
Lectures on Optimization

Sinho Chewi

May 6, 2025

Contents
1 Introduction and basics of convex functions 3

1.1 Overview of the course . 3
1.2 Preliminaries on convexity and smoothness 7

2 Gradient flow 11

3 Gradient descent: smooth case 17

4 Lower bounds for smooth optimization 23
4.1 Reductions between the convex and strongly convex settings 23
4.2 Lower bounds . 25

5 Acceleration 28
5.1 Quadratic case: the conjugate gradient method 28
5.2 General case: continuous time . 32
5.3 General case: discrete time . 34

6 Non-smooth convex optimization 37
6.1 Convex analysis . 38
6.2 Projected subgradient methods . 44
6.3 Cutting plane methods . 48
6.4 Lower bounds . 50

7 Frank–Wolfe 55

1

8 Proximal methods 58
8.1 Algorithms and examples . 59
8.2 Convergence analysis . 62

9 Fenchel duality 64
9.1 (Optional) Connection with classical mechanics 65
9.2 Duality correspondences . 69

10 Mirror methods 74
10.1 Bregman divergences and relative convexity/smoothness 75
10.2 Algorithms and convergence analysis . 77
10.3 Online algorithms and multiplicative weights 82

11 Alternating minimization 87
11.1 Alternating projections . 88
11.2 Convergence analysis for alternating minimization 90
11.3 Case study: entropic optimal transport 95

12 Stochastic optimization 101
12.1 Stochastic mirror proximal gradient descent 101
12.2 Implications for statistical generalization 105
12.3 Central limit theorem for Polyak–Ruppert averaging 108
12.4 Variance reduction . 118

13 Interior point methods 125
13.1 Self-concordant analysis of Newton’s method 125
13.2 Following the central path . 130
13.3 Barrier calculus and applications . 132
13.4 Convergence analysis . 134

2

1 Introduction and basics of convex functions
These lecture notes accompany S&DS 432/632 (Advanced Optimization Techniques),
taught at Yale University in Spring 2025. They are not meant to be comprehensive.

The notes are primarily based on the books [Bub15; Nes18], as well as my personal
understanding of the subject formed through discussions with many people over the years.
Please send me feedback via email. I thank Linghai Liu, Leda Wang, Ruixiao Wang, Ilias
Zadik, and Matthew S. Zhang for corrections.

Audience. This course focuses on the theory of optimization. In particular, the course
is mathematical in nature and taught in a theorem–proof format. The course assumes
familiarity with basic proofs and logical reasoning, as well as linear algebra, multivariate
calculus, and probability theory.

The reader should also be familiar with asymptotic notions (big-𝑂 notation). We use
the shorthand notation 𝑎 ≲ 𝑏 (resp. 𝑎 ≳ 𝑏) to mean that 𝑎 ≤ 𝐶𝑏 (resp. 𝑎 ≥ 𝑏/𝐶) for an
absolute constant 𝐶 > 0 (i.e., a constant that does not depend on other parameters of the
problem), and 𝑎 ≍ 𝑏 to mean that both 𝑎 ≲ 𝑏 and 𝑎 ≳ 𝑏 hold. We use 𝑎 = 𝑂 (𝑏) and 𝑎 ≲ 𝑏

interchangeably.

1.1 Overview of the course
The basic problem of optimization is to compute an approximate minimizer of a given
function 𝑓 : X → R. In this course, X is always taken to be a subset of R𝑑 , although
generalizations are possible (e.g., to manifolds).

Black-box optimization and the oracle model. What does it mean to “compute”?
The answer depends on the representation of 𝑓 and our model of computation. We start
by studying black-box optimization. In this model, we presume that we can evaluate 𝑓 ,
and possibly its derivatives, at any chosen point 𝑥 ∈ X.

The advantage of the black-box model is that it applies very generally: it is difficult
to find situations in which we need to optimize a function but we cannot even evaluate
it! Consequently, algorithms developed in this model can be applied to the majority of
problems encountered in practice1—witness the ubiquity of gradient descent.

The disadvantage is that by its very generality, it cannot take advantage of additional
structural information about 𝑓 which can bring computational savings. That is why, later
in the course, we turn toward the study of structured optimization problems.

1There is a caveat: in this course, we solely consider continuous optimization problems. Combinatorial
optimization is an entirely different beast.

3

It is easy, at least at an intuitive level, to describe algorithms which are valid in the
black-box model. Namely, they are algorithms which only “interact” with 𝑓 through
evaluations of 𝑓 and its derivatives. The existence of an algorithm, together with a
corresponding mathematical analysis of the number of iterations to reach an approximate
minimizer contingent upon assumptions on 𝑓 , provide an upper bound on the complexity
of the optimization task. In this course, we are also interested in lower bounds, which
delineate fundamental limitations encountered by any algorithm. In order to prove such
a lower bound, we need to formalize the notion of “interaction” alluded to above, and this
leads to the important concept of an oracle.

First, observe that it does not make sense to discuss the complexity of optimizing a
single function 𝑓 . For if 𝑥★ is the minimizer of 𝑓 , we can consider the algorithm “output
𝑥★”, which yields the correct answer in one iteration. But this algorithm is silly, since it
utterly fails at optimizing any other function whose minimizer does not happen to be
𝑥★. Reflecting upon this situation, we do not consider an optimization algorithm to be
sensible when it happens to succeed for one particular problem; rather, we expect it to
succeed on many similar problems. Hence, we talk about a class of functions F of interest,
and we require our algorithms to succeed on every 𝑓 ∈ F .

The algorithm is designed to succeed on F and thus, in an anthropomorphic sense, it
“knows” F . However, it does not know which particular 𝑓 ∈ F it is trying to optimize.
(If it possessed knowledge of 𝑓 , then we run into the issue from before, namely it could
simply output the minimizer.) The role of the oracle is to act as an intermediary between
the algorithm and the function. Namely, we assume that the algorithm is allowed to ask
certain questions (“queries”) to the oracle for 𝑓 , and this is the only means by which the
algorithm can gather more information about 𝑓 . The allowable queries and responses
determine the nature of the oracle, e.g.:

• a zeroth-order oracle accepts a query point 𝑥 ∈ R𝑑 and outputs 𝑓 (𝑥);

• a first-order oracle accepts a query point 𝑥 ∈ R𝑑 and outputs (𝑓 (𝑥),∇𝑓 (𝑥)).

Most of the course focuses on optimization with a first-order oracle, but other oracles
are possible (e.g., linear optimization oracles and proximal oracles). The zeroth-order and
first-order oracles are easy to justify, as they correspond to the black-box model described
above. As the oracles become more exotic, it becomes necessary to show that they are
reasonable, by describing important applications in which such access to 𝑓 is feasible.

The query complexity of F for a particular choice of oracle, as a function of the
prescribed tolerance 𝜀, is then (informally) defined to be the minimum number 𝑁 such
that there exists an algorithm which, for any 𝑓 ∈ F , makes 𝑁 queries to the oracle for 𝑓
and outputs a point 𝑥 with 𝑓 (𝑥) − min 𝑓 ≤ 𝜀.

4

It is worth noting that query complexity is not the same as computational complexity.
Indeed, query complexity only counts the number of interactions with the oracle, and the
algorithm is allowed to perform unlimited computations between interactions. In principle,
this could lead to a situation in which query complexity is wholly unrepresentative of
the true computational cost of optimization—this would be the case if optimal algorithms
in the oracle model were contrived and impractical. Thankfully, this is not the case. The
oracle model is widely adopted as the standard model for optimization because it is the
setting in which we can make precise claims about complexity, and because it generally
aligns with optimization in practice.

This summarizes the conceptual framework for optimization theory—the “identity
cards of the field” [Nes18], although a careful treatment of the framework only becomes
necessary when discussing lower bounds (and hence we elaborate on the details then).
As a branch of mathematics, the theory of optimization could be defined as the quest
to characterize the query complexity of various classes F , under various oracle models,
and thereby identify optimal algorithms. This indeed remains a core element of the field,
but as query complexity reaches maturity, research has shifted toward different types of
questions, often inspired by practical developments.

The role of convexity. In order to optimize efficiently, we need to place assumptions on
𝑓 , ideally minimal ones. For example, we can assume that 𝑓 is continuous. In this course,
however, we are interested in quantitative rates of convergence for algorithms, and for
this purpose, a qualitative assumption such as continuity is not enough. A quantitative
form of continuity is to assume that 𝑓 is 𝐿-Lipschitz in the ℓ∞ norm:

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿 max
𝑖∈[𝑑]

|𝑥 [𝑖] − 𝑦 [𝑖] | for all 𝑥,𝑦 ∈ X . (1.1)

Also, for concreteness, let us take X to be the cube, X = [0, 1]𝑑 . In the language of the
framework above, we consider the class

F = {𝑓 : [0, 1]𝑑 → R | 𝑓 satisfies (1.1)} . (1.2)

One can then prove the following negative result.

Theorem 1.1. For any 0 < 𝜀 < 𝐿/2 and any deterministic algorithm, the complexity of
𝜀-approximately minimizing functions in the class defined in (1.2) to within 𝜀 using a
zeroth-order oracle is at least ⌊ 𝐿

2𝜀 ⌋
𝑑 .

Thus, for 𝜀 < 𝐿/4, the complexity grows exponentially with the dimension. The proof
is not difficult; see, e.g., [Nes18, Theorem 1.1.2]. It is also robust: variants of the result

5

can be proven when the notion of Lipschitzness is w.r.t. the ℓ2 norm; when the oracle
is taken to be a first-order oracle; when the algorithm is allowed to be randomized; etc.
The message is clear: in order for optimization to be tractable in the worst case, we must
impose some structural assumptions.

The black-box oracles we have been considering are local in nature: given a query
point 𝑥 ∈ R𝑑 , the oracle reveals some information about the behavior of 𝑓 in a local
neighborhood of 𝑥 . Assumptions such as Lipschitzness effectively govern how large this
local neighborhood is. But ultimately, to render optimization tractable, we must ensure
that local information yields global consequences. As justified in the next subsection, a
key assumption that makes this possible is convexity.

Of course, not every problem is convex, and non-convex optimization often still suc-
ceeds. But for the purpose of understanding the core principles underlying optimization,
there is no better starting place. It is important to remember that convex problems abound
in every application domain; here, we give two classical examples from statistics.

Example 1.2 (logistic regression). The data consists of 𝑛 pairs (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × {0, 1},
where 𝑋𝑖 is a vector of covariates and 𝑌𝑖 is a binary response. The statistical model
assumes that the pairs are independently drawn, the covariates are deterministic, and
𝑌𝑖 has a Bernoulli distribution with parameter exp(⟨𝜃, 𝑋𝑖⟩)/{1 + exp(⟨𝜃, 𝑋𝑖⟩)}. The goal
is to infer the parameter 𝜃 .

The maximum likelihood estimator (MLE) for this model is the solution to the
convex optimization problem

𝜃MLE ∈ arg min
𝜃∈R𝑑

1
𝑛

𝑛∑︁
𝑖=1

(
log(1 + exp ⟨𝜃, 𝑋𝑖⟩) − 𝑌𝑖 ⟨𝜃, 𝑋𝑖⟩

)
.

Example 1.3 (LASSO). The data consists of 𝑛 pairs (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R. The statistical
model assumes that the pairs are independently drawn, and that 𝑌𝑖 = ⟨𝜃, 𝑋𝑖⟩ + 𝜉𝑖 , where
the 𝜉𝑖 ’s are i.i.d. noise variables independent of the 𝑋𝑖 ’s. When the parameter 𝜃 is
assumed to be sparse, it is standard to use the LASSO estimator, which is the solution
to the convex optimization problem

𝜃LASSO = arg min
𝜃∈R𝑑

{ 1
2𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − ⟨𝜃, 𝑋𝑖⟩)2 + 𝜆 ∥𝜃 ∥1
}
.

Here, 𝜆 > 0 is the regularization parameter and ∥·∥1 denotes the ℓ1 norm, defined via
∥𝜃 ∥1 B

∑𝑑
𝑖=1 |𝜃 [𝑖] |.

6

In these examples, the estimator is defined as the solution to a convex problem which
is not solvable in closed form, necessitating the use of numerical optimization. Actually, it
is not that most problems in the “wild” are convex and hence there was a need to develop
convex optimization. In fact, it often goes the other way around: convex optimization
is such a powerful tool that problems are intentionally formulated to be convex. This is
the case for the LASSO estimator, which can be motivated as a convex relaxation of the
(statistically superior) ℓ0-constrained least-squares estimator.

First-order methods. This course largely focuses on first-order methods, namely,
gradient descent and its variants. This class of methods is natural from the perspective of
the theory. Equally importantly, first-order methods are lightweight and therefore scalable
to large problem sizes, making them the method of choice even for highly non-convex
settings which fall squarely outside of the theory.

Beyond the black-box model. After developing results for the black-box model, we
study structured problems which admit more efficient solutions. The LASSO estimator
of Example 1.3 can be treated as a “composite” optimization problem (a sum of a smooth
and a non-smooth function), and the estimators in both Example 1.2 and Example 1.3
(and empirical risk minimization more generally) are “finite sum” problems whose com-
putation can be sped up via the use of stochastic gradients. Other examples include the
use of alternative geometries (mirror descent) and the use of coordinate-wise structure
(alternating maximization/coordinate descent).

We also study interior-point methods, which are a practically effective suite of al-
gorithms which solve linear programs (LPs) and semidefinite programs (SDPs) with
polynomial iteration complexities.

Further topics are considered as time permits.

1.2 Preliminaries on convexity and smoothness
We assume familiarity with the basic notion of convexity, and we briefly review it here.

Definition 1.4. A subset C ⊆ R𝑑 is convex if for all 𝑥,𝑦 ∈ C and all 𝑡 ∈ [0, 1], the point
(1 − 𝑡) 𝑥 + 𝑡 𝑦 also lies in C.

Definition 1.5. Let C be convex and let 𝛼 ≥ 0. A function 𝑓 : C → R is 𝛼-convex if
for all 𝑥,𝑦 ∈ C and all 𝑡 ∈ [0, 1],

𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) ≤ (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦) − 𝛼

2 𝑡 (1 − 𝑡) ∥𝑦 − 𝑥 ∥2 . (1.3)

7

When 𝛼 = 0, this is just the usual definition of a convex function. When 𝛼 > 0, we
say that the function is strongly convex.

The definition above has the advantage that it does not require 𝑓 to be differentiable.
However, for the purposes of checking and utilizing convexity, it is convenient to have
the following equivalent reformulations, which should be committed to memory. For
simplicity, we focus on the case C = R𝑑 .

Proposition 1.6 (convexity equivalences). Let C = R𝑑 and 𝛼 ≥ 0.

1. If 𝑓 is continuously differentiable, (1.3) is equivalent to each of the following:

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝛼

2 ∥𝑦 − 𝑥 ∥2 for all 𝑥,𝑦 ∈ R𝑑 . (1.4)

⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≥ 𝛼 ∥𝑦 − 𝑥 ∥2 for all 𝑥,𝑦 ∈ R𝑑 . (1.5)

2. If 𝑓 is twice continuously differentiable, (1.3) is equivalent to

⟨𝑣,∇2𝑓 (𝑥) 𝑣⟩ ≥ 𝛼 ∥𝑣 ∥2 for all 𝑣, 𝑥 ∈ R𝑑 . (1.6)

Proof. Assume that 𝑓 is continuously differentiable.
(1.3) ⇒ (1.4): Rearranging (1.3) yields, for 𝑡 > 0,

𝑓 (𝑦) ≥ 𝑓 (𝑥) + 𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) − 𝑓 (𝑥)
𝑡

+ 𝛼 (1 − 𝑡)
2 ∥𝑦 − 𝑥 ∥2 .

Sending 𝑡 ↘ 0 yields (1.4).
(1.4) ⇒ (1.5): Swap 𝑥 and 𝑦 in (1.4) and add the resulting inequality back to (1.4).
(1.5) ⇒ (1.3): By the fundamental theorem of calculus, for 𝑣 B 𝑦 − 𝑥 ,

𝑓 (𝑦) = 𝑓 (𝑥) +
∫ 1

0
⟨∇𝑓 (𝑥 + 𝑠𝑣), 𝑣⟩ d𝑠 ,

𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) = 𝑓 (𝑥) +
∫ 1

0
⟨∇𝑓 (𝑥 + 𝑠𝑡𝑣), 𝑡𝑣⟩ d𝑠 .

Hence, (1.5) yields

𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) − (1 − 𝑡) 𝑓 (𝑥) − 𝑡 𝑓 (𝑦) = −𝑡
∫ 1

0
⟨∇𝑓 (𝑥 + 𝑠𝑣) − ∇𝑓 (𝑥 + 𝑠𝑡𝑣), 𝑣⟩ d𝑠

≤ −𝑡
∫ 1

0
𝛼𝑠 (1 − 𝑡) ∥𝑣 ∥2 d𝑠 = −𝛼2 𝑡 (1 − 𝑡) ∥𝑣 ∥2 .

8

Finally, assume that 𝑓 is twice continuously differentiable. Letting 𝑦 = 𝑥 + 𝜀𝑣 in (1.5)
and sending 𝜀 ↘ 0 establishes (1.6). Conversely, the fundamental theorem of calculus
shows that

⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ =
∫ 1

0
⟨∇2𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥)) (𝑦 − 𝑥), 𝑦 − 𝑥⟩ d𝑡 ,

and hence (1.6) implies (1.5). □

The equivalent statements each have their own interpretation: for 𝛼 = 0, (1.3) states
that 𝑓 lies below each of its secant lines between the intersection points; (1.4) states that
𝑓 globally lies above each of its tangent lines; (1.6) states that ∇𝑓 is a monotone vector
field; and (1.6) is a statement about curvature.

As noted above, the key feature of convexity is that local information yields global
conclusions. Before describing this, let us first recall some basic facts about optimization.
For simplicity, we consider unconstrained optimization throughout.

Lemma 1.7 (existence of minimizer). Let 𝑓 : R𝑑 → R be continuous and its level sets
be bounded. Then, there exists a global minimizer of 𝑓 .

Proof. The proof uses some analysis. Let 𝑥0 ∈ R𝑑 and let K B {𝑓 ≤ 𝑓 (𝑥0)} denote
the level set. By the continuity assumption, K is closed and bounded, thus compact.
Let {𝑥𝑛}𝑛∈N be a minimizing sequence, 𝑓 (𝑥𝑛) → inf 𝑓 . By compactness, it admits a
subsequence, still denoted {𝑥𝑛}𝑛∈N, which converges to some 𝑥★ ∈ R𝑑 . By continuity,
𝑓 (𝑥★) = lim𝑛→∞ 𝑓 (𝑥𝑛) = inf 𝑓 . □

Lemma 1.8 (necessary conditions for optimality). Let 𝑓 : R𝑑 → R be minimized at 𝑥★.

1. If 𝑓 is continuously differentiable, then ∇𝑓 (𝑥★) = 0.

2. If 𝑓 is twice continuously differentiable, then ∇2𝑓 (𝑥★) ⪰ 0.

Proof. Let 𝑣 ∈ R𝑑 and 𝜀 > 0; then, 𝑓 (𝑥★+𝜀𝑣)− 𝑓 (𝑥★) ≥ 0. If 𝑓 is continuously differentiable,
this yields

∫ 1
0 ⟨∇𝑓 (𝑥★ + 𝜀𝑡𝑣), 𝑣⟩ d𝑡 ≥ 0. By continuity of ∇𝑓 , sending 𝜀 ↘ 0 proves that

⟨∇𝑓 (𝑥★), 𝑣⟩ ≥ 0 for all 𝑣 ∈ R𝑑 , which entails ∇𝑓 (𝑥★) = 0.
If 𝑓 is twice continuously differentiable, we can expand once more to obtain 0 ≤∫ 1

0

∫ 1
0 ⟨∇2𝑓 (𝑥★ + 𝜀𝑠𝑡𝑣) 𝑣, 𝑣⟩ d𝑠 d𝑡 . By continuity of ∇2𝑓 , sending 𝜀 ↘ 0 then proves that

⟨∇2𝑓 (𝑥★) 𝑣, 𝑣⟩ ≥ 0 for all 𝑣 ∈ R𝑑 . □

9

The conditions∇𝑓 (𝑥★) = 0, ∇2𝑓 (𝑥★) ⪰ 0 are necessary for optimality, but not sufficient
in general. The issue is that the proof of Lemma 1.8 is entirely local, so the same conclusion
holds even if 𝑥★ is only assumed to be a local minimizer. On the other hand, under the
assumption of convexity, the first-order necessary condition becomes sufficient.

Lemma 1.9 (sufficient condition for optimality). Let 𝑓 : R𝑑 → R be convex and
continuously differentiable, and let ∇𝑓 (𝑥★) = 0. Then, 𝑥★ is a global minimizer of 𝑓 .

In particular, every local minimizer of 𝑓 is a global minimizer.

Proof. This easily follows from (1.4) with 𝑥 = 𝑥★. □

Next, we note that the minimizer is unique if 𝑓 is strictly convex.

Lemma 1.10 (uniqueness of minimizer). Assume that 𝑓 : R𝑑 → R is strictly convex,
i.e., for all distinct 𝑥,𝑦 ∈ R𝑑 and 𝑡 ∈ (0, 1), 𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) < (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦).
Then, if 𝑓 admits a minimizer 𝑥★, it is unique.

