
Lectures on Optimization

Sinho Chewi

February 19, 2025

Contents
1 [1/14] Introduction and basics of convex functions 3

1.1 Overview of the course . 3
1.2 Preliminaries on convexity and smoothness 8

2 [1/16] Gradient flow 12

3 [1/21] Gradient descent: smooth case 17

4 [1/23] Lower bounds for smooth optimization 23
4.1 Reductions between the convex and strongly convex settings 23
4.2 Lower bounds . 25

5 [1/28–1/30] Acceleration 28
5.1 Quadratic case: the conjugate gradient method 28
5.2 General case: continuous time . 33
5.3 General case: discrete time . 35

6 [2/4–2/13] Non-smooth convex optimization 38
6.1 Convex analysis . 39
6.2 Projected subgradient methods . 44
6.3 Cutting plane methods . 48
6.4 Lower bounds . 51

7 [2/18] Frank–Wolfe 55

1

8 [2/20] Proximal methods 58
8.1 Algorithms and examples . 59
8.2 Convergence analysis . 62

2

1 [1/14] Introduction and basics of convex functions
These lecture notes supplement S&DS 432/632 (Advanced Optimization Techniques),
taught in Spring 2025. They are not meant to be comprehensive.

The notes are primarily based on the books [Bub15; Nes18], as well as my personal
understanding of the subject formed through discussions with many people over the years.
Please send me corrections and feedback via email. I thank Linghai Liu, Ruixiao Wang,
and Ilias Zadik for correcting my mistakes.

Logistics. The problem sets, syllabus, and all other information can be found at the
course website and the Canvas page. Grading is based on six problem sets and one take-
home final exam, each of which counts for 1/7 of the total grade. All questions related to
logistics should be directed to my email: sinho.chewi@yale.edu.

Audience. This course focuses on the theory of optimization. In particular, the course
is mathematical in nature and taught in a theorem–proof format. The course assumes
familiarity with basic proofs and logical reasoning, as well as linear algebra, multivariate
calculus, and probability theory.

The reader should also be familiar with asymptotic notions (big-𝑂 notation). We use
the shorthand notation 𝑎 ≲ 𝑏 (resp. 𝑎 ≳ 𝑏) to mean that 𝑎 ≤ 𝐶𝑏 (resp. 𝑎 ≥ 𝑏/𝐶) for an
absolute constant 𝐶 > 0 (i.e., a constant that does not depend on other parameters of the
problem), and 𝑎 ≍ 𝑏 to mean that both 𝑎 ≲ 𝑏 and 𝑎 ≳ 𝑏 hold. We use 𝑎 = 𝑂 (𝑏) and 𝑎 ≲ 𝑏

interchangeably.

1.1 Overview of the course
The basic problem of optimization is to compute an approximate minimizer of a given
function 𝑓 : X → R. In this course, X is always taken to be a subset of R𝑑 , although
generalizations are possible (e.g., to manifolds).

Black-box optimization and the oracle model. What does it mean to “compute”?
The answer depends on the representation of 𝑓 and our model of computation. We start
by studying black-box optimization. In this model, we presume that we can evaluate 𝑓 ,
and possibly its derivatives, at any chosen point 𝑥 ∈ X.

The advantage of the black-box model is that it applies very generally: it is difficult
to find situations in which we need to optimize a function but we cannot even evaluate

3

https://chewisinho.github.io/sds-432b-632b-sp25

it! Consequently, algorithms developed in this model can be applied to the majority of
problems encountered in practice1—witness the ubiquity of gradient descent.

The disadvantage is that by its very generality, it cannot take advantage of additional
structural information about 𝑓 which can bring computational savings. That is why, later
in the course, we turn toward the study of structured optimization problems.

It is easy, at least at an intuitive level, to describe algorithms which are valid in the
black-box model. Namely, they are algorithms which only “interact” with 𝑓 through
evaluations of 𝑓 and its derivatives. The existence of an algorithm, together with a
corresponding mathematical analysis of the number of iterations to reach an approximate
minimizer contingent upon assumptions on 𝑓 , provide an upper bound on the complexity
of the optimization task. In this course, we are also interested in lower bounds, which
delineate fundamental limitations encountered by any algorithm. In order to prove such
a lower bound, we need to formalize the notion of “interaction” alluded to above, and this
leads to the important concept of an oracle.

First, observe that it does not make sense to discuss the complexity of optimizing a
single function 𝑓 . For if 𝑥★ is the minimizer of 𝑓 , we can consider the algorithm “output
𝑥★”, which yields the correct answer in one iteration. But this algorithm is silly, since it
utterly fails at optimizing any other function whose minimizer does not happen to be
𝑥★. Reflecting upon this situation, we do not consider an optimization algorithm to be
sensible when it happens to succeed for one particular problem; rather, we expect it to
succeed on many similar problems. Hence, we talk about a class of functions F of interest,
and we require our algorithms to succeed on every 𝑓 ∈ F .

The algorithm is designed to succeed on F and thus, in an anthropomorphic sense, it
“knows” F . However, it does not know which particular 𝑓 ∈ F it is trying to optimize.
(If it possessed knowledge of 𝑓 , then we run into the issue from before, namely it could
simply output the minimizer.) The role of the oracle is to act as an intermediary between
the algorithm and the function. Namely, we assume that the algorithm is allowed to ask
certain questions (“queries”) to the oracle for 𝑓 , and this is the only means by which the
algorithm can gather more information about 𝑓 . The allowable queries and responses
determine the nature of the oracle, e.g.:

• a zeroth-order oracle accepts a query point 𝑥 ∈ R𝑑 and outputs 𝑓 (𝑥);

• a first-order oracle accepts a query point 𝑥 ∈ R𝑑 and outputs (𝑓 (𝑥),∇𝑓 (𝑥)).

Most of the course focuses on optimization with a first-order oracle, but other oracles
are possible (e.g., linear optimization oracles and proximal oracles). The zeroth-order and

1There is a caveat: in this course, we solely consider continuous optimization problems. Combinatorial
optimization is an entirely different beast.

4

first-order oracles are easy to justify, as they correspond to the black-box model described
above. As the oracles become more exotic, it becomes necessary to show that they are
reasonable, by describing important applications in which such access to 𝑓 is feasible.

The query complexity of F for a particular choice of oracle, as a function of the
prescribed tolerance 𝜀, is then (informally) defined to be the minimum number 𝑁 such
that there exists an algorithm which, for any 𝑓 ∈ F , makes 𝑁 queries to the oracle for 𝑓
and outputs a point 𝑥 with 𝑓 (𝑥) − min 𝑓 ≤ 𝜀.

It is worth noting that query complexity is not the same as computational complexity.
Indeed, query complexity only counts the number of interactions with the oracle, and the
algorithm is allowed to perform unlimited computations between interactions. In principle,
this could lead to a situation in which query complexity is wholly unrepresentative of
the true computational cost of optimization—this would be the case if optimal algorithms
in the oracle model were contrived and impractical. Thankfully, this is not the case. The
oracle model is widely adopted as the standard model for optimization because it is the
setting in which we can make precise claims about complexity, and because it generally
aligns with optimization in practice.

This summarizes the conceptual framework for optimization theory—the “identity
cards of the field” [Nes18], although a careful treatment of the framework only becomes
necessary when discussing lower bounds (and hence we elaborate on the details then).
As a branch of mathematics, the theory of optimization could be defined as the quest
to characterize the query complexity of various classes F , under various oracle models,
and thereby identify optimal algorithms. This indeed remains a core element of the field,
but as query complexity reaches maturity, research has shifted toward different types of
questions, often inspired by practical developments.

The role of convexity. In order to optimize efficiently, we need to place assumptions on
𝑓 , ideally minimal ones. For example, we can assume that 𝑓 is continuous. In this course,
however, we are interested in quantitative rates of convergence for algorithms, and for
this purpose, a qualitative assumption such as continuity is not enough. A quantitative
form of continuity is to assume that 𝑓 is 𝐿-Lipschitz in the ℓ∞ norm:

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿 max
𝑖∈[𝑑]

|𝑥 [𝑖] − 𝑦 [𝑖] | for all 𝑥,𝑦 ∈ X . (1.1)

Also, for concreteness, let us take X to be the cube, X = [0, 1]𝑑 . In the language of the
framework above, we consider the class

F = {𝑓 : [0, 1]𝑑 → R | 𝑓 satisfies (1.1)} . (1.2)

One can then prove the following negative result.

5

Theorem 1.1. For any 0 < 𝜀 < 𝐿/2 and any deterministic algorithm, the complexity of
𝜀-approximately minimizing functions in the class defined in (1.2) to within 𝜀 using a
zeroth-order oracle is at least ⌊ 𝐿

2𝜀 ⌋
𝑑 .

Thus, for 𝜀 < 𝐿/4, the complexity grows exponentially with the dimension. The proof
is not difficult; see, e.g., [Nes18, Theorem 1.1.2]. It is also robust: variants of the result
can be proven when the notion of Lipschitzness is w.r.t. the ℓ2 norm; when the oracle
is taken to be a first-order oracle; when the algorithm is allowed to be randomized; etc.
The message is clear: in order for optimization to be tractable in the worst case, we must
impose some structural assumptions.

The black-box oracles we have been considering are local in nature: given a query
point 𝑥 ∈ R𝑑 , the oracle reveals some information about the behavior of 𝑓 in a local
neighborhood of 𝑥 . Assumptions such as Lipschitzness effectively govern how large this
local neighborhood is. But ultimately, to render optimization tractable, we must ensure
that local information yields global consequences. As justified in the next subsection, a
key assumption that makes this possible is convexity.

Of course, not every problem is convex, and non-convex optimization often still suc-
ceeds. But for the purpose of understanding the core principles underlying optimization,
there is no better starting place. It is important to remember that convex problems abound
in every application domain; here, we give two classical examples from statistics.

Example 1.2 (logistic regression). The data consists of 𝑛 pairs (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × {0, 1},
where 𝑋𝑖 is a vector of covariates and 𝑌𝑖 is a binary response. The statistical model
assumes that the pairs are independently drawn, the covariates are deterministic, and
𝑌𝑖 has a Bernoulli distribution with parameter exp(⟨𝜃, 𝑋𝑖⟩)/{1 + exp(⟨𝜃, 𝑋𝑖⟩)}. The goal
is to infer the parameter 𝜃 .

The maximum likelihood estimator (MLE) for this model is the solution to the
convex optimization problem

𝜃MLE ∈ arg min
𝜃∈R𝑑

1
𝑛

𝑛∑︁
𝑖=1

(
log(1 + exp ⟨𝜃, 𝑋𝑖⟩) − 𝑌𝑖 ⟨𝜃, 𝑋𝑖⟩

)
.

6

Example 1.3 (LASSO). The data consists of 𝑛 pairs (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R. The statistical
model assumes that the pairs are independently drawn, and that 𝑌𝑖 = ⟨𝜃, 𝑋𝑖⟩ + 𝜉𝑖 , where
the 𝜉𝑖 ’s are i.i.d. noise variables independent of the 𝑋𝑖 ’s. When the parameter 𝜃 is
assumed to be sparse, it is standard to use the LASSO estimator, which is the solution
to the convex optimization problem

𝜃LASSO = arg min
𝜃∈R𝑑

{ 1
2𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − ⟨𝜃, 𝑋𝑖⟩)2 + 𝜆 ∥𝜃 ∥1
}
.

Here, 𝜆 > 0 is the regularization parameter and ∥·∥1 denotes the ℓ1 norm, defined via
∥𝜃 ∥1 B

∑𝑑
𝑖=1 |𝜃 [𝑖] |.

In these examples, the estimator is defined as the solution to a convex problem which
is not solvable in closed form, necessitating the use of numerical optimization. Actually, it
is not that most problems in the “wild” are convex and hence there was a need to develop
convex optimization. In fact, it often goes the other way around: convex optimization
is such a powerful tool that problems are intentionally formulated to be convex. This is
the case for the LASSO estimator, which can be motivated as a convex relaxation of the
(statistically superior) ℓ0-constrained least-squares estimator.

First-order methods. This course largely focuses on first-order methods, namely,
gradient descent and its variants. This class of methods is natural from the perspective of
the theory. Equally importantly, first-order methods are lightweight and therefore scalable
to large problem sizes, making them the method of choice even for highly non-convex
settings which fall squarely outside of the theory.

Beyond the black-box model. After developing results for the black-box model, we
study structured problems which admit more efficient solutions. The LASSO estimator
of Example 1.3 can be treated as a “composite” optimization problem (a sum of a smooth
and a non-smooth function), and the estimators in both Example 1.2 and Example 1.3
(and empirical risk minimization more generally) are “finite sum” problems whose com-
putation can be sped up via the use of stochastic gradients. Other examples include the
use of alternative geometries (mirror descent) and the use of coordinate-wise structure
(alternating maximization/coordinate descent).

We also study interior-point methods, which are a practically effective suite of al-
gorithms which solve linear programs (LPs) and semidefinite programs (SDPs) with
polynomial iteration complexities.

Further topics are considered as time permits.

7

1.2 Preliminaries on convexity and smoothness
We assume familiarity with the basic notion of convexity, and we briefly review it here.

Definition 1.4. A subset C ⊆ R𝑑 is convex if for all 𝑥,𝑦 ∈ C and all 𝑡 ∈ [0, 1], the point
(1 − 𝑡) 𝑥 + 𝑡 𝑦 also lies in C.

Definition 1.5. Let C be convex and let 𝛼 ≥ 0. A function 𝑓 : C → R is 𝛼-convex if
for all 𝑥,𝑦 ∈ C and all 𝑡 ∈ [0, 1],

𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) ≤ (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦) − 𝛼

2 𝑡 (1 − 𝑡) ∥𝑦 − 𝑥 ∥2 . (1.3)

When 𝛼 = 0, this is just the usual definition of a convex function. When 𝛼 > 0, we
say that the function is strongly convex.

The definition above has the advantage that it does not require 𝑓 to be differentiable.
However, for the purposes of checking and utilizing convexity, it is convenient to have
the following equivalent reformulations, which should be committed to memory. For
simplicity, we focus on the case C = R𝑑 .

Proposition 1.6 (convexity equivalences). Let C = R𝑑 and 𝛼 ≥ 0.

1. If 𝑓 is continuously differentiable, (1.3) is equivalent to each of the following:

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝛼

2 ∥𝑦 − 𝑥 ∥2 for all 𝑥,𝑦 ∈ R𝑑 . (1.4)

⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≥ 𝛼 ∥𝑦 − 𝑥 ∥2 for all 𝑥,𝑦 ∈ R𝑑 . (1.5)

2. If 𝑓 is twice continuously differentiable, (1.3) is equivalent to

⟨𝑣,∇2𝑓 (𝑥) 𝑣⟩ ≥ 𝛼 ∥𝑣 ∥2 for all 𝑣, 𝑥 ∈ R𝑑 . (1.6)

Proof. Assume that 𝑓 is continuously differentiable.
(1.3) ⇒ (1.4): Rearranging (1.3) yields, for 𝑡 > 0,

𝑓 (𝑦) ≥ 𝑓 (𝑥) + 𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) − 𝑓 (𝑥)
𝑡

+ 𝛼 (1 − 𝑡)
2 ∥𝑦 − 𝑥 ∥2 .

Sending 𝑡 ↘ 0 yields (1.4).

8

(1.4) ⇒ (1.5): Swap 𝑥 and 𝑦 in (1.4) and add the resulting inequality back to (1.4).
(1.5) ⇒ (1.3): By the fundamental theorem of calculus, for 𝑣 B 𝑦 − 𝑥 ,

𝑓 (𝑦) = 𝑓 (𝑥) +
∫ 1

0
⟨∇𝑓 (𝑥 + 𝑠𝑣), 𝑣⟩ d𝑠 ,

𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) = 𝑓 (𝑥) +
∫ 1

0
⟨∇𝑓 (𝑥 + 𝑠𝑡𝑣), 𝑡𝑣⟩ d𝑠 .

Hence, (1.5) yields

𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) − (1 − 𝑡) 𝑓 (𝑥) − 𝑡 𝑓 (𝑦) = −𝑡
∫ 1

0
⟨∇𝑓 (𝑥 + 𝑠𝑣) − ∇𝑓 (𝑥 + 𝑠𝑡𝑣), 𝑣⟩ d𝑠

≤ −𝑡
∫ 1

0
𝛼𝑠 (1 − 𝑡) ∥𝑣 ∥2 d𝑠 = −𝛼2 𝑡 (1 − 𝑡) ∥𝑣 ∥2 .

Finally, assume that 𝑓 is twice continuously differentiable. Letting 𝑦 = 𝑥 + 𝜀𝑣 in (1.5)
and sending 𝜀 ↘ 0 establishes (1.6). Conversely, the fundamental theorem of calculus
shows that

⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ =
∫ 1

0
⟨∇2𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥)) (𝑦 − 𝑥), 𝑦 − 𝑥⟩ d𝑡 ,

and hence (1.6) implies (1.5). □

The equivalent statements each have their own interpretation: for 𝛼 = 0, (1.3) states
that 𝑓 lies below each of its secant lines between the intersection points; (1.4) states that
𝑓 globally lies above each of its tangent lines; (1.6) states that ∇𝑓 is a monotone vector
field; and (1.6) is a statement about curvature.

As noted above, the key feature of convexity is that local information yields global
conclusions. Before describing this, let us first recall some basic facts about optimization.
For simplicity, we consider unconstrained optimization throughout.

Lemma 1.7 (existence of minimizer). Let 𝑓 : R𝑑 → R be continuous and its level sets
be bounded. Then, there exists a global minimizer of 𝑓 .

Proof. The proof uses some analysis. Let 𝑥0 ∈ R𝑑 and let K B {𝑓 ≤ 𝑓 (𝑥0)} denote
the level set. By the continuity assumption, K is closed and bounded, thus compact.
Let {𝑥𝑛}𝑛∈N be a minimizing sequence, 𝑓 (𝑥𝑛) → inf 𝑓 . By compactness, it admits a
subsequence, still denoted {𝑥𝑛}𝑛∈N, which converges to some 𝑥★ ∈ R𝑑 . By continuity,
𝑓 (𝑥★) = lim𝑛→∞ 𝑓 (𝑥𝑛) = inf 𝑓 . □

9

Lemma 1.8 (necessary conditions for optimality). Let 𝑓 : R𝑑 → R be minimized at 𝑥★.

1. If 𝑓 is continuously differentiable, then ∇𝑓 (𝑥★) = 0.

2. If 𝑓 is twice continuously differentiable, then ∇2𝑓 (𝑥★) ⪰ 0.

Proof. Let 𝑣 ∈ R𝑑 and 𝜀 > 0; then, 𝑓 (𝑥★+𝜀𝑣)− 𝑓 (𝑥★) ≥ 0. If 𝑓 is continuously differentiable,
this yields

∫ 1
0 ⟨∇𝑓 (𝑥★ + 𝜀𝑡𝑣), 𝑣⟩ d𝑡 ≥ 0. By continuity of ∇𝑓 , sending 𝜀 ↘ 0 proves that

⟨∇𝑓 (𝑥★), 𝑣⟩ ≥ 0 for all 𝑣 ∈ R𝑑 , which entails ∇𝑓 (𝑥★) = 0.
If 𝑓 is twice continuously differentiable, we can expand once more to obtain 0 ≤∫ 1

0

∫ 1
0 ⟨∇2𝑓 (𝑥★ + 𝜀𝑠𝑡𝑣) 𝑣, 𝑣⟩ d𝑠 d𝑡 . By continuity of ∇2𝑓 , sending 𝜀 ↘ 0 then proves that

⟨∇2𝑓 (𝑥★) 𝑣, 𝑣⟩ ≥ 0 for all 𝑣 ∈ R𝑑 . □

The conditions∇𝑓 (𝑥★) = 0, ∇2𝑓 (𝑥★) ⪰ 0 are necessary for optimality, but not sufficient
in general. The issue is that the proof of Lemma 1.8 is entirely local, so the same conclusion
holds even if 𝑥★ is only assumed to be a local minimizer. On the other hand, under the
assumption of convexity, the first-order necessary condition becomes sufficient.

Lemma 1.9 (sufficient condition for optimality). Let 𝑓 : R𝑑 → R be convex and
continuously differentiable, and let ∇𝑓 (𝑥★) = 0. Then, 𝑥★ is a global minimizer of 𝑓 .

In particular, every local minimizer of 𝑓 is a global minimizer.

Proof. This easily follows from (1.4) with 𝑥 = 𝑥★. □

Next, we note that the minimizer is unique if 𝑓 is strictly convex.

Lemma 1.10 (uniqueness of minimizer). Assume that 𝑓 : R𝑑 → R is strictly convex,
i.e., for all distinct 𝑥,𝑦 ∈ R𝑑 and 𝑡 ∈ (0, 1), 𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) < (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦).
Then, if 𝑓 admits a minimizer 𝑥★, it is unique.

Proof. If we had two distinct minimizers 𝑥★, 𝑥★, so that 𝑓 (𝑥★) = 𝑓 (𝑥★), then strict convex-
ity would imply 𝑓 (1

2 𝑥★ + 1
2 𝑥★) < 𝑓 (𝑥★), which is a contradiction. □

If 𝑓 is strongly convex, then it is strictly convex. Also, from, e.g., (1.4), we see that 𝑓
grows at least quadratically at ∞, which implies that it has bounded level sets. We can
therefore conclude:

Corollary 1.11. Let 𝑓 : R𝑑 → R be strongly convex and continuously differentiable.
Then, it admits a unique minimizer 𝑥★, which is characterized by ∇𝑓 (𝑥★) = 0.

10

Finally, when discussing algorithms, we also need a dual condition—an upper bound
on the Hessian—which in this context is called smoothness.2

Definition 1.12. Let 𝛽 ≥ 0. We say that 𝑓 : R𝑑 → R is 𝛽-smooth if it is continuously
differentiable and

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝛽

2 ∥𝑦 − 𝑥 ∥2 for all 𝑥,𝑦 ∈ R𝑑 . (1.7)

The following proposition is established in the same way as Proposition 1.6, so we
omit the proof.

Proposition 1.13 (smoothness equivalences). Let 𝑓 : R𝑑 → R be continuously differ-
entiable and 𝛽 ≥ 0. Then, 𝑓 is 𝛽-smooth if and only if

⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≤ 𝛽 ∥𝑦 − 𝑥 ∥2 for all 𝑥,𝑦 ∈ R𝑑 .

If 𝑓 is twice continuously differentiable, this is also equivalent to

⟨𝑣,∇2𝑓 (𝑥) 𝑣⟩ ≤ 𝛽 ∥𝑣 ∥2 for all 𝑣, 𝑥 ∈ R𝑑 .

