationary distribution is 𝜋. Also, we have
given the SDE in the dual space. Using Itô’s formula (Theorem 1.1.19), one can write down an SDE
for (𝑍𝑡 )𝑡⩾0 in the primal space, but it is more complicated, involving the third derivative tensor of 𝜙
(see Exercise 10.1), and as such we prefer to work with the representation (10.2.3).

Using (10.2.3), we can compute the generator ℒ, the carré du champ Γ, and the Dirichlet energyℰ
of the mirror Langevin diffusion (see Section 1.2 and Exercise 10.2):

Γ( 𝑓 , 𝑔) = ⟨∇ 𝑓 , [∇2𝜙]−1 ∇𝑔⟩ , ℰ( 𝑓 , 𝑔) =
∫
⟨∇ 𝑓 , [∇2𝜙]−1 ∇𝑔⟩ d𝜋 . (10.2.4)

The expression shows that the mirror Langevin diffusion is reversible with respect to 𝜋. Also, if 𝜋𝑡
denotes the law of 𝑍𝑡 , then∫

𝑓 𝜕𝑡𝜋𝑡 = 𝜕𝑡

∫
𝑓 d𝜋𝑡 =

∫
ℒ 𝑓

𝜋𝑡

𝜋
d𝜋 = −

∫ 〈
∇ 𝑓 , [∇2𝜙]−1 ∇𝜋𝑡

𝜋

〉
d𝜋 (10.2.5)

= −
∫ 〈
∇ 𝑓 , [∇2𝜙]−1 ∇ log

𝜋𝑡

𝜋

〉
d𝜋𝑡 =

∫
𝑓 div

(
𝜋𝑡 [∇2𝜙]−1∇ log

𝜋𝑡

𝜋

)
(10.2.6)

from which we deduce the Fokker–Planck equation

𝜕𝑡𝜋𝑡 = div
(
𝜋𝑡 [∇2𝜙]−1 ∇ log

𝜋𝑡

𝜋

)
.

From the interpretation as a continuity equation (see Theorem 1.3.17), we deduce that (𝜋𝑡 )𝑡⩾0
describes the evolution of a particle which travels according to the family of vector fields 𝑡 ↦→
−[∇2𝜙]−1 ∇ log(𝜋𝑡/𝜋). Recalling that ∇ log(𝜋𝑡/𝜋) is the Wasserstein gradient of KL(· ∥ 𝜋) at 𝜋𝑡 , we
can interpret the mirror Langevin diffusion as a “mirror flow” of the KL divergence in Wasserstein
space.

Alternatively, we can equip X with the Riemannian metric induced by ∇2𝜙, i.e., we set ⟨𝑢, 𝑣⟩𝑥 B
⟨𝑢,∇2𝜙(𝑥) 𝑣⟩. Then, the mirror Langevin diffusion becomes the Wasserstein gradient flow of the KL
divergence over the Riemannian manifold X (see Section 2.5.1).
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The Newton Langevin diffusion.
In the special case when the mirror map 𝜙 is chosen to be the same as the potential 𝑉 , we arrive at a
sampling analogue of Newton’s algorithm, and hence we call it the Newton Langevin diffusion. The
equation for the Newton Langevin diffusion can be written (in the dual space) as

d𝑍∗𝑡 = −𝑍∗𝑡 d𝑡 +
√

2 [∇2𝑉∗(𝑍∗𝑡 )]
−1/2 d𝐵𝑡 , (10.2.7)

see Exercise 10.3.

Convergence in continuous time.
In optimization, Newton’s algorithm has many favorable properties. For example, at least locally, it is
known that Newton’s algorithm converges quadratically rather than linearly, which means that the
error at iteration 𝑘 scales as exp(−𝑐1 exp(𝑐2𝑘)) for constants 𝑐1, 𝑐2 > 0. Also, Newton’s algorithm is
affine-invariant, meaning that if 𝐴 is any invertible matrix and we instead apply Newton’s algorithm to
the function 𝑉 (𝑥) B 𝑉 (𝐴𝑥), then the iterates (�̃�𝑘)𝑘∈N are related to the iterates (𝑥𝑘)𝑘∈N of Newton’s
algorithm on the original function 𝑉 via the transformation �̃�𝑘 = 𝐴−1𝑥𝑘 (Exercise 10.4). Consequently,
the convergence speed of Newton’s algorithm should not be badly affected by poor conditioning of 𝑉 .

Can we expect similar properties to hold for the Newton Langevin diffusion? At least for the property
of affine invariance, we have the Brascamp–Lieb inequality (Theorem 2.2.9): if 𝜋 ∝ exp(−𝑉) is
strictly log-concave, then for all 𝑓 : R𝑑 → R,

var𝜋 ( 𝑓 ) ⩽ E𝜋 ⟨∇ 𝑓 , [∇2𝑉]−1 ∇ 𝑓 ⟩ .

Below, we will also give an alternative proof of the Bregman transport inequality (Theorem 2.2.12)
based on Wasserstein calculus, which implies the Brascamp–Lieb inequality. Note that in the strongly
convex case ∇2𝑉 ⪰ 𝛼𝐼𝑑 , it implies a Poincaré inequality (in the sense of Example 1.2.23) for 𝜋 with
constant 1/𝛼. However, in our present context with Dirichlet energy given by (10.2.4), we instead
interpret the Brascamp–Lieb inequality as a Poincaré inequality (in the sense of Definition 1.2.19) for
the Newton–Langevin diffusion. Then, the Poincaré constant is 1, independent of the strong convexity
of 𝑉 .

We also obtain a Poincaré inequality for the mirror Langevin diffusion under the condition of
relative strong convexity.

Definition 10.2.8. Let 𝜙,𝑉 : R𝑑 → R ∪ {∞} be convex functions, and assume that X =

int dom 𝜙 = int dom𝑉 . Then:

1 𝑉 is 𝛼-relatively convex (w.r.t. 𝜙) if for all 𝑥 ∈ X,

∇2𝑉 (𝑥) ⪰ 𝛼 ∇2𝜙(𝑥) .

2 𝑉 is 𝛽-relatively smooth (w.r.t. 𝜙) if for all 𝑥 ∈ X,

∇2𝑉 (𝑥) ⪯ 𝛽∇2𝜙(𝑥) .

Observe that when 𝜙 =
∥ · ∥2

2 , these definitions reduce to the usual definitions of strong convexity
and smoothness. Recall from Definition 2.2.11 that the Bregman divergence 𝐷𝜙 associated with 𝜙 is
the mapping 𝐷𝜙 (·, ·) : X × X→ R given by

𝐷𝜙 (𝑥, 𝑦) B 𝜙(𝑥) − 𝜙(𝑦) − ⟨∇𝜙(𝑦), 𝑥 − 𝑦⟩ .
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The Bregman divergence plays an important role in the analysis of mirror Langevin because it is the
correct substitute for the Euclidean distance (𝑥, 𝑦) ↦→ 1

2 ∥𝑥 − 𝑦∥
2 in this context. Note the following

observations: (1) 𝐷𝜙 is non-negative due to convexity of 𝜙, and if 𝜙 is strictly convex then it equals 0
if and only if its two arguments are equal; (2) since 𝐷𝜙 (𝑥, 𝑦) is defined by subtracting the first-order
Taylor expansion of 𝜙 at 𝑦, it behaves infinitesimally like a squared distance; in particular,

𝐷𝜙 (𝑥, 𝑦) ∼
1
2
⟨𝑦 − 𝑥,∇2𝜙(𝑥) (𝑦 − 𝑥)⟩ as 𝑦 → 𝑥 ;

(3) when 𝜙 =
∥ · ∥2

2 , then 𝐷𝜙 is precisely one-half times the squared Euclidean distance.
Using this definition, we have the following reformulations of relative convexity and relative

smoothness (Exercise 10.5).

Lemma 10.2.9. 𝑉 is 𝛼-relatively convex w.r.t. 𝜙 if and only if

𝐷𝑉 ⩾ 𝛼 𝐷𝜙 .

Similarly, 𝑉 is 𝛽-relatively smooth w.r.t. 𝜙 if and only if

𝐷𝑉 ⩽ 𝛽 𝐷𝜙 .

Returning to the mirror Langevin diffusion, the following corollary is an immediate consequence
of the Brascamp–Lieb inequality and the definition of relative convexity.

Corollary 10.2.10 (mirror Poincaré inequality, Chewi et al. (2020)). Suppose that the potential
𝑉 is 𝛼-relatively convex w.r.t. 𝜙. Then, the mirror Langevin diffusion satisfies the following
Poincaré inequality: for all 𝑓 : R𝑑 → R,

var𝜋 𝑓 ⩽
1
𝛼
E𝜋 ⟨∇ 𝑓 , [∇2𝜙]−1 ∇ 𝑓 ⟩ = 1

𝛼
ℰ( 𝑓 , 𝑓 ) .