Proof. If we had two distinct minimizers 𝑥★, 𝑥★, so that 𝑓 (𝑥★) = 𝑓 (𝑥★), then strict convex-
ity would imply 𝑓 (1

2 𝑥★ + 1
2 𝑥★) < 𝑓 (𝑥★), which is a contradiction. □

If 𝑓 is strongly convex, then it is strictly convex. Also, from, e.g., (1.4), we see that 𝑓
grows at least quadratically at ∞, which implies that it has bounded level sets. We can
therefore conclude:

Corollary 1.11. Let 𝑓 : R𝑑 → R be strongly convex and continuously differentiable.
Then, it admits a unique minimizer 𝑥★, which is characterized by ∇𝑓 (𝑥★) = 0.

Finally, when discussing algorithms, we also need a dual condition—an upper bound
on the Hessian—which in this context is called smoothness.2

Definition 1.12. Let 𝛽 ≥ 0. We say that 𝑓 : R𝑑 → R is 𝛽-smooth if it is continuously
differentiable and

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝛽

2 ∥𝑦 − 𝑥 ∥2 for all 𝑥,𝑦 ∈ R𝑑 . (1.7)

The following proposition is established in the same way as Proposition 1.6, so we
omit the proof.

2This is not to be confused with the mathematical usage of “smoothness” as “infinitely differentiable”.

10

Proposition 1.13 (smoothness equivalences). Let 𝑓 : R𝑑 → R be continuously differ-
entiable and 𝛽 ≥ 0. Then, 𝑓 is 𝛽-smooth if and only if

⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≤ 𝛽 ∥𝑦 − 𝑥 ∥2 for all 𝑥,𝑦 ∈ R𝑑 .

If 𝑓 is twice continuously differentiable, this is also equivalent to

⟨𝑣,∇2𝑓 (𝑥) 𝑣⟩ ≤ 𝛽 ∥𝑣 ∥2 for all 𝑣, 𝑥 ∈ R𝑑 .

If 𝑓 is convex, 𝛽-smooth, and twice continuously differentiable, then 0 ≤ ∇2𝑓 ⪯ 𝛽𝐼 ,
which implies that the gradient ∇𝑓 is 𝛽-Lipschitz:

∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥ ≤ 𝛽 ∥𝑦 − 𝑥 ∥ for all 𝑥,𝑦 ∈ R𝑑 . (1.8)

This remains true even without assuming twice differentiability (Exercise 3.1).

Bibliographical notes
For further discussion on the oracle model, see [NY83, §1].

Exercises
Exercise 1.1. Let 𝑓 = 𝛼

2 ∥·∥2, where 𝛼 ≥ 0. Show via direct computation that (1.3) holds
with equality.

2 Gradient flow
Before we turn toward our main first-order algorithm of interest, namely gradient descent,
we first study the situation in continuous time via the gradient flow. Throughout this
section, we let (𝑥𝑡)𝑡≥0 denote the gradient flow for 𝑓 :

¤𝑥𝑡 = −∇𝑓 (𝑥𝑡) . (GF)

This is an ordinary differential equation (ODE), and since the main purpose of this section
is to develop intuition, we assume that 𝑓 is twice continuously differentiable and do not
worry about showing that (GF) is well-posed. We use the following notation throughout
these notes:

𝑥★ ∈ arg min 𝑓 , 𝑓★ B min 𝑓 = 𝑓 (𝑥★) .

11

Generally, we always assume that 𝑓 admits a minimizer.
The most basic property of GF is that it always decreases the function value.

Lemma 2.1 (descent property of GF). For any 𝑓 : R𝑑 → R, the gradient flow (𝑥𝑡)𝑡≥0 of
𝑓 satisfies

𝜕𝑡 𝑓 (𝑥𝑡) = −∥∇𝑓 (𝑥𝑡)∥2 ≤ 0 .

Proof. By the chain rule, 𝜕𝑡 𝑓 (𝑥𝑡) = ⟨∇𝑓 (𝑥𝑡), ¤𝑥𝑡 ⟩ = −∥∇𝑓 (𝑥𝑡)∥2. □

To obtain quantitative convergence results, we now use the assumption of convexity.
Our first result shows that under strong convexity, the gradient flow contracts.

Theorem 2.2 (contraction of GF). Let 𝑓 : R𝑑 → R be 𝛼-convex. Let (𝑦𝑡)𝑡≥0 be another
gradient flow for 𝑓 , i.e., ¤𝑦𝑡 = −∇𝑓 (𝑦𝑡). Then, for all 𝑡 ≥ 0,

∥𝑦𝑡 − 𝑥𝑡 ∥ ≤ exp(−𝛼𝑡) ∥𝑦0 − 𝑥0∥ .

Proof. We differentiate the squared distance between the two flows:

𝜕𝑡 (∥𝑦𝑡 − 𝑥𝑡 ∥2) = 2 ⟨𝑦𝑡 − 𝑥𝑡 , ¤𝑦𝑡 − ¤𝑥𝑡 ⟩ = −2 ⟨𝑦𝑡 − 𝑥𝑡 ,∇𝑓 (𝑦𝑡) − ∇𝑓 (𝑥𝑡)⟩ ≤ −2𝛼 ∥𝑦𝑡 − 𝑥𝑡 ∥2 ,

where the last inequality is (1.5). The proof is concluded by applying Grönwall’s lemma
(see Lemma 2.3) below. □

The proof above arrives at what is called a differential inequality, that is, an inequality
which holds between a quantity and its derivative(s). This is a common strategy for
analyzing ODEs/PDEs, and it can be loosely viewed as the continuous-time analogue of
induction. The following standard lemma is useful for handling such inequalities.

Lemma 2.3 (Grönwall). Suppose that 𝑢 : [0,𝑇] → R is a continuously differentiable
curve that satisfies the differential inequality

¤𝑢 (𝑡) ≤ 𝐴𝑢 (𝑡) + 𝐵(𝑡) , 𝑡 ∈ [0,𝑇] .

Then, it holds that

𝑢 (𝑡) ≤ 𝑢 (0) exp(𝐴𝑡) +
∫ 𝑡

0
𝐵(𝑠) exp(𝐴 (𝑡 − 𝑠)) d𝑠 , 𝑡 ∈ [0,𝑇] .

12

Proof. The idea is to differentiate 𝑡 ↦→ exp(−𝐴𝑡) 𝑢 (𝑡):

𝜕𝑡 [exp(−𝐴𝑡) 𝑢 (𝑡)] = exp(−𝐴𝑡) {−𝐴𝑢 (𝑡) + ¤𝑢 (𝑡)} ≤ 𝐵(𝑡) exp(−𝐴𝑡) .

By the fundamental theorem of calculus,

exp(−𝐴𝑡) 𝑢 (𝑡) − 𝑢 (0) ≤
∫ 𝑡

0
𝐵(𝑠) exp(−𝐴𝑠) d𝑠 .

Rearranging yields the result. □

There are many variants of Grönwall’s lemma that can be proven in similar ways, e.g.,
we can allow time-varying 𝐴 as well.

Returning to Theorem 2.2, we can apply Lemma 2.3 with 𝐴 = −2𝛼 and 𝐵 = 0 to
conclude that ∥𝑦𝑡 − 𝑥𝑡 ∥2 ≤ exp(−2𝛼𝑡) ∥𝑦0 − 𝑥0∥2, which proves the theorem. Note in
particular that we can take 𝑦𝑡 = 𝑥★ for all 𝑡 ≥ 0, so it yields the following statement about
convergence to the minimizer: ∥𝑥𝑡 − 𝑥★∥ ≤ exp(−𝛼𝑡) ∥𝑥0 − 𝑥★∥.

The next result is about convergence in function value, and unlike Theorem 2.2, it
yields convergence for the case 𝛼 = 0 as well.

Theorem 2.4 (convergence of GF in function value). Let 𝑓 : R𝑑 → R be 𝛼-convex,
𝛼 ≥ 0. Then, for all 𝑡 ≥ 0,

𝑓 (𝑥𝑡) − 𝑓★ ≤ 𝛼

2 (exp(𝛼𝑡) − 1) ∥𝑥0 − 𝑥★∥2 .

When 𝛼 = 0, the right-hand side should be interpreted as its limiting value as 𝛼 → 0,
namely, 1

2𝑡 ∥𝑥0 − 𝑥★∥2.

Proof. We differentiate 𝑡 ↦→ ∥𝑥𝑡 − 𝑥★∥2, but this time we apply (1.4):

𝜕𝑡 (∥𝑥𝑡 − 𝑥★∥2) = −2 ⟨∇𝑓 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩ ≤ −𝛼 ∥𝑥𝑡 − 𝑥★∥2 − 2 (𝑓 (𝑥𝑡) − 𝑓★) .

Applying Grönwall’s lemma (Lemma 2.3) with 𝐴 = −𝛼 , 𝐵(𝑡) = −2 (𝑓 (𝑥𝑡) − 𝑓★),

0 ≤ ∥𝑥𝑡 − 𝑥★∥2 ≤ exp(−𝛼𝑡) ∥𝑥0 − 𝑥★∥2 − 2
∫ 𝑡

0
exp(−𝛼 (𝑡 − 𝑠)) (𝑓 (𝑥𝑠) − 𝑓★) d𝑠 .

By the descent property (Lemma 2.1), 𝑓 (𝑥𝑠) ≥ 𝑓 (𝑥𝑡), so that∫ 𝑡

0
exp(−𝛼 (𝑡 − 𝑠)) (𝑓 (𝑥𝑠) − 𝑓★) d𝑠 ≥ (𝑓 (𝑥𝑡) − 𝑓★)

∫ 𝑡

0
exp(−𝛼 (𝑡 − 𝑠)) d𝑠

13

= (𝑓 (𝑥𝑡) − 𝑓★)
1 − exp(−𝛼𝑡)

𝛼
.

Rearranging yields the result. □

When 𝛼 > 0, Theorem 2.4 shows that 𝑓 (𝑥𝑡) − 𝑓★ = 𝑂 (exp(−𝛼𝑡)). When 𝛼 = 0,
the rate becomes 𝑓 (𝑥𝑡) − 𝑓★ = 𝑂 (1/𝑡). Actually, the rate in Theorem 2.4 is not sharp
(see Exercise 2.1 and Exercise 2.2). However, the statement and proof are chosen because
they form the basis of our approach in discrete time.

Next, we observe that convexity is not needed for convergence in function value. Due
to the descent property (Lemma 2.1), it suffices to have a lower bound on the norm of
the gradient to ensure that we make sufficient progress. For example, we can impose the
following condition.

Definition 2.5. Let 𝑓 : R𝑑 → R be continuously differentiable and 𝛼 > 0. We say that
𝑓 satisfies a Polyak–Łojasiewicz (PŁ) inequality with constant 𝛼 if

∥∇𝑓 (𝑥)∥2 ≥ 2𝛼 (𝑓 (𝑥) − 𝑓 (𝑥★)) for all 𝑥 ∈ R𝑑 . (PŁ)

The next statement is an immediate corollary of Lemma 2.1, (PŁ), and Grönwall’s
lemma (Lemma 2.3).

Corollary 2.6 (convergence of GF under PŁ). Let 𝑓 : R𝑑 → R satisfy (PŁ) with constant
𝛼 > 0. Then, for all 𝑡 ≥ 0,

𝑓 (𝑥𝑡) − 𝑓★ ≤ (𝑓 (𝑥0) − 𝑓★) exp(−2𝛼𝑡) .

We present a few key properties of the PŁ inequality.

Proposition 2.7 (strong convexity ⇒ PŁ ⇒ quadratic growth). Let 𝑓 : R𝑑 → R and
𝛼 > 0. The following implications hold.

1. If 𝑓 is 𝛼-convex, then 𝑓 satisfies (PŁ) with constant 𝛼 .

2. If 𝑓 satisfies (PŁ) with constant𝛼 , then it satisfies the following quadratic growth
property:

𝑓 (𝑥) − 𝑓★ ≥ 𝛼

2 inf
𝑥★∈X★

∥𝑥 − 𝑥★∥2 , for all 𝑥 ∈ R𝑑 , (QG)

where X★ denotes the set of minimizers of 𝑓 .

14

Proof.

1. Setting 𝑦 = 𝑥★ in (1.4), we obtain

−(𝑓 (𝑥) − 𝑓★) ≥ ⟨∇𝑓 (𝑥), 𝑥★ − 𝑥⟩ + 𝛼

2 ∥𝑥 − 𝑥★∥2

≥ −∥∇𝑓 (𝑥)∥ ∥𝑥★ − 𝑥 ∥ + 𝛼

2 ∥𝑥 − 𝑥★∥2 ≥ − 1
2𝛼 ∥∇𝑓 (𝑥)∥2 ,

where the last inequality uses 𝑎𝑏 ≤ 𝜆
2 𝑎

2 + 1
2𝜆 𝑏

2 for all 𝜆 > 0.

2. Let (𝑥𝑡)𝑡≥0 denote the gradient flow for 𝑓 started at 𝑥0 = 𝑥 . For simplicity, we
present a proof assuming that the gradient flow converges to a point 𝑥★, although
this assumption can be avoided (cf. [KNS16]). By Corollary 2.6, we see that 𝑥★ ∈ X★.
We start by observing that

𝜕𝑡 (∥𝑥𝑡 − 𝑥0∥2) = −2 ⟨∇𝑓 (𝑥𝑡), 𝑥𝑡 − 𝑥0⟩ ≤ 2 ∥∇𝑓 (𝑥𝑡)∥ ∥𝑥𝑡 − 𝑥0∥

and hence

𝜕𝑡 ∥𝑥𝑡 − 𝑥0∥ ≤ ∥∇𝑓 (𝑥𝑡)∥ .

We differentiate the following quantity: ℒ𝑡 B
√︁

𝛼
2 ∥𝑥𝑡 − 𝑥0∥ +

√︁
𝑓 (𝑥𝑡) − 𝑓★.

¤ℒ𝑡 ≤
√︂

𝛼

2 ∥∇𝑓 (𝑥𝑡)∥ −
∥∇𝑓 (𝑥𝑡)∥2

2
√︁
𝑓 (𝑥𝑡) − 𝑓★

≤ 0 ,

where we applied (PŁ). Since ℒ0 =
√︁
𝑓 (𝑥) − 𝑓★ and ℒ∞ =

√︁
𝛼
2 ∥𝑥 − 𝑥★∥, we deduce

the result from ℒ0 ≥ ℒ∞.

□

Hence, strong convexity implies (PŁ), but is (PŁ) truly weaker than convexity? Indeed,
there are examples. In particular, the PŁ condition has been of interest in recent years
because it holds for certain overparametrized models (Exercise 2.3).

We conclude this section by studying the implication of Lemma 2.1 alone. The funda-
mental theorem of calculus shows that

1
𝑡

∫ 𝑡

0
∥∇𝑓 (𝑥𝑠)∥2 d𝑠 ≤ 𝑓 (𝑥0) − 𝑓 (𝑥𝑡)

𝑡
≤ 𝑓 (𝑥0) − 𝑓★

𝑡
.

We therefore arrive at the following simple consequence.

15

Corollary 2.8 (convergence of GF in gradient norm). For any 𝑓 : R𝑑 → R,

min
𝑠∈[0,𝑡]

∥∇𝑓 (𝑥𝑠)∥ ≤
√︂

𝑓 (𝑥0) − 𝑓★

𝑡
.

(In contrast, note that if we additionally assume convexity, then Exercise 2.1 shows
that ∥∇𝑓 (𝑥𝑡)∥ = 𝑂 (1/𝑡).)

This implies there exists a sequence of times {𝑡𝑛}𝑛∈N ↗ ∞ such that ∥∇𝑓 (𝑥𝑡𝑛)∥ → 0.
(Indeed, min𝑠∈[𝑛,2𝑛] ∥∇𝑓 (𝑥𝑠)∥ = 𝑂 (1/𝑛1/2), so we can choose 𝑡𝑛 ∈ [𝑛, 2𝑛].) However, the
gradient flow may not converge. Famously, it is a result of [Łoj63] that for real analytic 𝑓 ,
if the gradient flow remains bounded, then it does converge, and hence necessarily to a
stationary point. Of course, such a stationary point may not be a global minimizer.

The idea of subsequent sections is to replicate the preceding analysis in discrete time.

Bibliographical notes
My understanding of Theorem 2.4, Exercise 2.1, and Exercise 2.2 is based on extensive
discussions with Jason M. Altschuler, Adil Salim, Andre Wibisono, and Ashia Wilson. The
proof in Exercise 2.1 is taken from [OV01], and the extension in Exercise 2.2 to 𝛼 > 0 is
recorded in [LMW24, §F]. Both of these references pertain to the Langevin diffusion, but
underneath the hood they make use of principles from optimization; see [Che25] for an
introduction to this perspective.

The PŁ inequality is attributed to [Łoj63; Pol63] and it was popularized in [KNS16].
The proof that (PŁ) implies the quadratic growth inequality goes back at least to the
celebrated work of [OV00].

Exercises
Exercise 2.1. Let 𝑓 be convex. Show that the following quantity is decreasing, ¤ℒ𝑡 ≤ 0:

ℒ𝑡 B 𝑡2 ∥∇𝑓 (𝑥𝑡)∥2 + 2𝑡 (𝑓 (𝑥𝑡) − 𝑓★) + ∥𝑥𝑡 − 𝑥★∥2 .

Deduce the following gradient bound:

∥∇𝑓 (𝑥𝑡)∥2 ≤ 1
𝑡2 ∥𝑥0 − 𝑥★∥2 .

Moreover, use (1.4) to argue that 2𝑡 (𝑓 (𝑥𝑡) − 𝑓★) ≤ 𝑡2 ∥∇𝑓 (𝑥𝑡)∥2 + ∥𝑥𝑡 − 𝑥★∥2, hence

𝑓 (𝑥𝑡) − 𝑓★ ≤ 1
4𝑡 ∥𝑥0 − 𝑥★∥2 . (2.1)

16

Note that this improves upon Theorem 2.4 by a factor of 2. Furthermore, show that (2.1)
is sharp, as follows: for any 𝑅, 𝑡 > 0, let 𝑓 : 𝑥 ↦→ 𝑅

2𝑡 max{0, 𝑥}, 𝑥0 = 𝑅, and show that (2.1)
holds with equality.

Exercise 2.2. Extend Exercise 2.1 to the case 𝛼 > 0. Toward this end, consider

ℒ𝑡 B 𝐴𝑡 ∥∇𝑓 (𝑥𝑡)∥2 + 2𝐵𝑡 (𝑓 (𝑥𝑡) − 𝑓★) + ∥𝑥𝑡 − 𝑥★∥2 .

Choose 𝐴𝑡 , 𝐵𝑡 carefully to ensure that ¤ℒ𝑡 ≤ −𝛼ℒ𝑡 , and thereby deduce the following
sharp bounds:

∥∇𝑓 (𝑥𝑡)∥2 ≤ 𝛼2 ∥𝑥0 − 𝑥★∥2

exp(2𝛼𝑡) (1 − exp(−𝛼𝑡))2 , 𝑓 (𝑥𝑡) − 𝑓★ ≤ 𝛼 ∥𝑥0 − 𝑥★∥2

2 (exp(2𝛼𝑡) − 1) .

Exercise 2.3. Let 𝑓 : R𝑛 → R be 𝛼-convex with 𝛼 > 0, and let 𝑔 : R𝑑 → R𝑛 with 𝑑 ≥ 𝑛.
Assume that 𝑔 is surjective and that for all 𝑥 ∈ R𝑑 , if ∇𝑔(𝑥) denotes the Jacobian at 𝑥
(interpreted as a 𝑑 × 𝑛 matrix), then ∇𝑔(𝑥)T ∇𝑔(𝑥) ⪰ 𝜎𝐼𝑛. Show that the composition
𝑓 ◦ 𝑔 satisfies (PŁ) with constant 𝛼𝜎 . Note that for 𝑑 > 𝑛, there are typically multiple
minimizers of 𝑓 ◦ 𝑔.

3 Gradient descent: smooth case
In this section, we study the gradient descent algorithm:

𝑥𝑛+1 B 𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛) . (GD)

From the perspective of numerical analysis, this is the Euler or forward discretization
of (GF). Our aim is to show that if 𝑓 is smooth, and the step size is sufficiently small (as a
function of the smoothness), then the conclusions for (GF) transfer to (GD). Throughout
this section, we assume that 𝑓 is twice continuously differentiable and 𝛽-smooth.

Some of the results in this section pertain to a single step of (GD), so we use the
following notation:

𝑥+ B 𝑥 − ℎ ∇𝑓 (𝑥) .

The first step is to establish the descent property.

Lemma 3.1 (descent lemma). For any 𝛽-smooth 𝑓 : R𝑑 → R, if ℎ ≤ 1/𝛽 , then

𝑓 (𝑥+) − 𝑓 (𝑥) ≤ −ℎ2 ∥∇𝑓 (𝑥)∥2 .

17

Proof. By the smoothness inequality (1.7),

𝑓 (𝑥+) ≤ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝛽

2 ∥𝑥+ − 𝑥 ∥2 = 𝑓 (𝑥) − ℎ ∥∇𝑓 (𝑥)∥2 + 𝛽ℎ2

2 ∥∇𝑓 (𝑥)∥2 .