If 𝑓 is convex, 𝛽-smooth, and twice continuously differentiable, then 0 ≤ ∇2𝑓 ⪯ 𝛽𝐼 ,
which implies that the gradient ∇𝑓 is 𝛽-Lipschitz:

∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥ ≤ 𝛽 ∥𝑦 − 𝑥 ∥ for all 𝑥,𝑦 ∈ R𝑑 . (1.8)

This remains true even without assuming twice differentiability (Exercise 3.1).

Bibliographical notes
For further discussion on the oracle model, see [NY83, §1].

Exercises
Exercise 1.1. Let 𝑓 = 𝛼

2 ∥·∥2, where 𝛼 ≥ 0. Show via direct computation that (1.3) holds
with equality.

2This is not to be confused with the mathematical usage of “smoothness” as “infinitely differentiable”.

11

2 [1/16] Gradient flow
Before we turn toward our main first-order algorithm of interest, namely gradient descent,
we first study the situation in continuous time via the gradient flow. Throughout this
section, we let (𝑥𝑡)𝑡≥0 denote the gradient flow for 𝑓 :

¤𝑥𝑡 = −∇𝑓 (𝑥𝑡) . (GF)

This is an ordinary differential equation (ODE), and since the main purpose of this section
is to develop intuition, we assume that 𝑓 is twice continuously differentiable and do not
worry about showing that (GF) is well-posed. We use the following notation throughout
these notes:

𝑥★ ∈ arg min 𝑓 , 𝑓★ B min 𝑓 = 𝑓 (𝑥★) .

Generally, we always assume that 𝑓 admits a minimizer.
The most basic property of GF is that it always decreases the function value.

Lemma 2.1 (descent property of GF). For any 𝑓 : R𝑑 → R, the gradient flow (𝑥𝑡)𝑡≥0 of
𝑓 satisfies

𝜕𝑡 𝑓 (𝑥𝑡) = −∥∇𝑓 (𝑥𝑡)∥2 ≤ 0 .

Proof. By the chain rule, 𝜕𝑡 𝑓 (𝑥𝑡) = ⟨∇𝑓 (𝑥𝑡), ¤𝑥𝑡 ⟩ = −∥∇𝑓 (𝑥𝑡)∥2. □

To obtain quantitative convergence results, we now use the assumption of convexity.
Our first result shows that under strong convexity, the gradient flow contracts.

Theorem 2.2 (contraction of GF). Let 𝑓 : R𝑑 → R be 𝛼-convex. Let (𝑦𝑡)𝑡≥0 be another
gradient flow for 𝑓 , i.e., ¤𝑦𝑡 = −∇𝑓 (𝑦𝑡). Then, for all 𝑡 ≥ 0,

∥𝑦𝑡 − 𝑥𝑡 ∥ ≤ exp(−𝛼𝑡) ∥𝑦0 − 𝑥0∥ .

Proof. We differentiate the squared distance between the two flows:

𝜕𝑡 (∥𝑦𝑡 − 𝑥𝑡 ∥2) = 2 ⟨𝑦𝑡 − 𝑥𝑡 , ¤𝑦𝑡 − ¤𝑥𝑡 ⟩ = −2 ⟨𝑦𝑡 − 𝑥𝑡 ,∇𝑓 (𝑦𝑡) − ∇𝑓 (𝑥𝑡)⟩ ≤ −2𝛼 ∥𝑦𝑡 − 𝑥𝑡 ∥2 ,

where the last inequality is (1.5). The proof is concluded by applying Grönwall’s lemma
(see Lemma 2.3) below. □

12

The proof above arrives at what is called a differential inequality, that is, an inequality
which holds between a quantity and its derivative(s). This is a common strategy for
analyzing ODEs/PDEs, and it can be loosely viewed as the continuous-time analogue of
induction. The following standard lemma is useful for handling such inequalities.

Lemma 2.3 (Grönwall). Suppose that 𝑢 : [0,𝑇] → R is a continuously differentiable
curve that satisfies the differential inequality

¤𝑢 (𝑡) ≤ 𝐴𝑢 (𝑡) + 𝐵(𝑡) , 𝑡 ∈ [0,𝑇] .

Then, it holds that

𝑢 (𝑡) ≤ 𝑢 (0) exp(𝐴𝑡) +
∫ 𝑡

0
𝐵(𝑠) exp(𝐴 (𝑡 − 𝑠)) d𝑠 , 𝑡 ∈ [0,𝑇] .

Proof. The idea is to differentiate 𝑡 ↦→ exp(−𝐴𝑡) 𝑢 (𝑡):

𝜕𝑡 [exp(−𝐴𝑡) 𝑢 (𝑡)] = exp(−𝐴𝑡) {−𝐴𝑢 (𝑡) + ¤𝑢 (𝑡)} ≤ 𝐵(𝑡) exp(−𝐴𝑡) .

By the fundamental theorem of calculus,

exp(−𝐴𝑡) 𝑢 (𝑡) − 𝑢 (0) ≤
∫ 𝑡

0
𝐵(𝑠) exp(−𝐴𝑠) d𝑠 .

Rearranging yields the result. □

There are many variants of Grönwall’s lemma that can be proven in similar ways, e.g.,
we can allow time-varying 𝐴 as well.

Returning to Theorem 2.2, we can apply Lemma 2.3 with 𝐴 = −2𝛼 and 𝐵 = 0 to
conclude that ∥𝑦𝑡 − 𝑥𝑡 ∥2 ≤ exp(−2𝛼𝑡) ∥𝑦0 − 𝑥0∥2, which proves the theorem. Note in
particular that we can take 𝑦𝑡 = 𝑥★ for all 𝑡 ≥ 0, so it yields the following statement about
convergence to the minimizer: ∥𝑥𝑡 − 𝑥★∥ ≤ exp(−𝛼𝑡) ∥𝑥0 − 𝑥★∥.

The next result is about convergence in function value, and unlike Theorem 2.2, it
yields convergence for the case 𝛼 = 0 as well.

Theorem 2.4 (convergence of GF in function value). Let 𝑓 : R𝑑 → R be 𝛼-convex,
𝛼 ≥ 0. Then, for all 𝑡 ≥ 0,

𝑓 (𝑥𝑡) − 𝑓★ ≤ 𝛼

2 (exp(𝛼𝑡) − 1) ∥𝑥0 − 𝑥★∥2 .

When 𝛼 = 0, the right-hand side should be interpreted as its limiting value as 𝛼 → 0,
namely, 1

2𝑡 ∥𝑥0 − 𝑥★∥2.

13

Proof. We differentiate 𝑡 ↦→ ∥𝑥𝑡 − 𝑥★∥2, but this time we apply (1.4):

𝜕𝑡 (∥𝑥𝑡 − 𝑥★∥2) = −2 ⟨∇𝑓 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩ ≤ −𝛼 ∥𝑥𝑡 − 𝑥★∥2 − 2 (𝑓 (𝑥𝑡) − 𝑓★) .

Applying Grönwall’s lemma (Lemma 2.3) with 𝐴 = −𝛼 , 𝐵(𝑡) = −2 (𝑓 (𝑥𝑡) − 𝑓★),

0 ≤ ∥𝑥𝑡 − 𝑥★∥2 ≤ exp(−𝛼𝑡) ∥𝑥0 − 𝑥★∥2 − 2
∫ 𝑡

0
exp(−𝛼 (𝑡 − 𝑠)) (𝑓 (𝑥𝑠) − 𝑓★) d𝑠 .

By the descent property (Lemma 2.1), 𝑓 (𝑥𝑠) ≥ 𝑓 (𝑥𝑡), so that∫ 𝑡

0
exp(−𝛼 (𝑡 − 𝑠)) (𝑓 (𝑥𝑠) − 𝑓★) d𝑠 ≥ (𝑓 (𝑥𝑡) − 𝑓★)

∫ 𝑡

0
exp(−𝛼 (𝑡 − 𝑠)) d𝑠

= (𝑓 (𝑥𝑡) − 𝑓★)
1 − exp(−𝛼𝑡)

𝛼
.

Rearranging yields the result. □

When 𝛼 > 0, Theorem 2.4 shows that 𝑓 (𝑥𝑡) − 𝑓★ = 𝑂 (exp(−𝛼𝑡)). When 𝛼 = 0,
the rate becomes 𝑓 (𝑥𝑡) − 𝑓★ = 𝑂 (1/𝑡). Actually, the rate in Theorem 2.4 is not sharp
(see Exercise 2.1 and Exercise 2.2). However, the statement and proof are chosen because
they form the basis of our approach in discrete time.

Next, we observe that convexity is not needed for convergence in function value. Due
to the descent property (Lemma 2.1), it suffices to have a lower bound on the norm of
the gradient to ensure that we make sufficient progress. For example, we can impose the
following condition.

Definition 2.5. Let 𝑓 : R𝑑 → R be continuously differentiable and 𝛼 > 0. We say that
𝑓 satisfies a Polyak–Łojasiewicz (PŁ) inequality with constant 𝛼 if

∥∇𝑓 (𝑥)∥2 ≥ 2𝛼 (𝑓 (𝑥) − 𝑓 (𝑥★)) for all 𝑥 ∈ R𝑑 . (PŁ)

The next statement is an immediate corollary of Lemma 2.1, (PŁ), and Grönwall’s
lemma (Lemma 2.3).

Corollary 2.6 (convergence of GF under PŁ). Let 𝑓 : R𝑑 → R satisfy (PŁ) with constant
𝛼 > 0. Then, for all 𝑡 ≥ 0,

𝑓 (𝑥𝑡) − 𝑓★ ≤ (𝑓 (𝑥0) − 𝑓★) exp(−2𝛼𝑡) .

14

We present a few key properties of the PŁ inequality.

Proposition 2.7 (strong convexity ⇒ PŁ ⇒ quadratic growth). Let 𝑓 : R𝑑 → R and
𝛼 > 0. The following implications hold.

1. If 𝑓 is 𝛼-convex, then 𝑓 satisfies (PŁ) with constant 𝛼 .

2. If 𝑓 satisfies (PŁ) with constant𝛼 , then it satisfies the following quadratic growth
property:

𝑓 (𝑥) − 𝑓★ ≥ 𝛼

2 inf
𝑥★∈X★

∥𝑥 − 𝑥★∥2 , for all 𝑥 ∈ R𝑑 , (QG)

where X★ denotes the set of minimizers of 𝑓 .

Proof.

1. Setting 𝑦 = 𝑥★ in (1.4), we obtain

−(𝑓 (𝑥) − 𝑓★) ≥ ⟨∇𝑓 (𝑥), 𝑥★ − 𝑥⟩ + 𝛼

2 ∥𝑥 − 𝑥★∥2

≥ −∥∇𝑓 (𝑥)∥ ∥𝑥★ − 𝑥 ∥ + 𝛼

2 ∥𝑥 − 𝑥★∥2 ≥ − 1
2𝛼 ∥∇𝑓 (𝑥)∥2 ,

where the last inequality uses 𝑎𝑏 ≤ 𝜆
2 𝑎

2 + 1
2𝜆 𝑏

2 for all 𝜆 > 0.

2. Let (𝑥𝑡)𝑡≥0 denote the gradient flow for 𝑓 started at 𝑥0 = 𝑥 . For simplicity, we
present a proof assuming that the gradient flow converges to a point 𝑥★, although
this assumption can be avoided (cf. [KNS16]). By Corollary 2.6, we see that 𝑥★ ∈ X★.
We start by observing that

𝜕𝑡 (∥𝑥𝑡 − 𝑥0∥2) = −2 ⟨∇𝑓 (𝑥𝑡), 𝑥𝑡 − 𝑥0⟩ ≤ 2 ∥∇𝑓 (𝑥𝑡)∥ ∥𝑥𝑡 − 𝑥0∥

and hence

𝜕𝑡 ∥𝑥𝑡 − 𝑥0∥ ≤ ∥∇𝑓 (𝑥𝑡)∥ .

We differentiate the following quantity: ℒ𝑡 B
√︁

𝛼
2 ∥𝑥𝑡 − 𝑥0∥ +

√︁
𝑓 (𝑥𝑡) − 𝑓★.

¤ℒ𝑡 ≤
√︂

𝛼

2 ∥∇𝑓 (𝑥𝑡)∥ −
∥∇𝑓 (𝑥𝑡)∥2

2
√︁
𝑓 (𝑥𝑡) − 𝑓★

≤ 0 ,

where we applied (PŁ). Since ℒ0 =
√︁
𝑓 (𝑥) − 𝑓★ and ℒ∞ =

√︁
𝛼
2 ∥𝑥 − 𝑥★∥, we deduce

the result from ℒ0 ≥ ℒ∞.

15

□

Hence, strong convexity implies (PŁ), but is (PŁ) truly weaker than convexity? Indeed,
there are examples. In particular, the PŁ condition has been of interest in recent years
because it holds for certain overparametrized models (Exercise 2.3).

We conclude this section by studying the implication of Lemma 2.1 alone. The funda-
mental theorem of calculus shows that

1
𝑡

∫ 𝑡

0
∥∇𝑓 (𝑥𝑠)∥2 d𝑠 ≤ 𝑓 (𝑥0) − 𝑓 (𝑥𝑡)

𝑡
≤ 𝑓 (𝑥0) − 𝑓★

𝑡
.

We therefore arrive at the following simple consequence.

Corollary 2.8 (convergence of GF in gradient norm). For any 𝑓 : R𝑑 → R,

min
𝑠∈[0,𝑡]

∥∇𝑓 (𝑥𝑠)∥ ≤
√︂

𝑓 (𝑥0) − 𝑓★

𝑡
.

(In contrast, note that if we additionally assume convexity, then Exercise 2.1 shows
that ∥∇𝑓 (𝑥𝑡)∥ = 𝑂 (1/𝑡).)

This implies there exists a sequence of times {𝑡𝑛}𝑛∈N ↗ ∞ such that ∥∇𝑓 (𝑥𝑡𝑛)∥ → 0.
(Indeed, min𝑠∈[𝑛,2𝑛] ∥∇𝑓 (𝑥𝑠)∥ = 𝑂 (1/𝑛1/2), so we can choose 𝑡𝑛 ∈ [𝑛, 2𝑛].) However, the
gradient flow may not converge. Famously, it is a result of [Łoj63] that for real analytic 𝑓 ,
if the gradient flow remains bounded, then it does converge, and hence necessarily to a
stationary point. Of course, such a stationary point may not be a global minimizer.

The idea of subsequent sections is to replicate the preceding analysis in discrete time.

Bibliographical notes
My understanding of Theorem 2.4, Exercise 2.1, and Exercise 2.2 is based on extensive
discussions with Jason M. Altschuler, Adil Salim, Andre Wibisono, and Ashia Wilson. The
proof in Exercise 2.1 is taken from [OV01], and the extension in Exercise 2.2 to 𝛼 > 0 is
recorded in [LMW24, §F]. Both of these references pertain to the Langevin diffusion, but
underneath the hood they make use of principles from optimization; see [Che25] for an
introduction to this perspective.

The PŁ inequality is attributed to [Łoj63; Pol63] and it was popularized in [KNS16].
The proof that (PŁ) implies the quadratic growth inequality goes back at least to the
celebrated work of [OV00].

16

Exercises
Exercise 2.1. Let 𝑓 be convex. Show that the following quantity is decreasing, ¤ℒ𝑡 ≤ 0:

ℒ𝑡 B 𝑡2 ∥∇𝑓 (𝑥𝑡)∥2 + 2𝑡 (𝑓 (𝑥𝑡) − 𝑓★) + ∥𝑥𝑡 − 𝑥★∥2 .

Deduce the following gradient bound:

∥∇𝑓 (𝑥𝑡)∥2 ≤ 1
𝑡2 ∥𝑥0 − 𝑥★∥2 .

Moreover, use (1.4) to argue that 2𝑡 (𝑓 (𝑥𝑡) − 𝑓★) ≤ 𝑡2 ∥∇𝑓 (𝑥𝑡)∥2 + ∥𝑥𝑡 − 𝑥★∥2, hence

𝑓 (𝑥𝑡) − 𝑓★ ≤ 1
4𝑡 ∥𝑥0 − 𝑥★∥2 . (2.1)

Note that this improves upon Theorem 2.4 by a factor of 2. Furthermore, show that (2.1)
is sharp, as follows: for any 𝑅, 𝑡 > 0, let 𝑓 : 𝑥 ↦→ 𝑅

2𝑡 max{0, 𝑥}, 𝑥0 = 𝑅, and show that (2.1)
holds with equality.

Exercise 2.2. Extend Exercise 2.1 to the case 𝛼 > 0. Toward this end, consider

ℒ𝑡 B 𝐴𝑡 ∥∇𝑓 (𝑥𝑡)∥2 + 2𝐵𝑡 (𝑓 (𝑥𝑡) − 𝑓★) + ∥𝑥𝑡 − 𝑥★∥2 .

Choose 𝐴𝑡 , 𝐵𝑡 carefully to ensure that ¤ℒ𝑡 ≤ −𝛼ℒ𝑡 , and thereby deduce the following
sharp bounds:

∥∇𝑓 (𝑥𝑡)∥2 ≤ 𝛼2 ∥𝑥0 − 𝑥★∥2

exp(2𝛼𝑡) (1 − exp(−𝛼𝑡))2 , 𝑓 (𝑥𝑡) − 𝑓★ ≤ 𝛼 ∥𝑥0 − 𝑥★∥2

2 (exp(2𝛼𝑡) − 1) .

Exercise 2.3. Let 𝑓 : R𝑛 → R be 𝛼-convex with 𝛼 > 0, and let 𝑔 : R𝑑 → R𝑛 with 𝑑 ≥ 𝑛.
Assume that 𝑔 is surjective and that for all 𝑥 ∈ R𝑑 , if ∇𝑔(𝑥) denotes the Jacobian at 𝑥
(interpreted as a 𝑑 × 𝑛 matrix), then ∇𝑔(𝑥)T ∇𝑔(𝑥) ⪰ 𝜎𝐼𝑛. Show that the composition
𝑓 ◦ 𝑔 satisfies (PŁ) with constant 𝛼𝜎 . Note that for 𝑑 > 𝑛, there are typically multiple
minimizers of 𝑓 ◦ 𝑔.

3 [1/21] Gradient descent: smooth case
In this section, we study the gradient descent algorithm:

𝑥𝑛+1 B 𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛) . (GD)

17

From the perspective of numerical analysis, this is the Euler or forward discretization
of (GF). Our aim is to show that if 𝑓 is smooth, and the step size is sufficiently small (as a
function of the smoothness), then the conclusions for (GF) transfer to (GD). Throughout
this section, we assume that 𝑓 is twice continuously differentiable and 𝛽-smooth.

Some of the results in this section pertain to a single step of (GD), so we use the
following notation:

𝑥+ B 𝑥 − ℎ ∇𝑓 (𝑥) .

The first step is to establish the descent property.

Lemma 3.1 (descent lemma). For any 𝛽-smooth 𝑓 : R𝑑 → R, if ℎ ≤ 1/𝛽 , then

𝑓 (𝑥+) − 𝑓 (𝑥) ≤ −ℎ2 ∥∇𝑓 (𝑥)∥2 .

Proof. By the smoothness inequality (1.7),

𝑓 (𝑥+) ≤ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝛽

2 ∥𝑥+ − 𝑥 ∥2 = 𝑓 (𝑥) − ℎ ∥∇𝑓 (𝑥)∥2 + 𝛽ℎ2

2 ∥∇𝑓 (𝑥)∥2 .

If ℎ ≤ 1/𝛽 , then −ℎ (1 − 𝛽ℎ/2) ≤ −ℎ/2. □

It is natural to state the subsequent results in terms of the following parameter.

Definition 3.2. Let 𝑓 be 𝛼-convex and 𝛽-smooth. Then, the condition number of 𝑓 is
defined to be the ratio 𝜅 B 𝛽/𝛼 ≥ 1.

When 𝑓 is quadratic, 𝑓 (𝑥) = 1
2 ⟨𝑥,𝐴 𝑥⟩ with 𝐴 symmetric, then 𝛼 , 𝛽 correspond to the

minimum and maximum eigenvalues of 𝐴 respectively, and the ratio 𝛽/𝛼 is known in
numerical linear algebra as the condition number of the matrix 𝐴. Thus, Definition 3.2
provides a natural generalization of this notion. With this definition in hand, we now
arrive at our first convergence result for (GD).

Theorem 3.3 (contraction of GD). Let 𝑓 be 𝛼-convex and 𝛽-smooth. For all 𝑥,𝑦 ∈ R𝑑
and step size ℎ ≤ 1/𝛽 ,

∥𝑦+ − 𝑥+∥ ≤ (1 − 𝛼ℎ)1/2 ∥𝑦 − 𝑥 ∥ .

18

Proof. Expanding the square,

∥𝑦+ − 𝑥+∥2 = ∥𝑦 − 𝑥 ∥2 − 2ℎ ⟨𝑦 − 𝑥,∇𝑓 (𝑦) − ∇𝑓 (𝑥)⟩ + ℎ2 ∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥2 .

By (3.4) in Exercise 3.1 below, for ℎ ≤ 1/𝛽 and from (1.5) we have

∥𝑦+ − 𝑥+∥2 ≤ ∥𝑦 − 𝑥 ∥2 − ℎ ⟨∇𝑦 − 𝑥,∇𝑓 (𝑦) − ∇𝑓 (𝑥)⟩ ≤ (1 − 𝛼ℎ) ∥𝑦 − 𝑥 ∥2 . □

In particular, if we take 𝑦 = 𝑥★, ℎ = 1/𝛽 , and iterate, it yields

∥𝑥𝑁 − 𝑥★∥ ≤
(
1 − 1

𝜅

)𝑁 /2 ∥𝑥0 − 𝑥★∥ ≤ exp
(
−𝑁

2𝜅
)
∥𝑥0 − 𝑥★∥ .

Thus, to obtain ∥𝑥𝑁 − 𝑥★∥ ≤ 𝜀, it suffices to take 𝑁 ≥ 2𝜅 log(∥𝑥0 − 𝑥★∥/𝜀).
The essence of these proofs is that the first-order term (scaling as ℎ) replicates the

continuous-time calculation, and we must apply smoothness in an appropriate way to
control the second-order term (scaling as ℎ2). In the above proof, note that if we naı̈vely
use Lipschitzness of the gradient (1.8) to control the second-order term, it leads to the
suboptimal choice of step size ℎ = 1/(𝛽𝜅), and a contraction factor of (1 − 1/𝜅2)1/2. To
obtain ∥𝑥𝑁 − 𝑥★∥ ≤ 𝜀, we would then have the estimate 𝑁 ≥ 2𝜅2 log(∥𝑥0 − 𝑥★∥/𝜀), which
is substantially worse. In conclusion, a bit of finesse is necessary. (In fact, Theorem 3.3
can also be improved, and the sharp rate is derived in Exercise 3.2.)

Next, we turn toward the analogue of Theorem 2.4.