So far so good: we have defined relative convexity, which is a natural generalization of strong
convexity and well-studied in the optimization literature; and we have shown that it implies a Poincaré
inequality for the mirror Langevin diffusion.

However, the analogies with the standard Langevin diffusion stop here. There are counterexamples
which show that relative convexity does not imply a log-Sobolev inequality for the mirror Langevin
diffusion. This may seem to contradict the Bakry–Émery theorem (Theorem 1.2.30), which holds for
any Markov diffusion. The issue here is that the assumption of relative convexity is not a curvature-
dimension condition. Indeed, in order to properly formulate a curvature-dimension condition for
the Hessian manifold X equipped with the Riemannian metric 𝔤 induced by ∇2𝜙, one must check
the CD(𝛼,∞) condition ∇2𝑉 + Ric ⪰ 𝛼. Here, ∇2 denotes the Riemannian Hessian and 𝑉 is the
potential corresponding to the relative density of 𝜋 w.r.t. the Riemannian volume measure on (X, 𝔤);
see Section 2.5. Such a calculation was performed in, e.g., Kolesnikov (2014), which implies that if
(∇𝜙)#𝜋 is log-concave, then the Newton Langevin diffusion satisfies CD( 1

2 ,∞). However, it is not
clear under what conditions (∇𝜙)#𝜋 is log-concave.

Here is another consequence of the fact that relative convexity is not a curvature-dimension
condition: relative convexity (apparently) does not seem to imply contraction properties for the mirror
Langevin diffusion with respect to an appropriately defined Wasserstein metric.

To summarize: either we can assume the curvature-dimension condition CD(𝛼,∞), which imposes
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complicated conditions on 𝜙 and 𝑉 , or we can adopt the more interpretable relative convexity
assumption, which in turn only implies a Poincaré inequality (Corollary 10.2.10). We will follow the
latter approach.

Upon reflection, the curvature-dimension approach for studying the mirror Langevin diffusion is
arguably the less natural one. Indeed, the curvature-dimension approach is based on viewing the
mirror Langevin diffusion from the lens of Riemannian geometry, but the mirror descent algorithm in
optimization is not typically studied via Riemannian geometry. Instead, the study of mirror descent is
based on ideas from convex analysis, centered around the Bregman divergence. So it seems prudent at
this stage to abandon the Riemannian interpretation of mirror Langevin in favor of convex analysis
tools, and this is indeed how our discretization proof will go. In fact, in lieu of using the Poincaré
inequality in Corollary 10.2.10, we will directly use relative convexity.

10.2.2 Discretization Preliminaries
Following Ahn and Chewi (2021), we consider the following discretization of (10.2.3).

∇𝜙(𝑋+𝑘ℎ) B ∇𝜙(𝑋𝑘ℎ) − ℎ∇𝑉 (𝑋𝑘ℎ) ,
𝑋(𝑘+1)ℎ B ∇𝜙∗(𝑋∗(𝑘+1)ℎ) ,

(MLMC)

where

𝑋∗𝑡 = ∇𝜙(𝑋+𝑘ℎ) +
√

2
∫ 𝑡

𝑘ℎ

[∇2𝜙∗(𝑋∗𝑠 )]
−1/2 d𝐵𝑠 for 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] . (10.2.11)

Note that when 𝜙 =
∥ · ∥2

2 , this reduces to the standard LMC algorithm. When generalizing LMC
to different mirror maps, this discretization is chosen to preserve the “forward-flow” interpretation
of Wibisono (2018) (see Section 4.3). In particular, the update from 𝑋𝑘ℎ to 𝑋+

𝑘ℎ
is a mirror descent step,

while the update from 𝑋+
𝑘ℎ

to 𝑋(𝑘+1)ℎ follows a “Wasserstein mirror flow” of the (negative) entropy.
However, implementing MLMC requires the exact simulation of a diffusion process, so is it truly a

“discretization”? To address this, note that simulating the mirror diffusion (10.2.11) does not require
additional queries to the potential 𝑉 , since it only depends on the mirror map 𝜙 (except for the
initialization). To an extent, any algorithm based on mirror maps requires the implementation of
certain primitive operations involving 𝜙, such as computation of ∇𝜙 or inversion of ∇𝜙; in practice,
this requires 𝜙 to have a “simple” structure such that these operations have closed-form expressions,
or are at least cheap enough to be negligible relative to the cost of computing the gradient of 𝑉 .
In our consideration of MLMC, we take the diffusion (10.2.11) to be another primitive operation
associated with the mirror map 𝜙. This is indeed appropriate for many applications, e.g., when 𝜙 is
a separable function 𝜙(𝑥) = ∑𝑑

𝑖=1 𝜙𝑖 (𝑥𝑖), and it will streamline our technical analysis. Nevertheless,
implementation of MLMC remains a key obstacle to its practicality and necessitates further research
in this direction.

Our approach to studying MLMC is to adapt the convex optimization approach introduced in
Section 4.3.

Key technical results.
We now establish the analogues of the various facts that we invoked in the study of LMC.
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First, in the standard gradient descent analysis, if 𝑥+ B 𝑥− ℎ∇𝑉 (𝑥), then we have the key inequality

⟨∇𝑉 (𝑥), 𝑥+ − 𝑧⟩ = 1
2ℎ
{∥𝑥 − 𝑧∥2 − ∥𝑥+ − 𝑧∥2 − ∥𝑥+ − 𝑥∥2} for all 𝑧 ∈ R𝑑 .

Remarkably, there is an analogue of this fact for mirror descent, which follows from the following
identity (which can be checked by simple algebra, see Exercise 10.5):

⟨∇𝜙(𝑥) − ∇𝜙(𝑥), 𝑥 − 𝑧⟩ = 𝐷𝜙 (𝑥, 𝑥) + 𝐷𝜙 (𝑧, 𝑥) − 𝐷𝜙 (𝑧, 𝑥) , for all 𝑥, 𝑥, 𝑧 ∈ X . (10.2.12)

Lemma 10.2.13 (Bregman proximal lemma, Chen and Teboulle (1993)). For 𝑥 ∈ X, let 𝑥+ be
defined via ∇𝜙(𝑥+) = ∇𝜙(𝑥) − ℎ∇𝑉 (𝑥). Then, for all 𝑧 ∈ X,

⟨∇𝑉 (𝑥), 𝑥+ − 𝑧⟩ = 1
ℎ
{𝐷𝜙 (𝑧, 𝑥) − 𝐷𝜙 (𝑧, 𝑥+) − 𝐷𝜙 (𝑥+, 𝑥)} .

Proof Note that

⟨∇𝑉 (𝑥), 𝑥+ − 𝑧⟩ = −1
ℎ
⟨∇𝜙(𝑥+) − ∇𝜙(𝑥), 𝑥+ − 𝑧⟩ .

Substituting the identity (10.2.12) into the above equation proves the result. □

Unlike the case of LMC, the presence of a non-constant diffusion matrix involving ∇2𝜙 introduces
another source of discretization error. To address this, we introduce a condition on the third derivative
of 𝜙. Note however that a uniform bound on the operator norm of ∇3𝜙 is not compatible with the
assumption that 𝜙 tends to +∞ on 𝜕X. The solution to this issue was discovered by Nesterov and
Nemirovsky Nesterov and Nemirovskii (1994): we can ask that ∇3𝜙 is bounded with respect to the
geometry induced by 𝜙. This approach also has the benefit of being consistent with the affine invariance
of Newton’s method. The precise definition of the third derivative condition is as follows.

Definition 10.2.14 (self-concordance). The mirror map 𝜙 is said to be 𝑀𝜙-self-concordant if
for all 𝑥 ∈ X and all 𝑣 ∈ R𝑑 ,

∇3𝜙(𝑥) [𝑣, 𝑣, 𝑣] ⩽ 2𝑀𝜙 ∥𝑣∥3∇2𝜙 (𝑥 ) B 2𝑀𝜙 ⟨𝑣,∇2𝜙(𝑥) 𝑣⟩3/2 .

The norm ∥𝑣∥∇2𝜙 (𝑥 ) B
√︁
⟨𝑣,∇2𝜙(𝑥) 𝑣⟩ is called the local norm, and it is the tangent space norm

for the Riemannian metric induced by 𝜙.
The definition implies the following result, stated without proof:1

Lemma 10.2.15 ((Nesterov, 2018, Corollary 5.1.1)). Suppose that 𝜙 is 𝑀𝜙-self-concordant.
Then, for all 𝑥 ∈ X and 𝑢 ∈ R𝑑 ,

∇3𝜙(𝑥) 𝑢 ⪯ 2𝑀𝜙 ∥𝑢∥∇2𝜙 (𝑥 ) ∇2𝜙(𝑥) .