If ℎ ≤ 1/𝛽 , then −ℎ (1 − 𝛽ℎ/2) ≤ −ℎ/2. □

It is natural to state the subsequent results in terms of the following parameter.

Definition 3.2. Let 𝑓 be 𝛼-convex and 𝛽-smooth. Then, the condition number of 𝑓 is
defined to be the ratio 𝜅 B 𝛽/𝛼 ≥ 1.

When 𝑓 is quadratic, 𝑓 (𝑥) = 1
2 ⟨𝑥,𝐴 𝑥⟩ with 𝐴 symmetric, then 𝛼 , 𝛽 correspond to the

minimum and maximum eigenvalues of 𝐴 respectively, and the ratio 𝛽/𝛼 is known in
numerical linear algebra as the condition number of the matrix 𝐴. Thus, Definition 3.2
provides a natural generalization of this notion. With this definition in hand, we now
arrive at our first convergence result for (GD).

Theorem 3.3 (contraction of GD). Let 𝑓 be 𝛼-convex and 𝛽-smooth. For all 𝑥,𝑦 ∈ R𝑑
and step size ℎ ≤ 1/𝛽 ,

∥𝑦+ − 𝑥+∥ ≤ (1 − 𝛼ℎ)1/2 ∥𝑦 − 𝑥 ∥ .

Proof. Expanding the square,

∥𝑦+ − 𝑥+∥2 = ∥𝑦 − 𝑥 ∥2 − 2ℎ ⟨𝑦 − 𝑥,∇𝑓 (𝑦) − ∇𝑓 (𝑥)⟩ + ℎ2 ∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥2 .

By (3.5) in Exercise 3.1 below, for ℎ ≤ 1/𝛽 and from (1.5) we have

∥𝑦+ − 𝑥+∥2 ≤ ∥𝑦 − 𝑥 ∥2 − ℎ ⟨∇𝑦 − 𝑥,∇𝑓 (𝑦) − ∇𝑓 (𝑥)⟩ ≤ (1 − 𝛼ℎ) ∥𝑦 − 𝑥 ∥2 . □

In particular, if we take 𝑦 = 𝑥★, ℎ = 1/𝛽 , and iterate, it yields

∥𝑥𝑁 − 𝑥★∥ ≤
(
1 − 1

𝜅

)𝑁 /2 ∥𝑥0 − 𝑥★∥ ≤ exp
(
−𝑁

2𝜅
)
∥𝑥0 − 𝑥★∥ .

Thus, to obtain ∥𝑥𝑁 − 𝑥★∥ ≤ 𝜀, it suffices to take 𝑁 ≥ 2𝜅 log(∥𝑥0 − 𝑥★∥/𝜀).
The essence of these proofs is that the first-order term (scaling as ℎ) replicates the

continuous-time calculation, and we must apply smoothness in an appropriate way to
control the second-order term (scaling as ℎ2). In the above proof, note that if we naı̈vely
use Lipschitzness of the gradient (1.8) to control the second-order term, it leads to the

18

suboptimal choice of step size ℎ = 1/(𝛽𝜅), and a contraction factor of (1 − 1/𝜅2)1/2. To
obtain ∥𝑥𝑁 − 𝑥★∥ ≤ 𝜀, we would then have the estimate 𝑁 ≥ 2𝜅2 log(∥𝑥0 − 𝑥★∥/𝜀), which
is substantially worse. In conclusion, a bit of finesse is necessary. (In fact, Theorem 3.3
can also be improved, and the sharp rate is derived in Exercise 3.2.)

Next, we turn toward the analogue of Theorem 2.4.

Theorem 3.4 (convergence of GD in function value). Let 𝑓 be 𝛼-convex and 𝛽-smooth.
For any step size ℎ ≤ 1/𝛽 ,

∥𝑥+ − 𝑥★∥2 ≤ (1 − 𝛼ℎ) ∥𝑥 − 𝑥★∥2 − 2ℎ (𝑓 (𝑥+) − 𝑓★) . (3.1)

Therefore,

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛼

2 {(1 − 𝛼ℎ)−𝑁 − 1}
∥𝑥0 − 𝑥★∥2 . (3.2)

When 𝛼 = 0, the right-hand side should be interpreted as its limiting value as 𝛼 → 0,
namely, 1

2𝑁ℎ
∥𝑥0 − 𝑥★∥2.

Proof. Expanding the square and applying convexity via (1.4),

∥𝑥+ − 𝑥★∥2 = ∥𝑥 − 𝑥★∥2 − 2ℎ ⟨∇𝑓 (𝑥), 𝑥 − 𝑥★⟩ + ℎ2 ∥∇𝑓 (𝑥)∥2

≤ (1 − 𝛼ℎ) ∥𝑥 − 𝑥★∥2 − 2ℎ (𝑓 (𝑥) − 𝑓★) + ℎ2 ∥∇𝑓 (𝑥)∥2 .

For ℎ ≤ 1/𝛽 , the descent lemma (Lemma 3.1) now implies (3.1).
The proof of (3.2), based on iterating the recursive inequality (3.1), is justified af-

ter Lemma 3.5 below. □

We remark for later use that the proof of (3.1) goes through even if we replace 𝑥★ with
any other point 𝑧 ∈ R𝑑 , i.e.,

∥𝑥+ − 𝑧∥2 ≤ (1 − 𝛼ℎ) ∥𝑥 − 𝑧∥2 − 2ℎ (𝑓 (𝑥+) − 𝑓 (𝑧)) , for all 𝑧 ∈ R𝑑 . (3.3)

Iterating (3.1) is a matter of unrolling the recursion, but in order to maintain the
analogy with continuous time, we refer to the lemma below as “discrete Grönwall”.

19

Lemma 3.5 (discrete Grönwall). Suppose that for some 𝐴 > 0,

𝑢𝑛+1 ≤ 𝐴𝑢𝑛 + 𝐵𝑛 for 𝑛 = 0, 1, . . . , 𝑁 − 1 .

Then,

𝑢𝑁 ≤ 𝐴𝑁𝑢0 +
𝑁∑︁
𝑛=1

𝐴𝑁−𝑛𝐵𝑛−1 .

Proof. We multiply the given inequality by 𝐴−(𝑛+1) to form a telescoping sum:

𝐴−𝑁 𝑢𝑁 − 𝑢0 =
𝑁−1∑︁
𝑛=0

𝐴−(𝑛+1) (𝑢𝑛+1 −𝐴𝑢𝑛) ≤
𝑁−1∑︁
𝑛=0

𝐴−(𝑛+1) 𝐵𝑛 .

Rearrange to obtain the result. □

To complete the proof of Theorem 3.4, we apply Lemma 3.5 with 𝑢𝑛 = ∥𝑥𝑛 − 𝑥★∥2,
𝐴 = 1 − 𝛼ℎ, and 𝐵𝑛 = −2ℎ (𝑓 (𝑥𝑛+1) − 𝑓★), yielding

2ℎ
𝑁∑︁
𝑛=1

(1 − 𝛼ℎ)𝑁−𝑛 (𝑓 (𝑥𝑛) − 𝑓★) ≤ (1 − 𝛼ℎ)𝑁 ∥𝑥0 − 𝑥★∥2 .

For ℎ ≤ 1/𝛽 , the descent lemma (Lemma 3.1) implies 𝑓 (𝑥𝑛) − 𝑓★ ≥ 𝑓 (𝑥𝑁) − 𝑓★, so

𝑓 (𝑥𝑁) − 𝑓★ ≤ ∥𝑥0 − 𝑥★∥2

2ℎ
∑𝑁

𝑛=1 (1 − 𝛼ℎ)−𝑛
=

𝛼 ∥𝑥0 − 𝑥★∥2

2 {(1 − 𝛼ℎ)−𝑁 − 1}
.

In particular, let us set ℎ = 1/𝛽 . For 𝛼 > 0 it yields

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛼 ∥𝑥0 − 𝑥★∥2

2 {(1 − 1/𝜅)−𝑁 − 1}

and for 𝛼 = 0, it yields

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛽 ∥𝑥0 − 𝑥★∥2

2𝑁 .

The proof of convergence under (PŁ) is strikingly easy.

20

Theorem 3.6 (convergence of GD under PŁ). Let 𝑓 be 𝛽-smooth and satisfy (PŁ) with
constant 𝛼 > 0. Then, for all ℎ ≤ 1/𝛽 ,

𝑓 (𝑥𝑁) − 𝑓★ ≤ (1 − 𝛼ℎ)𝑁 (𝑓 (𝑥0) − 𝑓★) .

Proof. By the descent lemma (Lemma 3.1) and (PŁ),

𝑓 (𝑥+) − 𝑓★ = 𝑓 (𝑥) − 𝑓★ + 𝑓 (𝑥+) − 𝑓 (𝑥) ≤ 𝑓 (𝑥) − 𝑓★ − ℎ

2 ∥∇𝑓 (𝑥)∥2

≤ (1 − 𝛼ℎ) (𝑓 (𝑥) − 𝑓★) . □

Finally, we present the result for obtaining a stationary point.

Theorem 3.7. Let 𝑓 be 𝛽-smooth and ℎ ≤ 1/𝛽 . Then,

min
𝑛=0,1,...,𝑁−1

∥∇𝑓 (𝑥𝑛)∥ ≤
√︂

2 (𝑓 (𝑥0) − 𝑓★)
𝑁ℎ

.

Proof. Telescope the descent lemma (Lemma 3.1):

ℎ

2𝑁

𝑁−1∑︁
𝑛=0

∥∇𝑓 (𝑥𝑛)∥2 ≤ 1
𝑁

𝑁−1∑︁
𝑛=0

(𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛+1)) ≤
𝑓 (𝑥0) − 𝑓★

𝑁
. □

We summarize the results for GD in Table 1.

Assumptions Criterion Iterations
𝛼-convex, 𝛽-smooth ∥𝑥𝑁 − 𝑥★∥ ≤ 𝜀 𝑂 (𝜅 log(𝑅/𝜀))
𝛼-convex, 𝛽-smooth 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 𝑂 (𝜅 log(𝛼𝑅2/𝜀))
convex, 𝛽-smooth 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 𝑂 (𝛽𝑅2/𝜀)
𝛼-(PŁ), 𝛽-smooth 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 𝑂 (𝜅 log(Δ0/𝜀))

𝛽-smooth min
𝑛=0,1,...,𝑁−1

∥∇𝑓 (𝑥𝑛)∥ ≤ 𝜀 𝑂 (𝛽Δ0/𝜀2)

Table 1: Rates for GD with step size 1/𝛽 . Here, 𝑅 B ∥𝑥0 − 𝑥★∥ and Δ0 B 𝑓 (𝑥0) − 𝑓★.

21

Example 3.8 (logistic regression revisited). For fun, let us revisit logistic regression
(Example 1.2) from a statistical lens. For concreteness, we consider Gaussian design,
𝑋𝑖

i.i.d.∼ normal(0, 𝐼), and assume that the data is generated from the model with a true
parameter 𝜃★. Let L̂ denote the MLE objective, let L B E L̂ denote the population risk,
and let 𝑅 B ∥𝜃★∥ ≥ 1. The state-of-the-art result [CLM24] shows that if 𝑛 ≳ 𝑅𝑑 for
a sufficiently large implied constant, 𝜃MLE exists with probability ≥ 1 − exp(−𝑑) and
satisfies the optimal risk bound L(𝜃MLE) − L(𝜃★) ≲ 𝑑/𝑛.

In practice, we cannot compute 𝜃MLE exactly, so we use optimization. From [CLM24],
any estimator 𝜃 satisfying L̂(𝜃)−L̂(𝜃MLE) ≲ 𝑑/𝑛 satisfies the same statistical risk bound
as 𝜃MLE, up to a universal constant. We take 𝜃 = 𝜃GD to be the output ofGD after 𝑁 steps,
and check how large 𝑁 must be in order for this to hold. As justified in Exercise 3.3,
we can expect an iteration complexity of 𝑁 ≍ 𝑅2𝑛/𝑑 .

Bibliographical notes
My understanding of Theorem 3.4 is again based on extensive discussions with Jason M.
Altschuler, Adil Salim, Andre Wibisono, and Ashia Wilson.

Exercises
Exercise 3.1. Let 𝑓 : R𝑑 → R be convex and 𝛽-smooth. Apply Lemma 3.1 to the function
𝑦 ↦→ 𝑓 (𝑦) − ⟨∇𝑓 (𝑥), 𝑦⟩ and observe that this function is minimized at 𝑥 in order to prove

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 1
2𝛽 ∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥2 . (3.4)

From this, deduce that

∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥2 ≤ 𝛽 ⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ . (3.5)

Finally, use the Cauchy–Schwarz inequality to show that ∇𝑓 is 𝛽-Lipschitz, i.e., that (1.8)
holds. Note that this proof that convexity and 𝛽-smoothness together imply (1.8) does not
require 𝑓 to be twice differentiable.

Exercise 3.2. Let 𝑓 be 𝛼-convex and 𝛽-smooth. Let𝑇 B id−ℎ ∇𝑓 denote the one-step GD
mapping. By the fundamental theorem of calculus,

∥𝑦+ − 𝑥+∥ = ∥𝑇 (𝑦) −𝑇 (𝑥)∥ =

∫ 1

0
∇𝑇 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) (𝑦 − 𝑥) d𝑡

22

≤
(∫ 1

0
∥∇𝑇 ((1 − 𝑡) 𝑥 + 𝑡𝑦)∥op d𝑡

)
∥𝑦 − 𝑥 ∥ .

For any 𝑧 ∈ R𝑑 , bound the eigenvalues of ∇𝑇 (𝑧) and show that the choice of step size ℎ
which minimizes the bound on ∥∇𝑇 (𝑧)∥op is ℎ = 2/(𝛼 + 𝛽). Deduce the sharp rate

∥𝑦+ − 𝑥+∥ ≤ 𝜅 − 1
𝜅 + 1 ∥𝑦 − 𝑥 ∥ .

Note that for large 𝜅 , the contraction factor is approximately exp(−2/𝜅), so this improves
upon the iteration complexity implied by Theorem 3.3 by a factor of nearly 4.

Exercise 3.3. What does Theorem 3.4 imply for logistic regression (Example 1.2)? In the
setting of Example 3.8, use the fact that 𝜆max(1

𝑛

∑𝑛
𝑖=1 𝑋𝑖𝑋

T
𝑖) ≲ 1 with high probability3 to

justify the claimed 𝑅2𝑛/𝑑 iteration complexity.

4 Lower bounds for smooth optimization
The goal of this section is to establish lower complexity bounds for convex smooth
optimization. Refer to §1.1 for a conceptual first discussion of the oracle model.

Before doing so, we present some reductions between the convex and strongly convex
settings which save us some effort.

4.1 Reductions between the convex and strongly convex settings
For brevity, let us say that an algorithm successfully optimizes a function class ℱ in
𝜙 (ℱ, 𝑅, 𝜀) iterations if, given any 𝑓 ∈ ℱ and 𝑥0 ∈ R𝑑 with ∥𝑥0 − 𝑥★∥ ≤ 𝑅, it outputs 𝑥
with 𝑓 (𝑥) − 𝑓★ ≤ 𝜀 using no more than 𝜙 (ℱ, 𝑅, 𝜀) queries to a first-order oracle for 𝑓 .

Lemma 4.1. Assume there is an algorithm which successfully optimizes the class of
convex and 𝛽-smooth functions in 𝜙 (𝛽𝑅2/𝜀) iterations.

Then, there is an explicit algorithm which successfully optimizes the class of 𝛼-
convex and 𝛽-smooth functions in 𝑂 (𝜙 (8𝜅) log(𝛼𝑅2/𝜀)) iterations.

Proof. Let 𝑓 be 𝛼-strongly convex and 𝛽-smooth, and apply the given algorithm to 𝑓 to
obtain a new point 𝑥1 with tolerance 𝜀1. By (QG), we have

𝛼

2 ∥𝑥1 − 𝑥★∥2 ≤ 𝑓 (𝑥1) − 𝑓★ ≤ 𝜀1 .

3This is a standard fact about the Wishart distribution; see, e.g., [Ver18, Theorem 4.4.5].

23

Set 𝜀1 = 𝛼𝑅2/8, so that

∥𝑥1 − 𝑥★∥ ≤ 1
2 𝑅 =

1
2 ∥𝑥0 − 𝑥★∥ . (4.1)

For 𝜅 B 𝛽/𝛼 , this requires 𝜙 (8𝜅) iterations. From (4.1), if we now repeat this procedure
𝑂 (log(𝛼𝑅2/𝜀)) times, we can reach a point 𝑥 satisfying 𝑅̃ B ∥𝑥 − 𝑥★∥ ≤

√︁
𝜀/𝛼 . Finally,

apply the given algorithm one more time starting from 𝑥 with target accuracy 𝜀 to obtain
a point 𝑥 with 𝑓 (𝑥) − 𝑓★ ≤ 𝜀. The complexity of this final step is 𝜙 (𝛽𝑅̃2/𝜀) = 𝜙 (𝜅). □

For example, if we combine the 𝛼 = 0 case of Theorem 3.4 with Lemma 4.1, taking
𝜙 (𝑥) = 𝑂 (𝑥), we recover the 𝛼 > 0 case of Theorem 3.4, up to constants.

Lemma 4.2. Assume there is an algorithm which successfully optimizes the class of
𝛼-convex and 𝛽-smooth functions in 𝜙 (𝜅) log(𝛼𝑅2/𝜀) iterations.

Then, there is an explicit algorithm which successfully optimizes the class of convex
and 𝛽-smooth functions in 𝑂 (𝜙 (2𝛽𝑅2/𝜀)) iterations.

Proof. Let 𝑓 be convex and 𝛽-smooth. We apply the given algorithm to the regularized
function 𝑓𝛿 B 𝑓 + 𝛿

2 ∥· − 𝑥0∥2, obtaining a point 𝑥 such that 𝑓𝛿 (𝑥) ≤ min 𝑓𝛿 + 𝜀/2. If 𝑥𝛿,★
denotes the minimizer of 𝑓𝛿 , then

𝑓 (𝑥) ≤ 𝑓𝛿 (𝑥) ≤ 𝑓𝛿 (𝑥𝛿,★) +
𝜀

2 ≤ 𝑓𝛿 (𝑥★) +
𝜀

2 = 𝑓★ + 𝛿

2 ∥𝑥0 − 𝑥★∥2 + 𝜀

2 .

We now set 𝛿 = 𝜀/𝑅2, so that 𝑓 (𝑥) − 𝑓★ ≤ 𝜀.
It remains to estimate the complexity. We first note that 𝑓𝛿 (𝑥𝛿,★) ≤ 𝑓𝛿 (𝑥★) implies

∥𝑥0 − 𝑥★,𝛿 ∥ ≤ ∥𝑥0 − 𝑥★∥, so the initial distance to the minimizer of 𝑓𝛿 is also bounded by
𝑅. We can assume that 𝜀 ≤ 𝛽𝑅2 (or else the minimization problem is trivial). Then, the
smoothness of 𝑓𝛿 is bounded by 𝛽 + 𝛿 ≤ 2𝛽 , and the condition number of 𝑓𝛿 is bounded by
2𝛽𝑅2/𝜀. Substitute these quantities into the complexity of the given algorithm. □

Thus, the 𝛼 > 0 case of Theorem 3.4 and Lemma 4.2 recover the 𝛼 = 0 case of Theo-
rem 3.4 up to constants.

Taken together, Lemma 4.1 and Lemma 4.2 show that the 0-convex and strongly convex
settings are essentially equivalent to each other, in that an optimal method for one class
yields an optimal method for the other class. Thus, we now aim to address the following
question: what is the smallest possible 𝜙 (·)?

24

4.2 Lower bounds
According to the discussion in §1.1, establishing a lower complexity bound requires
showing that any algorithm which interacts with the first-order oracle using at most
a prescribed number of queries cannot have performance better than the lower bound.
Actually, although this is possible (see [NY83]), it is not especially easy. It was shown by
Nesterov in an earlier edition of [Nes18] that by imposing natural restrictions on the class
of algorithms under consideration, it is possible to establish the lower bounds in a more
transparent way. Accordingly, his approach has become standard in the field, and it is the
approach we adopt here as well. It does, however, have the drawback of not applying to
general query algorithms; for example, it does not apply against randomized algorithms.

The class of algorithms we consider is the following one.

Definition 4.3. An algorithm is called a gradient span algorithm if it deterministically
generates a sequence of points {𝑥𝑛}𝑛∈N such that for all 𝑛 ∈ N,

𝑥𝑛+1 ∈ 𝑥0 + span{∇𝑓 (𝑥0), . . . ,∇𝑓 (𝑥𝑛)} .

For example, GD is a gradient span algorithm. On the basis of this assumption, we
now establish the following result; recall the asymptotic notation ≳, which only hides a
universal constant.

Theorem 4.4 (lower bound for convex, smooth minimization). For any 1 ≤ 𝑁 ≤ 𝑑−1
2 ,

𝛽 > 0, and 𝑥0 ∈ R𝑑 , there exists a convex and 𝛽-smooth function 𝑓 : R𝑑 → R such that
for any gradient span algorithm,

𝑓 (𝑥𝑁) − 𝑓★ ≳
𝛽 ∥𝑥0 − 𝑥★∥2

𝑁 2 .