Theorem 3.4 (convergence of GD in function value). Let 𝑓 be 𝛼-convex and 𝛽-smooth.
For any step size ℎ ≤ 1/𝛽 ,

∥𝑥+ − 𝑥★∥2 ≤ (1 − 𝛼ℎ) ∥𝑥 − 𝑥★∥2 − 2ℎ (𝑓 (𝑥+) − 𝑓★) . (3.1)

Therefore,

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛼

2 {(1 − 𝛼ℎ)−𝑁 − 1}
∥𝑥0 − 𝑥★∥2 . (3.2)

When 𝛼 = 0, the right-hand side should be interpreted as its limiting value as 𝛼 → 0,
namely, 1

2𝑁ℎ
∥𝑥0 − 𝑥★∥2.

Proof. Expanding the square and applying convexity via (1.4),

∥𝑥+ − 𝑥★∥2 = ∥𝑥 − 𝑥★∥2 − 2ℎ ⟨∇𝑓 (𝑥), 𝑥 − 𝑥★⟩ + ℎ2 ∥∇𝑓 (𝑥)∥2

≤ (1 − 𝛼ℎ) ∥𝑥 − 𝑥★∥2 − 2ℎ (𝑓 (𝑥) − 𝑓★) + ℎ2 ∥∇𝑓 (𝑥)∥2 .

19

For ℎ ≤ 1/𝛽 , the descent lemma (Lemma 3.1) now implies (3.1).
The proof of (3.2), based on iterating the recursive inequality (3.1), is justified af-

ter Lemma 3.5 below. □

We remark for later use that the proof of (3.1) goes through even if we replace 𝑥★ with
any other point 𝑧 ∈ R𝑑 , i.e.,

∥𝑥+ − 𝑧∥2 ≤ (1 − 𝛼ℎ) ∥𝑥 − 𝑧∥2 − 2ℎ (𝑓 (𝑥+) − 𝑓 (𝑧)) , for all 𝑧 ∈ R𝑑 . (3.3)

Iterating (3.1) is a matter of unrolling the recursion, but in order to maintain the
analogy with continuous time, we refer to the lemma below as “discrete Grönwall”.

Lemma 3.5 (discrete Grönwall). Suppose that for some 𝐴 > 0,

𝑢𝑛+1 ≤ 𝐴𝑢𝑛 + 𝐵𝑛 for 𝑛 = 0, 1, . . . , 𝑁 − 1 .

Then,

𝑢𝑁 ≤ 𝐴𝑁𝑢0 +
𝑁∑︁
𝑛=1

𝐴𝑁−𝑛𝐵𝑛−1 .

Proof. We multiply the given inequality by 𝐴−(𝑛+1) to form a telescoping sum:

𝐴−𝑁 𝑢𝑁 − 𝑢0 =
𝑁−1∑︁
𝑛=0

𝐴−(𝑛+1) (𝑢𝑛+1 −𝐴𝑢𝑛) ≤
𝑁−1∑︁
𝑛=0

𝐴−(𝑛+1) 𝐵𝑛 .

Rearrange to obtain the result. □

To complete the proof of Theorem 3.4, we apply Lemma 3.5 with 𝑢𝑛 = ∥𝑥𝑛 − 𝑥★∥2,
𝐴 = 1 − 𝛼ℎ, and 𝐵𝑛 = −2ℎ (𝑓 (𝑥𝑛+1) − 𝑓★), yielding

2ℎ
𝑁∑︁
𝑛=1

(1 − 𝛼ℎ)𝑁−𝑛 (𝑓 (𝑥𝑛) − 𝑓★) ≤ (1 − 𝛼ℎ)𝑁 ∥𝑥0 − 𝑥★∥2 .

For ℎ ≤ 1/𝛽 , the descent lemma (Lemma 3.1) implies 𝑓 (𝑥𝑛) − 𝑓★ ≥ 𝑓 (𝑥𝑁) − 𝑓★, so

𝑓 (𝑥𝑁) − 𝑓★ ≤ ∥𝑥0 − 𝑥★∥2

2ℎ
∑𝑁

𝑛=1 (1 − 𝛼ℎ)−𝑛
=

𝛼 ∥𝑥0 − 𝑥★∥2

2 {(1 − 𝛼ℎ)−𝑁 − 1}
.

20

In particular, let us set ℎ = 1/𝛽 . For 𝛼 > 0 it yields

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛼 ∥𝑥0 − 𝑥★∥2

2 {(1 − 1/𝜅)−𝑁 − 1}

and for 𝛼 = 0, it yields

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛽 ∥𝑥0 − 𝑥★∥2

2𝑁 .

The proof of convergence under (PŁ) is strikingly easy.

Theorem 3.6 (convergence of GD under PŁ). Let 𝑓 be 𝛽-smooth and satisfy (PŁ) with
constant 𝛼 > 0. Then, for all ℎ ≤ 1/𝛽 ,

𝑓 (𝑥𝑁) − 𝑓★ ≤ (1 − 𝛼ℎ)𝑁 (𝑓 (𝑥0) − 𝑓★) .

Proof. By the descent lemma (Lemma 3.1) and (PŁ),

𝑓 (𝑥+) − 𝑓★ = 𝑓 (𝑥) − 𝑓★ + 𝑓 (𝑥+) − 𝑓 (𝑥) ≤ 𝑓 (𝑥) − 𝑓★ − ℎ

2 ∥∇𝑓 (𝑥)∥2

≤ (1 − 𝛼ℎ) (𝑓 (𝑥) − 𝑓★) . □

Finally, we present the result for obtaining a stationary point.

Theorem 3.7. Let 𝑓 be 𝛽-smooth and ℎ ≤ 1/𝛽 . Then,

min
𝑛=0,1,...,𝑁−1

∥∇𝑓 (𝑥𝑛)∥ ≤
√︂

2 (𝑓 (𝑥0) − 𝑓★)
𝑁ℎ

.

Proof. Telescope the descent lemma (Lemma 3.1):

ℎ

2𝑁

𝑁−1∑︁
𝑛=0

∥∇𝑓 (𝑥𝑛)∥2 ≤ 1
𝑁

𝑁−1∑︁
𝑛=0

(𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛+1)) ≤
𝑓 (𝑥0) − 𝑓★

𝑁
. □

We summarize the results for GD in Table 1.

21

Assumptions Criterion Iterations
𝛼-convex, 𝛽-smooth ∥𝑥𝑁 − 𝑥★∥ ≤ 𝜀 𝑂 (𝜅 log(𝑅/𝜀))
𝛼-convex, 𝛽-smooth 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 𝑂 (𝜅 log(𝛼𝑅2/𝜀))
convex, 𝛽-smooth 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 𝑂 (𝛽𝑅2/𝜀)
𝛼-(PŁ), 𝛽-smooth 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 𝑂 (𝜅 log(Δ0/𝜀))

𝛽-smooth min
𝑛=0,1,...,𝑁−1

∥∇𝑓 (𝑥𝑛)∥ ≤ 𝜀 𝑂 (𝛽Δ0/𝜀2)

Table 1: Rates for GD with step size 1/𝛽 . Here, 𝑅 B ∥𝑥0 − 𝑥★∥ and Δ0 B 𝑓 (𝑥0) − 𝑓★.

Example 3.8 (logistic regression revisited). For fun, let us revisit logistic regression
(Example 1.2) from a statistical lens. For concreteness, we consider Gaussian design,
𝑋𝑖

i.i.d.∼ normal(0, 𝐼), and assume that the data is generated from the model with a true
parameter 𝜃★. Let L̂ denote the MLE objective, let L B E L̂ denote the population risk,
and let 𝑅 B ∥𝜃★∥ ≥ 1. The state-of-the-art result [CLM24] shows that if 𝑛 ≳ 𝑅𝑑 for
a sufficiently large implied constant, 𝜃MLE exists with probability ≥ 1 − exp(−𝑑) and
satisfies the optimal risk bound L(𝜃MLE) − L(𝜃★) ≲ 𝑑/𝑛.

In practice, we cannot compute 𝜃MLE exactly, so we use optimization. From [CLM24],
any estimator 𝜃 satisfying L̂(𝜃)−L̂(𝜃MLE) ≲ 𝑑/𝑛 satisfies the same statistical risk bound
as 𝜃MLE, up to a universal constant. We take 𝜃 = 𝜃GD to be the output ofGD after 𝑁 steps,
and check how large 𝑁 must be in order for this to hold. As justified in Exercise 3.3,
we can expect an iteration complexity of 𝑁 ≍ 𝑅2𝑛/𝑑 .

Bibliographical notes
My understanding of Theorem 3.4 is again based on extensive discussions with Jason M.
Altschuler, Adil Salim, Andre Wibisono, and Ashia Wilson.

Exercises
Exercise 3.1. Let 𝑓 : R𝑑 → R be convex and 𝛽-smooth. Apply Lemma 3.1 to the function
𝑦 ↦→ 𝑓 (𝑦) − ⟨∇𝑓 (𝑥), 𝑦⟩ and observe that this function is minimized at 𝑥 in order to prove

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 1
2𝛽 ∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥2 .

From this, deduce that

∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥2 ≤ 𝛽 ⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ . (3.4)

22

Finally, use the Cauchy–Schwarz inequality to show that ∇𝑓 is 𝛽-Lipschitz, i.e., that (1.8)
holds. Note that this proof that convexity and 𝛽-smoothness together imply (1.8) does not
require 𝑓 to be twice differentiable.

Exercise 3.2. Let 𝑓 be 𝛼-convex and 𝛽-smooth. Let𝑇 B id−ℎ ∇𝑓 denote the one-step GD
mapping. By the fundamental theorem of calculus,

∥𝑦+ − 𝑥+∥ = ∥𝑇 (𝑦) −𝑇 (𝑥)∥ =
∫ 1

0
∇𝑇 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) (𝑦 − 𝑥) d𝑡

≤

(∫ 1

0
∥∇𝑇 ((1 − 𝑡) 𝑥 + 𝑡𝑦)∥op d𝑡

)
∥𝑦 − 𝑥 ∥ .

For any 𝑧 ∈ R𝑑 , bound the eigenvalues of ∇𝑇 (𝑧) and show that the choice of step size ℎ
which minimizes the bound on ∥∇𝑇 (𝑧)∥op is ℎ = 2/(𝛼 + 𝛽). Deduce the sharp rate

∥𝑦+ − 𝑥+∥ ≤ 𝜅 − 1
𝜅 + 1 ∥𝑦 − 𝑥 ∥ .

Note that for large 𝜅 , the contraction factor is approximately exp(−2/𝜅), so this improves
upon the iteration complexity implied by Theorem 3.3 by a factor of nearly 4.

Exercise 3.3. What does Theorem 3.4 imply for logistic regression (Example 1.2)? In the
setting of Example 3.8, use the fact that 𝜆max(1

𝑛

∑𝑛
𝑖=1 𝑋𝑖𝑋

T
𝑖) ≲ 1 with high probability3 to

justify the claimed 𝑅2𝑛/𝑑 iteration complexity.

4 [1/23] Lower bounds for smooth optimization
The goal of this section is to establish lower complexity bounds for convex smooth
optimization. Refer to §1.1 for a conceptual first discussion of the oracle model.

Before doing so, we present some reductions between the convex and strongly convex
settings which save us some effort.

4.1 Reductions between the convex and strongly convex settings
For brevity, let us say that an algorithm successfully optimizes a function class ℱ in
𝜙 (ℱ, 𝑅, 𝜀) iterations if, given any 𝑓 ∈ ℱ and 𝑥0 ∈ R𝑑 with ∥𝑥0 − 𝑥★∥ ≤ 𝑅, it outputs 𝑥
with 𝑓 (𝑥) − 𝑓★ ≤ 𝜀 using no more than 𝜙 (ℱ, 𝑅, 𝜀) queries to a first-order oracle for 𝑓 .

3This is a standard fact about the Wishart distribution; see, e.g., [Ver18, Theorem 4.4.5].

23

Lemma 4.1. Assume there is an algorithm which successfully optimizes the class of
convex and 𝛽-smooth functions in 𝜙 (𝛽𝑅2/𝜀) iterations.

Then, there is an explicit algorithm which successfully optimizes the class of 𝛼-
convex and 𝛽-smooth functions in 𝑂 (𝜙 (8𝜅) log(𝛼𝑅2/𝜀)) iterations.

Proof. Let 𝑓 be 𝛼-strongly convex and 𝛽-smooth, and apply the given algorithm to 𝑓 to
obtain a new point 𝑥1 with tolerance 𝜀1. By (QG), we have

𝛼

2 ∥𝑥1 − 𝑥★∥2 ≤ 𝑓 (𝑥1) − 𝑓★ ≤ 𝜀1 .

Set 𝜀1 = 𝛼𝑅2/8, so that

∥𝑥1 − 𝑥★∥ ≤ 1
2 𝑅 =

1
2 ∥𝑥0 − 𝑥★∥ . (4.1)

For 𝜅 B 𝛽/𝛼 , this requires 𝜙 (8𝜅) iterations. From (4.1), if we now repeat this procedure
𝑂 (log(𝛼𝑅2/𝜀)) times, we can reach a point 𝑥 satisfying �̃� B ∥𝑥 − 𝑥★∥ ≤

√︁
𝜀/𝛼 . Finally,

apply the given algorithm one more time starting from 𝑥 with target accuracy 𝜀 to obtain
a point 𝑥 with 𝑓 (𝑥) − 𝑓★ ≤ 𝜀. The complexity of this final step is 𝜙 (𝛽�̃�2/𝜀) = 𝜙 (𝜅). □

For example, if we combine the 𝛼 = 0 case of Theorem 3.4 with Lemma 4.1, taking
𝜙 (𝑥) = 𝑂 (𝑥), we recover the 𝛼 > 0 case of Theorem 3.4, up to constants.

Lemma 4.2. Assume there is an algorithm which successfully optimizes the class of
𝛼-convex and 𝛽-smooth functions in 𝜙 (𝜅) log(𝛼𝑅2/𝜀) iterations.

Then, there is an explicit algorithm which successfully optimizes the class of convex
and 𝛽-smooth functions in 𝑂 (𝜙 (2𝛽𝑅2/𝜀)) iterations.

Proof. Let 𝑓 be convex and 𝛽-smooth. We apply the given algorithm to the regularized
function 𝑓𝛿 B 𝑓 + 𝛿

2 ∥· − 𝑥0∥2, obtaining a point 𝑥 such that 𝑓𝛿 (𝑥) ≤ min 𝑓𝛿 + 𝜀/2. If 𝑥𝛿,★
denotes the minimizer of 𝑓𝛿 , then

𝑓 (𝑥) ≤ 𝑓𝛿 (𝑥) ≤ 𝑓𝛿 (𝑥𝛿,★) +
𝜀

2 ≤ 𝑓𝛿 (𝑥★) +
𝜀

2 = 𝑓★ + 𝛿

2 ∥𝑥0 − 𝑥★∥2 + 𝜀

2 .

We now set 𝛿 = 𝜀/𝑅2, so that 𝑓 (𝑥) − 𝑓★ ≤ 𝜀.
It remains to estimate the complexity. We first note that 𝑓𝛿 (𝑥𝛿,★) ≤ 𝑓𝛿 (𝑥★) implies

∥𝑥0 − 𝑥★,𝛿 ∥ ≤ ∥𝑥0 − 𝑥★∥, so the initial distance to the minimizer of 𝑓𝛿 is also bounded by
𝑅. We can assume that 𝜀 ≤ 𝛽𝑅2 (or else the minimization problem is trivial). Then, the
smoothness of 𝑓𝛿 is bounded by 𝛽 + 𝛿 ≤ 2𝛽 , and the condition number of 𝑓𝛿 is bounded by
2𝛽𝑅2/𝜀. Substitute these quantities into the complexity of the given algorithm. □

24

Thus, the 𝛼 > 0 case of Theorem 3.4 and Lemma 4.2 recover the 𝛼 = 0 case of Theo-
rem 3.4 up to constants.

Taken together, Lemma 4.1 and Lemma 4.2 show that the 0-convex and strongly convex
settings are essentially equivalent to each other, in that an optimal method for one class
yields an optimal method for the other class. Thus, we now aim to address the following
question: what is the smallest possible 𝜙 (·)?

4.2 Lower bounds
According to the discussion in §1.1, establishing a lower complexity bound requires
showing that any algorithm which interacts with the first-order oracle using at most
a prescribed number of queries cannot have performance better than the lower bound.
Actually, although this is possible (see [NY83]), it is not especially easy. It was shown by
Nesterov in an earlier edition of [Nes18] that by imposing natural restrictions on the class
of algorithms under consideration, it is possible to establish the lower bounds in a more
transparent way. Accordingly, his approach has become standard in the field, and it is the
approach we adopt here as well. It does, however, have the drawback of not applying to
general query algorithms; for example, it does not apply against randomized algorithms.

The class of algorithms we consider is the following one.

Definition 4.3. An algorithm is called a gradient span algorithm if it deterministically
generates a sequence of points {𝑥𝑛}𝑛∈N such that for all 𝑛 ∈ N,

𝑥𝑛+1 ∈ 𝑥0 + span{∇𝑓 (𝑥0), . . . ,∇𝑓 (𝑥𝑛)} .

For example, GD is a gradient span algorithm. On the basis of this assumption, we
now establish the following result; recall the asymptotic notation ≳, which only hides a
universal constant.

Theorem 4.4 (lower bound for convex, smooth minimization). For any 1 ≤ 𝑁 ≤ 𝑑−1
2 ,

𝛽 > 0, and 𝑥0 ∈ R𝑑 , there exists a convex and 𝛽-smooth function 𝑓 : R𝑑 → R such that
for any gradient span algorithm,

𝑓 (𝑥𝑁) − 𝑓★ ≳
𝛽 ∥𝑥0 − 𝑥★∥2

𝑁 2 .

In other words, in order to obtain 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀, the number of iterations must satisfy

𝑁 ≳

√︂
𝛽 ∥𝑥0 − 𝑥★∥2

𝜀
.

25

Before proving this result, we observe that by applying Lemma 4.2 with 𝜙 (𝑥) ≍
√
𝑥 , it

yields the following corollary.

Theorem 4.5 (lower bound for strongly convex, smooth minimization). For any 0 <

𝛼 < 𝛽 , any 𝜀 > 0, any 𝑑 sufficiently large, and any 𝑥0 ∈ R𝑑 , there exists an 𝛼-convex
and 𝛽-smooth function 𝑓 : R𝑑 → R such that for any gradient span algorithm, in order
to obtain 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀, the number of iterations must satisfy

𝑁 ≳
√
𝜅 log 𝛼 ∥𝑥0 − 𝑥★∥2

𝜀
.

Proof of Theorem 4.4. By translating the problem, we may assume 𝑥0 = 0. The construction
is based on the following function:

𝑓𝑛 : R𝑑 → R , 𝑓𝑛 (𝑥) B
𝛽

4

{1
2

(
𝑥 [1]2 +

𝑛−1∑︁
𝑘=1

(𝑥 [𝑘] − 𝑥 [𝑘 + 1])2 + 𝑥 [𝑛]2
)
− 𝑥 [1]

}
.

For any 𝑣 ∈ R𝑑 ,

⟨𝑣,∇2𝑓𝑛 (𝑥) 𝑣⟩ =
𝛽

4

(
𝑣 [1]2 +

𝑛−1∑︁
𝑘=1

(𝑣 [𝑘] − 𝑣 [𝑘 + 1])2 + 𝑣 [𝑛]2
)
≤ 𝛽 ∥𝑣 ∥2 ,

so each 𝑓𝑛 is convex and 𝛽-smooth.
We prove by induction that when we apply a gradient span algorithm to 𝑓𝑑 , the 𝑛-th

iterate 𝑥𝑛 belongs to the subspace

V𝑛 B {𝑥 ∈ R𝑑 : 𝑥 [𝑘] = 0 for all 𝑘 = 𝑛 + 1, . . . , 𝑑} .

Clearly, 𝑥0 ∈ V0. Inductively, suppose that 𝑥𝑘 ∈ V𝑘 for all 𝑘 ≤ 𝑛. Then,

∇𝑓𝑑 (𝑥𝑘) =
𝛽

4
(
𝑥𝑘 [1] 𝑒1 +

𝑘∑︁
𝑗=1

(𝑥𝑘 [𝑗] − 𝑥𝑘 [𝑗 + 1]) (𝑒 𝑗 − 𝑒 𝑗+1)
)
− 𝛽

4 𝑒1 ∈ V𝑘+1 ,

hence

𝑥𝑛+1 ∈ span{∇𝑓𝑑 (𝑥0), . . . ,∇𝑓𝑑 (𝑥𝑛)} ⊆ V𝑛+1 .

This completes the induction. Also, since 𝑓𝑁 = 𝑓𝑑 on V𝑁 , it follows that

𝑓𝑑 (𝑥𝑁) = 𝑓𝑁 (𝑥𝑁) ≥ (𝑓𝑁)★ .

26

The next step is to estimate (𝑓𝑛)★ B min 𝑓𝑛 for all 𝑛. By setting the gradient to zero,
∇𝑓𝑛 (𝑥𝑛,★) = 0, we obtain the following system of equations:

2𝑥𝑛,★[1] − 𝑥𝑛,★[2] = 1 ,
𝑥𝑛,★[𝑘 − 1] − 2𝑥𝑛,★[𝑘] + 𝑥𝑛,★[𝑘 + 1] = 0 , for 𝑘 = 1, . . . , 𝑛 ,

−𝑥𝑛,★[𝑛 − 1] + 2𝑥𝑛,★[𝑛] = 0 .

The solution is 𝑥𝑛,★[𝑘] = 1 − 𝑘
𝑛+1 for all 𝑘 ∈ [𝑛]. Writing 𝑓𝑛 (𝑥) = 𝛽

4 {
1
2 ⟨𝑥,𝐴𝑛 𝑥⟩ − ⟨𝑒1, 𝑥⟩},

the system above reads 𝐴𝑛𝑥𝑛,★ = 𝑒1, hence

(𝑓𝑛)★ = 𝑓𝑛 (𝑥𝑛,★) = −𝛽8 ⟨𝑒1, 𝑥𝑛,★⟩ = −𝛽8
(
1 − 1

𝑛 + 1
)
.

Moreover, ∥𝑥0 − 𝑥𝑛,★∥2 = ∥𝑥𝑛,★∥2 ≤ 𝑛. Finally, it yields

𝑓𝑑 (𝑥𝑁) − (𝑓𝑑)★ ≥ (𝑓𝑁)★ − (𝑓𝑑)★ =
𝛽

8
(1
𝑁 + 1 − 1

𝑑 + 1
)

≥
𝛽 ∥𝑥0 − 𝑥𝑑,★∥2

8𝑑
(1
𝑁 + 1 − 1

𝑑 + 1
)
.