Self-concordant functions are well-studied due to their central role in the theory of interior-point

1The proof is surprisingly difficult. The reader can try to prove the result with a worse constant factor.
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methods for optimization, see the monograph Nesterov and Nemirovskii (1994). A key example of a
self-concordant mirror map is when the constraint set is a polytope,

X = {𝑥 ∈ R𝑑 : ⟨𝑎𝑖, 𝑥⟩ < 𝑏𝑖 for all 𝑖 ∈ [𝑁]} ,

in which case 𝜙(𝑥) = log(1/∑𝑁
𝑖=1(𝑏𝑖 − ⟨𝑎𝑖, 𝑥⟩)) is self-concordant with 𝑀𝜙 = 1.

Finally, a key step in our analysis of LMC was to use the convexity of the entropy functional along
𝑊2 geodesics. In our analysis of MLMC, we will replace the𝑊2 distance with the Bregman transport
cost D𝑉 (recall Definition 2.2.11). To study these costs, we first state an analogue of Brenier’s theorem
(Theorem 1.3.8).

Theorem 10.2.16 (Brenier’s theorem for the Bregman transport cost). Suppose that 𝜇, 𝜈 ∈ P(R𝑑).
Then, the unique optimal Bregman transport coupling (𝑋,𝑌 ) for 𝜇 and 𝜈 is of the form

∇𝜙(𝑌 ) = ∇𝜙(𝑋) − ∇ℎ(𝑋) ,

where ℎ : R𝑑 → R ∪ {−∞} is such that 𝜙 − ℎ is convex.

Proof sketch We need facts about optimal transport with general costs 𝑐 (Exercise 1.10). Namely,
the optimal pair of dual potentials ( 𝑓 ★, 𝑔★) are 𝑐-conjugates, meaning that

𝑓 ★(𝑥) = inf
𝑦∈R𝑑
{𝑐(𝑥, 𝑦) − 𝑔★(𝑦)} ,

𝑔★(𝑦) = inf
𝑥∈R𝑑
{𝑐(𝑥, 𝑦) − 𝑓 ★(𝑥)} .

For 𝛾★-a.e. (𝑥, 𝑦), it holds that 𝑓 ★(𝑥) + 𝑔★(𝑦) = 𝑐(𝑥, 𝑦). If 𝑐 is smooth and such that ∇𝑥𝑐(𝑥, ·) is
injective for all 𝑥 ∈ R𝑑 , then from the definition of 𝑔★ it suggests that we have ∇𝑥𝑐(𝑥, 𝑦) = ∇ 𝑓 ★(𝑥) for
𝛾★-a.e. (𝑥, 𝑦). See (Villani, 2009b, Theorem 10.28) for a rigorous statement and proof of these results.

Applying this to our cost function 𝑐 = 𝐷𝜙, it yields the existence of 𝐷𝜙-conjugates ℎ, ℎ̃ : R𝑑 →
R ∪ {−∞} such that ∇𝑥𝐷𝜙 (𝑥, 𝑦) = ∇ℎ(𝑥) under the optimal plan 𝛾★. Hence,

∇𝜙(𝑦) = ∇𝜙(𝑥) − ∇ℎ(𝑥) , for 𝛾★-a.e. (𝑥, 𝑦)

and

ℎ(𝑥) = inf
𝑦∈R𝑑
{𝐷𝜙 (𝑥, 𝑦) − ℎ̃(𝑦)} .

By expanding out the definition of 𝐷𝜙, we rewrite this as

𝜙(𝑥) − ℎ(𝑥) = sup
𝑦∈X
{⟨∇𝜙(𝑦), 𝑥 − 𝑦⟩ + ℎ̃(𝑦) + 𝜙(𝑦)} .

As a supremum of affine functions, it follows that 𝜙 − ℎ is convex. □

Recall that the usual 𝑊2 geodesic from 𝜇0 to 𝜇1 is given as follows: there is a convex function
𝜑 : R𝑑 → R ∪ {∞} such that for 𝑋0 ∼ 𝜇0, the pair (𝑋0, 𝑋1) B (𝑋0,∇𝜑(𝑋0)) is an optimal coupling.
By taking the linear interpolation 𝑋𝑡 B (1 − 𝑡) 𝑋0 + 𝑡 𝑋1 and setting 𝜇𝑡 B law(𝑋𝑡 ), we obtain the𝑊2
geodesic.

Now consider the above theorem. If we let 𝑊 B ∇𝜙(𝑌 ) = ∇𝜙(𝑋) − ∇ℎ(𝑋), then we have the
coupling (𝑋0, 𝑋1) B (∇(𝜙 − ℎ)∗(𝑊),∇𝜙∗(𝑊)) of 𝜇0 B 𝜇 and 𝜇1 B 𝜈. Then, we can interpolate by
setting 𝑋𝑡 B (1 − 𝑡) 𝑋0 + 𝑡 𝑋1 and 𝜇𝑡 B law(𝑋𝑡 ), which defines an alternative path joining 𝜇0 to 𝜇1.
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Note that (𝑋0,𝑊) and (𝑋1,𝑊) are both optimally coupled for the𝑊2 distance (since 𝜙 − ℎ is convex).
This is a special case of the following.

Definition 10.2.17. A curve (𝜇𝑡 )𝑡∈[0,1] ⊆ P2(R𝑑) is a generalized geodesic if there exists
another measure 𝜌 ∈ P2(R𝑑) such that

𝜇𝑡 = law(𝑋𝑡 ) , 𝑋𝑡 B (1 − 𝑡) 𝑋0 + 𝑡 𝑋1 ,

and (𝑋0,𝑊), (𝑋1,𝑊) are both optimally coupled for the𝑊2 metric, where𝑊 ∼ 𝜌.

It is left as Exercise 10.6 to check that the entropy functional is also convex along generalized
geodesics.

Theorem 10.2.18. Let H(𝜇) B
∫
𝜇 log 𝜇. Then, for any generalized geodesic (𝜇𝑡 )𝑡∈[0,1] ,

𝑡 ↦→ H(𝜇𝑡 ) is convex .

In our context, it implies that if 𝜇, 𝜈 ∈ P(R𝑑) and (𝑋,𝑌 ) is an optimal coupling for the Bregman
cost D𝜙 (𝜇, 𝜈), then

H(𝜈) ⩾ H(𝜇) + E⟨∇ log 𝜇(𝑋), 𝑌 − 𝑋⟩ . (10.2.19)

As an aside, we remark that this observation leads to another proof of the Bregman transport
inequality.

Proof of the Bregman transport inequality (Theorem 2.2.12) Let 𝜋 = exp(−𝑉), where 𝑉 is strictly
convex, and let 𝜇 ∈ P(R𝑑). Let 𝑋 ∼ 𝜇, 𝑍 ∼ 𝜋 be optimally coupled for the Bregman transport cost.
Then,

KL(𝜇 ∥ 𝜋) = E𝑉 (𝑋) +H(𝜇) .

For the first term, by the definition of 𝐷𝑉 ,

E𝑉 (𝑋) = E𝑉 (𝑍) + E𝐷𝑉 (𝑋, 𝑍) + E⟨∇𝑉 (𝑍), 𝑋 − 𝑍⟩ .

For the second term, (10.2.19) implies

H(𝜇) ⩾ H(𝜋) + E⟨∇ log 𝜋(𝑍), 𝑋 − 𝑍⟩ .

Hence,

KL(𝜇 ∥ 𝜋) ⩾ E𝑉 (𝑍) +H(𝜋)︸             ︷︷             ︸
=KL(𝜋 ∥ 𝜋 )=0

+E⟨∇𝑉 (𝑍) + ∇ log 𝜋(𝑍)︸                    ︷︷                    ︸
=0

, 𝑋 − 𝑍⟩ + E𝐷𝑉 (𝑋, 𝑍)

= D𝑉 (𝜇 ∥ 𝜋) ,

which is what we wanted to show. □

10.2.3 Discretization Analysis
Analysis for the smooth case.

We now prove the following result.
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Theorem 10.2.20 (Ahn and Chewi (2021)). Suppose that 𝜋 = exp(−𝑉) is the target distribution
and that 𝜙 is the mirror map. Assume:

• 𝑉 is 𝛼-relatively convex and 𝛽-relatively smooth w.r.t. 𝜙.
• 𝜙 is 𝑀𝜙-self-concordant.
• 𝑉 is 𝐿-relatively Lipschitz w.r.t. 𝜙, i.e., ∥∇𝑉 (𝑥)∥ [∇2𝜙 (𝑥 ) ]−1 ⩽ 𝐿 for all 𝑥 ∈ X.