In other words, in order to obtain 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀, the number of iterations must satisfy

𝑁 ≳

√︂
𝛽 ∥𝑥0 − 𝑥★∥2

𝜀
.

Before proving this result, we observe that by applying Lemma 4.2 with 𝜙 (𝑥) ≍
√
𝑥 , it

yields the following corollary.

25

Theorem 4.5 (lower bound for strongly convex, smooth minimization). For any 0 <

𝛼 < 𝛽 , any 𝜀 > 0, any 𝑑 sufficiently large, and any 𝑥0 ∈ R𝑑 , there exists an 𝛼-convex
and 𝛽-smooth function 𝑓 : R𝑑 → R such that for any gradient span algorithm, in order
to obtain 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀, the number of iterations must satisfy

𝑁 ≳
√
𝜅 log 𝛼 ∥𝑥0 − 𝑥★∥2

𝜀
.

Proof of Theorem 4.4. By translating the problem, we may assume 𝑥0 = 0. The construction
is based on the following function:

𝑓𝑛 : R𝑑 → R , 𝑓𝑛 (𝑥) B
𝛽

4

{1
2

(
𝑥 [1]2 +

𝑛−1∑︁
𝑘=1

(𝑥 [𝑘] − 𝑥 [𝑘 + 1])2 + 𝑥 [𝑛]2
)
− 𝑥 [1]

}
.

For any 𝑣 ∈ R𝑑 ,

⟨𝑣,∇2𝑓𝑛 (𝑥) 𝑣⟩ =
𝛽

4

(
𝑣 [1]2 +

𝑛−1∑︁
𝑘=1

(𝑣 [𝑘] − 𝑣 [𝑘 + 1])2 + 𝑣 [𝑛]2
)
≤ 𝛽 ∥𝑣 ∥2 ,

so each 𝑓𝑛 is convex and 𝛽-smooth.
We prove by induction that when we apply a gradient span algorithm to 𝑓𝑑 , the 𝑛-th

iterate 𝑥𝑛 belongs to the subspace

V𝑛 B {𝑥 ∈ R𝑑 : 𝑥 [𝑘] = 0 for all 𝑘 = 𝑛 + 1, . . . , 𝑑} .

Clearly, 𝑥0 ∈ V0. Inductively, suppose that 𝑥𝑘 ∈ V𝑘 for all 𝑘 ≤ 𝑛. Then,

∇𝑓𝑑 (𝑥𝑘) =
𝛽

4
(
𝑥𝑘 [1] 𝑒1 +

𝑘∑︁
𝑗=1

(𝑥𝑘 [𝑗] − 𝑥𝑘 [𝑗 + 1]) (𝑒 𝑗 − 𝑒 𝑗+1)
)
− 𝛽

4 𝑒1 ∈ V𝑘+1 ,

hence

𝑥𝑛+1 ∈ span{∇𝑓𝑑 (𝑥0), . . . ,∇𝑓𝑑 (𝑥𝑛)} ⊆ V𝑛+1 .

This completes the induction. Also, since 𝑓𝑁 = 𝑓𝑑 on V𝑁 , it follows that

𝑓𝑑 (𝑥𝑁) = 𝑓𝑁 (𝑥𝑁) ≥ (𝑓𝑁)★ .

The next step is to estimate (𝑓𝑛)★ B min 𝑓𝑛 for all 𝑛. By setting the gradient to zero,
∇𝑓𝑛 (𝑥𝑛,★) = 0, we obtain the following system of equations:

2𝑥𝑛,★[1] − 𝑥𝑛,★[2] = 1 ,

26

𝑥𝑛,★[𝑘 − 1] − 2𝑥𝑛,★[𝑘] + 𝑥𝑛,★[𝑘 + 1] = 0 , for 𝑘 = 1, . . . , 𝑛 ,
−𝑥𝑛,★[𝑛 − 1] + 2𝑥𝑛,★[𝑛] = 0 .

The solution is 𝑥𝑛,★[𝑘] = 1 − 𝑘
𝑛+1 for all 𝑘 ∈ [𝑛]. Writing 𝑓𝑛 (𝑥) = 𝛽

4 {
1
2 ⟨𝑥,𝐴𝑛 𝑥⟩ − ⟨𝑒1, 𝑥⟩},

the system above reads 𝐴𝑛𝑥𝑛,★ = 𝑒1, hence

(𝑓𝑛)★ = 𝑓𝑛 (𝑥𝑛,★) = −𝛽8 ⟨𝑒1, 𝑥𝑛,★⟩ = −𝛽8
(
1 − 1

𝑛 + 1
)
.

Moreover, ∥𝑥0 − 𝑥𝑛,★∥2 = ∥𝑥𝑛,★∥2 ≤ 𝑛. Finally, it yields

𝑓𝑑 (𝑥𝑁) − (𝑓𝑑)★ ≥ (𝑓𝑁)★ − (𝑓𝑑)★ =
𝛽

8
(1
𝑁 + 1 − 1

𝑑 + 1
)

≥
𝛽 ∥𝑥0 − 𝑥𝑑,★∥2

8𝑑
(1
𝑁 + 1 − 1

𝑑 + 1
)
.

Choosing 𝑑 ≍ 𝑁 , e.g., 𝑑 = 2𝑁 + 1, yields the stated lower bound. □

Notably, the iteration complexity lower bounds Theorem 4.4 and Theorem 4.5 are
smaller than the bounds attained by GD in Theorem 3.4 by a square root. As developed in
the next sections, in fact the lower bounds are tight and GD is suboptimal.

We make two further remarks. First, it is perhaps surprising that the lower bound
construction is a quadratic function; in some sense, quadratics are the hardest convex and
smooth functions to optimize. Second, the lower bound requires the ambient dimension
to be larger than the iteration count; this is crucial for the proof technique, which relies
on the algorithm discovering one new dimension per iteration. This turns out to be
fundamental because there are better methods in low dimension, for quadratics and even
for general convex functions.

Exercises
Exercise 4.1. In the setting of Theorem 4.4 and using the same construction as in the
proof, show that ∥𝑥𝑁 − 𝑥★∥2 ≳ ∥𝑥0 − 𝑥★∥2. In other words, in the 0-convex case, it is
not possible to make progress in the sense of distance to the minimizer by more than a
constant factor.

Exercise 4.2. We used the reductions from §4.1 to reduce the strongly convex lower
bound to the 0-convex lower bound for the sake of brevity, but it is of course possible to
develop the strongly convex lower bound directly. Consider the function

𝑓 : R∞ → R , 𝑓 (𝑥) B 𝛽 − 𝛼

8

{
𝑥 [1]2 +

∞∑︁
𝑛=1

(𝑥 [𝑛] − 𝑥 [𝑛 + 1])2 − 2𝑥 [1]
}
+ 𝛼

2 ∥𝑥 ∥2 .

27

By adapting the proof of Theorem 4.4, show that any gradient span algorithm satisfies

𝑓 (𝑥𝑁) − 𝑓★ ≥ 𝛼

2 ∥𝑥𝑁 − 𝑥★∥2 ≥ 𝛼

2

(√𝜅 − 1
√
𝜅 + 1

)2𝑁
∥𝑥0 − 𝑥★∥2 .

5 Acceleration
We now show that the lower bounds of Theorem 4.4 and Theorem 4.5 can be attained via
algorithms which improve upon GD. This is known as the acceleration phenomenon in
optimization. We begin with the quadratic case.

5.1 Quadratic case: the conjugate gradient method
In this section, the objective function is quadratic:

𝑓 : R𝑑 → R , 𝑓 (𝑥) = 1
2 ⟨𝑥,𝐴 𝑥⟩ − ⟨𝑏, 𝑥⟩ ,

where 𝐴 is a symmetric matrix, 𝐴 ≻ 0. Note also that minimizing 𝑓 corresponds to solving
the system of equations 𝐴𝑥★ = 𝑏. We now introduce the conjugate gradient method.

The method is succinctly described as follows:

𝑥𝑛+1 B arg min
{
𝑓 (𝑥)

�� 𝑥 ∈ 𝑥0 + span{∇𝑓 (𝑥0),∇𝑓 (𝑥1), . . . ,∇𝑓 (𝑥𝑛)}
}
. (CG)

This scheme is very natural in light of the definition of a gradient span algorithm (Defini-
tion 4.3) that we encountered for the lower bounds. However, it is not yet clear that (CG)
can be implemented cheaply. Using the fact that 𝑓 is quadratic, our aim is to show
that (CG) can be rewritten as a simple iteration that uses one gradient query per step.

As is usually the case in linear algebra, instead of working with the set of vec-
tors {∇𝑓 (𝑥0),∇𝑓 (𝑥1), . . . ,∇𝑓 (𝑥𝑛)}, it is more convenient to work with an orthogonal
set {𝑝0, 𝑝1, . . . , 𝑝𝑛}. Here, orthogonality is with respect to the inner product ⟨·, ·⟩𝐴, i.e.,
we will require ⟨𝑝𝑖, 𝐴 𝑝 𝑗 ⟩ = 0 for all 𝑖 ≠ 𝑗 . We start with 𝑝0 B ∇𝑓 (𝑥0), and we write
K𝑛 B span{𝑝0, 𝑝1, . . . , 𝑝𝑛}. We must address the following two questions:

• Given K𝑛 and 𝑥𝑛 , how can we compute 𝑥𝑛+1 = arg min𝑥0+K𝑛
𝑓 ?

• Given K𝑛 and ∇𝑓 (𝑥𝑛+1), how can we compute 𝑝𝑛+1 and thus K𝑛+1?

For the first question, we may assume inductively that 𝑥𝑛 = arg min𝑥0+K𝑛−1
𝑓 , which

means that ⟨∇𝑓 (𝑥𝑛), 𝑝𝑘⟩ = 0 for all 𝑘 < 𝑛. The next point is taken to be 𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑛𝑝𝑛 ,
chosen so that ⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑘⟩ = 0 for all 𝑘 ≤ 𝑛. Since ∇𝑓 is linear,

⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑘⟩ = ⟨∇𝑓 (𝑥𝑛) + ℎ𝑛 𝐴𝑝𝑛, 𝑝𝑘⟩ .

28

For 𝑘 < 𝑛, this equals zero by the inductive hypothesis on 𝑥𝑛, and the orthogonality of
{𝑝0, 𝑝1, . . . , 𝑝𝑛}. We choose ℎ𝑛 to ensure that this equals zero for 𝑘 = 𝑛 too:

ℎ𝑛 = −⟨∇𝑓 (𝑥𝑛), 𝑝𝑛⟩
∥𝑝𝑛∥2

𝐴

.

For the second question, we want to compute the Gram–Schmidt orthogonalization
of ∇𝑓 (𝑥𝑛+1) w.r.t. {𝑝0, 𝑝1, . . . , 𝑝𝑛} in the ⟨·, ·⟩𝐴 inner product. We claim that ∇𝑓 (𝑥𝑛+1) is
already 𝐴-orthogonal to 𝑝𝑘 for 𝑘 < 𝑛, so that

𝑝𝑛+1 = ∇𝑓 (𝑥𝑛+1) − ⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑛⟩𝐴
𝑝𝑛

∥𝑝𝑛∥2
𝐴

. (5.1)

To justify this, we show that for 𝑘 < 𝑛, 𝐴𝑝𝑘 ∈ K𝑘+1 , hence

⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑘⟩𝐴 = ⟨∇𝑓 (𝑥𝑛+1), 𝐴𝑝𝑘⟩ = 0

using the fact shown above that ∇𝑓 (𝑥𝑛+1) is orthogonal (in the usual inner product) to
K𝑛 . Finally, the boxed equation is shown through the following lemma.

Lemma 5.1. For all 𝑛 ∈ N,

K𝑛 = span{𝑝0, 𝐴𝑝0, . . . , 𝐴
𝑛𝑝0} .

Proof. We proceed via induction, where the case 𝑛 = 0 is obvious. Assuming it holds at
iteration 𝑛, let us show that 𝑝𝑛+1 ∈ K̃𝑛+1 B span{𝑝0, 𝐴𝑝0, . . . , 𝐴

𝑛+1𝑝0}. By (5.1), it suffices
to show that ∇𝑓 (𝑥𝑛+1) ∈ K̃𝑛+1. However, as discussed above, ∇𝑓 (𝑥𝑛+1) = ∇𝑓 (𝑥𝑛) +
ℎ𝑛 𝐴𝑝𝑛 = 𝑝0 + ℎ0 𝐴𝑝0 + · · · + ℎ𝑛 𝐴𝑝𝑛 ∈ K̃𝑛+1.

Conversely, we must show that 𝐴𝑛+1𝑝0 ∈ K𝑛+1. Since 𝐴𝑛𝑝0 ∈ K𝑛, we can write
𝐴𝑛𝑝0 =

∑𝑛
𝑘=0 𝑐𝑘𝑝𝑘 , thus 𝐴𝑛+1𝑝0 =

∑𝑛
𝑘=0 𝑐𝑘 𝐴𝑝𝑘 . By the inductive hypothesis, each 𝐴𝑝𝑘 for

𝑘 < 𝑛 belongs to K𝑛 , so it suffices to have 𝐴𝑝𝑛 ∈ K𝑛+1. However, we can observe that
𝐴𝑝𝑛 = ℎ−1

𝑛 (∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑥𝑛)) ∈ K𝑛+1 by (5.1). □

Definition 5.2. The subspaces {K𝑛}𝑛∈N are called Krylov subspaces.

Finally, let us write the iterations in a form which is convenient for implementation.
Note first that ⟨∇𝑓 (𝑥𝑛),∇𝑓 (𝑥𝑛+1)⟩ = 0 (indeed, ∇𝑓 (𝑥𝑛+1) is orthogonal to all of K𝑛). So,

⟨∇𝑓 (𝑥𝑛+1), 𝑝𝑛⟩𝐴
∥𝑝𝑛∥2

𝐴

=
⟨∇𝑓 (𝑥𝑛+1),∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑥𝑛)⟩

ℎ𝑛 ∥𝑝𝑛∥2
𝐴

= −∥∇𝑓 (𝑥𝑛+1)∥2

⟨∇𝑓 (𝑥𝑛), 𝑝𝑛⟩

29

and ∥∇𝑓 (𝑥𝑛)∥2 = ⟨∇𝑓 (𝑥𝑛),∇𝑓 (𝑥𝑛)⟩ = ⟨∇𝑓 (𝑥𝑛), 𝑝𝑛⟩ using (5.1) and the fact that ∇𝑓 (𝑥𝑛) is
orthogonal to K𝑛−1. This yields the following iteration, where we write 𝑟𝑛 B 𝐴𝑥𝑛 − 𝑏 =

∇𝑓 (𝑥𝑛) for the residual.

𝑥𝑛+1 = 𝑥𝑛 −
∥𝑟𝑛∥2

⟨𝑝𝑛, 𝐴 𝑝𝑛⟩
𝑝𝑛 , 𝑟𝑛+1 = 𝑟𝑛 −

∥𝑟𝑛∥2

⟨𝑝𝑛, 𝐴 𝑝𝑛⟩
𝐴𝑝𝑛 , 𝑝𝑛+1 = 𝑟𝑛+1 +

∥𝑟𝑛+1∥2

∥𝑟𝑛∥2 𝑝𝑛 .

This algorithm requires one matrix-vector multiplication per iteration, namely, the com-
putation of 𝐴𝑝𝑛 .

Note that if 𝑝𝑛+1 = 0, then ∇𝑓 (𝑥𝑛+1) ∈ K𝑛 , yet ∇𝑓 (𝑥𝑛+1) ⊥ K𝑛 and thus ∇𝑓 (𝑥𝑛+1) = 0,
𝑥𝑛+1 = 𝑥★. Since 𝑝𝑑+1 = 0 (an orthogonal set in R𝑑 cannot have more than 𝑑 non-zero
elements), we arrive at the following conclusion.

Theorem 5.3 (termination of CG). The CG algorithm returns the exact minimizer in at
most 𝑑 iterations.

Let us now show that CG can find an approximate minimizer at the accelerated rate.

Theorem 5.4 (accelerated convergence for CG). Let 0 ≺ 𝛼𝐼 ⪯ 𝐴 ⪯ 𝛽𝐼 . Then, CG
outputs 𝑥𝑁 satisfying 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 in 𝑁 = 𝑂 (

√
𝜅 log 𝑓 (𝑥0)−𝑓★

𝜀
) iterations.

Proof. By the descent lemma (Lemma 3.1) and the defining property of CG,

𝑓 (𝑥𝑛+1) ≤ 𝑓
(
𝑥𝑛 −

1
𝛽
∇𝑓 (𝑥𝑛)

)
≤ 𝑓 (𝑥𝑛) −

1
2𝛽 ∥∇𝑓 (𝑥𝑛)∥2 ,

so that

𝑓 (𝑥0) − 𝑓★ ≥ 1
2𝛽

𝑁−1∑︁
𝑛=0

∥∇𝑓 (𝑥𝑛)∥2 .

On the other hand, since ∇𝑓 (𝑥𝑛) ⊥ 𝑥𝑘+1 − 𝑥𝑘 for 𝑘 < 𝑛,

𝑓★ − 𝑓 (𝑥𝑛) ≥ ⟨∇𝑓 (𝑥𝑛), 𝑥★ − 𝑥𝑛⟩ = ⟨∇𝑓 (𝑥𝑛), 𝑥★ − 𝑥0⟩ .
If we sum these inequalities and use orthogonality of the gradients,

𝑁 (𝑓 (𝑥𝑁) − 𝑓★) ≤
𝑁−1∑︁
𝑛=0

(𝑓 (𝑥𝑛) − 𝑓★) ≤
〈𝑁−1∑︁
𝑛=0

∇𝑓 (𝑥𝑛), 𝑥0 − 𝑥★

〉
≤

𝑁−1∑︁
𝑛=0

∇𝑓 (𝑥𝑛)

 ∥𝑥0 − 𝑥★∥

≤
(𝑁−1∑︁
𝑛=0

∥∇𝑓 (𝑥𝑛)∥2
)1/2

√︂
2 (𝑓 (𝑥0) − 𝑓★)

𝛼
≤ 2

√
𝜅 (𝑓 (𝑥0) − 𝑓★) .

Let 𝑁 be such that 𝑓 (𝑥𝑁) − 𝑓★ ≥ (𝑓 (𝑥0) − 𝑓★)/2. The inequality above then implies that
𝑁 ≤ 4

√
𝜅. Thus, every 4

√
𝜅 iterations, the objective gap decreases by a factor of 2. □

30

By applying the restart strategy as in Lemma 4.1, one can also show an iteration
complexity scaling with

√
𝜅 in the strongly convex case. However, we instead give a

different proof in order to explain the classical link with polynomial approximation.
Due to Lemma 5.1, 𝑥𝑁 −𝑥0 ∈ K𝑁−1 can be written in the form 𝑥𝑁 −𝑥0 =

∑𝑁−1
𝑛=0 𝑐𝑛𝐴

𝑛𝑝0,
so 𝑥𝑁 −𝑥★ = 𝑥0 −𝑥★ +

∑𝑁−1
𝑛=0 𝑐𝑛𝐴

𝑛+1 (𝑥0 −𝑥★) = 𝑃𝑁 (𝐴) (𝑥0 −𝑥★) where 𝑃𝑁 is a polynomial
of degree at most 𝑁 satisfying 𝑃𝑁 (0) = 1. Conversely, if 𝑄𝑁 is any other degree-𝑁
polynomial with 𝑄𝑁 (0) = 1, then 𝑥𝑁 B 𝑥0 + 𝐴−1 (𝑄𝑁 (𝐴) − 𝐼) 𝑝0 ∈ 𝑥0 + K𝑁−1 satisfies
𝑥𝑁 − 𝑥★ = 𝑥0 − 𝑥★ +𝐴−1 (𝑄𝑁 (𝐴) − 𝐼) 𝑝0 = 𝑄𝑁 (𝐴) (𝑥0 − 𝑥★).

This equivalence, together with the fact that the output 𝑥𝑁 of CG minimizes 𝑓 over
𝑥0 +K𝑁−1, shows that

𝑓 (𝑥𝑁) − 𝑓★ ≤ 1
2 min{∥𝑄𝑁 (𝐴) (𝑥0 − 𝑥★)∥2

𝐴 : 𝑄𝑁 ∈ R≤𝑁 [𝑋] , 𝑄𝑁 (0) = 1} ,

where R≤𝑁 [𝑋] denotes the set of polynomials with real-valued coefficients and with
degree at most 𝑁 . Furthermore, since 𝐴 and 𝑄𝑁 (𝐴) commute,

∥𝑄𝑁 (𝐴) (𝑥0 − 𝑥★)∥2
𝐴 ≤ ∥𝑄𝑁 (𝐴)∥2

op ∥𝑥0 − 𝑥★∥2
𝐴 ≤

(
max

[𝜆min (𝐴), 𝜆max (𝐴)]
|𝑄𝑁 |2

)
∥𝑥0 − 𝑥★∥2

𝐴 .

We have arrived at the following result.