Choosing 𝑑 ≍ 𝑁 , e.g., 𝑑 = 2𝑁 + 1, yields the stated lower bound. □

Notably, the iteration complexity lower bounds Theorem 4.4 and Theorem 4.5 are
smaller than the bounds attained by GD in Theorem 3.4 by a square root. As developed in
the next sections, in fact the lower bounds are tight and GD is suboptimal.

We make two further remarks. First, it is perhaps surprising that the lower bound
construction is a quadratic function; in some sense, quadratics are the hardest convex and
smooth functions to optimize. Second, the lower bound requires the ambient dimension
to be larger than the iteration count; this is crucial for the proof technique, which relies
on the algorithm discovering one new dimension per iteration. This turns out to be
fundamental because there are better methods in low dimension, for quadratics and even
for general convex functions.

Exercises
Exercise 4.1. In the setting of Theorem 4.4 and using the same construction as in the
proof, show that ∥𝑥𝑁 − 𝑥★∥2 ≳ ∥𝑥0 − 𝑥★∥2. In other words, in the 0-convex case, it is
not possible to make progress in the sense of distance to the minimizer by more than a
constant factor.

27

Exercise 4.2. We used the reductions from §4.1 to reduce the strongly convex lower
bound to the 0-convex lower bound for the sake of brevity, but it is of course possible to
develop the strongly convex lower bound directly. Consider the function

𝑓 : R∞ → R , 𝑓 (𝑥) B 𝛽 − 𝛼

8

{
𝑥 [1]2 +

∞∑︁
𝑛=1

(𝑥 [𝑛] − 𝑥 [𝑛 + 1])2 − 2𝑥 [1]
}
+ 𝛼

2 ∥𝑥 ∥2 .

By adapting the proof of Theorem 4.4, show that any gradient span algorithm satisfies

𝑓 (𝑥𝑁) − 𝑓★ ≥ 𝛼

2 ∥𝑥𝑁 − 𝑥★∥2 ≥ 𝛼

2

(√𝜅 − 1
√
𝜅 + 1

)2𝑁
∥𝑥0 − 𝑥★∥2 .

5 [1/28–1/30] Acceleration
We now show that the lower bounds of Theorem 4.4 and Theorem 4.5 can be attained via
algorithms which improve upon GD. This is known as the acceleration phenomenon in
optimization. We begin with the quadratic case.

5.1 Quadratic case: the conjugate gradient method
In this section, the objective function is quadratic:

𝑓 : R𝑑 → R , 𝑓 (𝑥) = 1
2 ⟨𝑥,𝐴 𝑥⟩ − ⟨𝑏, 𝑥⟩ ,

where 𝐴 is a symmetric matrix, 𝐴 ≻ 0. Note also that minimizing 𝑓 corresponds to solving
the system of equations 𝐴𝑥★ = 𝑏. We now introduce the conjugate gradient method.

The method is succinctly described as follows:

𝑥𝑛+1 B arg min
{
𝑓 (𝑥)

�� 𝑥 ∈ 𝑥0 + span{∇𝑓 (𝑥0),∇𝑓 (𝑥1), . . . ,∇𝑓 (𝑥𝑛)}
}
. (CG)

This scheme is very natural in light of the definition of a gradient span algorithm (Defini-
tion 4.3) that we encountered for the lower bounds. However, it is not yet clear that (CG)
can be implemented cheaply. Using the fact that 𝑓 is quadratic, our aim is to show
that (CG) can be rewritten as a simple iteration that uses one gradient query per step.

As is usually the case in linear algebra, instead of working with the set of vec-
tors {∇𝑓 (𝑥0),∇𝑓 (𝑥1), . . . ,∇𝑓 (𝑥𝑛)}, it is more convenient to work with an orthogonal
set {𝑝0, 𝑝1, . . . , 𝑝𝑛}. Here, orthogonality is with respect to the inner product ⟨·, ·⟩𝐴, i.e.,
we will require ⟨𝑝𝑖, 𝐴 𝑝 𝑗 ⟩ = 0 for all 𝑖 ≠ 𝑗 . We start with 𝑝0 B ∇𝑓 (𝑥0), and we write
K𝑛 B span{𝑝0, 𝑝1, . . . , 𝑝𝑛}. We must address the following two questions:

28

• Given K𝑛 and 𝑥𝑛 , how can we compute 𝑥𝑛+1 = arg min𝑥0+K𝑛
𝑓 ?

• Given K𝑛 and ∇𝑓 (𝑥𝑛+1), how can we compute 𝑝𝑛+1 and thus K𝑛+1?

For the first question, we may assume inductively that 𝑥𝑛 = arg min𝑥0+K𝑛−1
𝑓 , which

means that ⟨∇𝑓 (𝑥𝑛), 𝑝𝑘⟩ = 0 for all 𝑘 < 𝑛. The next point is taken to be 𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑛𝑝𝑛 ,
chosen so that ⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑘⟩ = 0 for all 𝑘 ≤ 𝑛. Since ∇𝑓 is linear,

⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑘⟩ = ⟨∇𝑓 (𝑥𝑛) + ℎ𝑛 𝐴𝑝𝑛, 𝑝𝑘⟩ .

For 𝑘 < 𝑛, this equals zero by the inductive hypothesis on 𝑥𝑛, and the orthogonality of
{𝑝0, 𝑝1, . . . , 𝑝𝑛}. We choose ℎ𝑛 to ensure that this equals zero for 𝑘 = 𝑛 too:

ℎ𝑛 = −⟨∇𝑓 (𝑥𝑛), 𝑝𝑛⟩
∥𝑝𝑛∥2

𝐴

.

For the second question, we want to compute the Gram–Schmidt orthogonalization
of ∇𝑓 (𝑥𝑛+1) w.r.t. {𝑝0, 𝑝1, . . . , 𝑝𝑛} in the ⟨·, ·⟩𝐴 inner product. We claim that ∇𝑓 (𝑥𝑛+1) is
already 𝐴-orthogonal to 𝑝𝑘 for 𝑘 < 𝑛, so that

𝑝𝑛+1 = ∇𝑓 (𝑥𝑛+1) − ⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑛⟩𝐴
𝑝𝑛

∥𝑝𝑛∥2
𝐴

. (5.1)

To justify this, we show that for 𝑘 < 𝑛, 𝐴𝑝𝑘 ∈ K𝑘+1 , hence

⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑘⟩𝐴 = ⟨∇𝑓 (𝑥𝑛+1), 𝐴𝑝𝑘⟩ = 0

using the fact shown above that ∇𝑓 (𝑥𝑛+1) is orthogonal (in the usual inner product) to
K𝑛 . Finally, the boxed equation is shown through the following lemma.

Lemma 5.1. For all 𝑛 ∈ N,

K𝑛 = span{𝑝0, 𝐴𝑝0, . . . , 𝐴
𝑛𝑝0} .

Proof. We proceed via induction, where the case 𝑛 = 0 is obvious. Assuming it holds at
iteration 𝑛, let us show that 𝑝𝑛+1 ∈ K̃𝑛+1 B span{𝑝0, 𝐴𝑝0, . . . , 𝐴

𝑛+1𝑝0}. By (5.1), it suffices
to show that ∇𝑓 (𝑥𝑛+1) ∈ K̃𝑛+1. However, as discussed above, ∇𝑓 (𝑥𝑛+1) = ∇𝑓 (𝑥𝑛) +
ℎ𝑛 𝐴𝑝𝑛 = 𝑝0 + ℎ0 𝐴𝑝0 + · · · + ℎ𝑛 𝐴𝑝𝑛 ∈ K̃𝑛+1.

Conversely, we must show that 𝐴𝑛+1𝑝0 ∈ K𝑛+1. Since 𝐴𝑛𝑝0 ∈ K𝑛, we can write
𝐴𝑛𝑝0 =

∑𝑛
𝑘=0 𝑐𝑘𝑝𝑘 , thus 𝐴𝑛+1𝑝0 =

∑𝑛
𝑘=0 𝑐𝑘 𝐴𝑝𝑘 . By the inductive hypothesis, each 𝐴𝑝𝑘 for

𝑘 < 𝑛 belongs to K𝑛 , so it suffices to have 𝐴𝑝𝑛 ∈ K𝑛+1. However, we can observe that
𝐴𝑝𝑛 = ℎ−1

𝑛 (∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑥𝑛)) ∈ K𝑛+1 by (5.1). □

29

Definition 5.2. The subspaces {K𝑛}𝑛∈N are called Krylov subspaces.

Finally, let us write the iterations in a form which is convenient for implementation.
Note first that ⟨∇𝑓 (𝑥𝑛),∇𝑓 (𝑥𝑛+1)⟩ = 0 (indeed, ∇𝑓 (𝑥𝑛+1) is orthogonal to all of K𝑛). So,

⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑛⟩𝐴
∥𝑝𝑛∥2

𝐴

=
⟨∇𝑓 (𝑥𝑛+1),∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑥𝑛)⟩

ℎ𝑛 ∥𝑝𝑛∥2
𝐴

= −∥∇𝑓 (𝑥𝑛+1)∥2

⟨∇𝑓 (𝑥𝑛), 𝑝𝑛⟩

and ∥∇𝑓 (𝑥𝑛)∥2 = ⟨∇𝑓 (𝑥𝑛),∇𝑓 (𝑥𝑛)⟩ = ⟨∇𝑓 (𝑥𝑛), 𝑝𝑛⟩ using (5.1) and the fact that ∇𝑓 (𝑥𝑛) is
orthogonal to K𝑛−1. This yields the following iteration, where we write 𝑟𝑛 B 𝐴𝑥𝑛 − 𝑏 =

∇𝑓 (𝑥𝑛) for the residual.

𝑥𝑛+1 = 𝑥𝑛 −
∥𝑟𝑛∥2

⟨𝑝𝑛, 𝐴 𝑝𝑛⟩
𝑝𝑛 , 𝑟𝑛+1 = 𝑟𝑛 −

∥𝑟𝑛∥2

⟨𝑝𝑛, 𝐴 𝑝𝑛⟩
𝐴𝑝𝑛 , 𝑝𝑛+1 = 𝑟𝑛+1 +

∥𝑟𝑛+1∥2

∥𝑟𝑛∥2 𝑝𝑛 .

This algorithm requires one matrix-vector multiplication per iteration, namely, the com-
putation of 𝐴𝑝𝑛 .

Note that if 𝑝𝑛+1 = 0, then ∇𝑓 (𝑥𝑛+1) ∈ K𝑛 , yet ∇𝑓 (𝑥𝑛+1) ⊥ K𝑛 and thus ∇𝑓 (𝑥𝑛+1) = 0,
𝑥𝑛+1 = 𝑥★. Since 𝑝𝑑+1 = 0 (an orthogonal set in R𝑑 cannot have more than 𝑑 non-zero
elements), we arrive at the following conclusion.

Theorem 5.3 (termination of CG). The CG algorithm returns the exact minimizer in at
most 𝑑 iterations.

Let us now show that CG can find an approximate minimizer at the accelerated rate.

Theorem 5.4 (accelerated convergence for CG). Let 0 ≺ 𝛼𝐼 ⪯ 𝐴 ⪯ 𝛽𝐼 . Then, CG
outputs 𝑥𝑁 satisfying 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 in 𝑁 = 𝑂 (

√
𝜅 log 𝑓 (𝑥0)−𝑓★

𝜀
) iterations.

Proof. By the descent lemma (Lemma 3.1) and the defining property of CG,

𝑓 (𝑥𝑛+1) ≤ 𝑓
(
𝑥𝑛 −

1
𝛽
∇𝑓 (𝑥𝑛)

)
≤ 𝑓 (𝑥𝑛) −

1
2𝛽 ∥∇𝑓 (𝑥𝑛)∥2 ,

so that

𝑓 (𝑥0) − 𝑓★ ≥ 1
2𝛽

𝑁−1∑︁
𝑛=0

∥∇𝑓 (𝑥𝑛)∥2 .

30

On the other hand, since ∇𝑓 (𝑥𝑛) ⊥ 𝑥𝑘+1 − 𝑥𝑘 for 𝑘 < 𝑛,

𝑓★ − 𝑓 (𝑥𝑛) ≥ ⟨∇𝑓 (𝑥𝑛), 𝑥★ − 𝑥𝑛⟩ = ⟨∇𝑓 (𝑥𝑛), 𝑥★ − 𝑥0⟩ .

If we sum these inequalities and use orthogonality of the gradients,

𝑁 (𝑓 (𝑥𝑁) − 𝑓★) ≤
𝑁−1∑︁
𝑛=0

(𝑓 (𝑥𝑛) − 𝑓★) ≤
〈𝑁−1∑︁
𝑛=0

∇𝑓 (𝑥𝑛), 𝑥0 − 𝑥★

〉
≤
𝑁−1∑︁
𝑛=0

∇𝑓 (𝑥𝑛)
 ∥𝑥0 − 𝑥★∥

≤
(𝑁−1∑︁
𝑛=0

∥∇𝑓 (𝑥𝑛)∥2
)1/2

√︂
2 (𝑓 (𝑥0) − 𝑓★)

𝛼
≤ 2

√
𝜅 (𝑓 (𝑥0) − 𝑓★) .

Let 𝑁 be such that 𝑓 (𝑥𝑁) − 𝑓★ ≥ (𝑓 (𝑥0) − 𝑓★)/2. The inequality above then implies that
𝑁 ≤ 4

√
𝜅. Thus, every 4

√
𝜅 iterations, the objective gap decreases by a factor of 2. □

By applying the restart strategy as in Lemma 4.1, one can also show an iteration
complexity scaling with

√
𝜅 in the strongly convex case. However, we instead give a

different proof in order to explain the classical link with polynomial approximation.
Due to Lemma 5.1, 𝑥𝑁 −𝑥0 ∈ K𝑁−1 can be written in the form 𝑥𝑁 −𝑥0 =

∑𝑁−1
𝑛=0 𝑐𝑛𝐴

𝑛𝑝0,
so 𝑥𝑁 −𝑥★ = 𝑥0 −𝑥★ +

∑𝑁−1
𝑛=0 𝑐𝑛𝐴

𝑛+1 (𝑥0 −𝑥★) = 𝑃𝑁 (𝐴) (𝑥0 −𝑥★) where 𝑃𝑁 is a polynomial
of degree at most 𝑁 satisfying 𝑃𝑁 (0) = 1. Conversely, if 𝑄𝑁 is any other degree-𝑁
polynomial with 𝑄𝑁 (0) = 1, then 𝑥𝑁 B 𝑥0 + 𝐴−1 (𝑄𝑁 (𝐴) − 𝐼) 𝑝0 ∈ 𝑥0 + K𝑁−1 satisfies
𝑥𝑁 − 𝑥★ = 𝑥0 − 𝑥★ +𝐴−1 (𝑄𝑁 (𝐴) − 𝐼) 𝑝0 = 𝑄𝑁 (𝐴) (𝑥0 − 𝑥★).

This equivalence, together with the fact that the output 𝑥𝑁 of CG minimizes 𝑓 over
𝑥0 +K𝑁−1, shows that

𝑓 (𝑥𝑁) − 𝑓★ ≤ 1
2 min{∥𝑄𝑁 (𝐴) (𝑥0 − 𝑥★)∥2

𝐴 : 𝑄𝑁 ∈ R≤𝑁 [𝑋] , 𝑄𝑁 (0) = 1} ,

where R≤𝑁 [𝑋] denotes the set of polynomials with real-valued coefficients and with
degree at most 𝑁 . Furthermore, since 𝐴 and 𝑄𝑁 (𝐴) commute,

∥𝑄𝑁 (𝐴) (𝑥0 − 𝑥★)∥2
𝐴 ≤ ∥𝑄𝑁 (𝐴)∥2

op ∥𝑥0 − 𝑥★∥2
𝐴 ≤

(
max

[𝜆min (𝐴), 𝜆max (𝐴)]
|𝑄𝑁 |2

)
∥𝑥0 − 𝑥★∥2

𝐴 .

We have arrived at the following result.

Lemma 5.5 (CG and polynomial approximation). Assume that 0 ≺ 𝛼𝐼 ⪯ 𝐴 ⪯ 𝛽𝐼 . Then,
the output 𝑥𝑁 of CG satisfies

𝑓 (𝑥𝑁) − 𝑓★ ≤ min
{

max
𝜆∈[𝛼,𝛽]

|𝑄𝑁 (𝜆) |2 : 𝑄𝑁 ∈ R≤𝑁 [𝑋] , 𝑄𝑁 (0) = 1
}
(𝑓 (𝑥0) − 𝑓★) .

31

Informally, this result states that CG performs as well as the best possible degree-𝑁
polynomial in 𝐴. To bound the rate of convergence of CG, it therefore remains to exhibit
a judicious polynomial 𝑄𝑁 . This is accomplished by the family of Chebyshev polynomials,
on which many volumes have been written.

Definition 5.6. The degree-𝑛 Chebyshev polynomial 𝑇𝑛 is defined so that cos(𝑛𝜃) =
𝑇𝑛 (cos𝜃) for all 𝜃 ∈ R.

It is not obvious at first glance that 𝑇𝑛 is indeed a degree-𝑛 polynomial, but this can
be established via trigonometric identities. The use of the Chebyshev polynomials to
establish a rate of convergence for CG is explored in Exercise 5.1.

Here, we point out another interesting fact that arises from this connection. Recall
from the proof of Lemma 5.5 that if we can compute 𝑥𝑁 B 𝑥0 +𝐴−1 (𝑄𝑁 (𝐴) − 𝐼) 𝑝0, then
it incurs error at most 𝑓 (𝑥𝑁) − 𝑓★ ≤ (max𝜆∈[𝛼,𝛽] |𝑄𝑁 (𝜆) |2) (𝑓 (𝑥0) − 𝑓★). In particular,
rather than using CG, we can try to compute the polynomial 𝑥 ↦→ (𝑄𝑁 (𝑥) − 1)/𝑥 directly,
where 𝑄𝑁 is the polynomial in Exercise 5.1 which witnesses the fast convergence of CG.
Although we omit the details, it is worth noting that the family of Chebyshev polynomials
satisfies a so-called three-term recurrence:

𝑇𝑛+1(𝑥) = 2𝑥 𝑇𝑛 (𝑥) −𝑇𝑛−1(𝑥) , 𝑥 ∈ R .

In fact, orthogonal families of polynomials usually do.4 From an algorithmic standpoint,
it leads to an optimization algorithm of the form

𝑥𝑛+1 = 𝑐0 𝐴𝑥𝑛 + 𝑐1 𝑥𝑛−1 + 𝑐2 𝑏 ,

where 𝑐0, 𝑐1, 𝑐2 ∈ R are fixed coefficients. Note that unlike GD, 𝑥𝑛+1 depends on the
previous two iterates. This is often referred to as momentum, and also forms the basis for
acceleration for general convex functions.

Remark 5.7 (practicality of CG). Solving the linear system 𝐴𝑥 = 𝑏 via Gaussian
elimination requires 𝑂 (𝑑3) operations and is numerically unstable, whereas for well-
conditioned matrices𝐴,CG returns an approximate solution in𝑂 (

√
𝜅) iterations, each of

which requires a matrix-vector multiplication. A matrix-vector multiplication requires
𝑂 (𝑑2) time in the worst case, but can be faster if 𝐴 is sparse. In practice, CG is widely
used, especially when combined with other strategies such as preconditioning.

4This arises in connection with second-order differential operators.

32

5.2 General case: continuous time
Although it does not follow the historical development of events, we begin our treatment
of acceleration for general convex smooth functions in continuous time. As identified
in [SBC16], the continuous-time ODE is

¤𝑥𝑡 = 𝑝𝑡 ,

¤𝑝𝑡 = −∇𝑓 (𝑥𝑡) − 𝛾𝑡𝑝𝑡 .
(AGF)

We refer to (AGF) as the accelerated gradient flow, and the variable 𝑝𝑡 admits the physical
interpretation of momentum (for a particle with unit mass). The dynamics consists of two
parts: the equations

¤𝑥𝑡 = 𝑝𝑡 ,

¤𝑝𝑡 = −∇𝑓 (𝑥𝑡)

are known as Hamilton’s equations, and they are the standard first-order reformulation
of Newton’s law of motion ¥𝑥𝑡 = −∇𝑓 (𝑥𝑡) with potential energy 𝑓 . Hamilton’s equations
conserve the energy (or Hamiltonian) 𝐻 (𝑥, 𝑝) B 𝑓 (𝑥) + 1

2 ∥𝑝 ∥
2, and this conservation

property is perhaps undesirable for an optimization algorithm which seeks to minimize 𝑓 .
Thus, the second part of the dynamics, ¤𝑝𝑡 = −𝛾𝑡𝑝𝑡 adds a dissipative friction force, where
𝛾𝑡 ≥ 0 is a possibly time-varying coefficient of friction.

In the case where 𝑓 is merely assumed to be convex, it turns out that the right choice
of friction coefficient is 𝛾𝑡 = 3/𝑡 . This is mysterious at first sight and was obtained by
taking the continuous-time limit of Nesterov’s discrete algorithm in the next subsection.
We begin with a convergence analysis in this setting. (Similar caveats as for §2 apply here;
we assume that 𝑓 is smooth, that it admits a minimizer 𝑥★, and that (AGF) is well-posed.)

Theorem 5.8 (convergence of AGF under convexity). Let 𝑓 : R𝑑 → R be convex and
let (𝑥𝑡)𝑡≥0 evolve along AGF with 𝛾𝑡 = 3/𝑡 and 𝑝0 = 0. Then, for all 𝑡 ≥ 0,

𝑓 (𝑥𝑡) − 𝑓★ ≤ 2 ∥𝑥0 − 𝑥★∥2

𝑡2 .

Proof. Consider the auxiliary point 𝑧𝑡 B 𝑥𝑡 + 𝑡
2 𝑝𝑡 , and the Lyapunov function

ℒ𝑡 B
𝑡2

2 (𝑓 (𝑥𝑡) − 𝑓★) + ∥𝑧𝑡 − 𝑥★∥2 .

The computation below shows that ¤ℒ𝑡 ≤ 0, which implies the result. The choice of
Lyapunov function is mysterious, so we partially demystify it after the proof.

33

Straightforward differentiation and convexity yield

¤ℒ𝑡 = 𝑡 (𝑓 (𝑥𝑡) − 𝑓★) +
𝑡2

2 ⟨∇𝑓 (𝑥𝑡), 𝑝𝑡 ⟩ − 𝑡 ⟨∇𝑓 (𝑥𝑡), 𝑧𝑡 − 𝑥★⟩

= 𝑡 (𝑓 (𝑥𝑡) − 𝑓★) − 𝑡 ⟨∇𝑓 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩ ≤ 0 . □

Although the Lyapunov function above appears fortuitous, it can be derived in a
reasonably systematic manner; see Exercise 5.2. The strongly convex case is similar, and
is left as Exercise 5.3.