Let (𝜇𝑘ℎ)𝑘∈N denote the law of MLMC and let 𝛽′ B 𝛽 + 2𝐿𝑀𝜙.

1 (weakly convex case) Suppose that 𝛼 = 0. For any 𝜀 ∈ [0,
√
𝑑], if we take step size ℎ ≍ 𝜀2

𝛽′𝑑
,

then for the mixture distribution �̄�𝑁ℎ B 𝑁−1 ∑𝑁
𝑘=1 𝜇𝑘ℎ it holds that

√︁
KL( �̄�𝑁ℎ ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝛽′𝑑D𝜙 (𝜋, 𝜇0)
𝜀4

)
iterations .

2 (strongly convex case) Suppose that 𝛼 > 0 and let 𝜅 B 𝛽′/𝛼 denote the “condition number”.
Then, for any 𝜀 ∈ [0,

√
𝑑], with step size ℎ ≍ 𝛼𝜀2

𝛽′𝑑
we obtain

√
𝛼D𝜙 (𝜋, 𝜇𝑁ℎ) ⩽ 𝜀 and√︁

KL( �̄�𝑁ℎ,2𝑁ℎ ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝜅𝑑
𝜀2 log

𝛼D𝜙 (𝜋, 𝜇0)
𝜀2

)
iterations ,

where �̄�𝑁ℎ,2𝑁ℎ B 𝑁−1 ∑2𝑁
𝑘=𝑁+1 𝜇𝑘ℎ.

Similarly to Theorem 4.3.6, the theorem follows from a key recursion.

Lemma 10.2.21. Under the assumptions of Theorem 10.2.20, if ℎ ∈ [0, 1
𝛽
], then

ℎKL(𝜇 (𝑘+1)ℎ ∥ 𝜋) ⩽ (1 − 𝛼ℎ)D𝜙 (𝜋, 𝜇𝑘ℎ) −D𝜙 (𝜋, 𝜇 (𝑘+1)ℎ) + 𝛽′𝑑ℎ2 .

We proceed to prove the lemma.

Proof We follow the proof of Theorem 4.3.6, indicating the changes necessary to adapt the proof
to MLMC. Recall that E(𝜇) B

∫
𝑉 d𝜇.

1. The forward step dissipates the energy. Let 𝑍 ∼ 𝜋 be optimally coupled to 𝑋𝑘ℎ. Then, applying
the relative convexity and relative smoothness of 𝑉 ,

E(𝜇+𝑘ℎ) − E(𝜋) = E[𝑉 (𝑋+𝑘ℎ) −𝑉 (𝑋𝑘ℎ) +𝑉 (𝑋𝑘ℎ) −𝑉 (𝑍)]
⩽ E

[
⟨∇𝑉 (𝑋𝑘ℎ), 𝑋+𝑘ℎ − 𝑋𝑘ℎ⟩ + 𝛽 𝐷𝜙 (𝑋+𝑘ℎ, 𝑋𝑘ℎ)

+ ⟨∇𝑉 (𝑋𝑘ℎ), 𝑋𝑘ℎ − 𝑍⟩ − 𝛼 𝐷𝜙 (𝑍, 𝑋𝑘ℎ)
]

= E
[
⟨∇𝑉 (𝑋𝑘ℎ), 𝑋+𝑘ℎ − 𝑍⟩ + 𝛽 𝐷𝜙 (𝑋+𝑘ℎ, 𝑋𝑘ℎ) − 𝛼 𝐷𝜙 (𝑍, 𝑋𝑘ℎ)

]
. (10.2.22)

Next, by the Bregman proximal lemma (Lemma 10.2.13),

⟨∇𝑉 (𝑋𝑘ℎ), 𝑋+𝑘ℎ − 𝑍⟩ =
1
ℎ
{𝐷𝜙 (𝑍, 𝑋𝑘ℎ) − 𝐷𝜙 (𝑍, 𝑋+𝑘ℎ) − 𝐷𝜙 (𝑋+𝑘ℎ, 𝑋𝑘ℎ)} .

Substituting this into (10.2.22) and using ℎ ⩽ 1
𝛽

, it yields

E(𝜇+𝑘ℎ) − E(𝜋) ⩽
1
ℎ
{(1 − 𝛼ℎ)D𝜙 (𝜇𝑘ℎ, 𝜋) −D𝜙 (𝜇+𝑘ℎ, 𝜋)} . (10.2.23)
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2. The flow step does not substantially increase the energy. We write

E(𝜇 (𝑘+1)ℎ) − E(𝜇+𝑘ℎ) = E
[
𝑉
(
∇𝜙∗(𝑋∗(𝑘+1)ℎ)

)
−𝑉

(
∇𝜙∗(𝑋∗𝑘ℎ)

) ]
.

Let 𝑓 (𝑥) B 𝑉 (∇𝜙∗(𝑥)) and apply Itô’s formula. Note that

∇ 𝑓 (𝑥) = ∇𝑉 (∇𝜙∗(𝑥))T∇2𝜙∗(𝑥) = ∇𝑉 (∇𝜙∗(𝑥))T [∇2𝜙(∇𝜙∗(𝑥))]−1
,

∇2 𝑓 (𝑥) = [∇2𝑉 (∇𝜙∗(𝑥))] [∇2𝜙(∇𝜙∗(𝑥))]−1 [∇2𝜙∗(𝑥)]

+ ∇𝑉 (∇𝜙∗(𝑥))T [∇2𝜙(∇𝜙∗(𝑥))]−1 [∇3𝜙(∇𝜙∗(𝑥))] [∇2𝜙(∇𝜙∗(𝑥))]−2
.

Itô’s formula decomposes 𝑓 (𝑋∗(𝑘+1)ℎ) − 𝑓 (𝑋∗𝑘ℎ) into the sum of an integral and a stochastic integral;
since the latter has mean zero, we focus on the first term.

E[ 𝑓 (𝑋∗(𝑘+1)ℎ) − 𝑓 (𝑋∗𝑘ℎ)]

= E

∫ (𝑘+1)ℎ

𝑘ℎ

〈
∇2𝑉 (𝑋𝑡 ) [∇2𝜙(𝑋𝑡 )]

−2
,∇2𝜙(𝑋𝑡 )

〉
d𝑡

+ E
∫ (𝑘+1)ℎ

𝑘ℎ

〈
∇𝑉 (𝑋𝑡 )T [∇2𝜙(𝑋𝑡 )]

−1 [∇3𝜙(𝑋𝑡 )] [∇2𝜙(𝑋𝑡 )]
−2
,∇2𝜙(𝑋𝑡 )

〉
d𝑡

= E

∫ (𝑘+1)ℎ

𝑘ℎ

〈
∇2𝑉 (𝑋𝑡 ), [∇2𝜙(𝑋𝑡 )]

−1〉 d𝑡 (10.2.24)

+ E
∫ (𝑘+1)ℎ

𝑘ℎ

tr
(
∇𝑉 (𝑋𝑡 )T [∇2𝜙(𝑋𝑡 )]

−1 [∇3𝜙(𝑋𝑡 )] [∇2𝜙(𝑋𝑡 )]
−1) d𝑡 . (10.2.25)

By relative smoothness, since ∇2𝑉 ⪯ 𝛽∇2𝜙,

(10.2.24) ⩽ 𝛽𝑑ℎ .

For (10.2.25), we use Lemma 10.2.15, which implies

(10.2.25) ⩽ 2𝑀𝜙

∫ (𝑘+1)ℎ

𝑘ℎ

E
[[∇2𝜙(𝑋𝑡 )]

−1 ∇𝑉 (𝑋𝑡 )

∇2𝜙 (𝑋𝑡 )

tr
(
[∇2𝜙(𝑋𝑡 )] [∇2𝜙(𝑋𝑡 )]

−1) ] d𝑡

⩽ 2𝑀𝜙𝑑

∫ (𝑘+1)ℎ

𝑘ℎ

E
[
∥∇𝑉 (𝑋𝑡 )∥ [∇2𝜙 (𝑋𝑡 ) ]−1

]
d𝑡 ⩽ 2𝐿𝑀𝜙𝑑ℎ .