Lemma 5.5 (CG and polynomial approximation). Assume that 0 ≺ 𝛼𝐼 ⪯ 𝐴 ⪯ 𝛽𝐼 . Then,
the output 𝑥𝑁 of CG satisfies

𝑓 (𝑥𝑁) − 𝑓★ ≤ min
{

max
𝜆∈[𝛼,𝛽]

|𝑄𝑁 (𝜆) |2 : 𝑄𝑁 ∈ R≤𝑁 [𝑋] , 𝑄𝑁 (0) = 1
}
(𝑓 (𝑥0) − 𝑓★) .

Informally, this result states that CG performs as well as the best possible degree-𝑁
polynomial in 𝐴. To bound the rate of convergence of CG, it therefore remains to exhibit
a judicious polynomial 𝑄𝑁 . This is accomplished by the family of Chebyshev polynomials,
on which many volumes have been written.

Definition 5.6. The degree-𝑛 Chebyshev polynomial 𝑇𝑛 is defined so that cos(𝑛𝜃) =
𝑇𝑛 (cos𝜃) for all 𝜃 ∈ R.

It is not obvious at first glance that 𝑇𝑛 is indeed a degree-𝑛 polynomial, but this can
be established via trigonometric identities. The use of the Chebyshev polynomials to
establish a rate of convergence for CG is explored in Exercise 5.1.

Here, we point out another interesting fact that arises from this connection. Recall
from the proof of Lemma 5.5 that if we can compute 𝑥𝑁 B 𝑥0 +𝐴−1 (𝑄𝑁 (𝐴) − 𝐼) 𝑝0, then

31

it incurs error at most 𝑓 (𝑥𝑁) − 𝑓★ ≤ (max𝜆∈[𝛼,𝛽] |𝑄𝑁 (𝜆) |2) (𝑓 (𝑥0) − 𝑓★). In particular,
rather than using CG, we can try to compute the polynomial 𝑥 ↦→ (𝑄𝑁 (𝑥) − 1)/𝑥 directly,
where 𝑄𝑁 is the polynomial in Exercise 5.1 which witnesses the fast convergence of CG.
Although we omit the details, it is worth noting that the family of Chebyshev polynomials
satisfies a so-called three-term recurrence:

𝑇𝑛+1(𝑥) = 2𝑥 𝑇𝑛 (𝑥) −𝑇𝑛−1(𝑥) , 𝑥 ∈ R .

In fact, orthogonal families of polynomials usually do.4 From an algorithmic standpoint,
it leads to an optimization algorithm of the form

𝑥𝑛+1 = 𝑐0 𝐴𝑥𝑛 + 𝑐1 𝑥𝑛−1 + 𝑐2 𝑏 ,

where 𝑐0, 𝑐1, 𝑐2 ∈ R are fixed coefficients. Note that unlike GD, 𝑥𝑛+1 depends on the
previous two iterates. This is often referred to as momentum, and also forms the basis for
acceleration for general convex functions.

Remark 5.7 (practicality of CG). Solving the linear system 𝐴𝑥 = 𝑏 via Gaussian
elimination requires 𝑂 (𝑑3) operations and is numerically unstable, whereas for well-
conditioned matrices𝐴,CG returns an approximate solution in𝑂 (

√
𝜅) iterations, each of

which requires a matrix-vector multiplication. A matrix-vector multiplication requires
𝑂 (𝑑2) time in the worst case, but can be faster if 𝐴 is sparse. In practice, CG is widely
used, especially when combined with other strategies such as preconditioning.

5.2 General case: continuous time
Although it does not follow the historical development of events, we begin our treatment
of acceleration for general convex smooth functions in continuous time. As identified
in [SBC16], the continuous-time ODE is

¤𝑥𝑡 = 𝑝𝑡 ,

¤𝑝𝑡 = −∇𝑓 (𝑥𝑡) − 𝛾𝑡𝑝𝑡 .
(AGF)

We refer to (AGF) as the accelerated gradient flow, and the variable 𝑝𝑡 admits the physical
interpretation of momentum (for a particle with unit mass). The dynamics consists of two
parts: the equations

¤𝑥𝑡 = 𝑝𝑡 ,

4This arises in connection with second-order differential operators.

32

¤𝑝𝑡 = −∇𝑓 (𝑥𝑡)

are known as Hamilton’s equations, and they are the standard first-order reformulation
of Newton’s law of motion ¥𝑥𝑡 = −∇𝑓 (𝑥𝑡) with potential energy 𝑓 . Hamilton’s equations
conserve the energy (or Hamiltonian) 𝐻 (𝑥, 𝑝) B 𝑓 (𝑥) + 1

2 ∥𝑝 ∥
2, and this conservation

property is perhaps undesirable for an optimization algorithm which seeks to minimize 𝑓 .
Thus, the second part of the dynamics, ¤𝑝𝑡 = −𝛾𝑡𝑝𝑡 adds a dissipative friction force, where
𝛾𝑡 ≥ 0 is a possibly time-varying coefficient of friction.

In the case where 𝑓 is merely assumed to be convex, it turns out that the right choice
of friction coefficient is 𝛾𝑡 = 3/𝑡 . This is mysterious at first sight and was obtained by
taking the continuous-time limit of Nesterov’s discrete algorithm in the next subsection.
We begin with a convergence analysis in this setting. (Similar caveats as for §2 apply here;
we assume that 𝑓 is smooth, that it admits a minimizer 𝑥★, and that (AGF) is well-posed.)

Theorem 5.8 (convergence of AGF under convexity). Let 𝑓 : R𝑑 → R be convex and
let (𝑥𝑡)𝑡≥0 evolve along AGF with 𝛾𝑡 = 3/𝑡 and 𝑝0 = 0. Then, for all 𝑡 ≥ 0,

𝑓 (𝑥𝑡) − 𝑓★ ≤ 2 ∥𝑥0 − 𝑥★∥2

𝑡2 .

Proof. Consider the auxiliary point 𝑧𝑡 B 𝑥𝑡 + 𝑡
2 𝑝𝑡 , and the Lyapunov function

ℒ𝑡 B
𝑡2

2 (𝑓 (𝑥𝑡) − 𝑓★) + ∥𝑧𝑡 − 𝑥★∥2 .

The computation below shows that ¤ℒ𝑡 ≤ 0, which implies the result. The choice of
Lyapunov function is mysterious, so we partially demystify it after the proof.

Straightforward differentiation and convexity yield

¤ℒ𝑡 = 𝑡 (𝑓 (𝑥𝑡) − 𝑓★) +
𝑡2

2 ⟨∇𝑓 (𝑥𝑡), 𝑝𝑡 ⟩ − 𝑡 ⟨∇𝑓 (𝑥𝑡), 𝑧𝑡 − 𝑥★⟩

= 𝑡 (𝑓 (𝑥𝑡) − 𝑓★) − 𝑡 ⟨∇𝑓 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩ ≤ 0 . □

Although the Lyapunov function above appears fortuitous, it can be derived in a
reasonably systematic manner; see Exercise 5.2. The strongly convex case is similar, and
is left as Exercise 5.3.

Theorem 5.9 (convergence of AGF under strong convexity). Let 𝑓 : R𝑑 → R be
𝛼-convex and let (𝑥𝑡)𝑡≥0 evolve along AGF with 𝛾𝑡 = 2

√
𝛼 and 𝑝0 = 0. For all 𝑡 ≥ 0,

𝑓 (𝑥𝑡) − 𝑓★ ≤ 2 exp(−
√
𝛼 𝑡) (𝑓 (𝑥0) − 𝑓★) .

33

Recall that under convexity and 𝛼-convexity, the objective gap 𝑓 (𝑥𝑡) − 𝑓★ for GF
converges at the rates𝑂 (1/𝑡) and𝑂 (exp(−2𝛼𝑡)) respectively. On the other hand, for AGF,
the convergence happens at the rates 𝑂 (1/𝑡2) and 𝑂 (exp(−

√
𝛼 𝑡)) respectively. This is

strongly suggestive of the square root factor speed-up, that is, acceleration. However,
we caution that it is dangerous to deduce conclusions from continuous-time analysis
alone. For example, we can run any ODE faster, which can make the continuous-time
convergence rate arbitrarily fast; however, this does not translate into a better discrete-
time algorithm, since speeding up time makes the ODE more unstable and therefore
requires a smaller step size for discretization.

So how, then, can we discretize AGF? Part of the subtlety of acceleration is that not
all discretizations work. For example, we could consider

𝑥𝑛+1 ≈ 𝑥𝑛 + ℎ 𝑝𝑛+1 ,

𝑝𝑛+1 ≈ 𝑝𝑛 − ℎ ∇𝑓 (𝑥𝑛) − 𝛾𝑛ℎ 𝑝𝑛

which is equivalent to the update

𝑥𝑛+1 = 𝑥𝑛 − ℎ2 ∇𝑓 (𝑥𝑛) + (1 − 𝛾𝑛ℎ) (𝑥𝑛 − 𝑥𝑛−1) .

Or, if we do not presume to know the coefficients for the discrete-time scheme in advance,
we could write the update as

𝑥𝑛+1 = 𝑥𝑛 − 𝜂𝑛 ∇𝑓 (𝑥𝑛) + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) .

In other words, we take a gradient step and then apply momentum. This is known
as Polyak’s heavy ball method, and although it can be tuned to converge at the rate
of CG for quadratic objectives, this same tuning leads to divergence for general convex
functions [LRP16]. On the other hand, the optimal method in the next subsection can be
written in the form

𝑥𝑛+1 = 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) − 𝜂𝑛 ∇𝑓
(
𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)

)
.

In other words, we add momentum and then take a gradient step.

5.3 General case: discrete time
The acceleration phenomenon is undoubtedly one of the most elusive and fascinating
aspects of optimization, so it is no surprise that it has been explored through many
different angles over the course of countless research papers. At this junction, we must
choose how to present the method and in what level of detail.

34

Having explored acceleration carefully in the quadratic case and in continuous time,
here we follow the expedient route by giving perhaps the most direct and shortest proof,
at the cost of generality and intuition.5

We analyze the following method with 𝑥−1 = 𝑥0:

𝑥𝑛+1 B 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) −
1
𝛽
∇𝑓

(
𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)

)
. (AGD)

Theorem 5.10 (convergence of AGD). Let 𝑓 be convex and 𝛽-smooth. Define the
sequence: 𝜆0 B 0 and 𝜆𝑛+1 B

1
2 (1 +

√︁
1 + 4𝜆2

𝑛) for 𝑛 ∈ N. Set 𝜃𝑛 B (𝜆𝑛 − 1)/𝜆𝑛+1.
Then, AGD satisfies

𝑓 (𝑥𝑁) − 𝑓★ ≤ 2𝛽 ∥𝑥0 − 𝑥★∥2

𝑁 2 .

Proof. Let 𝑦𝑛 B 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1), so that 𝑥𝑛+1 = 𝑦𝑛 − 1
𝛽
∇𝑓 (𝑦𝑛). Recall from (3.3) that

for any 𝑧 ∈ R𝑑 , it holds that

∥𝑥𝑛+1 − 𝑧∥2 ≤ ∥𝑦𝑛 − 𝑧∥2 − 2
𝛽
(𝑓 (𝑥𝑛+1) − 𝑓 (𝑧)) .

Rearranging, it yields

𝑓 (𝑥𝑛+1) − 𝑓 (𝑧) ≤ 𝛽

2 (∥𝑦𝑛 − 𝑧∥2 − ∥𝑥𝑛+1 − 𝑧∥2) = −𝛽2 ∥𝑥𝑛+1 − 𝑦𝑛∥2 − 𝛽 ⟨𝑥𝑛+1 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ .

We apply this inequality with two points, 𝑧 = 𝑥𝑛 and 𝑧 = 𝑥★. By multiplying the first
inequality by 𝜆𝑛+1 − 1 ≥ 0 and adding it to the second inequality, it implies

(𝜆𝑛+1 − 1) (𝑓 (𝑥𝑛+1) − 𝑓 (𝑥𝑛)) + 𝑓 (𝑥𝑛+1) − 𝑓★

≤ −𝛽𝜆𝑛+1
2 ∥𝑥𝑛+1 − 𝑦𝑛∥2 − 𝛽 ⟨𝑥𝑛+1 − 𝑦𝑛, 𝜆𝑛+1𝑦𝑛 − (𝜆𝑛+1 − 1) 𝑥𝑛 − 𝑥★⟩

=
𝛽

2𝜆𝑛+1

(
∥𝜆𝑛+1𝑦𝑛 − (𝜆𝑛+1 − 1) 𝑥𝑛 − 𝑥★∥2 − ∥𝜆𝑛+1 𝑥𝑛+1 − (𝜆𝑛+1 − 1) 𝑥𝑛 − 𝑥★∥2) ,

where the last line uses the identity ∥𝑎∥2 + 2 ⟨𝑎, 𝑏⟩ = ∥𝑎 + 𝑏∥2 − ∥𝑏∥2. Our goal is to
produce a telescoping sum, which is the case if we ensure that

𝜆𝑛+1 𝑥𝑛+1 − (𝜆𝑛+1 − 1) 𝑥𝑛 = 𝜆𝑛+2𝑦𝑛+1 − (𝜆𝑛+2 − 1) 𝑥𝑛+1 .

5Perhaps I will change my mind in a future edition of these notes.

35

By substituting in 𝑦𝑛+1 = 𝑥𝑛+1 + 𝜃𝑛+1 (𝑥𝑛+1 − 𝑥𝑛), some algebra shows that it suffices to
take 𝜃𝑛+1 = (𝜆𝑛+1 − 1)/𝜆𝑛+2.

After multiplying the above inequality by 𝜆𝑛+1 and summing, we find that

𝛽

2 ∥𝜆1𝑦0 − (𝜆1 − 1) 𝑥0 − 𝑥★∥2 ≥
𝑁−1∑︁
𝑛=0

{𝜆2
𝑛+1 (𝑓 (𝑥𝑛+1) − 𝑓★) − 𝜆𝑛+1 (𝜆𝑛+1 − 1) (𝑓 (𝑥𝑛) − 𝑓★)} .

We also want the right-hand side to telescope, so we set 𝜆𝑛+1 (𝜆𝑛+1 − 1) = 𝜆2
𝑛 , which yields

the recursion 𝜆𝑛+1 =
1
2 (1 +

√︁
1 + 4𝜆2

𝑛). With 𝜆0 = 0, it yields

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛽 ∥𝑦0 − 𝑥★∥2

2𝜆2
𝑁

=
𝛽 ∥𝑥0 − 𝑥★∥2

2𝜆2
𝑁

.

Finally, it is straightforward to show by induction that 𝜆𝑁 ≥ 𝑁 /2. □

By applying the reduction in Lemma 4.1, it also yields an accelerated algorithm for
the strongly convex case, i.e., an algorithm that achieves 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 in 𝑂 (

√
𝜅 log 𝛼𝑅2

𝜀
)

iterations, where 𝑅 B ∥𝑥0 − 𝑥★∥.

Example 5.11. If we apply the accelerated method to logistic regression (see Exam-
ple 3.8), it improves the iteration complexity from 𝑂 (𝑅2𝑛/𝑑) to 𝑂 (𝑅

√︁
𝑛/𝑑).

Bibliographical notes
The simple proof of Theorem 5.4 is taken from [NY83]. The discussion on Chebyshev
polynomials follows [Vis12].

The literature on acceleration is too large to be surveyed here, but we mention a
recent result in a somewhat different direction: what is the best rate of GD just by
changing the step sizes? Thus, we consider the iteration 𝑥𝑛+1 = 𝑥𝑛 − ℎ𝑛 ∇𝑓 (𝑥𝑛), with the
only freedom being to choose the sequence {ℎ𝑛}𝑛∈N. It turns out a constant step size
schedule is not optimal, and as established in [AP24a; AP24b], the so-called silver step
size schedule achieves the rates of Lemma 4.1 and Lemma 4.2 with 𝜙 (𝑥) = 𝑥

log𝜌 2 ≈ 𝑥0.786

with 𝜌 B 1 +
√

2. This is a rate intermediate between the unaccelerated rate of GD and
the accelerated rate of AGD.

Exercises
Exercise 5.1. Define the polynomial 𝑄𝑛 (𝑥) = 𝑇𝑛 (𝛼+𝛽−2𝑥

𝛽−𝛼)/𝑇𝑛 (𝛼+𝛽𝛽−𝛼). Show that 𝑄𝑛 (0) = 1
and use Definition 5.6 to establish the identity

𝑇𝑛 (𝑥) =
1
2
(
(𝑥 −

√
𝑥2 − 1)𝑛 + (𝑥 +

√
𝑥2 − 1)𝑛

)
for 𝑥 ∈ [−1, 1] .

36

One can show that this identity actually holds for all 𝑥 ∈ R. Use this to show that

max
𝑥∈[𝛼,𝛽]

|𝑄𝑛 (𝑥) | ≤ 2
(√𝜅 − 1
√
𝜅 + 1

)𝑛
.

Note that by combining this with Lemma 5.5, it yields an exponential rate of convergence
for CG matching the lower bound of Exercise 4.2.

Exercise 5.2. To better understand the proof of Theorem 5.8, consider a Lyapunov function
of the form

ℒ𝑡 = ∥𝑥𝑡 − 𝑥★∥2 + 𝑎𝑡 ⟨𝑥𝑡 − 𝑥★, 𝑝𝑡 ⟩ + 𝑏𝑡 ∥𝑝𝑡 ∥2 + 𝑐𝑡 (𝑓 (𝑥𝑡) − 𝑓★) .

Note that this is the most general Lyapunov function consisting of a combination of a
quadratic function in 𝑥𝑡 − 𝑥★ and 𝑝𝑡 , as well as the objective gap; here, it is crucial that we
include the mixed term 𝑎𝑡 ⟨𝑥𝑡 − 𝑥★, 𝑝𝑡 ⟩. Our goal is to choose the coefficients 𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡 so
that ¤ℒ𝑡 ≤ 0.

Compute the derivative in time of ℒ𝑡 along AGF with 𝛾𝑡 = 3/𝑡 , and apply convexity
to the term ⟨∇𝑓 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩. In the resulting expression, since the terms ⟨𝑥𝑡 − 𝑥★, 𝑝𝑡 ⟩ and
⟨∇𝑓 (𝑥𝑡), 𝑝𝑡 ⟩ do not have definite signs, ensure that the coefficients in front of these terms
vanish through a suitable choice of 𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡 . Show that this leads to 𝑎𝑡 = 𝑡 + 𝑎𝑡3 for some
𝑎 ≥ 0. Next, from the remaining terms, obtain the condition ¤𝑏𝑡 ≤ min{𝑎𝑡2 ,

6𝑏𝑡
𝑡
−𝑎𝑡 }, which

implies 3 ¤𝑏𝑡 ≤ 6𝑏𝑡/𝑡 , hence we consider 𝑏𝑡 = 𝑏0 + 𝑏𝑡2 for some 𝑏0, 𝑏 ≥ 0. Furthermore,
argue that we must take 𝑎 = 0 and 𝑏 = 1

4 . To ensure that ℒ0 only depends on ∥𝑥0 − 𝑥★∥,
we set 𝑏0 = 𝑐0 = 0. Finally, check that with these choices, we have 𝑏𝑡 ≥ 𝑎2

𝑡 /4, which is
necessary to ensure that ℒ𝑡 ≥ 𝑐𝑡 (𝑓 (𝑥𝑡) − 𝑓★).

Show that the Lyapunov function derived in this way coincides with the one used
in Theorem 5.8.

Exercise 5.3. Prove Theorem 5.9.
Hint: Let 𝑧𝑡 B 𝑥𝑡 + 2

𝛾
𝑝𝑡 and consider

ℒ𝑡 B 𝑓 (𝑥𝑡) − 𝑓★ + 𝛼

2 ∥𝑧𝑡 − 𝑥★∥2 .

6 Non-smooth convex optimization
Thus far, we have considered the unconstrained minimization of convex and smooth
functions 𝑓 . The next step is to consider a far more general class of problems by allowing
for constraints and non-smoothness.

37

The two issues are related. To minimize 𝑓 over a convex set C, it is equivalent to
minimize 𝑓 + 𝜒C over all of R𝑑 , where 𝜒C is the convex indicator function for C:

𝜒C(𝑥) B
{

0 , 𝑥 ∈ C ,

+∞ , 𝑥 ∉ C .
(6.1)

In this reformulation, the objective function is allowed to take the value +∞ and is certainly
non-smooth. Even if we do not reformulate the problem in this way, convex constraint
sets often arise as the intersection of primitive constraints: C = {𝑓𝑖 ≤ 0 for all 𝑖 ∈ [𝑚]}.
This is equivalent to C = {max𝑖∈[𝑚] 𝑓𝑖 ≤ 0}, and the function max𝑖∈[𝑚] 𝑓𝑖 is non-smooth.

On the other hand, without strong convexity, it is not guaranteed that 𝑓 admits a
minimizer over all of R𝑑 (e.g., 𝑓 is a linear function, or consider the exponential function
over R). It often makes sense to consider non-smooth minimization over bounded sets.
Thus, we tackle constraints and non-smoothness together.

Although we do not assume smoothness, we still need some minimal regularity for the
function 𝑓 . As justified in Lemma 6.7, convex functions are actually Lipschitz continuous
in the interior of their domains, so it is natural to take as our new function class under
consideration the class of convex and Lipschitz functions over bounded convex sets.

6.1 Convex analysis
We now work with convex functions 𝑓 : R𝑑 → R ∪ {∞}. The fact that 𝑓 can now take
on the value +∞ leads to some technical issues, but it allows us to seamlessly handle
constraints. Convexity can be defined in the usual way, but it is sometimes convenient to
instead work with the epigraph.