Theorem 5.9 (convergence of AGF under strong convexity). Let 𝑓 : R𝑑 → R be
𝛼-convex and let (𝑥𝑡)𝑡≥0 evolve along AGF with 𝛾𝑡 = 2

√
𝛼 and 𝑝0 = 0. For all 𝑡 ≥ 0,

𝑓 (𝑥𝑡) − 𝑓★ ≤ 2 exp(−
√
𝛼 𝑡) (𝑓 (𝑥0) − 𝑓★) .

Recall that under convexity and 𝛼-convexity, the objective gap 𝑓 (𝑥𝑡) − 𝑓★ for GF
converges at the rates𝑂 (1/𝑡) and𝑂 (exp(−2𝛼𝑡)) respectively. On the other hand, for AGF,
the convergence happens at the rates 𝑂 (1/𝑡2) and 𝑂 (exp(−

√
𝛼 𝑡)) respectively. This is

strongly suggestive of the square root factor speed-up, that is, acceleration. However,
we caution that it is dangerous to deduce conclusions from continuous-time analysis
alone. For example, we can run any ODE faster, which can make the continuous-time
convergence rate arbitrarily fast; however, this does not translate into a better discrete-
time algorithm, since speeding up time makes the ODE more unstable and therefore
requires a smaller step size for discretization.

So how, then, can we discretize AGF? Part of the subtlety of acceleration is that not
all discretizations work. For example, we could consider

𝑥𝑛+1 ≈ 𝑥𝑛 + ℎ 𝑝𝑛+1 ,

𝑝𝑛+1 ≈ 𝑝𝑛 − ℎ ∇𝑓 (𝑥𝑛) − 𝛾𝑛ℎ 𝑝𝑛

which is equivalent to the update

𝑥𝑛+1 = 𝑥𝑛 − ℎ2 ∇𝑓 (𝑥𝑛) + (1 − 𝛾𝑛ℎ) (𝑥𝑛 − 𝑥𝑛−1) .

Or, if we do not presume to know the coefficients for the discrete-time scheme in advance,
we could write the update as

𝑥𝑛+1 = 𝑥𝑛 − 𝜂𝑛 ∇𝑓 (𝑥𝑛) + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) .

In other words, we take a gradient step and then apply momentum. This is known
as Polyak’s heavy ball method, and although it can be tuned to converge at the rate

34

of CG for quadratic objectives, this same tuning leads to divergence for general convex
functions [LRP16]. On the other hand, the optimal method in the next subsection can be
written in the form

𝑥𝑛+1 = 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) − 𝜂𝑛 ∇𝑓
(
𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)

)
.

In other words, we add momentum and then take a gradient step.

5.3 General case: discrete time
The acceleration phenomenon is undoubtedly one of the most elusive and fascinating
aspects of optimization, so it is no surprise that it has been explored through many
different angles over the course of countless research papers. At this junction, we must
choose how to present the method and in what level of detail.

Having explored acceleration carefully in the quadratic case and in continuous time,
here we follow the expedient route by giving perhaps the most direct and shortest proof,
at the cost of generality and intuition.5

We analyze the following method with 𝑥−1 = 𝑥0:

𝑥𝑛+1 B 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) −
1
𝛽
∇𝑓

(
𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)

)
. (AGD)

Theorem 5.10 (convergence of AGD). Let 𝑓 be convex and 𝛽-smooth. Define the
sequence: 𝜆0 B 0 and 𝜆𝑛+1 B

1
2 (1 +

√︁
1 + 4𝜆2

𝑛) for 𝑛 ∈ N. Set 𝜃𝑛 B (𝜆𝑛 − 1)/𝜆𝑛+1.
Then, AGD satisfies

𝑓 (𝑥𝑁) − 𝑓★ ≤ 2𝛽 ∥𝑥0 − 𝑥★∥2

𝑁 2 .

Proof. Let 𝑦𝑛 B 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1), so that 𝑥𝑛+1 = 𝑦𝑛 − 1
𝛽
∇𝑓 (𝑦𝑛). Recall from (3.3) that

for any 𝑧 ∈ R𝑑 , it holds that

∥𝑥𝑛+1 − 𝑧∥2 ≤ ∥𝑦𝑛 − 𝑧∥2 − 2
𝛽
(𝑓 (𝑥𝑛+1) − 𝑓 (𝑧)) .

Rearranging, it yields

𝑓 (𝑥𝑛+1) − 𝑓 (𝑧) ≤ 𝛽

2 (∥𝑦𝑛 − 𝑧∥2 − ∥𝑥𝑛+1 − 𝑧∥2) = −𝛽2 ∥𝑥𝑛+1 − 𝑦𝑛∥2 − 𝛽 ⟨𝑥𝑛+1 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ .

5Perhaps I will change my mind in a future edition of these notes.

35

We apply this inequality with two points, 𝑧 = 𝑥𝑛 and 𝑧 = 𝑥★. By multiplying the first
inequality by 𝜆𝑛+1 − 1 ≥ 0 and adding it to the second inequality, it implies

(𝜆𝑛+1 − 1) (𝑓 (𝑥𝑛+1) − 𝑓 (𝑥𝑛)) + 𝑓 (𝑥𝑛+1) − 𝑓★

≤ −𝛽𝜆𝑛+1
2 ∥𝑥𝑛+1 − 𝑦𝑛∥2 − 𝛽 ⟨𝑥𝑛+1 − 𝑦𝑛, 𝜆𝑛+1𝑦𝑛 − (𝜆𝑛+1 − 1) 𝑥𝑛 − 𝑥★⟩

=
𝛽

2𝜆𝑛+1

(
∥𝜆𝑛+1𝑦𝑛 − (𝜆𝑛+1 − 1) 𝑥𝑛 − 𝑥★∥2 − ∥𝜆𝑛+1 𝑥𝑛+1 − (𝜆𝑛+1 − 1) 𝑥𝑛 − 𝑥★∥2) ,

where the last line uses the identity ∥𝑎∥2 + 2 ⟨𝑎, 𝑏⟩ = ∥𝑎 + 𝑏∥2 − ∥𝑏∥2. Our goal is to
produce a telescoping sum, which is the case if we ensure that

𝜆𝑛+1 𝑥𝑛+1 − (𝜆𝑛+1 − 1) 𝑥𝑛 = 𝜆𝑛+2𝑦𝑛+1 − (𝜆𝑛+2 − 1) 𝑥𝑛+1 .

By substituting in 𝑦𝑛+1 = 𝑥𝑛+1 + 𝜃𝑛+1 (𝑥𝑛+1 − 𝑥𝑛), some algebra shows that it suffices to
take 𝜃𝑛+1 = (𝜆𝑛+1 − 1)/𝜆𝑛+2.

After multiplying the above inequality by 𝜆𝑛+1 and summing, we find that

𝛽

2 ∥𝜆1𝑦0 − (𝜆1 − 1) 𝑥0 − 𝑥★∥2 ≥
𝑁−1∑︁
𝑛=0

{𝜆2
𝑛+1 (𝑓 (𝑥𝑛+1) − 𝑓★) − 𝜆𝑛+1 (𝜆𝑛+1 − 1) (𝑓 (𝑥𝑛) − 𝑓★)} .

We also want the right-hand side to telescope, so we set 𝜆𝑛+1 (𝜆𝑛+1 − 1) = 𝜆2
𝑛 , which yields

the recursion 𝜆𝑛+1 =
1
2 (1 +

√︁
1 + 4𝜆2

𝑛). With 𝜆0 = 0, it yields

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛽 ∥𝑦0 − 𝑥★∥2

2𝜆2
𝑁

=
𝛽 ∥𝑥0 − 𝑥★∥2

2𝜆2
𝑁

.

Finally, it is straightforward to show by induction that 𝜆𝑁 ≥ 𝑁 /2. □

By applying the reduction in Lemma 4.1, it also yields an accelerated algorithm for
the strongly convex case, i.e., an algorithm that achieves 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 in 𝑂 (

√
𝜅 log 𝛼𝑅2

𝜀
)

iterations, where 𝑅 B ∥𝑥0 − 𝑥★∥.

Example 5.11. If we apply the accelerated method to logistic regression (see Exam-
ple 3.8), it improves the iteration complexity from 𝑂 (𝑅2𝑛/𝑑) to 𝑂 (𝑅

√︁
𝑛/𝑑).

36

Bibliographical notes
The simple proof of Theorem 5.4 is taken from [NY83]. The discussion on Chebyshev
polynomials follows [Vis12].

The literature on acceleration is too large to be surveyed here, but we mention a
recent result in a somewhat different direction: what is the best rate of GD just by
changing the step sizes? Thus, we consider the iteration 𝑥𝑛+1 = 𝑥𝑛 − ℎ𝑛 ∇𝑓 (𝑥𝑛), with the
only freedom being to choose the sequence {ℎ𝑛}𝑛∈N. It turns out a constant step size
schedule is not optimal, and as established in [AP24a; AP24b], the so-called silver step
size schedule achieves the rates of Lemma 4.1 and Lemma 4.2 with 𝜙 (𝑥) = 𝑥

log𝜌 2 ≈ 𝑥0.786

with 𝜌 B 1 +
√

2. This is a rate intermediate between the unaccelerated rate of GD and
the accelerated rate of AGD.

Exercises
Exercise 5.1. Define the polynomial 𝑄𝑛 (𝑥) = 𝑇𝑛 (𝛼+𝛽−2𝑥

𝛽−𝛼)/𝑇𝑛 (𝛼+𝛽𝛽−𝛼). Show that 𝑄𝑛 (0) = 1
and use Definition 5.6 to establish the identity

𝑇𝑛 (𝑥) =
1
2
(
(𝑥 −

√
𝑥2 − 1)𝑛 + (𝑥 +

√
𝑥2 − 1)𝑛

)
for 𝑥 ∈ [−1, 1] .

One can show that this identity actually holds for all 𝑥 ∈ R. Use this to show that

max
𝑥∈[𝛼,𝛽]

|𝑄𝑛 (𝑥) | ≤ 2
(√𝜅 − 1
√
𝜅 + 1

)𝑛
.

Note that by combining this with Lemma 5.5, it yields an exponential rate of convergence
for CG matching the lower bound of Exercise 4.2.

Exercise 5.2. To better understand the proof of Theorem 5.8, consider a Lyapunov function
of the form

ℒ𝑡 = ∥𝑥𝑡 − 𝑥★∥2 + 𝑎𝑡 ⟨𝑥𝑡 − 𝑥★, 𝑝𝑡 ⟩ + 𝑏𝑡 ∥𝑝𝑡 ∥2 + 𝑐𝑡 (𝑓 (𝑥𝑡) − 𝑓★) .

Note that this is the most general Lyapunov function consisting of a combination of a
quadratic function in 𝑥𝑡 − 𝑥★ and 𝑝𝑡 , as well as the objective gap; here, it is crucial that we
include the mixed term 𝑎𝑡 ⟨𝑥𝑡 − 𝑥★, 𝑝𝑡 ⟩. Our goal is to choose the coefficients 𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡 so
that ¤ℒ𝑡 ≤ 0.

Compute the derivative in time of ℒ𝑡 along AGF with 𝛾𝑡 = 3/𝑡 , and apply convexity
to the term ⟨∇𝑓 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩. In the resulting expression, since the terms ⟨𝑥𝑡 − 𝑥★, 𝑝𝑡 ⟩ and
⟨∇𝑓 (𝑥𝑡), 𝑝𝑡 ⟩ do not have definite signs, ensure that the coefficients in front of these terms

37

vanish through a suitable choice of 𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡 . Show that this leads to 𝑎𝑡 = 𝑡 + 𝑎𝑡3 for some
𝑎 ≥ 0. Next, from the remaining terms, obtain the condition ¤𝑏𝑡 ≤ min{𝑎𝑡2 ,

6𝑏𝑡
𝑡
−𝑎𝑡 }, which

implies 3 ¤𝑏𝑡 ≤ 6𝑏𝑡/𝑡 , hence we consider 𝑏𝑡 = 𝑏0 + 𝑏𝑡2 for some 𝑏0, 𝑏 ≥ 0. Furthermore,
argue that we must take 𝑎 = 0 and 𝑏 = 1

4 . To ensure that ℒ0 only depends on ∥𝑥0 − 𝑥★∥,
we set 𝑏0 = 𝑐0 = 0. Finally, check that with these choices, we have 𝑏𝑡 ≥ 𝑎2

𝑡 /4, which is
necessary to ensure that ℒ𝑡 ≥ 𝑐𝑡 (𝑓 (𝑥𝑡) − 𝑓★).

Show that the Lyapunov function derived in this way coincides with the one used
in Theorem 5.8.

Exercise 5.3. Prove Theorem 5.9.
Hint: Let 𝑧𝑡 B 𝑥𝑡 + 2

𝛾
𝑝𝑡 and consider

ℒ𝑡 B 𝑓 (𝑥𝑡) − 𝑓★ + 𝛼

2 ∥𝑧𝑡 − 𝑥★∥2 .

6 [2/4–2/13] Non-smooth convex optimization
Thus far, we have considered the unconstrained minimization of convex and smooth
functions 𝑓 . The next step is to consider a far more general class of problems by allowing
for constraints and non-smoothness.

The two issues are related. To minimize 𝑓 over a convex set C, it is equivalent to
minimize 𝑓 + 𝜒C over all of R𝑑 , where 𝜒C is the convex indicator function for C:

𝜒C(𝑥) B
{

0 , 𝑥 ∈ C ,

+∞ , 𝑥 ∉ C .
(6.1)

In this reformulation, the objective function is allowed to take the value +∞ and is certainly
non-smooth. Even if we do not reformulate the problem in this way, convex constraint
sets often arise as the intersection of primitive constraints: C = {𝑓𝑖 ≤ 0 for all 𝑖 ∈ [𝑚]}.
This is equivalent to C = {max𝑖∈[𝑚] 𝑓𝑖 ≤ 0}, and the function max𝑖∈[𝑚] 𝑓𝑖 is non-smooth.

On the other hand, without strong convexity, it is not guaranteed that 𝑓 admits a
minimizer over all of R𝑑 (e.g., 𝑓 is a linear function, or consider the exponential function
over R). It often makes sense to consider non-smooth minimization over bounded sets.
Thus, we tackle constraints and non-smoothness together.

Although we do not assume smoothness, we still need some minimal regularity for the
function 𝑓 . As justified in Lemma 6.7, convex functions are actually Lipschitz continuous
in the interior of their domains, so it is natural to take as our new function class under
consideration the class of convex and Lipschitz functions over bounded convex sets.

38

6.1 Convex analysis
We now work with convex functions 𝑓 : R𝑑 → R ∪ {∞}. The fact that 𝑓 can now take
on the value +∞ leads to some technical issues, but it allows us to seamlessly handle
constraints. Convexity can be defined in the usual way, but it is sometimes convenient to
instead work with the epigraph.

Definition 6.1. The epigraph of 𝑓 : R𝑑 → R ∪ {∞} is the following subset of R𝑑 × R:

epi 𝑓 B {(𝑥, 𝑡) ∈ R𝑑 × R : 𝑓 (𝑥) ≤ 𝑡} .

Definition 6.2. A function 𝑓 : R𝑑 → R ∪ {∞} is convex if for all 𝑥,𝑦 ∈ R𝑑 and all
𝑡 ∈ [0, 1], it holds that

𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) ≤ (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦) .

Equivalently, 𝑓 is convex if and only if epi 𝑓 is a convex set.

Definition 6.3. The domain of a function 𝑓 : R𝑑 → R ∪ {∞} is the set

dom 𝑓 B {𝑥 ∈ R𝑑 : 𝑓 (𝑥) < ∞} .

The first point to emphasize is that at this level of generality, 𝑓 can still be quite
pathological. Indeed, consider the following function:

𝑓 (𝑥) B

0 , ∥𝑥 ∥ < 1 ,
𝜙 (𝑥) , ∥𝑥 ∥ = 1 ,
+∞ , ∥𝑥 ∥ > 1 ,

(6.2)

where 𝜙 is an arbitrary non-negative function defined on the sphere {∥·∥ = 1}. Then, one
can check that 𝑓 is convex. However, 𝜙 need not be continuous or be coherent in any
way whatsoever. To avoid these types of situations, the basic regularity property that we
impose is that 𝑓 is lower semicontinuous.

Definition 6.4. A function 𝑓 : R𝑑 → R ∪ {∞} is lower semicontinuous if for all
sequences {𝑥𝑛}𝑛∈N converging to a point 𝑥 ∈ R𝑑 , it holds that

𝑓 (𝑥) ≤ lim inf
𝑛→∞

𝑓 (𝑥𝑛) .

39

In other words, when we pass to the limit of a convergent sequence, the value of 𝑓
can only drop down. One way to motivate the relevance of this condition for convex opti-
mization is that we often consider suprema 𝑓 = sup𝜔∈Ω 𝑓𝜔 where {𝑓𝜔 }𝜔∈Ω is a collection
of continuous functions; in fact, in many cases, we consider suprema of affine functions.
When Ω is finite, we know that the maximum of finitely many continuous functions is
continuous. But when Ω is infinite, the suprema of infinitely many continuous functions
need not be continuous. The class of lower semicontinuous functions is the smallest class
of functions which contains all continuous functions and is closed under taking arbitrary
suprema. Further properties are explored in Exercise 6.1.

It follows from that exercise that 𝑓 is convex and lower semicontinuous if and only if
its epigraph is closed and convex. So, when it comes to functions, we impose convexity
and lower semicontinuity; and when it comes to sets, we impose convexity and closedness.
For example, one can also check that the convex indicator 𝜒C is lower semicontinuous if
and only if C is closed. We use the following terminology.6

Definition 6.5. A convex function 𝑓 : R𝑑 → R ∪ {∞} is regular if: it is not identically
equal to +∞, it is lower semicontinuous, and its domain has non-empty interior.

Note that the definition excludes one more pathological case, the function 𝑓 (𝑥) = +∞
for all 𝑥 ∈ R𝑑 , which is of no interest to us. Since the domain of a convex function is a
convex set, if it has empty interior then it must be contained in a lower-dimensional affine
space, and when we restrict to that space, the domain then has a non-empty interior; this
is usually summarized by saying that any non-empty convex set has a non-empty relative
interior. We do not delve into the details here, but this is why we regard the condition
that the domain has non-empty interior as “without loss of generality”.

We also note that in the proof of existence of a minimizer, it is really only lower
semicontinuity that matters.

Lemma 6.6 (existence of minimizer). Let 𝑓 : R𝑑 → R ∪ {∞} be lower semicontinuous
and its level sets be bounded. Then, there exists a global minimizer of 𝑓 .

Proof. The proof is the same as for Lemma 1.7, except that lower semicontinuity substitutes
for continuity. □

6This is not standard terminology but it is convenient.

40

Regularity. Our next order of business is to establish properties of regular convex
functions which allow us to manipulate them in proofs. In particular, we show that they
are “almost” differentiable, even though we did not assume it a priori; the source of this
regularity is the convexity condition.

Lemma 6.7 (Lipschitz continuity). Let 𝑓 : R𝑑 → R ∪ {∞} be convex and let 𝑥0 ∈
int dom 𝑓 . Then, 𝑓 is locally Lipschitz continuous around 𝑥0.

Proof. We may assume that 𝑥0 = 0. Since 0 belongs to the interior of dom 𝑓 , we can fit
a simplex centered at the origin inside the domain: namely, there exists 𝜀 > 0 such that
C B conv{±𝜀𝑒𝑘 : 𝑘 ∈ [𝑑]} belongs to dom 𝑓 . First, we show that 𝑓 is bounded on C: the
upper bound follows because 𝑓 (±𝜀𝑒𝑘) < ∞ for all 𝑘 ∈ [𝑑] and the maximum of 𝑓 over
C is attained at one of the vertices (why?). For the lower bound, by convexity we have
𝑓 (𝑥) ≥ 2𝑓 (0) − 𝑓 (−𝑥) ≥ 2𝑓 (0) − maxC 𝑓 for all 𝑥 ∈ C.

Next, we show that 𝑓 is Lipschitz on the smaller set C′ B conv{± 𝜀
2 𝑒𝑘 : 𝑘 ∈ [𝑑]}. The

point is that there is a constant 𝑐𝑑,𝜀 > 0 such that for all 𝑥,𝑦 ∈ C′, there is a point 𝑦+ ∈ C

such that the line segment from 𝑥 to 𝑦 is contained in the line segment from 𝑥 to 𝑦+, and
the extension is not too short: ∥𝑦+ − 𝑥 ∥ ≥ 𝑐𝑑,𝜀 . Then, by convexity,

𝑓 (𝑦) = 𝑓

(∥𝑦+ − 𝑦∥
∥𝑦+ − 𝑥 ∥ 𝑥 + ∥𝑦 − 𝑥 ∥

∥𝑦+ − 𝑥 ∥ 𝑦
+
)
≤ ∥𝑦+ − 𝑦∥

∥𝑦+ − 𝑥 ∥ 𝑓 (𝑥) + ∥𝑦 − 𝑥 ∥
∥𝑦+ − 𝑥 ∥ 𝑓 (𝑦+) ,

hence

𝑓 (𝑦) − 𝑓 (𝑥) ≤ ∥𝑦 − 𝑥 ∥
∥𝑦+ − 𝑥 ∥ (𝑓 (𝑦+) − 𝑓 (𝑥)) ≤

supC 𝑓 − infC 𝑓
𝑐𝑑,𝜀

∥𝑦 − 𝑥 ∥ .

Interchanging 𝑥 and 𝑦 proves the Lipschitz bound. □

This lemma shows that locally near 𝑥0, 𝑓 (𝑥) grows at most linearly in the distance
∥𝑥 − 𝑥0∥ (as opposed to, say,

√︁
∥𝑥 − 𝑥0∥). This suggests that 𝑓 may be differentiable at 𝑥0.

This is not quite right, because 𝑓 may have a kink at 𝑥0, but nevertheless we can find an
appropriate substitute for differentiability.

Definition 6.8. Let 𝑓 : R𝑑 → R∪ {∞} be convex. We say that 𝑝 ∈ R𝑑 is a subgradient
of 𝑓 at 𝑥 if for all 𝑦 ∈ R𝑑 , it holds that

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝑝,𝑦 − 𝑥⟩ . (6.3)

We denote the set of subgradients of 𝑓 at 𝑥 as 𝜕𝑓 (𝑥), and we refer to this set as the
subdifferential of 𝑓 at 𝑥 . Also, we set

𝜕𝑓 B {(𝑥, 𝑝) ∈ R𝑑 × R𝑑 : 𝑝 ∈ 𝜕𝑓 (𝑥)} .

41

Note that by definition, if 0 ∈ 𝜕𝑓 (𝑥), then 𝑥 is a global minimizer of 𝑓 .
If 𝑓 is differentiable at 𝑥0 ∈ int dom 𝑓 , then 𝜕𝑓 (𝑥0) is a singleton: 𝜕𝑓 (𝑥0) = {∇𝑓 (𝑥0)}

(Exercise 6.2). However, the subdifferential can be multi-valued. A key example is the
absolute value function, 𝑓 : 𝑥 ↦→ |𝑥 |, for which 𝜕𝑓 (0) = [−1, 1].