Hence, we have proven

E(𝜇 (𝑘+1)ℎ) − E(𝜇+𝑘ℎ) ⩽ 𝛽′𝑑ℎ . (10.2.26)

3. The flow step dissipates the entropy. Let 𝜇𝑡 B law(𝑋𝑡 ) = law(∇𝜙∗(𝑋∗𝑡 )). The mirror diffu-
sion (10.2.11) evolves according to the vector field −[∇2𝜙]−1 ∇ log 𝜇𝑡 . Also, note that ∇𝑦𝐷𝜙 (𝑥, 𝑦) =
−∇2𝜙(𝑥) (𝑦 − 𝑥). Using these, one can show that

𝜕𝑡D𝜙 (𝜋, 𝜇𝑡 ) ⩽ E⟨[∇2𝜙(𝑋𝑡 )]
−1 ∇ log 𝜇(𝑋𝑡 ), [∇2𝜙(𝑋𝑡 )] (𝑍 − 𝑋𝑡 )⟩ = E⟨∇ log 𝜇(𝑋𝑡 ), (𝑍 − 𝑋𝑡 )⟩ ,

where (𝑍, 𝑋𝑡 ) is an optimal coupling for D𝜙 (𝜋, 𝜇𝑡 ). Using the convexity of H along generalized
geodesics (Theorem 10.2.18),

H(𝜋) −H(𝜇𝑡 ) ⩾ E⟨∇ log 𝜇(𝑋𝑡 ), (𝑍 − 𝑋𝑡 )⟩ .
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Using the fact that 𝑡 ↦→ H(𝜇𝑡 ) is decreasing (prove this from the Fokker–Planck equation for the
mirror diffusion!), we then have

D𝜙 (𝜋, 𝜇 (𝑘+1)ℎ) −D𝜙 (𝜋, 𝜇+𝑘ℎ) ⩽ ℎ {H(𝜋) −H(𝜇 (𝑘+1)ℎ)} . (10.2.27)

Concluding the proof. Combine (10.2.23), (10.2.26), and (10.2.27) to conclude. □

To apply Theorem 10.2.20 to the problem of constrained sampling, we can choose 𝜙 to be a
logarithmic barrier for X, which is self-concordant. In the special case when 𝑉 = 𝜙, the condition
that 𝜙 is 𝐿-relatively Lipschitz with respect to itself is commonly expressed as saying that 𝜙 is a
self-concordant barrier with parameters (𝐿, 𝑀𝜙). Self-concordant barriers are also a core part of
the theory of interior point methods; in particular, it is known that every convex body in R𝑑 admits
a (𝑑, 2)-self-concordant barrier, and that this is optimal (see Chewi (2021); Lee and Yue (2021)).
However, this situation is “cheating” because if we want to sample from 𝜋 ∝ exp(−𝜙), it does not
make sense to assume we can exactly simulate the mirror diffusion associated with 𝜙.

Result for the non-smooth case.
Although the preceding result applies when 𝜙 is a logarithmic barrier, it does not apply to perhaps one
of the most classical applications of mirror descent: namely, X is the probability simplex in R𝑑 and
𝜙(𝑥) B ∑𝑑

𝑖=1 𝑥𝑖 log 𝑥𝑖 is the entropy. The next result we formulate adopts assumptions which precisely
match the usual ones for mirror descent in this context.

Theorem 10.2.28 (Ahn and Chewi (2021)). Suppose that 𝜋 = exp(−𝑉) is the target distribution
and that 𝜙 is the mirror map. Let |||·||| be a norm on R𝑑 . Assume:

• 𝑉 is convex and 𝐿-Lipschitz w.r.t. the dual norm |||·|||∗, in the sense that

|||∇𝑉 (𝑥) |||∗ ⩽ 𝐿 for all 𝑥 ∈ X .

• 𝜙 is 1-strongly convex w.r.t. |||·|||.

Let (𝜇𝑘ℎ)𝑘∈N denote the law of MLMC. For any 𝜀 > 0, if we take step size ℎ ≍ 𝜀2

𝐿2 , then for the
mixture �̄�𝑁ℎ B 𝑁−1 ∑𝑁

𝑘=1 𝜇𝑘ℎ it holds that
√︁

KL( �̄�𝑁ℎ ∥ 𝜋) ⩽ 𝜀 after

𝑁 = 𝑂

( 𝐿2 D𝜙 (𝜋, 𝜇+0)
𝜀4

)
iterations .

For example, it is a classical fact that the entropy is strongly convex w.r.t. the ℓ1 norm. We leave the
proof of the non-smooth case as Exercise 10.7.

10.3 Proximal Langevin
10.4 Stochastic Gradient Langevin

Bibliographical Notes
In the context of optimization, self-concordant barriers play a key role in interior point methods for
constrained optimization Nesterov and Nemirovskii (1994); Bubeck (2015); Nesterov (2018). Relative
convexity and relative smoothness were introduced in Bauschke et al. (2017); Lu et al. (2018).

The first use of mirror maps with the Langevin diffusion was via the mirrored Langevin algorithm
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(which is different from the mirror Langevin diffusion) in Hsieh et al. (2018). The mirror Langevin
diffusion was introduced in an earlier draft of Hsieh et al. (2018), as well as in Zhang et al. (2020).
In Zhang et al. (2020), Zhang et al. also studied the Euler–Maruyama discretization of the mirror
Langevin diffusion (which differs from MLMC in that it discretizes the diffusion step as well), but
they were unable to prove convergence of the algorithm; they were only able to prove convergence
to a Wasserstein ball of non-vanishing radius around 𝜋, even as the step size tends to zero. They
also conjectured that the non-vanishing bias of the algorithm is unavoidable. Subsequently, Chewi
et al. (2020) studied the mirror Langevin diffusion in continuous time, and Ahn and Chewi (2021)
introduced and studied the MLMC discretization, which does lead to vanishing bias (as ℎ↘ 0).

Since then, there have been further works studying the non-vanishing bias issue: Jiang (2021)
studied both the Euler–Maruyama and MLMC discretizations under a “mirror log-Sobolev inequality”
and was only able to prove vanishing bias for the later discretization; Li et al. (2022a) showed that
the Euler–Maruyama discretization has vanishing bias under stronger assumptions; and Gatmiry and
Vempala (2022) studied MLMC as a special case of more general Riemannian Langevin algorithms.
The bias issue is still not settled, and it is certainly of interest to obtain guarantees for fully discretized
algorithms. Nevertheless, in our presentation, we have stuck with the analysis of Ahn and Chewi
(2021) because it is the cleanest, and because it relies on assumptions which are well-motivated from
convex optimization.

More generally, the mirror Langevin diffusion is an example of a Riemannian diffusion. See Hsu
(2002) for general theory, and Girolami and Calderhead (2011) for applications to Bayesian problems.

Exercises
Mirror Langevin

⊵ Exercise 10.1 (the mirror Langevin diffusion in the primal space)
Use Itô’s formula (Theorem 1.1.19) to show that the mirror Langevin diffusion (10.2.3) in the primal
space solves the SDE

d𝑍𝑡 = {−[∇2𝜙(𝑍𝑡 )]
−1 ∇𝑉 (𝑍𝑡 ) − [∇2𝜙(𝑍𝑡 )]

−1 ∇3𝜙(𝑍𝑡 ) [∇2𝜙(𝑍𝑡 )]
−1} d𝑡

+
√

2 [∇2𝜙(𝑍𝑡 )]
−1/2 d𝐵𝑡 .

⊵ Exercise 10.2 (Markov semigroup theory for the mirror Langevin diffusion)
Here, we introduce the Markov semigroup perspective on the mirror Langevin diffusion.

1 Compute the generator of the mirror Langevin diffusion. Use this to show that 𝜋 is stationary for
the diffusion, and verify the equations (10.2.4) for the carré du champ and Dirichlet energy.

2 Let ℒdual denote the generator for (𝑍∗𝑡 )𝑡⩾0 (we write ℒdual instead of ℒ∗ to avoid confusion with
the adjoint of ℒ). By computing 𝜕𝑡 E 𝑔(𝑍∗𝑡 ), show that

ℒdual 𝑔 = ℒ(𝑔 ◦ ∇𝜙) ◦ (∇𝜙)−1
.

Then, via a similar calculation to (10.2.5) and (10.2.6), show that the Dirichlet energy for (𝑍∗𝑡 )𝑡⩾0
can be expressed as

ℰdual( 𝑓 , 𝑔) =
∫
⟨∇ 𝑓 , [∇2𝜙∗]−1 ∇𝑔⟩ d𝜋∗ ,

where 𝜋∗ B (∇𝜙)#𝜋 is the stationary distribution of (𝑍∗𝑡 )𝑡⩾0.
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3 Show that the mirror Poincaré inequality in Corollary 10.2.10 implies the following Poincaré
inequality in the dual space: for all 𝑓 : R𝑑 → R,

var𝜋∗ 𝑓 ⩽
1
𝛼
E𝜋∗ ⟨∇ 𝑓 , [∇2𝜙∗]−1 ∇ 𝑓 ⟩ = 1

𝛼
ℰdual( 𝑓 , 𝑓 ) .

⊵ Exercise 10.3 (Newton Langevin diffusion)
Verify the SDE (10.2.7) for the Newton Langevin diffusion. What happens to the mirror descent
iteration (10.2.2) when 𝜙 = 𝑉?