Definition 6.1. The epigraph of 𝑓 : R𝑑 → R ∪ {∞} is the following subset of R𝑑 × R:

epi 𝑓 B {(𝑥, 𝑡) ∈ R𝑑 × R : 𝑓 (𝑥) ≤ 𝑡} .

Definition 6.2. A function 𝑓 : R𝑑 → R ∪ {∞} is convex if for all 𝑥,𝑦 ∈ R𝑑 and all
𝑡 ∈ [0, 1], it holds that

𝑓 ((1 − 𝑡) 𝑥 + 𝑡 𝑦) ≤ (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦) .

Equivalently, 𝑓 is convex if and only if epi 𝑓 is a convex set.

38

Definition 6.3. The domain of a function 𝑓 : R𝑑 → R ∪ {∞} is the set

dom 𝑓 B {𝑥 ∈ R𝑑 : 𝑓 (𝑥) < ∞} .

The first point to emphasize is that at this level of generality, 𝑓 can still be quite
pathological. Indeed, consider the following function:

𝑓 (𝑥) B


0 , ∥𝑥 ∥ < 1 ,
𝜙 (𝑥) , ∥𝑥 ∥ = 1 ,
+∞ , ∥𝑥 ∥ > 1 ,

(6.2)

where 𝜙 is an arbitrary non-negative function defined on the sphere {∥·∥ = 1}. Then, one
can check that 𝑓 is convex. However, 𝜙 need not be continuous or be coherent in any
way whatsoever. To avoid these types of situations, the basic regularity property that we
impose is that 𝑓 is lower semicontinuous.

Definition 6.4. A function 𝑓 : R𝑑 → R ∪ {∞} is lower semicontinuous if for all
sequences {𝑥𝑛}𝑛∈N converging to a point 𝑥 ∈ R𝑑 , it holds that

𝑓 (𝑥) ≤ lim inf
𝑛→∞

𝑓 (𝑥𝑛) .

In other words, when we pass to the limit of a convergent sequence, the value of 𝑓
can only drop down. One way to motivate the relevance of this condition for convex opti-
mization is that we often consider suprema 𝑓 = sup𝜔∈Ω 𝑓𝜔 where {𝑓𝜔 }𝜔∈Ω is a collection
of continuous functions; in fact, in many cases, we consider suprema of affine functions.
When Ω is finite, we know that the maximum of finitely many continuous functions is
continuous. But when Ω is infinite, the suprema of infinitely many continuous functions
need not be continuous. The class of lower semicontinuous functions is the smallest class
of functions which contains all continuous functions and is closed under taking arbitrary
suprema. Further properties are explored in Exercise 6.1.

It follows from that exercise that 𝑓 is convex and lower semicontinuous if and only if
its epigraph is closed and convex. So, when it comes to functions, we impose convexity
and lower semicontinuity; and when it comes to sets, we impose convexity and closedness.
For example, one can also check that the convex indicator 𝜒C is lower semicontinuous if
and only if C is closed. We use the following terminology.6

6This is not standard terminology but it is convenient.

39

Definition 6.5. A convex function 𝑓 : R𝑑 → R ∪ {∞} is regular if: it is not identically
equal to +∞, it is lower semicontinuous, and its domain has non-empty interior.

Note that the definition excludes one more pathological case, the function 𝑓 (𝑥) = +∞
for all 𝑥 ∈ R𝑑 , which is of no interest to us. Since the domain of a convex function is a
convex set, if it has empty interior then it must be contained in a lower-dimensional affine
space, and when we restrict to that space, the domain then has a non-empty interior; this
is usually summarized by saying that any non-empty convex set has a non-empty relative
interior. We do not delve into the details here, but this is why we regard the condition
that the domain has non-empty interior as “without loss of generality”.

We also note that in the proof of existence of a minimizer, it is really only lower
semicontinuity that matters.

Lemma 6.6 (existence of minimizer). Let 𝑓 : R𝑑 → R ∪ {∞} be lower semicontinuous
and its level sets be bounded. Then, there exists a global minimizer of 𝑓 .

Proof. The proof is the same as for Lemma 1.7, except that lower semicontinuity substitutes
for continuity. □

Regularity. Our next order of business is to establish properties of regular convex
functions which allow us to manipulate them in proofs. In particular, we show that they
are “almost” differentiable, even though we did not assume it a priori; the source of this
regularity is the convexity condition.

Lemma 6.7 (Lipschitz continuity). Let 𝑓 : R𝑑 → R ∪ {∞} be convex and let 𝑥0 ∈
int dom 𝑓 . Then, 𝑓 is locally Lipschitz continuous around 𝑥0.

Proof. We may assume that 𝑥0 = 0. Since 0 belongs to the interior of dom 𝑓 , we can fit
a simplex centered at the origin inside the domain: namely, there exists 𝜀 > 0 such that
C B conv{±𝜀𝑒𝑘 : 𝑘 ∈ [𝑑]} belongs to dom 𝑓 . First, we show that 𝑓 is bounded on C: the
upper bound follows because 𝑓 (±𝜀𝑒𝑘) < ∞ for all 𝑘 ∈ [𝑑] and the maximum of 𝑓 over
C is attained at one of the vertices (why?). For the lower bound, by convexity we have
𝑓 (𝑥) ≥ 2𝑓 (0) − 𝑓 (−𝑥) ≥ 2𝑓 (0) − maxC 𝑓 for all 𝑥 ∈ C.

Next, we show that 𝑓 is Lipschitz on the smaller set C′ B conv{± 𝜀
2 𝑒𝑘 : 𝑘 ∈ [𝑑]}. The

point is that there is a constant 𝑐𝑑,𝜀 > 0 such that for all 𝑥,𝑦 ∈ C′, there is a point 𝑦+ ∈ C

40

such that the line segment from 𝑥 to 𝑦 is contained in the line segment from 𝑥 to 𝑦+, and
the extension is not too short: ∥𝑦+ − 𝑥 ∥ ≥ 𝑐𝑑,𝜀 . Then, by convexity,

𝑓 (𝑦) = 𝑓

(∥𝑦+ − 𝑦∥
∥𝑦+ − 𝑥 ∥ 𝑥 + ∥𝑦 − 𝑥 ∥

∥𝑦+ − 𝑥 ∥ 𝑦
+
)
≤ ∥𝑦+ − 𝑦∥

∥𝑦+ − 𝑥 ∥ 𝑓 (𝑥) + ∥𝑦 − 𝑥 ∥
∥𝑦+ − 𝑥 ∥ 𝑓 (𝑦+) ,

hence

𝑓 (𝑦) − 𝑓 (𝑥) ≤ ∥𝑦 − 𝑥 ∥
∥𝑦+ − 𝑥 ∥ (𝑓 (𝑦+) − 𝑓 (𝑥)) ≤

supC 𝑓 − infC 𝑓
𝑐𝑑,𝜀

∥𝑦 − 𝑥 ∥ .

Interchanging 𝑥 and 𝑦 proves the Lipschitz bound. □

This lemma shows that locally near 𝑥0, 𝑓 (𝑥) grows at most linearly in the distance
∥𝑥 − 𝑥0∥ (as opposed to, say,

√︁
∥𝑥 − 𝑥0∥). This suggests that 𝑓 may be differentiable at 𝑥0.

This is not quite right, because 𝑓 may have a kink at 𝑥0, but nevertheless we can find an
appropriate substitute for differentiability.

Definition 6.8. Let 𝑓 : R𝑑 → R∪ {∞} be convex. We say that 𝑝 ∈ R𝑑 is a subgradient
of 𝑓 at 𝑥 if for all 𝑦 ∈ R𝑑 , it holds that

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝑝,𝑦 − 𝑥⟩ . (6.3)

We denote the set of subgradients of 𝑓 at 𝑥 as 𝜕𝑓 (𝑥), and we refer to this set as the
subdifferential of 𝑓 at 𝑥 . Also, we set

𝜕𝑓 B {(𝑥, 𝑝) ∈ R𝑑 × R𝑑 : 𝑝 ∈ 𝜕𝑓 (𝑥)} .

Note that by definition, if 0 ∈ 𝜕𝑓 (𝑥), then 𝑥 is a global minimizer of 𝑓 .
If 𝑓 is differentiable at 𝑥0 ∈ int dom 𝑓 , then 𝜕𝑓 (𝑥0) is a singleton: 𝜕𝑓 (𝑥0) = {∇𝑓 (𝑥0)}

(Exercise 6.2). However, the subdifferential can be multi-valued. A key example is the
absolute value function, 𝑓 : 𝑥 ↦→ |𝑥 |, for which 𝜕𝑓 (0) = [−1, 1].

For the purpose of optimization, it is enough to have at least one subgradient, which
is the content of the following theorem.

Theorem 6.9 (subdifferential). Let 𝑓 : R𝑑 → R ∪ {∞} be a regular convex function. If
𝑥0 ∈ int dom 𝑓 , then 𝜕𝑓 (𝑥0) is non-empty, bounded, convex, and closed.

We follow a traditional route of deducing the non-emptiness from a separation theorem.
The proof of the following result is deferred.

41

Theorem 6.10 (supporting hyperplane). Let C be a closed and convex set, and let 𝑥 ∈ 𝜕C.
Then, there exists a non-zero 𝑝 ∈ R𝑑 such that

⟨𝑝, 𝑥⟩ ≤ inf
C

⟨𝑝, ·⟩ .

Proof of Theorem 6.9. Since (𝑥0, 𝑓 (𝑥0)) ∈ 𝜕 epi 𝑓 , and epi 𝑓 is closed and convex (by regu-
larity of 𝑓), there is a supporting hyperplane (𝑝, 𝑞):

⟨𝑝, 𝑥0⟩ + 𝑞𝑓 (𝑥0) ≤ inf
(𝑥,𝑡)∈epi 𝑓

{⟨𝑝, 𝑥⟩ + 𝑞𝑡} .

We can normalize the coefficients so that ∥𝑝 ∥2 + 𝑞2 = 1, and we note that 𝑞 ≥ 0.
If 𝑥 is sufficiently close to 𝑥0, then

⟨𝑝, 𝑥0 − 𝑥⟩ ≤ 𝑞 (𝑓 (𝑥) − 𝑓 (𝑥0)) ≤ 𝐿𝑞 ∥𝑥 − 𝑥0∥ ,

where 𝐿 is the Lipschitz constant of 𝑓 near 𝑥0. Taking 𝑥 = 𝑥0 − 𝜀𝑝 for small 𝜀 > 0, we
deduce that ∥𝑝 ∥ ≤ 𝐿𝑞, hence from the normalization condition, 𝑞 ≠ 0. Thus, for any
𝑥 ∈ dom 𝑓 , we deduce that

𝑓 (𝑥) ≥ 𝑓 (𝑥0) −
1
𝑞
⟨𝑝, 𝑥 − 𝑥0⟩ ,

thus, −𝑝/𝑞 ∈ 𝜕𝑓 (𝑥0).
The set 𝜕𝑓 (𝑥0) is closed and convex as an intersection of the constraints in (6.3).

Boundedness follows from Exercise 6.3. □

Constraints. When the constraint set C is simple, it is reasonable to suppose that we
can compute the projection onto C. We study some properties of this projection operator.

Definition 6.11. Let C be closed and convex. The projection onto C is the mapping
ΠC : R𝑑 → C defined by

ΠC(𝑥) B arg min
𝑦∈C

∥𝑦 − 𝑥 ∥2 .

The “arg min” is non-empty because C is closed, and the uniqueness of the minimizer
follows from a strict convexity argument as in Lemma 1.10. When C is a linear subspace,
then ΠC coincides with the linear algebra definition of projection, and in this case ΠC is
linear. In general, however, ΠC is a non-linear operator.

The following lemma characterizes the projection.

42

Lemma 6.12 (characterization of projection). Let C be closed and convex, and let 𝑥 ∉ C.
Then, ΠC(𝑥) is the unique point satisfying the following condition:

⟨ΠC(𝑥) − 𝑥, 𝑥′ − ΠC(𝑥)⟩ ≥ 0 for all 𝑥′ ∈ C . (6.4)

Proof. As in the proof of Lemma 1.8, the first-order necessary condition for optimality
reads ⟨ΠC(𝑥) − 𝑥, 𝑣⟩ ≥ 0. However, because the optimization problem is constrained to lie
in C, this time we do not have the inequality for all 𝑣 , but only for 𝑣 of the form 𝑥′−ΠC(𝑥)
where 𝑥′ ∈ C. □

This lemma furnishes the following important property.

Lemma 6.13 (convex projections are non-expansive). Let C be closed and convex. Then,
for all 𝑥,𝑦 ∈ R𝑑 ,

∥ΠC(𝑦) − ΠC(𝑥)∥ ≤ ∥𝑦 − 𝑥 ∥ .

Proof. By (6.4),

⟨ΠC(𝑥) − 𝑥, ΠC(𝑦) − ΠC(𝑥)⟩ ≥ 0 ,
⟨ΠC(𝑦) − 𝑦, ΠC(𝑥) − ΠC(𝑦)⟩ ≥ 0 .

Adding these inequalities yields

∥ΠC(𝑦) − ΠC(𝑥)∥2 ≤ ⟨ΠC(𝑦) − ΠC(𝑥), 𝑦 − 𝑥⟩ ≤ ∥ΠC(𝑦) − ΠC(𝑥)∥ ∥𝑦 − 𝑥 ∥ . □

Actually, we can now return to prove the supporting hyperplane theorem.

Proof of Theorem 6.10. First, we show that if C is a closed convex set and 𝑥 ∉ C, then we
can separate C from 𝑥 . Namely, by (6.4), the vector 𝑝 B ΠC(𝑥) −𝑥 is non-zero and satisfies

inf
𝑥 ′∈C

⟨𝑝, 𝑥′⟩ ≥ ⟨𝑝,ΠC(𝑥)⟩ = ∥ΠC(𝑥) − 𝑥 ∥2 + ⟨𝑝, 𝑥⟩ ≥ ⟨𝑝, 𝑥⟩ .

To prove the supporting hyperplane theorem, note that since 𝑥 ∈ 𝜕C, there is a
sequence of points {𝑥𝑛}𝑛∈N which lies outside of C, such that 𝑥𝑛 → 𝑥 . For each 𝑛, let 𝑝𝑛 be
a hyperplane that separates C from 𝑥𝑛 , and by normalizing we may assume that ∥𝑝𝑛∥ = 1.
Since {𝑝𝑛}𝑛∈N is a bounded sequence, it contains a subsequence which converges to some
unit vector 𝑝 . By taking limits, it is easy to see that 𝑝 is a supporting hyperplane. □

43

6.2 Projected subgradient methods
Methods for constrained optimization differ based on what they assume about the con-
straint set. The first method we study assumes access to the projection mapping ΠC for
the set C. This assumption is appropriate when the set C is particularly “simple”, e.g., C
is the ball C = {∥·∥ ≤ 𝑅}, in which case the projection can be computed in closed form.
When C is more complex, e.g., C is a polytope, we need more sophisticated methods.

Projected subgradient descent is the following method:

𝑥𝑛+1 B ΠC

(
𝑥𝑛 − ℎ

𝑝𝑛

∥𝑝𝑛∥
)
, 𝑝𝑛 ∈ 𝜕𝑓 (𝑥𝑛) . (PSD)

Note that we use the normalized subgradient 𝑝𝑛/∥𝑝𝑛∥. If we think about the example of
the absolute value function |·| with subdifferential [−1, 1] at the origin, we see that the
magnitude of an arbitrary element of the subdifferential need not be informative. Instead,
the intuition behind non-smooth optimization is to use the subgradients as separating
directions: in particular, by convexity, 𝑓 (𝑥) − 𝑓 (𝑥𝑛) ≥ ⟨𝑝𝑛, 𝑥 −𝑥𝑛⟩, so any minimizer must
lie on one side of the hyperplane defined by 𝑝𝑛 .

We let 𝑥★ denote a minimizer of 𝑓 over the closed convex set C, and 𝑓★ B 𝑓 (𝑥★).

Theorem 6.14 (convergence of PSD). Let 𝑓 be convex and 𝐿-Lipschitz continuous on
the closed convex set C. Then, PSD satisfies

𝑓
(1
𝑁

𝑁−1∑︁
𝑛=0

𝑥𝑛
)
− 𝑓★ ≤ 1

𝑁

𝑁−1∑︁
𝑛=0

(𝑓 (𝑥𝑛) − 𝑓★) ≤
𝐿

2𝑁ℎ
∥𝑥0 − 𝑥★∥2 + 𝐿ℎ

2 .

In particular, by setting ℎ = 𝑅/
√
𝑁 , where 𝑅 is an upper bound on ∥𝑥0 − 𝑥★∥, it yields

the convergence rate

𝑓
(1
𝑁

𝑁−1∑︁
𝑛=0

𝑥𝑛
)
− 𝑓★ ≤ 𝐿𝑅

√
𝑁

.

Proof. The first inequality holds by convexity, so we focus on the second. The idea is
similar to the proof of Theorem 3.4, except that instead of using smoothness to handle the
error term, we use Lipschitzness. By expanding the squared distance to the minimizer,

∥𝑥𝑛+1 − 𝑥★∥2 =

ΠC

(
𝑥𝑛 − ℎ

𝑝𝑛

∥𝑝𝑛∥
)
− ΠC(𝑥★)

2 ≤

𝑥𝑛 − ℎ

𝑝𝑛

∥𝑝𝑛∥
− 𝑥★

2

= ∥𝑥𝑛 − 𝑥★∥2 − 2ℎ
∥𝑝𝑛∥

⟨𝑝𝑛, 𝑥𝑛 − 𝑥★⟩ + ℎ2

44

≤ ∥𝑥𝑛 − 𝑥★∥2 − 2ℎ
∥𝑝𝑛∥

(𝑓 (𝑥𝑛) − 𝑓★) + ℎ2 ,

where we used Lemma 6.13. Since ∥𝑝𝑛∥ ≤ 𝐿 for all 𝑛 (Exercise 6.3), we sum the inequalities:

1
𝑁

𝑁−1∑︁
𝑛=0

(𝑓 (𝑥𝑛) − 𝑓★) ≤
𝐿

2𝑁ℎ
∥𝑥0 − 𝑥★∥2 + 𝐿ℎ

2 . □

Thus, the averaged iterate 𝑥𝑁 satisfies 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 provided 𝑁 ≥ 𝐿2𝑅2/𝜀2. Note that
this convergence rate is substantially worse than the one for the smooth case (Theorem 3.4).
Another difference is that the descent lemma (Lemma 3.1) is available in the smooth case
which implies monotonic decrease of the objective value; here, there is no descent lemma,
so the guarantee only holds for the averaged iterate. The analysis can also be performed
under strong convexity, see Exercise 6.5.

Interestingly, if we only assume that 𝑓 is 𝐿-Lipschitz continuous over B(𝑥★, 𝑅), rather
than on all of C, it is still possible to show that min𝑛=0,...,𝑁−1 𝑓 (𝑥𝑛) − 𝑓★ ≤ 𝐿𝑅/

√
𝑁 , although

the proof becomes more involved [Nes18, §3.2.3].
The analysis above shows that when the projection operator is cheap to compute,

optimization under constraints is straightforward provided that we interleave the gradient
steps with projection steps. We next tackle a more general setting in which we separate
out the constraints into a “simple” set C for which we can compute the projection operator,
and additional functional constraints {𝑓𝑖 ≤ 0 for all 𝑖 ∈ [𝑚]}. Thus, we consider

min{𝑓 (𝑥) | 𝑥 ∈ C , 𝑓𝑖 (𝑥) ≤ 0 for all 𝑖 ∈ [𝑚]} .

We assume that 𝑓 , 𝑓1, . . . , 𝑓𝑚 are all regular convex functions, and write 𝑓max B max𝑖∈[𝑚] 𝑓𝑖 .
The next algorithm is known as the projected subgradient method with functional con-
straints. For 𝑛 = 0, 1, . . . , 𝑁 − 1:

• If 𝑓max(𝑥𝑛) ≤ 𝜀, set

𝑥𝑛+1 B ΠC

(
𝑥𝑛 −

𝜀

∥𝑝𝑛∥2 𝑝𝑛
)
, 𝑝𝑛 ∈ 𝜕𝑓 (𝑥𝑛) .

• Otherwise, set

𝑥𝑛+1 B ΠC

(
𝑥𝑛 −

𝑓max(𝑥𝑛)
∥𝑝𝑛∥2 𝑝𝑛

)
, 𝑝𝑛 ∈ 𝜕𝑓max(𝑥𝑛) .

The algorithm requires computing elements of the subdifferential for the function
max𝑖∈[𝑚] 𝑓𝑖 . We therefore first identify this subdifferential.

45

Lemma 6.15 (subdifferential of a maximum). Let 𝑓1, . . . , 𝑓𝑚 be regular convex functions.
Then, for all 𝑥 ∈ R𝑑 ,

𝜕
(
max
𝑖∈[𝑚]

𝑓𝑖
)
(𝑥) = conv

{
𝜕𝑓𝑖 (𝑥)

�� 𝑖 ∈ [𝑚] , 𝑓𝑖 (𝑥) = max
𝑗∈[𝑚]

𝑓 𝑗 (𝑥)
}
.