For the purpose of optimization, it is enough to have at least one subgradient, which
is the content of the following theorem.

Theorem 6.9 (subdifferential). Let 𝑓 : R𝑑 → R ∪ {∞} be a regular convex function. If
𝑥0 ∈ int dom 𝑓 , then 𝜕𝑓 (𝑥0) is non-empty, bounded, convex, and closed.

We follow a traditional route of deducing the non-emptiness from a separation theorem.
The proof of the following result is deferred.

Theorem 6.10 (supporting hyperplane). Let C be a closed and convex set, and let 𝑥 ∈ 𝜕C.
Then, there exists a non-zero 𝑝 ∈ R𝑑 such that

⟨𝑝, 𝑥⟩ ≤ inf
C

⟨𝑝, ·⟩ .

Proof of Theorem 6.9. Since (𝑥0, 𝑓 (𝑥0)) ∈ 𝜕 epi 𝑓 , and epi 𝑓 is closed and convex (by regu-
larity of 𝑓), there is a supporting hyperplane (𝑝, 𝑞):

⟨𝑝, 𝑥0⟩ + 𝑞𝑓 (𝑥0) ≤ inf
(𝑥,𝑡)∈epi 𝑓

{⟨𝑝, 𝑥⟩ + 𝑞𝑡} .

We can normalize the coefficients so that ∥𝑝 ∥2 + 𝑞2 = 1, and we note that 𝑞 ≥ 0.
If 𝑥 is sufficiently close to 𝑥0, then

⟨𝑝, 𝑥0 − 𝑥⟩ ≤ 𝑞 (𝑓 (𝑥) − 𝑓 (𝑥0)) ≤ 𝐿𝑞 ∥𝑥 − 𝑥0∥ ,

where 𝐿 is the Lipschitz constant of 𝑓 near 𝑥0. Taking 𝑥 = 𝑥0 − 𝜀𝑝 for small 𝜀 > 0, we
deduce that ∥𝑝 ∥ ≤ 𝐿𝑞, hence from the normalization condition, 𝑞 ≠ 0. Thus, for any
𝑥 ∈ dom 𝑓 , we deduce that

𝑓 (𝑥) ≥ 𝑓 (𝑥0) −
1
𝑞
⟨𝑝, 𝑥 − 𝑥0⟩ ,

thus, −𝑝/𝑞 ∈ 𝜕𝑓 (𝑥0).
The set 𝜕𝑓 (𝑥0) is closed and convex as an intersection of the constraints in (6.3).

Boundedness follows from Exercise 6.3. □

42

Constraints. When the constraint set C is simple, it is reasonable to suppose that we
can compute the projection onto C. We study some properties of this projection operator.

Definition 6.11. Let C be closed and convex. The projection onto C is the mapping
𝜋C : R𝑑 → C defined by

𝜋C(𝑥) B arg min
𝑦∈C

∥𝑦 − 𝑥 ∥2 .

The “arg min” is non-empty because C is closed, and the uniqueness of the minimizer
follows from a strict convexity argument as in Lemma 1.10. When C is a linear subspace,
then 𝜋C coincides with the linear algebra definition of projection, and in this case 𝜋C is
linear. In general, however, 𝜋C is a non-linear operator.

The following lemma characterizes the projection.

Lemma 6.12 (characterization of projection). Let C be closed and convex, and let 𝑥 ∉ C.
Then, 𝜋C(𝑥) is the unique point satisfying the following condition:

⟨𝜋C(𝑥) − 𝑥, 𝑥′ − 𝜋C(𝑥)⟩ ≥ 0 for all 𝑥′ ∈ C . (6.4)

Proof. As in the proof of Lemma 1.8, the first-order necessary condition for optimality
reads ⟨𝜋C(𝑥) − 𝑥, 𝑣⟩ ≥ 0. However, because the optimization problem is constrained to lie
in C, this time we do not have the inequality for all 𝑣 , but only for 𝑣 of the form 𝑥′− 𝜋C(𝑥)
where 𝑥′ ∈ C. □

This lemma furnishes the following important property.

Lemma 6.13 (convex projections are non-expansive). Let C be closed and convex. Then,
for all 𝑥,𝑦 ∈ R𝑑 ,

∥𝜋C(𝑦) − 𝜋C(𝑥)∥ ≤ ∥𝑦 − 𝑥 ∥ .

Proof. By (6.4),

⟨𝜋C(𝑥) − 𝑥, 𝜋C(𝑦) − 𝜋C(𝑥)⟩ ≥ 0 ,
⟨𝜋C(𝑦) − 𝑦, 𝜋C(𝑥) − 𝜋C(𝑦)⟩ ≥ 0 .

Adding these inequalities yields

∥𝜋C(𝑦) − 𝜋C(𝑥)∥2 ≤ ⟨𝜋C(𝑦) − 𝜋C(𝑥), 𝑦 − 𝑥⟩ ≤ ∥𝜋C(𝑦) − 𝜋C(𝑥)∥ ∥𝑦 − 𝑥 ∥ . □

43

Actually, we can now return to prove the supporting hyperplane theorem.

Proof of Theorem 6.10. First, we show that if C is a closed convex set and 𝑥 ∉ C, then we
can separate C from 𝑥 . Namely, by (6.4), the vector 𝑝 B 𝜋C(𝑥) −𝑥 is non-zero and satisfies

inf
𝑥 ′∈C

⟨𝑝, 𝑥′⟩ ≥ ⟨𝑝, 𝜋C(𝑥)⟩ = ∥𝜋C(𝑥) − 𝑥 ∥2 + ⟨𝑝, 𝑥⟩ ≥ ⟨𝑝, 𝑥⟩ .

To prove the supporting hyperplane theorem, note that since 𝑥 ∈ 𝜕C, there is a
sequence of points {𝑥𝑛}𝑛∈N which lies outside of C, such that 𝑥𝑛 → 𝑥 . For each 𝑛, let 𝑝𝑛 be
a hyperplane that separates C from 𝑥𝑛 , and by normalizing we may assume that ∥𝑝𝑛∥ = 1.
Since {𝑝𝑛}𝑛∈N is a bounded sequence, it contains a subsequence which converges to some
unit vector 𝑝 . By taking limits, it is easy to see that 𝑝 is a supporting hyperplane. □

6.2 Projected subgradient methods
Methods for constrained optimization differ based on what they assume about the con-
straint set. The first method we study assumes access to the projection mapping 𝜋C for
the set C. This assumption is appropriate when the set C is particularly “simple”, e.g., C
is the ball C = {∥·∥ ≤ 𝑅}, in which case the projection can be computed in closed form.
When C is more complex, e.g., C is a polytope, we need more sophisticated methods.

Projected subgradient descent is the following method:

𝑥𝑛+1 B 𝜋C
(
𝑥𝑛 − ℎ

𝑝𝑛

∥𝑝𝑛∥
)
, 𝑝𝑛 ∈ 𝜕𝑓 (𝑥𝑛) . (PSD)

Note that we use the normalized subgradient 𝑝𝑛/∥𝑝𝑛∥. If we think about the example of
the absolute value function |·| with subdifferential [−1, 1] at the origin, we see that the
magnitude of an arbitrary element of the subdifferential need not be informative. Instead,
the intuition behind non-smooth optimization is to use the subgradients as separating
directions: in particular, by convexity, 𝑓 (𝑥) − 𝑓 (𝑥𝑛) ≥ ⟨𝑝𝑛, 𝑥 −𝑥𝑛⟩, so any minimizer must
lie on one side of the hyperplane defined by 𝑝𝑛 .

We let 𝑥★ denote a minimizer of 𝑓 over the closed convex set C, and 𝑓★ B 𝑓 (𝑥★).

44

Theorem 6.14 (convergence of PSD). Let 𝑓 be convex and 𝐿-Lipschitz continuous on
the closed convex set C. Then, PSD satisfies

𝑓
(1
𝑁

𝑁−1∑︁
𝑛=0

𝑥𝑛
)
− 𝑓★ ≤ 1

𝑁

𝑁−1∑︁
𝑛=0

(𝑓 (𝑥𝑛) − 𝑓★) ≤
𝐿

2𝑁ℎ
∥𝑥0 − 𝑥★∥2 + 𝐿ℎ

2 .

In particular, by setting ℎ = 𝑅/
√
𝑁 , where 𝑅 is an upper bound on ∥𝑥0 − 𝑥★∥, it yields

the convergence rate

𝑓
(1
𝑁

𝑁−1∑︁
𝑛=0

𝑥𝑛
)
− 𝑓★ ≤ 𝐿𝑅

√
𝑁

.

Proof. The first inequality holds by convexity, so we focus on the second. The idea is
similar to the proof of Theorem 3.4, except that instead of using smoothness to handle the
error term, we use Lipschitzness. By expanding the squared distance to the minimizer,

∥𝑥𝑛+1 − 𝑥★∥2 =
𝜋C (𝑥𝑛 − ℎ

𝑝𝑛

∥𝑝𝑛∥
)
− 𝜋C(𝑥★)

2 ≤
𝑥𝑛 − ℎ

𝑝𝑛

∥𝑝𝑛∥
− 𝑥★

2

= ∥𝑥𝑛 − 𝑥★∥2 − 2ℎ
∥𝑝𝑛∥

⟨𝑝𝑛, 𝑥𝑛 − 𝑥★⟩ + ℎ2

≤ ∥𝑥𝑛 − 𝑥★∥2 − 2ℎ
∥𝑝𝑛∥

(𝑓 (𝑥𝑛) − 𝑓★) + ℎ2 ,

where we used Lemma 6.13. Since ∥𝑝𝑛∥ ≤ 𝐿 for all 𝑛 (Exercise 6.3), we sum the inequalities:

1
𝑁

𝑁−1∑︁
𝑛=0

(𝑓 (𝑥𝑛) − 𝑓★) ≤
𝐿

2𝑁ℎ
∥𝑥0 − 𝑥★∥2 + 𝐿ℎ

2 . □

Thus, the averaged iterate 𝑥𝑁 satisfies 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 provided 𝑁 ≥ 𝐿2𝑅2/𝜀2. Note that
this convergence rate is substantially worse than the one for the smooth case (Theorem 3.4).
Another difference is that the descent lemma (Lemma 3.1) is available in the smooth case
which implies monotonic decrease of the objective value; here, there is no descent lemma,
so the guarantee only holds for the averaged iterate. The analysis can also be performed
under strong convexity, see Exercise 6.5.

Interestingly, if we only assume that 𝑓 is 𝐿-Lipschitz continuous over B(𝑥★, 𝑅), rather
than on all of C, it is still possible to show that min𝑛=0,...,𝑁−1 𝑓 (𝑥𝑛) − 𝑓★ ≤ 𝐿𝑅/

√
𝑁 , although

the proof becomes more involved [Nes18, §3.2.3].

45

The analysis above shows that when the projection operator is cheap to compute,
optimization under constraints is straightforward provided that we interleave the gradient
steps with projection steps. We next tackle a more general setting in which we separate
out the constraints into a “simple” set C for which we can compute the projection operator,
and additional functional constraints {𝑓𝑖 ≤ 0 for all 𝑖 ∈ [𝑚]}. Thus, we consider

min{𝑓 (𝑥) | 𝑥 ∈ C , 𝑓𝑖 (𝑥) ≤ 0 for all 𝑖 ∈ [𝑚]} .

We assume that 𝑓 , 𝑓1, . . . , 𝑓𝑚 are all regular convex functions, and write 𝑓max B max𝑖∈[𝑚] 𝑓𝑖 .
The next algorithm is known as the projected subgradient method with functional con-
straints. For 𝑛 = 0, 1, . . . , 𝑁 − 1:

• If 𝑓max(𝑥𝑛) ≤ 𝜀, set

𝑥𝑛+1 B 𝜋C

(
𝑥𝑛 −

𝜀

∥𝑝𝑛∥2 𝑝𝑛
)
, 𝑝𝑛 ∈ 𝜕𝑓 (𝑥𝑛) .

• Otherwise, set

𝑥𝑛+1 B 𝜋C

(
𝑥𝑛 −

𝑓max(𝑥𝑛)
∥𝑝𝑛∥2 𝑝𝑛

)
, 𝑝𝑛 ∈ 𝜕𝑓max(𝑥𝑛) .

The algorithm requires computing elements of the subdifferential for the function
max𝑖∈[𝑚] 𝑓𝑖 . We therefore first identify this subdifferential.

Lemma 6.15 (subdifferential of a maximum). Let 𝑓1, . . . , 𝑓𝑚 be regular convex functions.
Then, for all 𝑥 ∈ R𝑑 ,

𝜕
(
max
𝑖∈[𝑚]

𝑓𝑖
)
(𝑥) = conv

{
𝜕𝑓𝑖 (𝑥)

�� 𝑖 ∈ [𝑚] , 𝑓𝑖 (𝑥) = max
𝑗∈[𝑚]

𝑓 𝑗 (𝑥)
}
.

Proof. (⊇) Let 𝑓max B max𝑖∈[𝑚] 𝑓𝑖 and 𝐼★(𝑥) B {𝑖 ∈ [𝑚] : 𝑓𝑖 (𝑥) = 𝑓max(𝑥)}. If 𝜆 is a
probability vector and 𝑝𝑖 ∈ 𝜕𝑓𝑖 (𝑥) for all 𝑖 ∈ 𝐼★(𝑥), then

𝑓max(𝑦) ≥
∑︁

𝑖∈𝐼★(𝑥)
𝜆𝑖 𝑓𝑖 (𝑦) ≥

∑︁
𝑖∈𝐼★(𝑥)

𝜆𝑖 (𝑓𝑖 (𝑥) + ⟨𝑝𝑖, 𝑦 − 𝑥⟩) = 𝑓max(𝑥) +
〈 ∑︁
𝑖∈𝐼★(𝑥)

𝑝𝑖, 𝑦 − 𝑥

〉
.

Hence,
∑

𝑖∈𝐼★(𝑥) 𝜆𝑖𝑝𝑖 ∈ 𝜕𝑓max(𝑥).
(⊆) Since the purpose of this lemma from the perspective of these notes is simply to

compute an element of 𝜕𝑓max(𝑥), we omit the proof of this direction. It can be proven, e.g.,
via Lagrangian duality or via more subdifferential theory. □

46

The next theorem provides the convergence rate for the method.

Theorem 6.16 (convergence of PSD under functional constraints). Let 𝑓 , 𝑓1, . . . , 𝑓𝑚
be convex and 𝐿-Lipschitz on the closed convex set C. Then, PSD under functional
constraints satisfies

min{𝑓 (𝑥𝑛) | 𝑛 = 0, 1, . . . , 𝑁 − 1 , 𝑓max(𝑥𝑛) ≤ 𝜀} − 𝑓★ ≤ 𝜀 (6.5)

provided that

𝑁 ≥ 𝐿2 ∥𝑥0 − 𝑥★∥2

𝜀2 .

The theorem says that after 𝑁 iterations, we can find a point 𝑥𝑁 which almost satisfies
the functional constraints, in the sense that 𝑓max(𝑥𝑁) ≤ 𝜀, and moreover 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀.
The number of iterations is no more than the case without functional constraints.

Proof of Theorem 6.16. There are two cases for the algorithm. If the iteration 𝑛 belongs to
the first case, then as we saw in the proof of Theorem 6.14,

∥𝑥𝑛+1 − 𝑥★∥2 ≤ ∥𝑥𝑛 − 𝑥★∥2 − 2𝜀
∥𝑝𝑛∥2 (𝑓 (𝑥𝑛) − 𝑓★) +

𝜀2

∥𝑝𝑛∥2 .

If 𝑓 (𝑥𝑛) − 𝑓★ ≤ 𝜀, then since 𝑓max(𝑥𝑛) ≤ 𝜀 (by the definition of the first case), we have met
the success condition (6.5). Otherwise, 𝑓 (𝑥𝑛) − 𝑓★ > 𝜀, and the inequality above implies

∥𝑥𝑛+1 − 𝑥★∥2 < ∥𝑥𝑛 − 𝑥★∥2 − 𝜀2

∥𝑝𝑛∥2 ≤ ∥𝑥𝑛 − 𝑥★∥2 − 𝜀2

𝐿2 .

What happens in the second case? Here, we also show that ∥𝑥𝑛+1 − 𝑥★∥ < ∥𝑥𝑛 − 𝑥★∥:
since 𝑥★ satisfies the functional constraints and 𝑥𝑛 does not, the subgradient 𝑝𝑛 ∈ 𝜕𝑓max(𝑥𝑛)
still acts as a separating hyperplane. Indeed,

∥𝑥𝑛+1 − 𝑥★∥2 =
𝜋C (𝑥𝑛 − 𝑓max(𝑥𝑛)

∥𝑝𝑛∥2 𝑝𝑛
)
− 𝜋C(𝑥★)

2 ≤
𝑥𝑛 − 𝑓max(𝑥𝑛)

∥𝑝𝑛∥2 𝑝𝑛 − 𝑥★
2

= ∥𝑥𝑛 − 𝑥★∥2 − 2𝑓max(𝑥𝑛)
∥𝑝𝑛∥2 ⟨𝑝𝑛, 𝑥𝑛 − 𝑥★⟩ +

𝑓max(𝑥𝑛)2

∥𝑝𝑛∥2

≤ ∥𝑥𝑛 − 𝑥★∥2 − 2𝑓max(𝑥𝑛)
∥𝑝𝑛∥2 𝑓max(𝑥𝑛) +

𝑓max(𝑥𝑛)2

∥𝑝𝑛∥2 < ∥𝑥𝑛 − 𝑥★∥2 − 𝜀2

𝐿2 .

47

Summing these inequalities across the iterations yields

∥𝑥𝑁 − 𝑥★∥2 < ∥𝑥0 − 𝑥★∥2 − 𝑁𝜀2

𝐿2 .

For 𝑁 ≥ 𝐿2 ∥𝑥0 − 𝑥★∥2/𝜀2, this is not possible unless we reach the success condition (6.5)
by iteration 𝑁 . □

Example 6.17 (soft-margin SVM). An example of a problem that can be tackled via
projected subgradient methods is soft-margin support vector machine (SVM) classifica-
tion. Suppose that we have a dataset {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑛] , where 𝑥𝑖 ∈ R𝑑 and 𝑦𝑖 ∈ {±1}. The
output of the soft-margin SVM is the classifier 𝑥 ↦→ sgn(⟨𝜃★, 𝑥⟩), where 𝜃★ minimizes

𝜃 ↦→ 1
𝑛

𝑛∑︁
𝑖=1

ℓhinge(𝑦𝑖, ⟨𝜃, 𝑥𝑖⟩) +
𝜆

2 ∥𝜃 ∥2 .

Here, ℓhinge(𝑦,𝑦) B max{0, 1−𝑦𝑦} is the hinge loss, 𝜆 > 0 is a regularization parameter,
and we have omitted the bias term (which can be handled by augmenting the feature
vector 𝑥 as usual). This objective is strongly convex and Lipschitz over bounded sets,
so we can apply projected subgradient descent (projecting onto, e.g., a Euclidean ball).

6.3 Cutting plane methods
Non-smooth optimization uses subgradient directions in order to “localize” the solution
set. Pursuing this line of reasoning further leads to the family of cutting plane methods.

Suppose that we wish to minimize 𝑓 over a bounded, closed, convex setC. LetC★ denote
the set of minimizers. The idea is to construct a sequence of convex sets C = C0,C1,C2, . . . ,
which shrink toward C★. The set C𝑛 represents possible candidates for the solution to the
problem at iteration 𝑛.

If 𝑥𝑛 ∈ C𝑛 and 𝑝𝑛 ∈ 𝜕𝑓 (𝑥𝑛), then the subgradient inequality reads

0 ≥ 𝑓 (𝑥★) − 𝑓 (𝑥𝑛) ≥ ⟨𝑝𝑛, 𝑥★ − 𝑥𝑛⟩ for all 𝑥★ ∈ C★ .

Thus,

C★ ⊆ C𝑛 ∩ {𝑥 ∈ R𝑑 : ⟨𝑝𝑛, 𝑥⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩} .

We can take C𝑛+1 to be any superset of the right-hand side above.
To finish specifying the scheme, we need a rule for choosing the points 𝑥𝑛 and the

sets C𝑛 , with the goal of C𝑛 shrinking as fast as possible. The key is the following lemma
from convex geometry, which we do not prove.

48

Lemma 6.18 (Grünbaum). Let C ⊆ R𝑑 be a convex body (i.e., a compact convex set
with non-empty interior) and let 𝑥C denote the centroid of C: 𝑥C B (volC)−1 ∫

C
𝑥 d𝑥 .

Then, for any half-space H containing 𝑥C,

vol(C ∩H)
vol(C) ≥

(𝑑

𝑑 + 1
)𝑑 ≥ 1

e ,

where e ≈ 2.72 is a numerical constant.

Consequently, if we choose 𝑥𝑛 to be the centroid of C𝑛 and set

C𝑛+1 = C𝑛 ∩ {⟨𝑝𝑛, ·⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩} , 𝑥𝑛 = 𝑥C𝑛 , (CoGM)

then Grünbaum’s inequality shows that vol(C𝑛 \ C𝑛+1)/vol(C𝑛) ≤ 1/e, or
vol(C𝑛+1)
vol(C𝑛)

≤ 1 − 1
e .

Thus, we cut away a constant fraction of the volume at each iteration. This is known as
the center of gravity method.

As stated,CoGM is not a practical method. The feasible setC𝑛 at iteration𝑛 can be quite
complicated, making it prohibitively expensive to compute its centroid. Centroids can be
computed via Markov chain Monte Carlo (MCMC) methods for numerical integration, with
guarantees available due to recent advances in log-concave sampling, but it is generally
understood that this is a more difficult computational problem than the original convex
optimization problem we set out to solve. Nevertheless, CoGM achieves the optimal
complexity bound in the oracle model, so let us analyze its efficiency.

Theorem 6.19 (center of gravity). Let 𝐷 B diamC and let 𝑓 : R𝑑 → R be convex and
𝐿-Lipschitz on C. Then, CoGM satisfies

𝑓 (𝑥𝑁−1) − 𝑓★ ≤ 𝐷𝐿
(
1 − 1

e
)𝑁 /𝑑

.

Proof. By the argument above, at iteration 𝑁 , vol(C𝑁)/vol(C) ≤ 𝜆𝑁 , where we can take
𝜆 = 1 − 1/e. Now consider the set Ĉ B (1 − 𝑡) 𝑥★ + 𝑡 C, where we choose 𝑡 so that
vol(Ĉ) > vol(C𝑁); since vol(Ĉ) = 𝑡𝑑 vol(C), we can take any 𝑡 > 𝜆𝑁 /𝑑 . With this choice,
there exists 𝑥 ∈ Ĉ \ C𝑁 . By the definition of C𝑁 ,

𝑓 (𝑥𝑁−1) − 𝑓★ ≤ 𝑓 (𝑥) − 𝑓★ ≤ 𝑡
(
sup
C

𝑓 − 𝑓★
)
≤ 𝑡𝐷𝐿 .