⊵ Exercise 10.4 (affine invariance of Newton’s method)
Verify the affine invariance of Newton’s algorithm.

⊵ Exercise 10.5 (properties of the Bregman divergence)
In this exercise, we check basic properties of the Bregman divergence.

1 Prove the alternative definition of relative convexity/smoothness (Lemma 10.2.9).
2 If 𝜙∗ is the convex conjugate of 𝜙, prove that 𝐷𝜙 (𝑥, 𝑥′) = 𝐷𝜙∗ (∇𝜙(𝑥′),∇𝜙(𝑥)).
3 Check the identity (10.2.12).

⊵ Exercise 10.6 (generalized geodesic convexity of the entropy)
Generalize the proof of (1.4.3) to prove the convexity of entropy along generalized geodesics
(Theorem 10.2.18).

⊵ Exercise 10.7 (non-smooth guarantee for MLMC)
Adapt the proof of Theorem 4.3.11 using the techniques of this chapter to prove the non-smooth
guarantee for MLMC (Theorem 10.2.28).



CHAPTER 11

Non-Log-Concave Sampling

In this chapter, we study the problem of sampling from a smooth but non-log-concave target. Although
some results from previous chapters also cover some non-log-concave targets (such as targets
satisfying a Poincaré or log-Sobolev inequality), these results do not encompass the full breadth of the
non-log-concave sampling problem.

In general, one cannot hope for polynomial-time guarantees from sampling from non-log-concave
targets in usual metrics such as total variation distance. Instead, taking inspiration from the literature
on non-convex optimization, we will develop a notion of approximate first-order stationarity for
sampling, and show that this goal can achieved via an averaged version of the LMC algorithm. This is
based on the work Balasubramanian et al. (2022).

11.1 Approximate First-Order Stationarity via Fisher Information
Suppose that 𝑉 is smooth, but non-convex. In general, optimization lower bounds show that finding
an approximate global minimizer of 𝑉 is computationally intractable, i.e., the oracle complexity
scales exponentially in the dimension 𝑑. To circumvent this, the notion of approximate first-order
stationarity has arisen as the performance metric of choice in the non-convex optimization literature.
Under this metric, we seek to find the minimal number of queries required to output a point 𝑥 such
that ∥∇𝑉 (𝑥)∥ ⩽ 𝜀.

Of course, in practice we may desire stronger guarantees, but first-order stationarity is often a
useful first step towards more detailed analysis, and it has the advantage that we can develop a general
theory surrounding this notion. Note that in the convex case, finding a global minimizer is equivalent
to finding a first-order stationarity point, so stationary point analysis can be viewed as a natural
generalization of the convex optimization analysis to non-convex settings.

To develop a sampling analogue of this concept, we recall that the Langevin diffusion is the gradient
flow of the KL divergence KL(· ∥ 𝜋) w.r.t. the Wasserstein geometry (Section 1.4). Moreover, the
gradient of the KL divergence at 𝜇 is ∇ log(𝜇/𝜋), and the squared norm of the gradient is the Fisher
information FI(𝜇 ∥ 𝜋) = E𝜇 [∥∇ log(𝜇/𝜋)∥2]. Hence, a reasonable definition of finding an approximate
first-order stationary point in sampling is to output a sample from 𝜇 satisfying

√︁
FI(𝜇 ∥ 𝜋) ⩽ 𝜀. We

240
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will show shortly that it is indeed possible to achieve this goal in polynomially many queries to ∇𝑉 as
soon as ∇𝑉 is Lipschitz, thereby establishing a framework for stationarity analysis in non-log-concave
sampling. Before doing so, however, we pause to gain intuition for this solution concept.

Lack of spurious stationary points.
An interesting feature of the Fisher information is that, unlike for general non-convex optimization, if
𝜋 satisfies some mild regularity conditions (e.g., 𝜋 has a smooth and positive density on R𝑑), then
there are no spurious stationary points: FI(𝜇 ∥ 𝜋) = 0 implies 𝜇 = 𝜋. This is a specific feature of
the sampling problem.1 The intuition behind the proof is straightforward: if FI(𝜇 ∥ 𝜋) = 0, then
∇ log(𝜇/𝜋) = 0 (𝜋-a.e.), so the density 𝜇 is proportional to 𝜋. Since 𝜇 is a probability measure, then
𝜇 must equal 𝜋. (See however the technical remark below.)

This might suggest that our goal of obtaining
√︁

FI(𝜇 ∥ 𝜋) ⩽ 𝜀 is too ambitious, because obtaining a
small value of the Fisher information would solve the general problem of non-log-concave sampling.
This is in fact not the case, and the devil is in the details: it is true that a small value of FI(𝜇 ∥ 𝜋)
implies 𝜇 is close to 𝜋, but how small must FI(𝜇 ∥ 𝜋) be? For highly non-log-concave targets 𝜋,
typically the Fisher information should be exponentially small in order for 𝜇 to be close to 𝜋 in total
variation distance.

We illustrate this point with an example: suppose that the target distribution 𝜋 is a mixture of
Gaussians in one dimension, 𝜋 = 1

2 𝜋− +
1
2 𝜋+, where 𝜋∓ B normal(∓𝑚, 1). Also, suppose that 𝜇 is a

mixture of the same two Gaussians, but with the wrong mixing weights: 𝜇 = 3
4 𝜋− +

1
4 𝜋+. Then, we

leave the following computation to the reader (Exercise 11.1).

Proposition 11.1.1. Let 𝑚 > 0 and let 𝜋∓ B normal(∓𝑚, 1). Let 𝜇 B 3
4 𝜋− +

1
4 𝜋+ and

𝜋 B 1
2 𝜋− +

1
2 𝜋+. Then, it holds that

lim inf
𝑚→∞

∥𝜇 − 𝜋∥TV > 0

whereas

FI(𝜇 ∥ 𝜋) ≲ 𝑚2 exp
(
−𝑚

2

2
)
→ 0 as 𝑚 →∞ .

Metastability.
The example in Proposition 11.1.1 also provides an interpretation of the Fisher information. If we try
to sample from the mixture of Gaussians 𝜋, then for 𝑚 ≫ 1 it takes an exponentially long time for the
Langevin diffusion to jump to one mode from the other; this is the main reason behind the slow mixing
of Langevin. Since it is hard to jump between the modes, it is difficult for the Langevin diffusion to
“learn” the global mixing weights ( 1

2 ,
1
2 ) of 𝜋. On the other hand, Proposition 11.1.1 shows that even

with the wrong mixing weights ( 3
4 ,

1
4 ), the Fisher information FI(𝜇 ∥ 𝜋) is small, demonstrating that

the Fisher information is insensitive to the global weights.
The example in Proposition 11.1.1 therefore paints a cartoon picture of the behavior of the Langevin

diffusion with target 𝜋, initialized at 3
4 𝛿−𝑚 +

1
4 𝛿+𝑚: we expect that the Langevin diffusion quickly

explores and captures the local structure of the modes but fails to jump between the modes, arriving
at a distribution which resembles 𝜇; it is this local mixing that a Fisher information bound captures.

1 In fact, the KL divergence KL( · ∥ 𝜋 ) is always strictly convex with respect to taking convex combinations of measures,
and hence always has a unique global minimum.
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Meanwhile, the Langevin diffusion only obtains the correct global weights after an exponentially long
waiting time.

The state 𝜇 is not truly stable for the Langevin diffusion: given enough time, the diffusion will
eventually move away from 𝜇 and reach 𝜋. However, since states like 𝜇 persist for a very long period
of time, they are usually called metastable in the statistical physics literature. A Fisher information
bound can be interpreted as a way of quantitatively measuring the metastability phenomenon.

Technical remark.
One has to be slightly careful with the definition of the Fisher information. For example, suppose
that 𝜋 is the standard Gaussian, and suppose that 𝜇 is the Gaussian restricted to the unit ball. Then,
it is tempting to argue that the density of 𝜇 is proportional to that of 𝜋 on the unit ball, and hence
∇ log(𝜇/𝜋) = 0 (𝜇-a.e.); from the expression FI(𝜇 ∥ 𝜋) = E𝜇 [∥∇ log(𝜇/𝜋)∥2], it suggests that
FI(𝜇 ∥ 𝜋) = 0, and in particular 𝜇 is a spurious stationary point. However, this argument is not correct.

The reason is that 𝜇 does not have enough regularity w.r.t. 𝜋 in order to apply the formula
FI(𝜇 ∥ 𝜋) = E𝜇 [∥∇ log(𝜇/𝜋)∥2]. Indeed, in order to apply the formula, we must require that the

density d𝜇
d𝜋 lie in an appropriate Sobolev space w.r.t. 𝜋 (more precisely,

√︃
d𝜇
d𝜋 should lie in the domain

of the Dirichlet energy functional). If this does not hold, then we define the Fisher information to be
infinite: FI(𝜇 ∥ 𝜋) = ∞.