Proof. (⊇) Let 𝑓max B max𝑖∈[𝑚] 𝑓𝑖 and 𝐼★(𝑥) B {𝑖 ∈ [𝑚] : 𝑓𝑖 (𝑥) = 𝑓max(𝑥)}. If 𝜆 is a
probability vector and 𝑝𝑖 ∈ 𝜕𝑓𝑖 (𝑥) for all 𝑖 ∈ 𝐼★(𝑥), then

𝑓max(𝑦) ≥
∑︁

𝑖∈𝐼★(𝑥)
𝜆𝑖 𝑓𝑖 (𝑦) ≥

∑︁
𝑖∈𝐼★(𝑥)

𝜆𝑖 (𝑓𝑖 (𝑥) + ⟨𝑝𝑖, 𝑦 − 𝑥⟩) = 𝑓max(𝑥) +
〈 ∑︁
𝑖∈𝐼★(𝑥)

𝑝𝑖, 𝑦 − 𝑥

〉
.

Hence,
∑

𝑖∈𝐼★(𝑥) 𝜆𝑖𝑝𝑖 ∈ 𝜕𝑓max(𝑥).
(⊆) Since the purpose of this lemma from the perspective of these notes is simply to

compute an element of 𝜕𝑓max(𝑥), we omit the proof of this direction. It can be proven, e.g.,
via Lagrangian duality or via more subdifferential theory. □

The next theorem provides the convergence rate for the method.

Theorem 6.16 (convergence of PSD under functional constraints). Let 𝑓 , 𝑓1, . . . , 𝑓𝑚
be convex and 𝐿-Lipschitz on the closed convex set C. Then, PSD under functional
constraints satisfies

min{𝑓 (𝑥𝑛) | 𝑛 = 0, 1, . . . , 𝑁 − 1 , 𝑓max(𝑥𝑛) ≤ 𝜀} − 𝑓★ ≤ 𝜀 (6.5)

provided that

𝑁 ≥ 𝐿2 ∥𝑥0 − 𝑥★∥2

𝜀2 .

The theorem says that after 𝑁 iterations, we can find a point 𝑥𝑁 which almost satisfies
the functional constraints, in the sense that 𝑓max(𝑥𝑁) ≤ 𝜀, and moreover 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀.
The number of iterations is no more than the case without functional constraints.

Proof of Theorem 6.16. There are two cases for the algorithm. If the iteration 𝑛 belongs to
the first case, then as we saw in the proof of Theorem 6.14,

∥𝑥𝑛+1 − 𝑥★∥2 ≤ ∥𝑥𝑛 − 𝑥★∥2 − 2𝜀
∥𝑝𝑛∥2 (𝑓 (𝑥𝑛) − 𝑓★) +

𝜀2

∥𝑝𝑛∥2 .

46

If 𝑓 (𝑥𝑛) − 𝑓★ ≤ 𝜀, then since 𝑓max(𝑥𝑛) ≤ 𝜀 (by the definition of the first case), we have met
the success condition (6.5). Otherwise, 𝑓 (𝑥𝑛) − 𝑓★ > 𝜀, and the inequality above implies

∥𝑥𝑛+1 − 𝑥★∥2 < ∥𝑥𝑛 − 𝑥★∥2 − 𝜀2

∥𝑝𝑛∥2 ≤ ∥𝑥𝑛 − 𝑥★∥2 − 𝜀2

𝐿2 .

What happens in the second case? Here, we also show that ∥𝑥𝑛+1 − 𝑥★∥ < ∥𝑥𝑛 − 𝑥★∥:
since 𝑥★ satisfies the functional constraints and 𝑥𝑛 does not, the subgradient 𝑝𝑛 ∈ 𝜕𝑓max(𝑥𝑛)
still acts as a separating hyperplane. Indeed,

∥𝑥𝑛+1 − 𝑥★∥2 =

ΠC

(
𝑥𝑛 −

𝑓max(𝑥𝑛)
∥𝑝𝑛∥2 𝑝𝑛

)
− ΠC(𝑥★)

2 ≤

𝑥𝑛 − 𝑓max(𝑥𝑛)

∥𝑝𝑛∥2 𝑝𝑛 − 𝑥★

2

= ∥𝑥𝑛 − 𝑥★∥2 − 2𝑓max(𝑥𝑛)
∥𝑝𝑛∥2 ⟨𝑝𝑛, 𝑥𝑛 − 𝑥★⟩ +

𝑓max(𝑥𝑛)2

∥𝑝𝑛∥2

≤ ∥𝑥𝑛 − 𝑥★∥2 − 2𝑓max(𝑥𝑛)
∥𝑝𝑛∥2 𝑓max(𝑥𝑛) +

𝑓max(𝑥𝑛)2

∥𝑝𝑛∥2 < ∥𝑥𝑛 − 𝑥★∥2 − 𝜀2

𝐿2 .

Summing these inequalities across the iterations yields

∥𝑥𝑁 − 𝑥★∥2 < ∥𝑥0 − 𝑥★∥2 − 𝑁𝜀2

𝐿2 .

For 𝑁 ≥ 𝐿2 ∥𝑥0 − 𝑥★∥2/𝜀2, this is not possible unless we reach the success condition (6.5)
by iteration 𝑁 . □

Example 6.17 (soft-margin SVM). An example of a problem that can be tackled via
projected subgradient methods is soft-margin support vector machine (SVM) classifica-
tion. Suppose that we have a dataset {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑛] , where 𝑥𝑖 ∈ R𝑑 and 𝑦𝑖 ∈ {±1}. The
output of the soft-margin SVM is the classifier 𝑥 ↦→ sgn(⟨𝜃★, 𝑥⟩), where 𝜃★ minimizes

𝜃 ↦→ 1
𝑛

𝑛∑︁
𝑖=1

ℓhinge(𝑦𝑖, ⟨𝜃, 𝑥𝑖⟩) +
𝜆

2 ∥𝜃 ∥2 .

Here, ℓhinge(𝑦,𝑦) B max{0, 1−𝑦𝑦} is the hinge loss, 𝜆 > 0 is a regularization parameter,
and we have omitted the bias term (which can be handled by augmenting the feature
vector 𝑥 as usual). This objective is strongly convex and Lipschitz over bounded sets,
so we can apply projected subgradient descent (projecting onto, e.g., a Euclidean ball).

47

6.3 Cutting plane methods
Non-smooth optimization uses subgradient directions in order to “localize” the solution
set. Pursuing this line of reasoning further leads to the family of cutting plane methods.

Suppose that we wish to minimize 𝑓 over a bounded, closed, convex setC. LetC★ denote
the set of minimizers. The idea is to construct a sequence of convex sets C = C0,C1,C2, . . . ,
which shrink toward C★. The set C𝑛 represents possible candidates for the solution to the
problem at iteration 𝑛.

If 𝑥𝑛 ∈ C𝑛 and 𝑝𝑛 ∈ 𝜕𝑓 (𝑥𝑛), then the subgradient inequality reads

0 ≥ 𝑓 (𝑥★) − 𝑓 (𝑥𝑛) ≥ ⟨𝑝𝑛, 𝑥★ − 𝑥𝑛⟩ for all 𝑥★ ∈ C★ .

Thus,

C★ ⊆ C𝑛 ∩ {𝑥 ∈ R𝑑 : ⟨𝑝𝑛, 𝑥⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩} .

We can take C𝑛+1 to be any superset of the right-hand side above.
To finish specifying the scheme, we need a rule for choosing the points 𝑥𝑛 and the

sets C𝑛 , with the goal of C𝑛 shrinking as fast as possible. The key is the following lemma
from convex geometry, which we do not prove.

Lemma 6.18 (Grünbaum). Let C ⊆ R𝑑 be a convex body (i.e., a compact convex set
with non-empty interior) and let 𝑥C denote the centroid of C: 𝑥C B (volC)−1 ∫

C
𝑥 d𝑥 .

Then, for any half-space H containing 𝑥C,

vol(C ∩H)
vol(C) ≥

(𝑑

𝑑 + 1
)𝑑 ≥ 1

e ,

where e ≈ 2.72 is a numerical constant.

Consequently, if we choose 𝑥𝑛 to be the centroid of C𝑛 and set

C𝑛+1 = C𝑛 ∩ {⟨𝑝𝑛, ·⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩} , 𝑥𝑛 = 𝑥C𝑛 , (CoGM)

then Grünbaum’s inequality shows that vol(C𝑛 \ C𝑛+1)/vol(C𝑛) ≤ 1/e, or

vol(C𝑛+1)
vol(C𝑛)

≤ 1 − 1
e .

Thus, we cut away a constant fraction of the volume at each iteration. This is known as
the center of gravity method.

48

As stated,CoGM is not a practical method. The feasible setC𝑛 at iteration𝑛 can be quite
complicated, making it prohibitively expensive to compute its centroid. Centroids can be
computed via Markov chain Monte Carlo (MCMC) methods for numerical integration, with
guarantees available due to recent advances in log-concave sampling, but it is generally
understood that this is a more difficult computational problem than the original convex
optimization problem we set out to solve. Nevertheless, CoGM achieves the optimal
complexity bound in the oracle model, so let us analyze its efficiency.

Theorem 6.19 (center of gravity). Let 𝐷 B diamC and let 𝑓 : R𝑑 → R be convex and
𝐿-Lipschitz on C. Then, CoGM satisfies

𝑓 (𝑥𝑁−1) − 𝑓★ ≤ 𝐷𝐿
(
1 − 1

e
)𝑁 /𝑑

.

Proof. By the argument above, at iteration 𝑁 , vol(C𝑁)/vol(C) ≤ 𝜆𝑁 , where we can take
𝜆 = 1 − 1/e. Now consider the set Ĉ B (1 − 𝑡) 𝑥★ + 𝑡 C, where we choose 𝑡 so that
vol(Ĉ) > vol(C𝑁); since vol(Ĉ) = 𝑡𝑑 vol(C), we can take any 𝑡 > 𝜆𝑁 /𝑑 . With this choice,
there exists 𝑥 ∈ Ĉ \ C𝑁 . By the definition of C𝑁 ,

𝑓 (𝑥𝑁−1) − 𝑓★ ≤ 𝑓 (𝑥) − 𝑓★ ≤ 𝑡
(
sup
C

𝑓 − 𝑓★
)
≤ 𝑡𝐷𝐿 .

The result follows by letting 𝑡 ↘ 𝜆𝑁 /𝑑 . □

Thus, in principle, we can achieve 𝑓 (𝑥𝑁−1) − 𝑓★ ≤ 𝜀 in 𝑂 (𝑑 log(𝐷𝐿/𝜀)) iterations.
Compared to Theorem 6.14, this result incurs only a logarithmic dependence on the ratio
𝐷𝐿/𝜀, i.e., we can output a high-accuracy solution even for poorly conditioned convex
sets. On the other hand, it incurs dependence on the dimension.

Recall that the lower bound for convex smooth optimization (Theorem 4.4) only
applies in dimension 𝑑 ≳

√︁
𝛽𝑅2/𝜀. The center of gravity method explains why: a 𝛽-

smooth function over a ball of radius 𝑅 is also 𝛽𝑅-Lipschitz, so Theorem 6.19 yields an
oracle complexity of 𝑂 (𝑑 log(𝛽𝑅2/𝜀)) in this case. This is smaller than the lower bound of
Ω(

√︁
𝛽𝑅2/𝜀) in Theorem 4.4 when 𝑑 ≪

√︁
𝛽𝑅2/𝜀/log(𝛽𝑅2/𝜀), so a lower bound construction

cannot exist in any smaller dimension.7 Note also that for convex quadratic minimization,
there are methods which find the minimizer in 𝑑 queries (e.g., Theorem 5.3 for CG); the
center of gravity method almost achieves this guarantee for general convex optimization.

7This discussion is not entirely correct since Theorem 4.4 only applies to gradient span algorithms, which
does not cover CoGM. However, the moral of the discussion is true for bona fide oracle lower bounds.

49

Toward making cutting plane methods more practical, a famous example is the ellipsoid
method. In this scheme, we take each set C𝑛 to be an ellipsoid,

C𝑛 = {𝑥 ∈ R𝑑 : ⟨𝑥 − 𝑥𝑛, Σ
−1
𝑛 (𝑥 − 𝑥𝑛)⟩ ≤ 1} . (6.6)

At the next iteration, we must find a new ellipsoid C𝑛+1 such that

C𝑛+1 ⊇ C𝑛 ∩ {𝑥 ∈ R𝑑 : ⟨𝑝𝑛, 𝑥⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩} . (6.7)

Here, we use the following geometric lemma (Exercise 6.7).

Lemma 6.20 (ellipsoid). Let C𝑛 be the ellipsoid (6.6) and let 𝑝𝑛 ∈ R𝑑 be a non-zero
vector. Define C𝑛+1 B {𝑥 ∈ R𝑑 : ⟨𝑥 − 𝑥𝑛+1, Σ

−1
𝑛+1 (𝑥 − 𝑥𝑛+1)⟩ ≤ 1}, where

𝑥𝑛+1 B 𝑥𝑛 −
1

𝑑 + 1
Σ𝑛𝑝𝑛√︁

⟨𝑝𝑛, Σ𝑛 𝑝𝑛⟩
,

Σ𝑛+1 B
𝑑2

𝑑2 − 1

(
Σ𝑛 −

2
𝑑 + 1

Σ𝑛𝑝𝑛𝑝
T
𝑛Σ𝑛

⟨𝑝𝑛, Σ𝑛 𝑝𝑛⟩

)
.

Then, for 𝑑 > 1, C𝑛+1 satisfies (6.7) and

vol(C𝑛+1)
vol(C𝑛)

=

√︂
𝑑 − 1
𝑑 + 1

(𝑑2

𝑑2 − 1
)𝑑

= 1 − Ω
(1
𝑑

)
.

By following the proof of Theorem 6.19, replacing 𝜆 by 1 − Ω(1/𝑑), one obtains the
same guarantee as for CoGM but with iteration count 𝑂 (𝑑2 log(𝐿𝐷/𝜀)). (See Exercise 6.6
for details.) Thus, the cost of obtaining an implementable version of the center of gravity
method is a larger query complexity. Naturally, there have been numerous follow-up
works in the field which aim at achieving the best of both worlds.

6.4 Lower bounds
In this section, we study lower bounds for convex non-smooth optimization.

Theorem 6.21 (lower bound for convex, non-smooth minimization). For any 𝑥0 ∈ R𝑑 ,
𝑑 > 𝑁 , and 𝐿, 𝑅 > 0, there exists a convex and 𝐿-Lipschitz function 𝑓 over B(𝑥★, 𝑅)
such that 𝑥0 ∈ B(𝑥★, 𝑅) and for any gradient span algorithm,

𝑓 (𝑥𝑁) − 𝑓★ ≳
𝐿𝑅
√
𝑁

.

50

Proof. Assume 𝑥0 = 0 and define the function 𝑓 : R𝑑 → R by

𝑓 (𝑥) B 𝛾 max
𝑖∈[𝑑]

𝑥 [𝑖] + 𝛼

2 ∥𝑥 ∥2 ,

where 𝛼,𝛾 > 0 are to be chosen. Note that this function is Lipschitz with constant
𝛾 +𝛼 (∥𝑥★∥ +𝑅). Also, if 𝐼★(𝑥) B {𝑖 ∈ [𝑑] : 𝑥 [𝑖] = max 𝑗∈[𝑑] 𝑥 [𝑗]}, then from Lemma 6.15,

𝜕𝑓 (𝑥) = 𝛼𝑥 + 𝛾 conv{𝑒𝑖 : 𝑖 ∈ 𝐼★(𝑥)} .

The optimal point is 𝑥★[𝑘] = −𝛾/(𝛼𝑑) for 𝑘 ∈ [𝑑], by checking that 0 ∈ 𝜕𝑓 (𝑥★). Thus,
∥𝑥★∥ = 𝛾/(𝛼

√
𝑑) and the Lipschitz constant is at most 2𝛾 + 𝛼𝑅.

We take a subgradient oracle which, given a point 𝑥 , outputs 𝛼𝑥 + 𝛾𝑒𝑖 ∈ 𝜕𝑓 (𝑥), where
𝑖 = min 𝐼★(𝑥) is the first coordinate of 𝑥 that achieves the maximum. From this property,
it is straightforward to show via induction that 𝑥𝑛 ∈ V𝑛 for all 𝑛, where V𝑛 is the subspace
from the proof of Theorem 4.4.

Since 𝑑 > 𝑁 , it follows that 𝑓 (𝑥𝑁) ≥ 0. On the other hand,

𝑓★ = 𝑓 (𝑥★) = − 𝛾2

𝛼𝑑
+ 𝛾2

2𝛼𝑑 = − 𝛾2

2𝛼𝑑 .

We set 𝑑 = 𝑁 + 1, 𝛾 = 𝐿/4, 𝛼 = 𝛾/(𝑅
√
𝑑) (to ensure that ∥𝑥0 − 𝑥★∥ ≤ 𝑅), which leads to a

Lipschitz constant of 𝐿/2 + 𝐿/(4
√
𝑑) ≤ 𝐿. It yields

𝑓 (𝑥𝑁) − 𝑓★ ≥ −𝑓 (𝑥★) ≳
𝐿𝑅
√
𝑁

. □

Note that this matches the guarantee of PSD (Theorem 6.14), so projected subgradient
descent is optimal in the non-smooth setting. In other words, without smoothness, there
is no acceleration phenomenon.

There is a version of Theorem 6.21 in the strongly convex case (Exercise 6.8).

Theorem 6.22 (lower bound for strongly convex, non-smooth minimization). For any
𝑥0 ∈ R𝑑 , 𝑑 > 𝑁 , and 𝛼, 𝐿 > 0, there exists 𝑅 > 0 and an 𝛼-convex and 𝐿-Lipschitz
function 𝑓 over B(𝑥★, 𝑅) such that 𝑥0 ∈ B(𝑥★, 𝑅) and for any gradient span algorithm,

𝑓 (𝑥𝑁) − 𝑓★ ≳
𝐿2

𝛼𝑁
.

Next, in the low-dimensional setting, the following lower bound holds.

51

Theorem 6.23 (lower bound for convex, non-smooth minimization II). The oracle
complexity of minimizing convex, 𝐿-Lipschitz functions over [−𝑅, 𝑅]𝑑 to accuracy 𝜀 is
at least Ω(𝑑 log(𝐿𝑅/𝜀)).

This shows that CoGM is optimal as well. Actually, we do not prove Theorem 6.23;
instead, we focus on the related but harder task of feasibility.

Definition 6.24. Let 0 < 𝛿 < 𝑅. Let C ⊆ [−𝑅, 𝑅]𝑑 be a closed convex set such that
there exists a ball B(𝑥★, 𝛿) ⊆ C. The feasibility problem with parameters (𝛿, 𝑅) is
the problem of outputting a point in intC, given access to a separation oracle. Namely,
given a point 𝑥 ∈ R𝑑 , the separation oracle either reports that 𝑥 ∈ C, or it outputs a
non-zero vector 𝑝 ∈ R𝑑 such that supC ⟨𝑝, ·⟩ ≤ ⟨𝑝, 𝑥⟩.

If one can solve the feasibility problem, then one can solve the convex Lipschitz
minimization problem. Indeed, given a convex, 𝐿-Lipschitz function 𝑓 over [−𝑅, 𝑅]𝑑 ,
suppose for the sake of argument that we know the optimal value 𝑓★. Consider the
feasibility problem for set C B {𝑓 − 𝑓★ ≤ 𝜀}. For 𝑥★ B arg min[−𝑅,𝑅]𝑑 𝑓 , we claim that
B(𝑥★, 𝜀/𝐿) ⊆ C; indeed this follows from 𝐿-Lipschitzness.8 Also, the subgradient oracle
for 𝑓 yields a separation oracle for C. Thus, solving the feasibility problem for C with
parameters (𝜀/𝐿, 𝑅) yields an 𝜀-solution to the problem of minimizing 𝑓 .

Since the feasibility problem is harder, the following theorem is weaker than Theo-
rem 6.23. However, it is easier to prove, and it contains most of the main ideas.

Theorem 6.25 (lower bound for feasibility). For any deterministic algorithm, the feasi-
bility problem with parameters (𝜀, 𝑅) requires Ω(𝑑 log(𝑅/𝜀)) queries.

Proof. We play a game with the algorithm. Suppose that the algorithm has chosen query
points 𝑥1, . . . , 𝑥𝑛 thus far. Our goal is to choose a vector 𝑝𝑛—which is supposed to cor-
respond to the output of a separation oracle—and we provide the algorithm with this
vector, which it then uses to produce a new point 𝑥𝑛+1 and so on. Simultaneously, we also
maintain a sequence of convex bodies (actually, boxes) C0,C1, . . . ,C𝑁 .