The result follows by letting 𝑡 ↘ 𝜆𝑁 /𝑑 . □

49

Thus, in principle, we can achieve 𝑓 (𝑥𝑁−1) − 𝑓★ ≤ 𝜀 in 𝑂 (𝑑 log(𝐷𝐿/𝜀)) iterations.
Compared to Theorem 6.14, this result incurs only a logarithmic dependence on the ratio
𝐷𝐿/𝜀, i.e., we can output a high-accuracy solution even for poorly conditioned convex
sets. On the other hand, it incurs dependence on the dimension.

Recall that the lower bound for convex smooth optimization (Theorem 4.4) only
applies in dimension 𝑑 ≳

√︁
𝛽𝑅2/𝜀. The center of gravity method explains why: a 𝛽-

smooth function over a ball of radius 𝑅 is also 𝛽𝑅-Lipschitz, so Theorem 6.19 yields an
oracle complexity of 𝑂 (𝑑 log(𝛽𝑅2/𝜀)) in this case. This is smaller than the lower bound of
Ω(

√︁
𝛽𝑅2/𝜀) in Theorem 4.4 when 𝑑 ≪

√︁
𝛽𝑅2/𝜀/log(𝛽𝑅2/𝜀), so a lower bound construction

cannot exist in any smaller dimension.7 Note also that for convex quadratic minimization,
there are methods which find the minimizer in 𝑑 queries (e.g., Theorem 5.3 for CG); the
center of gravity method almost achieves this guarantee for general convex optimization.

Toward making cutting plane methods more practical, a famous example is the ellipsoid
method. In this scheme, we take each set C𝑛 to be an ellipsoid,

C𝑛 = {𝑥 ∈ R𝑑 : ⟨𝑥 − 𝑥𝑛, Σ
−1
𝑛 (𝑥 − 𝑥𝑛)⟩ ≤ 1} . (6.6)

At the next iteration, we must find a new ellipsoid C𝑛+1 such that

C𝑛+1 ⊇ C𝑛 ∩ {𝑥 ∈ R𝑑 : ⟨𝑝𝑛, 𝑥⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩} . (6.7)

Here, we use the following geometric lemma (Exercise 6.7).

Lemma 6.20 (ellipsoid). Let C𝑛 be the ellipsoid (6.6) and let 𝑝𝑛 ∈ R𝑑 be a non-zero
vector. Define C𝑛+1 B {𝑥 ∈ R𝑑 : ⟨𝑥 − 𝑥𝑛+1, Σ

−1
𝑛+1 (𝑥 − 𝑥𝑛+1)⟩ ≤ 1}, where

𝑥𝑛+1 B 𝑥𝑛 −
1

𝑑 + 1
Σ𝑛𝑝𝑛√︁

⟨𝑝𝑛, Σ𝑛 𝑝𝑛⟩
,

Σ𝑛+1 B
𝑑2

𝑑2 − 1

(
Σ𝑛 −

2
𝑑 + 1

Σ𝑛𝑝𝑛𝑝
T
𝑛Σ𝑛

⟨𝑝𝑛, Σ𝑛 𝑝𝑛⟩

)
.

Then, for 𝑑 > 1, C𝑛+1 satisfies (6.7) and

vol(C𝑛+1)
vol(C𝑛)

=

√︂
𝑑 − 1
𝑑 + 1

(𝑑2

𝑑2 − 1
)𝑑

= 1 − Ω
(1
𝑑

)
.

7This discussion is not entirely correct since Theorem 4.4 only applies to gradient span algorithms, which
does not cover CoGM. However, the moral of the discussion is true for bona fide oracle lower bounds.

50

By following the proof of Theorem 6.19, replacing 𝜆 by 1 − Ω(1/𝑑), one obtains the
same guarantee as for CoGM but with iteration count 𝑂 (𝑑2 log(𝐿𝐷/𝜀)). (See Exercise 6.6
for details.) Thus, the cost of obtaining an implementable version of the center of gravity
method is a larger query complexity. Naturally, there have been numerous follow-up
works in the field which aim at achieving the best of both worlds.

6.4 Lower bounds
In this section, we study lower bounds for convex non-smooth optimization.

Theorem 6.21 (lower bound for convex, non-smooth minimization). For any 𝑥0 ∈ R𝑑 ,
𝑑 > 𝑁 , and 𝐿, 𝑅 > 0, there exists a convex and 𝐿-Lipschitz function 𝑓 over B(𝑥★, 𝑅)
such that 𝑥0 ∈ B(𝑥★, 𝑅) and for any gradient span algorithm,

𝑓 (𝑥𝑁) − 𝑓★ ≳
𝐿𝑅
√
𝑁

.

Proof. Assume 𝑥0 = 0 and define the function 𝑓 : R𝑑 → R by

𝑓 (𝑥) B 𝛾 max
𝑖∈[𝑑]

𝑥 [𝑖] + 𝛼

2 ∥𝑥 ∥2 ,

where 𝛼,𝛾 > 0 are to be chosen. Note that this function is Lipschitz with constant
𝛾 +𝛼 (∥𝑥★∥ +𝑅). Also, if 𝐼★(𝑥) B {𝑖 ∈ [𝑑] : 𝑥 [𝑖] = max 𝑗∈[𝑑] 𝑥 [𝑗]}, then from Lemma 6.15,

𝜕𝑓 (𝑥) = 𝛼𝑥 + 𝛾 conv{𝑒𝑖 : 𝑖 ∈ 𝐼★(𝑥)} .

The optimal point is 𝑥★[𝑘] = −𝛾/(𝛼𝑑) for 𝑘 ∈ [𝑑], by checking that 0 ∈ 𝜕𝑓 (𝑥★). Thus,
∥𝑥★∥ = 𝛾/(𝛼

√
𝑑) and the Lipschitz constant is at most 2𝛾 + 𝛼𝑅.

We take a subgradient oracle which, given a point 𝑥 , outputs 𝛼𝑥 + 𝛾𝑒𝑖 ∈ 𝜕𝑓 (𝑥), where
𝑖 = min 𝐼★(𝑥) is the first coordinate of 𝑥 that achieves the maximum. From this property,
it is straightforward to show via induction that 𝑥𝑛 ∈ V𝑛 for all 𝑛, where V𝑛 is the subspace
from the proof of Theorem 4.4.

Since 𝑑 > 𝑁 , it follows that 𝑓 (𝑥𝑁) ≥ 0. On the other hand,

𝑓★ = 𝑓 (𝑥★) = − 𝛾2

𝛼𝑑
+ 𝛾2

2𝛼𝑑 = − 𝛾2

2𝛼𝑑 .

We set 𝑑 = 𝑁 + 1, 𝛾 = 𝐿/4, 𝛼 = 𝛾/(𝑅
√
𝑑) (to ensure that ∥𝑥0 − 𝑥★∥ ≤ 𝑅), which leads to a

Lipschitz constant of 𝐿/2 + 𝐿/(4
√
𝑑) ≤ 𝐿. It yields

𝑓 (𝑥𝑁) − 𝑓★ ≥ −𝑓 (𝑥★) ≳
𝐿𝑅
√
𝑁

. □

51

Note that this matches the guarantee of PSD (Theorem 6.14), so projected subgradient
descent is optimal in the non-smooth setting. In other words, without smoothness, there
is no acceleration phenomenon.

There is a version of Theorem 6.21 in the strongly convex case (Exercise 6.8).

Theorem 6.22 (lower bound for strongly convex, non-smooth minimization). For any
𝑥0 ∈ R𝑑 , 𝑑 > 𝑁 , and 𝛼, 𝐿 > 0, there exists 𝑅 > 0 and an 𝛼-convex and 𝐿-Lipschitz
function 𝑓 over B(𝑥★, 𝑅) such that 𝑥0 ∈ B(𝑥★, 𝑅) and for any gradient span algorithm,

𝑓 (𝑥𝑁) − 𝑓★ ≳
𝐿2

𝛼𝑁
.

Next, in the low-dimensional setting, the following lower bound holds.

Theorem 6.23 (lower bound for convex, non-smooth minimization II). The oracle
complexity of minimizing convex, 𝐿-Lipschitz functions over [−𝑅, 𝑅]𝑑 to accuracy 𝜀 is
at least Ω(𝑑 log(𝐿𝑅/𝜀)).

This shows that CoGM is optimal as well. Actually, we do not prove Theorem 6.23;
instead, we focus on the related but harder task of feasibility.

Definition 6.24. Let 0 < 𝛿 < 𝑅. Let C ⊆ [−𝑅, 𝑅]𝑑 be a closed convex set such that
there exists a ball B(𝑥★, 𝛿) ⊆ C. The feasibility problem with parameters (𝛿, 𝑅) is
the problem of outputting a point in intC, given access to a separation oracle. Namely,
given a point 𝑥 ∈ R𝑑 , the separation oracle either reports that 𝑥 ∈ C, or it outputs a
non-zero vector 𝑝 ∈ R𝑑 such that supC ⟨𝑝, ·⟩ ≤ ⟨𝑝, 𝑥⟩.

If one can solve the feasibility problem, then one can solve the convex Lipschitz
minimization problem. Indeed, given a convex, 𝐿-Lipschitz function 𝑓 over [−𝑅, 𝑅]𝑑 ,
suppose for the sake of argument that we know the optimal value 𝑓★. Consider the
feasibility problem for set C B {𝑓 − 𝑓★ ≤ 𝜀}. For 𝑥★ B arg min[−𝑅,𝑅]𝑑 𝑓 , we claim that
B(𝑥★, 𝜀/𝐿) ⊆ C; indeed this follows from 𝐿-Lipschitzness.8 Also, the subgradient oracle

8Actually this is not exactly true because 𝑥★ could lie near the boundary of [−𝑅, 𝑅]𝑑 . To fix this, one
could instead look for a minimizer of 𝑓 over C′ B [−𝑅 + 𝛿, 𝑅 − 𝛿]𝑑 , i.e., define 𝑥𝛿,★ to be a minimizer over
this smaller cube and set C B C′ ∩ {𝑓 − 𝑓 (𝑥𝛿,★) ≤ 𝜀}. If we take 𝛿 = 𝜀/(𝐿

√
𝑑), then by 𝐿-Lipschitzness we

see that any point in C is a 2𝜀-minimizer of 𝑓 over [−𝑅, 𝑅]𝑑 , and now B(𝑥𝛿,★, 𝛿) ⊆ C. This does not really
change the argument.

52

for 𝑓 yields a separation oracle for C. Thus, solving the feasibility problem for C with
parameters (𝜀/𝐿, 𝑅) yields an 𝜀-solution to the problem of minimizing 𝑓 .

Since the feasibility problem is harder, the following theorem is weaker than Theo-
rem 6.23. However, it is easier to prove, and it contains most of the main ideas.

Theorem 6.25 (lower bound for feasibility). For any deterministic algorithm, the feasi-
bility problem with parameters (𝜀, 𝑅) requires Ω(𝑑 log(𝑅/𝜀)) queries.

Proof. We play a game with the algorithm. Suppose that the algorithm has chosen query
points 𝑥1, . . . , 𝑥𝑛 thus far. Our goal is to choose a vector 𝑝𝑛—which is supposed to cor-
respond to the output of a separation oracle—and we provide the algorithm with this
vector, which it then uses to produce a new point 𝑥𝑛+1 and so on. Simultaneously, we also
maintain a sequence of convex bodies (actually, boxes) C0,C1, . . . ,C𝑁 .

At the end of the game, the algorithm has produced points 𝑥1, . . . , 𝑥𝑁 , and we have
produced vectors 𝑝1, . . . , 𝑝𝑁 . By itself, this is not yet meaningful; the algorithm is not
designed to produce useful results, unless 𝑝1, . . . , 𝑝𝑁 are valid outputs from a separation
oracle corresponding to a convex body C satisfying the assumptions of the feasibility
problem. So, we aim to choose 𝑝1, . . . , 𝑝𝑁 so that this holds with C = C𝑁 . Now, we can use
the following post hoc reasoning: had we run the algorithm with the separation oracle for
C𝑁 from the outset, then the algorithm would have output the same sequence of points
𝑥1, . . . , 𝑥𝑁 , because it is deterministic, so this construction yields a valid lower bound (i.e.,
it requires more than 𝑁 iterations to solve the feasibility problem). This proof technique is
known as the method of resisting oracles, and its main drawback is that it does not apply
to randomized algorithms.9

Let us instantiate the resisting oracle for the feasibility problem. At each iteration 𝑛,
the convex body C𝑛 is the box {𝑥 ∈ R𝑑 : 𝑎𝑛 ≤ 𝑥 ≤ 𝑏𝑛}; here, 𝑎𝑛, 𝑏𝑛 ∈ R𝑑 and the inequality
is interpreted pointwise. We start with 𝑎0 = −𝑅1𝑑 , 𝑏0 = +𝑅1𝑑 , where 1𝑑 is the all-ones
vector; thus, C0 = [−𝑅, 𝑅]𝑑 .

When the algorithm makes the first query 𝑥1, we update the box by cutting it in
half, based on the first coordinate of 𝑥1. Namely, if 𝑥1 [1] ≤ 0, we set 𝑎1 [1] = 0, and
𝑎1 [𝑘] = 𝑎0 [𝑘] for all 𝑘 > 1; we output the separating vector −𝑒1. If 𝑥1 [1] ≥ 0, we set
𝑏1 [1] = 0 and 𝑏1 [𝑘] = 𝑏0 [𝑘] for all 𝑘 > 1; we output the separating vector +𝑒1. In either
case, vol(C1) = 1

2 vol(C0) and 𝑥1 ∉ intC1.
When the algorithm makes the second query 𝑥2, we repeat this procedure except that

we cut the box in half along the second coordinate. We continue in this fashion, cycling
through the coordinates.

9Lower bounds for randomized algorithms require the use of information theory.

53

Let 𝑐𝑛 denote the center of C𝑛. We now claim that for each 𝑛, B(𝑐𝑛, 𝑟𝑛) ⊆ C𝑛, where
𝑟𝑛 = (𝑅/2) (1/2)𝑛/𝑑 . Indeed, this is true for 𝑛 = 0. Also, for 𝑛 = 𝑎𝑑 for integer 𝑎, each side
of the box has length 𝑅 (1/2)𝑎 , so the result is true in this case too. Finally, for 𝑛 = 𝑎𝑑 + 𝑏,
we have B(𝑐 (𝑎+1)𝑑 , 𝑅/2𝑎+1) ⊆ C(𝑎+1)𝑑 ⊆ C𝑛 hence B(𝑐𝑛, 𝑅/2𝑎+1) ⊆ C𝑛 , and we note that
𝑅/2𝑎+1 ≤ (𝑅/2) (1/2)𝑛/𝑑 .

The resisting oracle construction succeeds up to iteration 𝑁 provided that C𝑁 contains
a ball of radius 𝜀. It therefore suffices to have (𝑅/2) (1/2)𝑁 /𝑑 ≥ 𝜀, i.e., 𝑁 ≳ 𝑑 log(𝑅/𝜀). □

Exercises
Exercise 6.1.

1. Prove that a function 𝑓 is lower semicontinuous if and only if for all 𝑐 ∈ R, the level
set {𝑓 ≤ 𝑐} is closed.

2. Prove that a supremum of lower semicontinuous functions is lower semicontinuous.

3. Show that the function defined in (6.2) is lower semicontinuous if and only if 𝜙 = 0.

Exercise 6.2. Prove that if 𝑓 is differentiable at 𝑥0 ∈ int dom 𝑓 , then 𝜕𝑓 (𝑥0) = {∇𝑓 (𝑥0)}.

Exercise 6.3. Let 𝑓 : R𝑑 → R be continuous and convex on a convex set C. Prove that
𝑓 is Lipschitz continuous over C with constant 𝐿 if and only if for every 𝑥0 ∈ intC and
every 𝑝 ∈ 𝜕𝑓 (𝑥0), we have ∥𝑝 ∥ ≤ 𝐿.

Exercise 6.4. Compute the subdifferential of the Euclidean norm ∥·∥.

Exercise 6.5. Assume that 𝑓 is 𝛼-strongly convex and 𝐿-Lipschitz continuous over the
closed convex set C. Prove that for PSD,

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛼

2 {(1 − 𝛼ℎ/𝐿)𝑁 − 1}
∥𝑥0 − 𝑥★∥2 + 𝐿ℎ

2 ,

where 𝑥𝑁 is a suitable averaged iterate. Deduce that by setting ℎ = 𝜀/𝐿, one can achieve
𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 in 𝑂 (𝐿2

𝛼𝜀
log(𝛼𝑅2

𝜀
)) iterations (compared with 𝑂 (𝐿2𝑅2/𝜀2) iterations, as

implied by Theorem 6.14).
Also, show that under these assumptions, ∥𝑥0 − 𝑥★∥ ≤ 2𝐿/𝛼 .

Exercise 6.6. The analysis of the ellipsoid method (and general cutting plane schemes)
presents an additional difficulty: since the next set C𝑛+1 is only chosen to be a superset
of C𝑛 ∩ {⟨𝑝𝑛, ·⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩}, it is not guaranteed that C ⊆ C𝑛 for all 𝑛; in particular, the
chosen point 𝑥𝑛 may lie outside of C.

54

Assume that we have access to a separation oracle for C: given a point 𝑥 ∉ C, the
oracle outputs a non-zero vector 𝑝 ∈ R𝑑 such that supC ⟨𝑝, ·⟩ ≤ ⟨𝑝, 𝑥⟩. Modify the cutting
plane method as follows: if a chosen point 𝑥𝑛 does not lie in C, then let 𝑝𝑛 be vector that
separates 𝑥𝑛 from C and instead update C𝑛+1 to be a superset of C𝑛 ∩ {⟨𝑝𝑛, 𝑥𝑛⟩ ≤ ⟨𝑝𝑛, ·⟩}.
We also allow C0 ⊇ C, so that 𝑥0 is not necessarily feasible either. Prove that if the sets are
chosen so that vol(C𝑛+1)/vol(C𝑛) ≤ 𝜆 < 1 for all 𝑛, then the following assertions hold.

1. If vol(C𝑁) < vol(C), then there exists 𝑛 < 𝑁 with 𝑥𝑛 ∈ C.

2. If vol(C𝑁) < vol(C), then there exists 𝑛 < 𝑁 with 𝑥𝑛 ∈ C and 𝑓 (𝑥𝑛) − 𝑓★ ≤ 𝐷𝐿𝜆𝑁 /𝑑 .
Hint: Define a sequence of sets C′

0,C
′
1,C

′
2, . . . as follows. Start with C′

0 = C and
𝑛−1 B 0. For each 𝑘 ∈ N, let 𝑛𝑘 denote the first integer greater than 𝑛𝑘−1 for which
𝑥𝑛𝑘 ∈ C and set C′

𝑘+1 B C′
𝑘
∩ {⟨𝑝𝑛𝑘 , ·⟩ ≤ ⟨𝑝𝑛𝑘 , 𝑥𝑛𝑘 ⟩}. Prove via induction that if 𝑘 (𝑁)

is the largest integer such that 𝑛𝑘 (𝑁) ≤ 𝑁 , then C′
𝑛𝑘 (𝑁) ⊆ C𝑁 .

Exercise 6.7. Prove Lemma 6.20.

Exercise 6.8. Prove Theorem 6.22. (Use the same construction as in the proof of Theo-
rem 6.21, but choose the parameters 𝛼 and 𝛾 differently.)

7 [2/18] Frank–Wolfe
In order to overcome the lower bounds in the black-box setting, we must take advantage
of additional structure in the problem. The first method we study in this vein is the
Frank–Wolfe or conditional gradient method. Instead of assuming access to a projection
oracle for the constraint set C, it instead assumes access to a linear optimization oracle
(LOO) over the set C:

Given 𝑝 ∈ R𝑑 , output arg min
C

⟨𝑝, ·⟩ . (LOO)

Here, we assume that C is compact (bounded and closed).
The oracle equivalently maximizes the convex function −⟨𝑝, ·⟩ over C, so the arg min

is attained at a vertex of C. Let us define these concepts properly.

Definition 7.1. A point 𝑥 ∈ C is called an extreme point or a vertex of C if there do
not exist 𝑥0, 𝑥1 ∈ C and 𝑡 ∈ (0, 1) such that 𝑥 = (1 − 𝑡) 𝑥0 + 𝑡 𝑥1.

Theorem 7.2. Every compact convex set is the convex hull of its extreme points.

55

For example, the set of vertices of the closed unit ball B(0, 1) is the sphere 𝜕B(0, 1). It
follows that to implement (LOO), it suffices to solve arg minvertices of C ⟨𝑝, ·⟩.

We now present the Frank–Wolfe method for minimizing 𝑓 over C:

𝑥𝑛+1 B (1 − ℎ𝑛) 𝑥𝑛 + ℎ𝑛 LOO(∇𝑓 (𝑥𝑛)) . (FW)

Theorem 7.3 (convergence of FW). Let 𝑓 be convex and 𝛽-smooth over C. Let 𝐷 B
diamC and ℎ𝑛 = 2/(𝑛 + 2). Then, for any 𝑁 ≥ 1, FW satisfies

𝑓 (𝑥𝑁) − 𝑓★ ≤ 2𝛽𝐷2

𝑁 + 1 .

Proof. Let 𝑦𝑛 B LOO(∇𝑓 (𝑥𝑛)). Using 𝛽-smoothness,

𝑓 (𝑥𝑛+1) − 𝑓 (𝑥𝑛) ≤ ⟨∇𝑓 (𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛⟩ +
𝛽

2 ∥𝑥𝑛+1 − 𝑥𝑛∥2

≤ ℎ𝑛 ⟨∇𝑓 (𝑥𝑛), 𝑦𝑛 − 𝑥𝑛⟩ +
𝛽𝐷2ℎ2

𝑛

2 ≤ ℎ𝑛 ⟨∇𝑓 (𝑥𝑛), 𝑥★ − 𝑥𝑛⟩ +
𝛽𝐷2ℎ2

𝑛

2

≤ −ℎ𝑛 (𝑓 (𝑥𝑛) − 𝑓★) +
𝛽𝐷2ℎ2

𝑛

2 .

Rearranging,

𝑓 (𝑥𝑛+1) − 𝑓★ ≤ (1 − ℎ𝑛) (𝑓 (𝑥𝑛) − 𝑓★) +
𝛽𝐷2ℎ2

𝑛

2 .