In our theorem below, the Fisher information bound should be interpreted as follows:
√︁

FI(𝜇 ∥ 𝜋) ⩽ 𝜀
means that 𝜇 has enough regularity w.r.t. 𝜋 and E𝜇 [∥∇ log(𝜇/𝜋)∥2] ⩽ 𝜀2.

11.2 Fisher Information Bound
As before, we consider the interpolation of LMC,

𝑋𝑡 = 𝑋𝑘ℎ − (𝑡 − 𝑘ℎ) ∇𝑉 (𝑋𝑘ℎ) +
√

2 (𝐵𝑡 − 𝐵𝑘ℎ) , 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ] .

The Fisher information bound in the next theorem will be proven using the interpolation technique
(§4.2).

Theorem 11.2.1 (Balasubramanian et al. (2022)). Let (𝜇𝑡 )𝑡⩾0 denote the law of the interpolation
of LMC with step size ℎ > 0. Assume that 𝜋 ∝ exp(−𝑉) where ∇𝑉 is 𝛽-Lipschitz. Then, for any
step size 0 < ℎ ⩽ 1

4𝛽 , for all 𝑁 ∈ N,

1
𝑁ℎ

∫ 𝑁ℎ

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 ⩽

2 KL(𝜇0 ∥ 𝜋)
𝑁ℎ

+ 6𝛽2𝑑ℎ .

In particular, if KL(𝜇0 ∥ 𝜋) ⩽ 𝐾0 and we choose ℎ =
√
𝐾0/(2𝛽

√
𝑑𝑁), then provided that

𝑁 ⩾ 9𝐾0/𝑑,

1
𝑁ℎ

∫ 𝑁ℎ

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 ⩽

8𝛽
√
𝑑𝐾0√
𝑁

.

In order to translate the result into a more useful form, we recall that the Fisher information is
convex in its first argument.
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Lemma 11.2.2. The Fisher information functional FI(· ∥ 𝜋) is convex.

Proof Let 𝜇0, 𝜇1 ∈ P(R𝑑) be such that FI(𝜇0 ∥ 𝜋) ∨ FI(𝜇1 ∥ 𝜋) < ∞. For 𝑡 ∈ (0, 1), let 𝜇𝑡 B
(1 − 𝑡) 𝜇0 + 𝑡 𝜇1, and write 𝑓𝑡 B d𝜇𝑡

d𝜋 = (1 − 𝑡) 𝑓0 + 𝑡 𝑓1. Then,

FI(𝜇𝑡 ∥ 𝜋) =
∫ ∥∇ 𝑓𝑡 ∥2

𝑓𝑡
d𝜋 ⩽ (1 − 𝑡)

∫ ∥∇ 𝑓0∥2
𝑓0

d𝜋 + 𝑡
∫ ∥∇ 𝑓1∥2

𝑓1
d𝜋

= (1 − 𝑡) FI(𝜇0 ∥ 𝜋) + 𝑡 FI(𝜇1 ∥ 𝜋)

follows from the joint convexity of (𝑎, 𝑏) ↦→ ∥𝑎∥2/𝑏 on R𝑑 × R>0. □

Hence, for the averaged measure �̄�𝑁ℎ B 1
𝑁ℎ

∫ 𝑁ℎ

0 𝜇𝑡 d𝑡, we have

FI( �̄�𝑁ℎ ∥ 𝜋) ⩽
1
𝑁ℎ

∫
FI(𝜇𝑡 ∥ 𝜋) d𝑡 (11.2.3)

and the guarantees of the theorem translate into guarantees for �̄�𝑁ℎ. Moreover, we can output a sample
from �̄�𝑁ℎ via the following procedure:

1 Pick a time 𝑡 ∈ [0, 𝑁ℎ] uniformly at random.
2 Let 𝑘 be the largest integer such that 𝑘ℎ ⩽ 𝑡, and let 𝑋𝑘ℎ denote the 𝑘-th iterate of the LMC

algorithm.
3 Perform a partial LMC update

𝑋𝑡 = 𝑋𝑘ℎ − (𝑡 − 𝑘ℎ) ∇𝑉 (𝑋𝑘ℎ) +
√

2 (𝐵𝑡 − 𝐵𝑘ℎ)

and output 𝑋𝑡 .

Combined with Theorem 11.2.1 and (11.2.3), and assuming that KL(𝜇0 ∥ 𝜋) = 𝑂 (𝑑), we conclude
that it is possible to algorithmically obtain a sample from a measure 𝜇 with

√︁
FI(𝜇 ∥ 𝜋) ⩽ 𝜀 using

𝑂 (𝛽2𝑑2/𝜀4) queries to ∇𝑉 .
We now give the proof of Theorem 11.2.1, which combines the usual stationary point analysis in

non-convex optimization with the interpolation argument.

Proof of Theorem 11.2.1 Recall from the proof of Theorem 4.2.6 that

𝜕𝑡 KL(𝜇𝑡 ∥ 𝜋) ⩽ −
1
2

FI(𝜇𝑡 ∥ 𝜋) + 6𝛽2𝑑 (𝑡 − 𝑘ℎ) .

This inequality was obtained under the sole assumption that ∇𝑉 is 𝛽-Lipschitz. In Theorem 4.2.6, we
proceeded to apply a log-Sobolev inequality, but here we will instead telescope this inequality. By
integrating over 𝑡 ∈ [𝑘ℎ, (𝑘 + 1)ℎ],

KL(𝜇 (𝑘+1)ℎ ∥ 𝜋) − KL(𝜇𝑘ℎ ∥ 𝜋) ⩽ −
1
2

∫ (𝑘+1)ℎ

𝑘ℎ

FI(𝜇𝑡 ∥ 𝜋) d𝑡 + 3𝛽2𝑑ℎ2 .

Summing over 𝑘 = 0, 1, . . . , 𝑁 − 1 and dividing by 𝑁ℎ,

1
𝑁ℎ

∫ 𝑁ℎ

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 ⩽

2 KL(𝜇0 ∥ 𝜋)
𝑁ℎ

+ 6𝛽2𝑑ℎ .

This proves the first statement; the second statement is obtained by optimizing over the choice of
ℎ. □
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11.3 Applications of the Fisher Information Bound
Asymptotic convergence of averaged LMC.

Since Theorem 11.2.1 holds under very weak assumptions (only smoothness of 𝑉) and implies that
the Fisher information can be driven to zero, and FI(𝜇 ∥ 𝜋) = 0 implies that 𝜇 = 𝜋, then putting these
facts together leads to a straightforward proof of the asymptotic convergence of averaged LMC.

For a sequence of positive step sizes (ℎ𝑘)𝑘∈N+ , let 𝜏𝑛 B
∑𝑛
𝑘=1 ℎ𝑘 and consider the interpolation

𝑋𝑡 = 𝑋𝜏𝑛−1 − (𝑡 − 𝜏𝑛−1) ∇𝑉 (𝑋𝜏𝑛−1) +
√

2 (𝐵𝑡 − 𝐵𝜏𝑛−1) , 𝑡 ∈ [𝜏𝑛−1, 𝜏𝑛] . (11.3.1)

Theorem 11.3.2. Let (𝜇𝑡 )𝑡⩾0 denote the law of the interpolation (11.3.1) of LMC, and suppose
that the target is 𝜋 ∝ exp(−𝑉) where ∇𝑉 is 𝛽-Lipschitz. Suppose that LMC is initialized at a
measure 𝜇0 with KL(𝜇0 ∥ 𝜋) < ∞, and that the sequence of step sizes satisfies 0 < ℎ𝑘 < 1

4𝛽 for
all 𝑘 ∈ N+ together with the conditions

∞∑︁
𝑘=1

ℎ𝑘 = ∞ , and
∞∑︁
𝑘=1

ℎ2
𝑘 < ∞ .

Write �̄�𝜏𝑛 B 1
𝜏𝑛

∫ 𝜏𝑛

0 𝜇𝑡 d𝑡. Then, �̄�𝜏𝑛 → 𝜋 weakly.

Proof By repeating the proof of Theorem 11.2.1 but incorporating time-varying step sizes, we obtain
for 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1]

𝜕𝑡 KL(𝜇𝑡 ∥ 𝜋) ⩽ −
1
2

FI(𝜇𝑡 ∥ 𝜋) + 6𝛽2𝑑 (𝑡 − 𝜏𝑛) . (11.3.3)

By integrating this inequality and summing,

KL(𝜇𝜏𝑛 ∥ 𝜋) ⩽ KL(𝜇0 ∥ 𝜋) −
1
2

∫ 𝜏𝑛

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 + 3𝛽2𝑑

𝑛∑︁
𝑘=1

ℎ2
𝑘 . (11.3.4)

Rearranging and using the convexity of the Fisher information, it yields

FI( �̄�𝜏𝑛 ∥ 𝜋) ⩽
1
𝜏𝑛

∫ 𝜏𝑛

0
FI(𝜇𝑡 ∥ 𝜋) d𝑡 ⩽

2 KL(𝜇0 ∥ 𝜋)
𝜏𝑛

+ 6𝛽2𝑑

𝜏𝑛

∞∑︁
𝑘=1

ℎ2
𝑘 . (11.3.5)

On the other hand, if 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1], then integrating (11.3.3) and combining with (11.3.4) yields

KL(𝜇𝑡 ∥ 𝜋) ⩽ KL(𝜇𝜏𝑛 ∥ 𝜋) + 3𝛽2𝑑 (𝑡 − 𝜏𝑛)2 ⩽ KL(𝜇0 ∥ 𝜋) + 6𝛽2𝑑

∞∑︁
𝑘=1

ℎ2
𝑘 < ∞ .

Therefore, {KL(𝜇𝑡 ∥ 𝜋) | 𝑡 ⩾ 0} is bounded, and the convexity of the KL divergence implies that
{KL( �̄�𝜏𝑛 ∥ 𝜋) | 𝑛 ∈ N+} is bounded. Since the sublevel sets of KL(· ∥ 𝜋) are compact, to prove the
theorem it suffices to show that every weak limit of ( �̄�𝜏𝑛 )𝑛∈N+ is equal to 𝜋. Consider a subsequence
of ( �̄�𝜏𝑛 )𝑛∈N+ converging to a weak limit �̄�.

Taking 𝑛→ ∞ in (11.3.5) and noting that 𝜏𝑛 → ∞, we have FI( �̄�𝜏𝑛 ∥ 𝜋) → 0 and thus along the
subsequence as well. It is known that FI(· ∥ 𝜋) is weakly lower semicontinuous, so FI( �̄� ∥ 𝜋) = 0.
However, since ∇𝑉 is Lipschitz, then 𝜋 has a continuous and strictly positive density on R𝑑, so
FI( �̄� ∥ 𝜋) = 0 entails �̄� = 𝜋 as desired. □
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Convergence in total variation distance under a Poincaré inequality.
As the example in Proposition 11.1.1 shows, for general non-log-concave targets a Fisher information
bound does not translate into guarantees in other metrics. However, this can be carried out if 𝜋 satisfies
appropriate functional inequalities. For example, by a definition a log-Sobolev inequality for 𝜋 states
that

KL(𝜇 ∥ 𝜋) ≲ FI(𝜇 ∥ 𝜋) for all 𝜇 ∈ P(R𝑑) ,

and in this case a Fisher information guarantee readily translates into a KL divergence guarantee;
however, this is not very interesting because we have obtained a sharper KL divergence guarantee for
targets 𝜋 satisfying a log-Sobolev inequality in Theorem 4.2.6. Instead, we will show that under the
weaker assumption of a Poincaré inequality, a Fisher information guarantee implies a total variation
guarantee.

The key observation is the following implication of a Poincaré inequality.

Proposition 11.3.6. Suppose that 𝜋 satisfies a Poincaré inequality with constant 𝐶PI. Then, for
all 𝜇 ∈ P(R𝑑),

∥𝜇 − 𝜋∥2TV ⩽
𝐶PI

4
FI(𝜇 ∥ 𝜋) .

Proof We can assume 𝜇 ≪ 𝜋; let 𝑓 B d𝜇
d𝜋 . The total variation distance has the expressions

∥𝜇 − 𝜋∥TV =
1
2

∫
| 𝑓 − 1| d𝜋 =

1
2

∫
{( 𝑓 ∨ 1) − ( 𝑓 ∧ 1)} d𝜋

which yields
∫
( 𝑓 ∧ 1) d𝜋 = 1 − ∥𝜇 − 𝜋∥TV and

∫
( 𝑓 ∨ 1) d𝜋 = 1 + ∥𝜇 − 𝜋∥TV. Using this,

∫ √︁
𝑓 d𝜋 =

∫ √︁
( 𝑓 ∧ 1) ( 𝑓 ∨ 1) d𝜋 ⩽

√︄∫
( 𝑓 ∧ 1) d𝜋

∫
( 𝑓 ∨ 1) d𝜋

=
√︁
(1 − ∥𝜇 − 𝜋∥TV) (1 + ∥𝜇 − 𝜋∥TV) =

√︃
1 − ∥𝜇 − 𝜋∥2TV .

Therefore,

∥𝜇 − 𝜋∥2TV ⩽ 1 −
(∫ √︁

𝑓 d𝜋
)2

= var𝜋
√︁
𝑓 .

This is sometimes called Le Cam’s inequality; in statistics, the right-hand side is often written as
𝐻2(𝜇, 𝜋) (1 − 1

4 𝐻
2(𝜇, 𝜋)), where 𝐻2 denotes the squared Hellinger distance.

Applying the Poincaré inequality,

∥𝜇 − 𝜋∥2TV ⩽ 𝐶PI E𝜋 [∥∇
√︁
𝑓 ∥2] = 𝐶PI

4
FI(𝜇 ∥ 𝜋) . □
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Corollary 11.3.7. Let (𝜇𝑡 )𝑡⩾0 denote the law of the interpolation of LMC with step size ℎ > 0.
Assume that 𝜋 ∝ exp(−𝑉), where ∇𝑉 is 𝛽-Lipschitz and 𝜋 satisfies the Poincaré inequality with
constant 𝐶PI. Then, if KL(𝜇0 ∥ 𝜋) ⩽ 𝐾0 and we choose step size ℎ =

√
𝐾0/(2𝛽

√
𝑑𝑁), then

∥ �̄�𝑁ℎ − 𝜋∥2TV B
 1
𝑁ℎ

∫ 𝑡

0
𝜇𝑡 d𝑡 − 𝜋

2

TV
⩽

2𝐶PI𝛽
√
𝑑𝐾0√

𝑁
.
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chi-squared and Rényi divergence. Pages 8151–8175 of: Camps-Valls, Gustau, Ruiz, Francisco J. R., and Valera,
Isabel (eds), Proceedings of The 25th International Conference on Artificial Intelligence and Statistics. Proceedings
of Machine Learning Research, vol. 151. PMLR.

Evans, Lawrence C. 2010. Partial differential equations. Second edn. Graduate Studies in Mathematics, vol. 19.
American Mathematical Society, Providence, RI.

Eyring, Henry. 1935. The activated complex in chemical reactions. J. Chem. Phys., 107–115.
Fan, Jiaojiao, Yuan, Bo, and Chen, Yongxin. 2023. Improved dimension dependence of a proximal algorithm for

sampling. Pages 1473–1521 of: Neu, Gergely, and Rosasco, Lorenzo (eds), Proceedings of Thirty Sixth Conference
on Learning Theory. Proceedings of Machine Learning Research, vol. 195. PMLR.

Fathi, Max, and Shu, Yan. 2018. Curvature and transport inequalities for Markov chains in discrete spaces. Bernoulli,
24(1), 672–698.

Fathi, Max, Gozlan, Nathael, and Prod’homme, Maxime. 2020. A proof of the Caffarelli contraction theorem via
entropic regularization. Calc. Var. Partial Differential Equations, 59(3), Paper No. 96, 18.

Fathi, Max, Mikulincer, Dan, and Shenfeld, Yair. 2024. Transportation onto log-Lipschitz perturbations. Calc. Var.
Partial Differential Equations, 63(3), Paper No. 61, 25.

Folland, Gerald B. 1999. Real analysis. Second edn. Pure and Applied Mathematics (New York). John Wiley & Sons,
Inc., New York. Modern techniques and their applications, A Wiley-Interscience Publication.
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Lovász, László, and Simonovits, Miklós. 1993. Random walks in a convex body and an improved volume algorithm.

Random Structures Algorithms, 4(4), 359–412.
Lu, Haihao, Freund, Robert M., and Nesterov, Yurii. 2018. Relatively smooth convex optimization by first-order

methods, and applications. SIAM J. Optim., 28(1), 333–354.
Ma, Yi-An, Chatterji, Niladri S., Cheng, Xiang, Flammarion, Nicolas, Bartlett, Peter L., and Jordan, Michael I. 2021.

Is there an analog of Nesterov acceleration for gradient-based MCMC? Bernoulli, 27(3), 1942 – 1992.
Maas, Jan. 2011. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261(8), 2250–2292.
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