For ℎ𝑛 = 2/(𝑛 + 2), we now prove the error bound by induction on 𝑛, where the base case
𝑛 = 0 follows from the inequality above. If the error bound holds at iteration 𝑛, then

𝑓 (𝑥𝑛+1) − 𝑓★ ≤ 𝑛

𝑛 + 2
2𝛽𝐷2

𝑛 + 1 + 2𝛽𝐷2

(𝑛 + 2)2 ≤ 2𝛽𝐷2

𝑛 + 2 . □

The analysis above is actually not the most natural one, since it fails to capture the
affine invariance of the Frank–Wolfe algorithm (Exercise 7.1).

Besides positing different oracle access than projected gradient methods, the Frank–
Wolfe method has the appealing property of producing sparse solutions. This connects
with results known as approximate Carathéodory theorems. First, let us recall the classical
statement of Carathéodory’s theorem.

Theorem 7.4 (Carathéodory). Let C ⊆ R𝑑 be a compact convex set and let 𝑥 ∈ C. Then,
𝑥 can be written as a convex combination of 𝑑 + 1 vertices of C.

56

Caution: in this theorem, the choice of 𝑑 + 1 vertices of course depends on 𝑥 itself. If
every point in C could be written as a convex combination of the same 𝑑 + 1 vertices, this
would say that C only has 𝑑 + 1 vertices at all.

Carathéodory’s theorem says that even if a convex body has exponentially many
vertices, such as the cube [−1, 1]𝑑 , any given point has a succinct representation using
only 𝑑 + 1 vertices. However, the size of the representation grows with the ambient
dimension. What happens if we relax the requirement that the representation is exact?
The following simple argument, often attributed to B. Maurey, shows that the size of the
representation is dimension-free, and the convex combination even uses equal weights.

Theorem 7.5 (approximate Carathéodory). Let C ⊆ R𝑑 be a compact convex set with
diameter 𝐷 , let 0 < 𝜀 < 1, and let 𝑥 ∈ C. Then, there exist vertices 𝑦1, . . . , 𝑦𝑁 ∈ C with𝑥 − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖

 ≤ 𝜀𝐷 , 𝑁 ≤ 1
𝜀2 .

Proof. By Theorem 7.4, there exist vertices 𝑦1, . . . , 𝑦𝑑+1 ∈ C and a probability distribution
𝜆 over [𝑑 + 1] such that 𝑥 =

∑𝑑+1
𝑗=1 𝜆 𝑗𝑦 𝑗 . Now consider the distribution 𝜇 =

∑𝑑+1
𝑗=1 𝜆 𝑗𝛿𝑦 𝑗

and
sample points 𝑌1, . . . , 𝑌𝑁

i.i.d.∼ 𝜇. Note that each 𝑌𝑖 is a vertex of C. Then, since the mean of
𝜇 is 𝑥 , the usual variance calculation shows that

E
[𝑥 − 1

𝑁

𝑁∑︁
𝑖=1

𝑌𝑖

2]
≤

∑𝑑+1
𝑗=1 𝜆 𝑗 ∥𝑥 − 𝑦 𝑗 ∥2

𝑁
≤ 𝐷2

𝑁
.

Choose 𝑁 to make the right-hand side at most 𝜀2𝐷2. □

The approximate Caratheódory theorem has implications, e.g., for controlling the
covering numbers of polytopes. But more broadly, the proof technique is quite influential
and is at the root of other important developments, e.g., the existence of neural networks
of small width which approximate functions in the Barron class [Bar93].

Now comes the punchline: Franke–Wolfe renders the approximate Carathéodory
theorem constructive. Indeed, suppose that the LOO always outputs a vertex. After 𝑁 − 1
iterations of FW starting from a vertex, the iterate 𝑥𝑁−1 is a convex combination of at
most 𝑁 vertices. At the same time, if we apply Theorem 7.3 to the 2-smooth function
𝑓 : 𝑧 ↦→ ∥𝑥 − 𝑧∥2, where 𝑥 ∈ C and 𝑓★ = 0, we see that ∥𝑥𝑁−1 − 𝑥 ∥2 ≤ 4𝐷2/𝑁 .

The full statement of Theorem 7.3 can therefore be seen as a generalization of the
approximate Carathéodory principle: the iterate of FW is a sparse combination of vertices
which is approximately optimal. We next demonstrate an example in which this sparsity
property is crucial.

57

Example 7.6 (low-rank estimation). Consider the nuclear norm ball

C =

{
𝑋 ∈ R𝑑×𝑑 : ∥𝑋 ∥∗ =

𝑑∑︁
𝑖=1

𝜎𝑖 (𝑋) ≤ 1
}
.

This constraint set often arises in low-rank matrix recovery as a convex relaxation of
a rank constraint. Projection onto the set C requires projecting the singular values
onto the simplex; this requires computing a full SVD, which uses 𝑂 (𝑑3) arithmetic
operations. On the other hand, since

C = conv{𝑢𝑣T : 𝑢, 𝑣 ∈ R𝑑 , ∥𝑢∥ = ∥𝑣 ∥ = 1} ,

the LOO for C involves solving, for any 𝑃 ∈ R𝑑×𝑑 ,

arg min
𝑋∈C

⟨𝑃,𝑋 ⟩ = arg min{⟨𝑃,𝑢𝑣T⟩ : 𝑢, 𝑣 ∈ R𝑑 , ∥𝑢∥ = ∥𝑣 ∥ = 1} .

Solving this amounts to computing the top singular vector of 𝑃 , which is often imple-
mented via power iteration at cost 𝑂 (𝑑2) per step. Moreover, FW yields an 𝜀-accurate
solution with rank 𝑂 (1/𝜀).

Exercises
Exercise 7.1. Show that FW is affine-invariant in the following sense. Let 𝐴 ∈ R𝑑×𝑑 be
an invertible matrix. Show that the iterates {𝑥𝑛}𝑛∈N of FW applied to the problem of
minimizing 𝑥 ↦→ 𝑓 (𝐴𝑥) over the set 𝐴−1C are related to the iterates {𝑥𝑛}𝑛∈N of FW on the
original problem via 𝑥𝑛 = 𝐴𝑥𝑛 .

8 [2/20] Proximal methods
Can we solve non-smooth problems at the same rate as smooth problems? The black-box
lower bounds say no in general, but if the non-smooth part is “simple” in the sense that it
admits an implementable proximal oracle, the answer becomes yes.

58

Definition 8.1. Let 𝑓 : R𝑑 → R ∪ {∞}. The proximal oracle for 𝑓 is the mapping
prox𝑓 : R𝑑 → R𝑑 given by

prox𝑓 (𝑦) B arg min
𝑥∈R𝑑

{
𝑓 (𝑥) + 1

2 ∥𝑦 − 𝑥 ∥2} .
If 𝑓 is a regular convex function, then the optimization problem defining the proximal

oracle is strongly convex, so it admits a unique minimizer by Lemma 1.10 and Lemma 6.6.
Note also that

proxℎ𝑓 (𝑦) = arg min
𝑥∈R𝑑

{
ℎ𝑓 (𝑥) + 1

2 ∥𝑦 − 𝑥 ∥2} = arg min
𝑥∈R𝑑

{
𝑓 (𝑥) + 1

2ℎ ∥𝑦 − 𝑥 ∥2} ,
where ℎ > 0 plays the role of a step size.

The value of the optimization problem defining prox𝑓 also has a name.

Definition 8.2. Let 𝑓 : R𝑑 → R ∪ {∞}. The Moreau–Yosida envelope of 𝑓 with
parameter ℎ > 0 is the mapping 𝑓ℎ : R𝑑 → R ∪ {∞} given by

𝑓ℎ (𝑦) B inf
𝑥∈R𝑑

{
𝑓 (𝑥) + 1

2ℎ ∥𝑦 − 𝑥 ∥2} .
8.1 Algorithms and examples
The proximal oracle is a regularized version of the original optimization problem. Assum-
ing for the moment that we can compute the proximal oracle easily, let us explore its uses
for algorithm design.

The simplest algorithm is to repeatedly iterate the proximal mapping. This is known
as the proximal point method.

𝑥𝑛+1 B proxℎ𝑓 (𝑥𝑛) . (PPM)

Assume for the moment that 𝑓 is smooth and that the next point 𝑥𝑛+1 can be obtained
from the first-order optimality condition for proxℎ𝑓 . This leads to

0 = ∇𝑓 (𝑥𝑛+1) +
1
ℎ
(𝑥𝑛+1 − 𝑥𝑛) ⇐⇒ 𝑥𝑛+1 = 𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛+1) .

Note that this is similar to the GD update, except that the gradient is evaluated at the
subsequent point 𝑥𝑛+1. In numerical analysis, we say that GD is an explicit discretization of

59

the gradient flow, whereas PPM is an implicit discretization. The advantage of an explicit
method is easy of implementation; it does not require solving a (non-linear) system in
order to perform an update. The advantage of an implicit method is stability.

Recall that the results in §2 for GF do not require smoothness of 𝑓 , whereas the results
in §3 for GD do. (We studied the non-smooth case for GD in §6.2, but it requires decreasing
step sizes and averaging.) Shortly, we shall see that PPM is similar to GF, in that it also
does not require smoothness.

The most powerful results using the proximal oracle, however, are for the problem of
composite optimization. Here, the goal is to minimize a sum of functions:

minimize 𝐹 B 𝑓 + 𝑔 .

We assume that 𝑓 is smooth and that 𝑔 is non-smooth.

Example 8.3 (LASSO as composite optimization). The computation of the LASSO
estimator from Example 1.3 is the canonical example of composite optimization, where

𝑓 : 𝜃 ↦→ 1
2𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − ⟨𝜃, 𝑋𝑖⟩)2 , 𝑔 : 𝜃 ↦→ 𝜆 ∥𝜃 ∥1 .

In this example, the non-smooth part is particularly simple, so we can compute its
proximal oracle in closed form. First, note that it is coordinate-wise decomposable:

prox𝜆 ∥·∥1 (𝑦) = arg min
𝑥∈R𝑑

{
𝜆 ∥𝑥 ∥1 +

1
2 ∥𝑦 − 𝑥 ∥2}

=

𝑑∑︁
𝑖=1

(
arg min
𝑥 [𝑖]∈R

{
𝜆 |𝑥 [𝑖] | + 1

2 (𝑦 [𝑖] − 𝑥 [𝑖])2}) 𝑒𝑖 .
Therefore, it suffices to solve the problem in dimension one. A direct computation
(see Exercise 8.1) then yields

prox𝜆 |·| (𝑦) = (|𝑦 | − 𝜆)+ sgn𝑦 C thresh𝜆 (𝑦)

where (·)+ B max{0, ·} denotes the positive part. The operator thesh𝜆 , known as the
soft thresholding operator, reduces the magnitude of its input by 𝜆, or to 0 if the original
magnitude is less than 𝜆. The proximal operator for 𝜆 ∥·∥1 simply applies thresh𝜆 to
each coordinate.

60

Example 8.4 (constrained optimization as composite optimization). Consider the prob-
lem of minimizing a smooth function 𝑓 over a closed convex set C. We can also treat
this as composite optimization with

𝑔 = 𝜒C .

(Recall the convex indicator defined in (6.1).) In this case, the proximal oracle for 𝑔 is

proxℎ𝜒C (𝑦) = arg min
𝑥∈R𝑑

{
𝜒C(𝑥) +

1
2ℎ ∥𝑦 − 𝑥 ∥2} = arg min

𝑥∈C

{ 1
2ℎ ∥𝑦 − 𝑥 ∥2} = 𝜋C(𝑦) .

So, the proximal oracle for 𝜒C is the projection oracle for C.

The above examples motivate the assumption that we have access to the proximal
oracle for the non-smooth part 𝑔. Further examples of computable proximal oracles can
be found on the website proximity-operator.net.

The algorithm we consider in this context is known as proximal gradient descent.

𝑥𝑛+1 B arg min
𝑥∈R𝑑

{
𝑓 (𝑥𝑛) + ⟨∇𝑓 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩ + 𝑔(𝑥) +

1
2ℎ ∥𝑥 − 𝑥𝑛∥2} . (PGD)

In other words, we take the objective function 𝐹 = 𝑓 + 𝑔 and linearize only the smooth
part. The update can be rewritten as follows. By completing the square,

𝑥𝑛+1 = arg min
𝑥∈R𝑑

{
𝑔(𝑥) + 1

2ℎ ∥𝑥 − 𝑥𝑛 + ℎ ∇𝑓 (𝑥𝑛)∥2} = proxℎ𝑔 (𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛)) .

This corresponds to taking an explicit step on 𝑓 , followed by an implicit step on 𝑔. It is
not obvious that this algorithm converges to 𝑥★, the minimizer of 𝐹 = 𝑓 + 𝑔. However,
note that if 𝑔 is differentiable, then

𝑥𝑛+1 = 𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛) − ℎ ∇𝑔(𝑥𝑛+1) .

If 𝑥𝑛 = 𝑥★, then 𝑥𝑛+1 = 𝑥★ is the solution since 0 = ∇𝐹 (𝑥★) = ∇𝑓 (𝑥★) + ∇𝑔(𝑥★). Thus,
provided that 𝑓 and 𝑔 are convex and differentiable, 𝑥★ is the unique fixed point.

For the LASSO problem, the iteration reads

𝑥𝑛+1 = thresh𝜆ℎ (𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛)) .

In the literature, this is known as the iterative shrinking-thresholding algorithm (ISTA).
For constrained optimization, proximal gradient descent is projected gradient descent.

61

https://proximity-operator.net

8.2 Convergence analysis
We study the convergence of PGD, since it includes PPM as a special case (take 𝑓 = 0).

Theorem 8.5 (convergence of PGD). Let 𝑓 be 𝛼 𝑓 -convex and 𝛽 𝑓 -smooth, and let 𝑔 be
𝛼𝑔-convex. Let the step size ℎ satisfy ℎ ≤ 1/𝛽 , let 𝑥+ denote the next iterate of PGD
started from 𝑥 , and let 𝑦 ∈ R𝑑 . Then,

(1 + 𝛼𝑔ℎ) ∥𝑦 − 𝑥+∥2 ≤ (1 − 𝛼 𝑓ℎ) ∥𝑦 − 𝑥 ∥2 − 2ℎ (𝐹 (𝑥+) − 𝐹 (𝑦)) . (8.1)

In particular, if we set 𝑦 = 𝑥★ and iterate, it yields

𝐹 (𝑥𝑁) − 𝐹★ ≤
𝛼 𝑓 + 𝛼𝑔

2 (𝜆−𝑁
ℎ

− 1)
∥𝑥0 − 𝑥★∥2 ,

where 𝜆ℎ B (1 − 𝛼 𝑓ℎ)/(1 + 𝛼𝑔ℎ).

Proof. Let𝜓𝑥 denote the objective function in the definition of PGD. Then,𝜓𝑥 is (𝛼𝑔+1/ℎ)-
strongly convex with minimizer 𝑥+, so by the quadratic growth inequality,

𝜓𝑥 (𝑦) ≥ 𝜓𝑥 (𝑥+) +
𝛼𝑔 + 1/ℎ

2 ∥𝑦 − 𝑥+∥2 .

On one hand, by 𝛼 𝑓 -convexity,

𝜓𝑥 (𝑦) + 𝑓 (𝑥) = 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝑔(𝑦) + 1
2ℎ ∥𝑦 − 𝑥 ∥2 ≤ 𝐹 (𝑦) +

1/ℎ − 𝛼 𝑓

2 ∥𝑦 − 𝑥 ∥2 .

On the other hand, by 𝛽 𝑓 -smoothness,

𝜓𝑥 (𝑥+) + 𝑓 (𝑥) = 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝑔(𝑥+) + 1
2ℎ ∥𝑥+ − 𝑥 ∥2

≥ 𝐹 (𝑥+) +
1/ℎ − 𝛽 𝑓

2 ∥𝑥+ − 𝑥 ∥2 ≥ 𝐹 (𝑥+) .

Combining these inequalities and rearranging,

(1 + 𝛼𝑔ℎ) ∥𝑦 − 𝑥+∥2 ≤ (1 − 𝛼 𝑓ℎ) ∥𝑦 − 𝑥 ∥2 − 2ℎ (𝐹 (𝑥+) − 𝐹 (𝑦)) .

Note that by taking 𝑦 = 𝑥 , it yields the descent property

𝐹 (𝑥+) − 𝐹 (𝑥) ≤ −
1 + 𝛼𝑔ℎ

2ℎ ∥𝑥 − 𝑥+∥2 = −
(1 + 𝛼𝑔ℎ) ℎ

2 ∥∇𝑓 (𝑥) + ∇𝑔(𝑥+)∥2 ≤ 0 .

The final bound follows from Lemma 3.5 and algebra. □

62

The key feature of Theorem 8.5 is that it essentially recovers the smooth rate for GD
despite the presence of non-smoothness in the objective. Thus, for the LASSO problem
(Example 8.3), we can solve it as quickly as if it were a smooth problem via ISTA.

Moreover, the one-step inequality (8.1) is the PGD analogue of the inequality (3.3)
which holds for GD, and in turn, (3.3) is the only property of GD which plays a role in
the proof of Nesterov acceleration (Theorem 5.10); the remainder of the proof is purely
algebraic. This naturally leads to an accelerated algorithm for composite optimization.

Starting with 𝑥−1 = 𝑥0, consider

𝑥𝑛+1 B 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) −
1
𝛽
PGD𝐹 (𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)) , (APGD)

where PGD𝐹 denotes one step of PGD on 𝐹 = 𝑓 + 𝑔.

Theorem 8.6 (convergence of APGD). Let 𝑓 be convex and 𝛽-smooth, and let 𝑔 be
convex. Define the sequence: 𝜆0 B 0 and 𝜆𝑛+1 B

1
2 (1 +

√︁
1 + 4𝜆2

𝑛) for 𝑛 ∈ N. Set
𝜃𝑛 B (𝜆𝑛 − 1)/𝜆𝑛+1. Then, APGD satisfies

𝐹 (𝑥𝑁) − 𝐹★ ≤ 2𝛽 ∥𝑥0 − 𝑥★∥2

𝑁 2 .

When applied to LASSO, this algorithm is known as fast ISTA or FISTA. Rates in the
strongly convex setting can be obtained from the reduction in Lemma 4.1.

Exercises
Exercise 8.1. Verify the computation of prox𝜆 |·| in Example 8.3.

References
[AP24a] J. M. Altschuler and P. A. Parrilo. “Acceleration by stepsize hedging: multi-step

descent and the silver stepsize schedule”. In: J. ACM (Dec. 2024).
[AP24b] J. M. Altschuler and P. A. Parrilo. “Acceleration by stepsize hedging: silver

stepsize schedule for smooth convex optimization”. In: Mathematical Pro-
gramming (2024).

[Bar93] A. R. Barron. “Universal approximation bounds for superpositions of a sig-
moidal function”. In: IEEE Trans. Inform. Theory 39.3 (1993), pp. 930–945.

63

[Bub15] S. Bubeck. “Convex optimization: algorithms and complexity”. In: Foundations
and Trends® in Machine Learning 8.3-4 (2015), pp. 231–357.

[Che25] S. Chewi. Log-concave sampling. Available online at chewisinho.github.io.
Forthcoming, 2025.

[CLM24] H. Chardon, M. Lerasle, and J. Mourtada. “Finite-sample performance of
the maximum likelihood estimator in logistic regression”. In: arXiv preprint
2411.02137 (2024).

[KNS16] H. Karimi, J. Nutini, and M. Schmidt. “Linear convergence of gradient and
proximal-gradient methods under the Polyak–Łojasiewicz condition”. In: Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases—
Volume 9851. ECML PKDD 2016. Riva del Garda, Italy: Springer-Verlag, 2016,
pp. 795–811.

[LMW24] J. Liang, S. Mitra, and A. Wibisono. “On independent samples along the
Langevin diffusion and the unadjusted Langevin algorithm”. In: arXiv preprint
2402.17067 (2024).

[Łoj63] S. Łojasiewicz. “Une propriété topologique des sous-ensembles analytiques
réels”. In: Les Équations aux Dérivées Partielles (Paris, 1962). Éditions du Centre
National de la Recherche Scientifique (CNRS), Paris, 1963, pp. 87–89.

[LRP16] L. Lessard, B. Recht, and A. Packard. “Analysis and design of optimization
algorithms via integral quadratic constraints”. In: SIAM J. Optim. 26.1 (2016),
pp. 57–95.

[Nes18] Y. Nesterov. Lectures on convex optimization. Vol. 137. Springer Optimization
and Its Applications. Springer, 2018, pp. xxiii+589.

[NY83] A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in
optimization. Wiley-Interscience Series in Discrete Mathematics. Translated
from the Russian and with a preface by E. R. Dawson. John Wiley & Sons,
Inc., New York, 1983, pp. xv+388.

[OV00] F. Otto and C. Villani. “Generalization of an inequality by Talagrand and
links with the logarithmic Sobolev inequality”. In: J. Funct. Anal. 173.2 (2000),
pp. 361–400.

[OV01] F. Otto and C. Villani. “Comment on: “Hypercontractivity of Hamilton–Jacobi
equations” [J. Math. Pures Appl. (9) 80 (2001), no. 7, 669–696] by S. G. Bobkov,
I. Gentil and M. Ledoux”. In: J. Math. Pures Appl. (9) 80.7 (2001), pp. 697–700.

[Pol63] B. T. Polyak. “Gradient methods for minimizing functionals”. In: Ž. Vyčisl.
Mat i Mat. Fiz. 3 (1963), pp. 643–653.

64

https://chewisinho.github.io/

[SBC16] W. Su, S. Boyd, and E. J. Candès. “A differential equation for modeling Nes-
terov’s accelerated gradient method: theory and insights”. In: J. Mach. Learn.
Res. 17 (2016), Paper No. 153, 43.

[Ver18] R. Vershynin. High-dimensional probability. Vol. 47. Cambridge Series in Sta-
tistical and Probabilistic Mathematics. An introduction with applications in
data science, With a foreword by Sara van de Geer. Cambridge University
Press, Cambridge, 2018, pp. xiv+284.

[Vis12] N. K. Vishnoi. “𝐿𝑥 = 𝑏 Laplacian solvers and their algorithmic applications”.
In: Found. Trends Theor. Comput. Sci. 8.1-2 (2012), front matter, 1–141.

65

	[1/14] Introduction and basics of convex functions
	Overview of the course
	Preliminaries on convexity and smoothness

	[1/16] Gradient flow
	[1/21] Gradient descent: smooth case
	[1/23] Lower bounds for smooth optimization
	Reductions between the convex and strongly convex settings
	Lower bounds

	[1/28–1/30] Acceleration
	Quadratic case: the conjugate gradient method
	General case: continuous time
	General case: discrete time

	[2/4–2/13] Non-smooth convex optimization
	Convex analysis
	Projected subgradient methods
	Cutting plane methods
	Lower bounds

	[2/18] Frank–Wolfe
	[2/20] Proximal methods
	Algorithms and examples
	Convergence analysis