At the end of the game, the algorithm has produced points 𝑥1, . . . , 𝑥𝑁 , and we have
produced vectors 𝑝1, . . . , 𝑝𝑁 . By itself, this is not yet meaningful; the algorithm is not

8Actually this is not exactly true because 𝑥★ could lie near the boundary of [−𝑅, 𝑅]𝑑 . To fix this, one
could instead look for a minimizer of 𝑓 over C′ B [−𝑅 + 𝛿, 𝑅 − 𝛿]𝑑 , i.e., define 𝑥𝛿,★ to be a minimizer over
this smaller cube and set C B C′ ∩ {𝑓 − 𝑓 (𝑥𝛿,★) ≤ 𝜀}. If we take 𝛿 = 𝜀/(𝐿

√
𝑑), then by 𝐿-Lipschitzness we

see that any point in C is a 2𝜀-minimizer of 𝑓 over [−𝑅, 𝑅]𝑑 , and now B(𝑥𝛿,★, 𝛿) ⊆ C. This does not really
change the argument.

52

designed to produce useful results, unless 𝑝1, . . . , 𝑝𝑁 are valid outputs from a separation
oracle corresponding to a convex body C satisfying the assumptions of the feasibility
problem. So, we aim to choose 𝑝1, . . . , 𝑝𝑁 so that this holds with C = C𝑁 . Now, we can use
the following post hoc reasoning: had we run the algorithm with the separation oracle for
C𝑁 from the outset, then the algorithm would have output the same sequence of points
𝑥1, . . . , 𝑥𝑁 , because it is deterministic, so this construction yields a valid lower bound (i.e.,
it requires more than 𝑁 iterations to solve the feasibility problem). This proof technique is
known as the method of resisting oracles, and its main drawback is that it does not apply
to randomized algorithms.9

Let us instantiate the resisting oracle for the feasibility problem. At each iteration 𝑛,
the convex body C𝑛 is the box {𝑥 ∈ R𝑑 : 𝑎𝑛 ≤ 𝑥 ≤ 𝑏𝑛}; here, 𝑎𝑛, 𝑏𝑛 ∈ R𝑑 and the inequality
is interpreted pointwise. We start with 𝑎0 = −𝑅1𝑑 , 𝑏0 = +𝑅1𝑑 , where 1𝑑 is the all-ones
vector; thus, C0 = [−𝑅, 𝑅]𝑑 .

When the algorithm makes the first query 𝑥1, we update the box by cutting it in
half, based on the first coordinate of 𝑥1. Namely, if 𝑥1 [1] ≤ 0, we set 𝑎1 [1] = 0, and
𝑎1 [𝑘] = 𝑎0 [𝑘] for all 𝑘 > 1; we output the separating vector −𝑒1. If 𝑥1 [1] ≥ 0, we set
𝑏1 [1] = 0 and 𝑏1 [𝑘] = 𝑏0 [𝑘] for all 𝑘 > 1; we output the separating vector +𝑒1. In either
case, vol(C1) = 1

2 vol(C0) and 𝑥1 ∉ intC1.
When the algorithm makes the second query 𝑥2, we repeat this procedure except that

we cut the box in half along the second coordinate. We continue in this fashion, cycling
through the coordinates.

Let 𝑐𝑛 denote the center of C𝑛. We now claim that for each 𝑛, B(𝑐𝑛, 𝑟𝑛) ⊆ C𝑛, where
𝑟𝑛 = (𝑅/2) (1/2)𝑛/𝑑 . Indeed, this is true for 𝑛 = 0. Also, for 𝑛 = 𝑎𝑑 for integer 𝑎, each side
of the box has length 𝑅 (1/2)𝑎 , so the result is true in this case too. Finally, for 𝑛 = 𝑎𝑑 + 𝑏,
we have B(𝑐 (𝑎+1)𝑑 , 𝑅/2𝑎+1) ⊆ C(𝑎+1)𝑑 ⊆ C𝑛 hence B(𝑐𝑛, 𝑅/2𝑎+1) ⊆ C𝑛 , and we note that
𝑅/2𝑎+1 ≤ (𝑅/2) (1/2)𝑛/𝑑 .

The resisting oracle construction succeeds up to iteration 𝑁 provided that C𝑁 contains
a ball of radius 𝜀. It therefore suffices to have (𝑅/2) (1/2)𝑁 /𝑑 ≥ 𝜀, i.e., 𝑁 ≳ 𝑑 log(𝑅/𝜀). □

Exercises
Exercise 6.1.

1. Prove that a function 𝑓 is lower semicontinuous if and only if for all 𝑐 ∈ R, the level
set {𝑓 ≤ 𝑐} is closed.

2. Prove that a supremum of lower semicontinuous functions is lower semicontinuous.
9Lower bounds for randomized algorithms require the use of information theory.

53

3. Show that the function defined in (6.2) is lower semicontinuous if and only if 𝜙 = 0.

Exercise 6.2. Prove that if 𝑓 is differentiable at 𝑥0 ∈ int dom 𝑓 , then 𝜕𝑓 (𝑥0) = {∇𝑓 (𝑥0)}.

Exercise 6.3. Let 𝑓 : R𝑑 → R be continuous and convex on a convex set C. Prove that
𝑓 is Lipschitz continuous over C with constant 𝐿 if and only if for every 𝑥0 ∈ intC and
every 𝑝 ∈ 𝜕𝑓 (𝑥0), we have ∥𝑝 ∥ ≤ 𝐿.

Exercise 6.4. Compute the subdifferential of the Euclidean norm ∥·∥.

Exercise 6.5. Assume that 𝑓 is 𝛼-strongly convex and 𝐿-Lipschitz continuous over the
closed convex set C. Prove that for PSD,

𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝛼

2 {(1 − 𝛼ℎ/𝐿)−𝑁 − 1}
∥𝑥0 − 𝑥★∥2 + 𝐿ℎ

2 ,

where 𝑥𝑁 is a suitable averaged iterate. Deduce that by setting ℎ = 𝜀/𝐿, one can achieve
𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 in 𝑂 (𝐿2

𝛼𝜀
log(𝛼𝑅2

𝜀
)) iterations (compared with 𝑂 (𝐿2𝑅2/𝜀2) iterations, as

implied by Theorem 6.14).
Also, show that under these assumptions, ∥𝑥0 − 𝑥★∥ ≤ 2𝐿/𝛼 .

Exercise 6.6. The analysis of the ellipsoid method (and general cutting plane schemes)
presents an additional difficulty: since the next set C𝑛+1 is only chosen to be a superset
of C𝑛 ∩ {⟨𝑝𝑛, ·⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩}, it is not guaranteed that C ⊆ C𝑛 for all 𝑛; in particular, the
chosen point 𝑥𝑛 may lie outside of C.

Assume that we have access to a separation oracle for C: given a point 𝑥 ∉ C, the
oracle outputs a non-zero vector 𝑝 ∈ R𝑑 such that supC ⟨𝑝, ·⟩ ≤ ⟨𝑝, 𝑥⟩. Modify the cutting
plane method as follows: if a chosen point 𝑥𝑛 does not lie in C, then let 𝑝𝑛 be vector that
separates 𝑥𝑛 from C and instead update C𝑛+1 to be a superset of C𝑛 ∩ {⟨𝑝𝑛, ·⟩ ≤ ⟨𝑝𝑛, 𝑥𝑛⟩}.
We also allow C0 ⊇ C, so that 𝑥0 is not necessarily feasible either. Prove that if the sets are
chosen so that vol(C𝑛+1)/vol(C𝑛) ≤ 𝜆 < 1 for all 𝑛, then the following assertions hold.

1. If vol(C𝑁) < vol(C), then there exists 𝑛 < 𝑁 with 𝑥𝑛 ∈ C.

2. If vol(C𝑁) < vol(C), then there exists 𝑛 < 𝑁 with 𝑥𝑛 ∈ C and

𝑓 (𝑥𝑛) − 𝑓★ ≤ 𝐷𝐿𝜆𝑁 /𝑑 (volC0
volC

)1/𝑑
.

Hint: Define a sequence of sets C′
0,C

′
1,C

′
2, . . . as follows. Start with C′

0 = C and
𝑛−1 B 0. For each 𝑘 ∈ N, let 𝑛𝑘 denote the first integer greater than 𝑛𝑘−1 for which
𝑥𝑛𝑘 ∈ C and set C′

𝑘+1 B C′
𝑘
∩ {⟨𝑝𝑛𝑘 , ·⟩ ≤ ⟨𝑝𝑛𝑘 , 𝑥𝑛𝑘 ⟩}. Prove via induction that if 𝑘 (𝑁)

is the largest integer such that 𝑛𝑘 (𝑁) ≤ 𝑁 , then C′
𝑛𝑘 (𝑁) ⊆ C𝑁 .

54

Exercise 6.7. Prove Lemma 6.20.

Exercise 6.8. Prove Theorem 6.22. (Use the same construction as in the proof of Theo-
rem 6.21, but choose the parameters 𝛼 and 𝛾 differently.)

7 Frank–Wolfe
In order to overcome the lower bounds in the black-box setting, we must take advantage
of additional structure in the problem. The first method we study in this vein is the
Frank–Wolfe or conditional gradient method. Instead of assuming access to a projection
oracle for the constraint set C, it instead assumes access to a linear optimization oracle
(LOO) over the set C:

Given 𝑝 ∈ R𝑑 , output arg min
C

⟨𝑝, ·⟩ . (LOO)

Here, we assume that C is compact (bounded and closed).
The oracle equivalently maximizes the convex function −⟨𝑝, ·⟩ over C, so the arg min

is attained at a vertex of C. Let us define these concepts properly.

Definition 7.1. A point 𝑥 ∈ C is called an extreme point or a vertex of C if there do
not exist 𝑥0, 𝑥1 ∈ C and 𝑡 ∈ (0, 1) such that 𝑥 = (1 − 𝑡) 𝑥0 + 𝑡 𝑥1.

Theorem 7.2. Every compact convex set is the convex hull of its extreme points.

For example, the set of vertices of the closed unit ball B(0, 1) is the sphere 𝜕B(0, 1). It
follows that to implement (LOO), it suffices to solve arg minvertices of C ⟨𝑝, ·⟩.

We now present the Frank–Wolfe method for minimizing 𝑓 over C:

𝑥𝑛+1 B (1 − ℎ𝑛) 𝑥𝑛 + ℎ𝑛 LOO(∇𝑓 (𝑥𝑛)) . (FW)

Theorem 7.3 (convergence of FW). Let 𝑓 be convex and 𝛽-smooth over C. Let 𝐷 B
diamC and ℎ𝑛 = 2/(𝑛 + 2). Then, for any 𝑁 ≥ 1, FW satisfies

𝑓 (𝑥𝑁) − 𝑓★ ≤ 2𝛽𝐷2

𝑁 + 1 .

55

Proof. Let 𝑦𝑛 B LOO(∇𝑓 (𝑥𝑛)). Using 𝛽-smoothness,

𝑓 (𝑥𝑛+1) − 𝑓 (𝑥𝑛) ≤ ⟨∇𝑓 (𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛⟩ +
𝛽

2 ∥𝑥𝑛+1 − 𝑥𝑛∥2

≤ ℎ𝑛 ⟨∇𝑓 (𝑥𝑛), 𝑦𝑛 − 𝑥𝑛⟩ +
𝛽𝐷2ℎ2

𝑛

2 ≤ ℎ𝑛 ⟨∇𝑓 (𝑥𝑛), 𝑥★ − 𝑥𝑛⟩ +
𝛽𝐷2ℎ2

𝑛

2

≤ −ℎ𝑛 (𝑓 (𝑥𝑛) − 𝑓★) +
𝛽𝐷2ℎ2

𝑛

2 .

Rearranging,

𝑓 (𝑥𝑛+1) − 𝑓★ ≤ (1 − ℎ𝑛) (𝑓 (𝑥𝑛) − 𝑓★) +
𝛽𝐷2ℎ2

𝑛

2 .

For ℎ𝑛 = 2/(𝑛 + 2), we now prove the error bound by induction on 𝑛, where the base case
𝑛 = 0 follows from the inequality above. If the error bound holds at iteration 𝑛, then

𝑓 (𝑥𝑛+1) − 𝑓★ ≤ 𝑛

𝑛 + 2
2𝛽𝐷2

𝑛 + 1 + 2𝛽𝐷2

(𝑛 + 2)2 ≤ 2𝛽𝐷2

𝑛 + 2 . □

The analysis above is actually not the most natural one, since it fails to capture the
affine invariance of the Frank–Wolfe algorithm (Exercise 7.1).

Besides positing different oracle access than projected gradient methods, the Frank–
Wolfe method has the appealing property of producing sparse solutions. This connects
with results known as approximate Carathéodory theorems. First, let us recall the classical
statement of Carathéodory’s theorem.

Theorem 7.4 (Carathéodory). Let C ⊆ R𝑑 be a compact convex set and let 𝑥 ∈ C. Then,
𝑥 can be written as a convex combination of 𝑑 + 1 vertices of C.

Caution: in this theorem, the choice of 𝑑 + 1 vertices of course depends on 𝑥 itself. If
every point in C could be written as a convex combination of the same 𝑑 + 1 vertices, this
would say that C only has 𝑑 + 1 vertices at all.

Carathéodory’s theorem says that even if a convex body has exponentially many
vertices, such as the cube [−1, 1]𝑑 , any given point has a succinct representation using
only 𝑑 + 1 vertices. However, the size of the representation grows with the ambient
dimension. What happens if we relax the requirement that the representation is exact?
The following simple argument, often attributed to B. Maurey, shows that the size of the
representation is dimension-free, and the convex combination even uses equal weights.

56

Theorem 7.5 (approximate Carathéodory). Let C ⊆ R𝑑 be a compact convex set with
diameter 𝐷 , let 0 < 𝜀 < 1, and let 𝑥 ∈ C. Then, there exist vertices 𝑦1, . . . , 𝑦𝑁 ∈ C with

𝑥 − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖

 ≤ 𝜀𝐷 , 𝑁 ≤ 1
𝜀2 .

Proof. By Theorem 7.4, there exist vertices 𝑦1, . . . , 𝑦𝑑+1 ∈ C and a probability distribution
𝜆 over [𝑑 + 1] such that 𝑥 =

∑𝑑+1
𝑗=1 𝜆 𝑗𝑦 𝑗 . Now consider the distribution 𝜇 =

∑𝑑+1
𝑗=1 𝜆 𝑗𝛿𝑦 𝑗

and
sample points 𝑌1, . . . , 𝑌𝑁

i.i.d.∼ 𝜇. Note that each 𝑌𝑖 is a vertex of C. Then, since the mean of
𝜇 is 𝑥 , the usual variance calculation shows that

E
[

𝑥 − 1

𝑁

𝑁∑︁
𝑖=1

𝑌𝑖

2]
≤

∑𝑑+1
𝑗=1 𝜆 𝑗 ∥𝑥 − 𝑦 𝑗 ∥2

𝑁
≤ 𝐷2

𝑁
.

Choose 𝑁 to make the right-hand side at most 𝜀2𝐷2. □

The approximate Caratheódory theorem has implications, e.g., for controlling the
covering numbers of polytopes. But more broadly, the proof technique is quite influential
and is at the root of other important developments, e.g., the existence of neural networks
of small width which approximate functions in the Barron class [Bar93].

Now comes the punchline: Franke–Wolfe renders the approximate Carathéodory
theorem constructive. Indeed, suppose that the LOO always outputs a vertex. After 𝑁 − 1
iterations of FW starting from a vertex, the iterate 𝑥𝑁−1 is a convex combination of at
most 𝑁 vertices. At the same time, if we apply Theorem 7.3 to the 2-smooth function
𝑓 : 𝑧 ↦→ ∥𝑥 − 𝑧∥2, where 𝑥 ∈ C and 𝑓★ = 0, we see that ∥𝑥𝑁−1 − 𝑥 ∥2 ≤ 4𝐷2/𝑁 .

The full statement of Theorem 7.3 can therefore be seen as a generalization of the
approximate Carathéodory principle: the iterate of FW is a sparse combination of vertices
which is approximately optimal. We next demonstrate an example in which this sparsity
property is crucial.

57

Example 7.6 (low-rank estimation). Consider the nuclear norm ball

C =

{
𝑋 ∈ R𝑑×𝑑 : ∥𝑋 ∥∗ =

𝑑∑︁
𝑖=1

𝜎𝑖 (𝑋) ≤ 1
}
.

This constraint set often arises in low-rank matrix recovery as a convex relaxation of
a rank constraint. Projection onto the set C requires projecting the singular values
onto the simplex; this requires computing a full SVD, which uses 𝑂 (𝑑3) arithmetic
operations. On the other hand, since

C = conv{𝑢𝑣T : 𝑢, 𝑣 ∈ R𝑑 , ∥𝑢∥ = ∥𝑣 ∥ = 1} ,

the LOO for C involves solving, for any 𝑃 ∈ R𝑑×𝑑 ,

arg min
𝑋∈C

⟨𝑃,𝑋 ⟩ = arg min{⟨𝑃,𝑢𝑣T⟩ : 𝑢, 𝑣 ∈ R𝑑 , ∥𝑢∥ = ∥𝑣 ∥ = 1} .

Solving this amounts to computing the top singular vector of 𝑃 , which is often imple-
mented via power iteration at cost 𝑂 (𝑑2) per step. Moreover, FW yields an 𝜀-accurate
solution with rank 𝑂 (1/𝜀).

Exercises
Exercise 7.1. Show that FW is affine-invariant in the following sense. Let 𝐴 ∈ R𝑑×𝑑 be
an invertible matrix. Show that the iterates {𝑥𝑛}𝑛∈N of FW applied to the problem of
minimizing 𝑥 ↦→ 𝑓 (𝐴𝑥) over the set 𝐴−1C are related to the iterates {𝑥𝑛}𝑛∈N of FW on the
original problem via 𝑥𝑛 = 𝐴𝑥𝑛 .

8 Proximal methods
Can we solve non-smooth problems at the same rate as smooth problems? The black-box
lower bounds say no in general, but if the non-smooth part is “simple” in the sense that it
admits an implementable proximal oracle, the answer becomes yes.

58

Definition 8.1. Let 𝑓 : R𝑑 → R ∪ {∞}. The proximal oracle for 𝑓 is the mapping
prox𝑓 : R𝑑 → R𝑑 given by

prox𝑓 (𝑦) B arg min
𝑥∈R𝑑

{
𝑓 (𝑥) + 1

2 ∥𝑦 − 𝑥 ∥2} .
If 𝑓 is a regular convex function, then the optimization problem defining the proximal

oracle is strongly convex, so it admits a unique minimizer by Lemma 1.10 and Lemma 6.6.
Note also that

proxℎ𝑓 (𝑦) = arg min
𝑥∈R𝑑

{
ℎ𝑓 (𝑥) + 1

2 ∥𝑦 − 𝑥 ∥2} = arg min
𝑥∈R𝑑

{
𝑓 (𝑥) + 1

2ℎ ∥𝑦 − 𝑥 ∥2} ,
where ℎ > 0 plays the role of a step size.

The value of the optimization problem defining prox𝑓 also has a name.

Definition 8.2. Let 𝑓 : R𝑑 → R ∪ {∞}. The Moreau–Yosida envelope of 𝑓 with
parameter ℎ > 0 is the mapping 𝑓ℎ : R𝑑 → R ∪ {∞} given by

𝑓ℎ (𝑦) B inf
𝑥∈R𝑑

{
𝑓 (𝑥) + 1

2ℎ ∥𝑦 − 𝑥 ∥2} .
8.1 Algorithms and examples
The proximal oracle is a regularized version of the original optimization problem. Assum-
ing for the moment that we can compute the proximal oracle easily, let us explore its uses
for algorithm design.

The simplest algorithm is to repeatedly iterate the proximal mapping. This is known
as the proximal point method.

𝑥𝑛+1 B proxℎ𝑓 (𝑥𝑛) . (PPM)

Assume for the moment that 𝑓 is smooth and that the next point 𝑥𝑛+1 can be obtained
from the first-order optimality condition for proxℎ𝑓 . This leads to

0 = ∇𝑓 (𝑥𝑛+1) +
1
ℎ
(𝑥𝑛+1 − 𝑥𝑛) ⇐⇒ 𝑥𝑛+1 = 𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛+1) .

Note that this is similar to the GD update, except that the gradient is evaluated at the
subsequent point 𝑥𝑛+1. In numerical analysis, we say that GD is an explicit discretization of

59

the gradient flow, whereas PPM is an implicit discretization. The advantage of an explicit
method is easy of implementation; it does not require solving a (non-linear) system in
order to perform an update. The advantage of an implicit method is stability.

Recall that the results in §2 for GF do not require smoothness of 𝑓 , whereas the results
in §3 for GD do. (We studied the non-smooth case for GD in §6.2, but it requires decreasing
step sizes and averaging.) Shortly, we shall see that PPM is similar to GF, in that it also
does not require smoothness.

The most powerful results using the proximal oracle, however, are for the problem of
composite optimization. Here, the goal is to minimize a sum of functions:

minimize 𝐹 B 𝑓 + 𝑔 .

We assume that 𝑓 is smooth and that 𝑔 is non-smooth.

Example 8.3 (LASSO as composite optimization). The computation of the LASSO
estimator from Example 1.3 is the canonical example of composite optimization, where

𝑓 : 𝜃 ↦→ 1
2𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − ⟨𝜃, 𝑋𝑖⟩)2 , 𝑔 : 𝜃 ↦→ 𝜆 ∥𝜃 ∥1 .

In this example, the non-smooth part is particularly simple, so we can compute its
proximal oracle in closed form. First, note that it is coordinate-wise decomposable:

prox𝜆 ∥·∥1 (𝑦) = arg min
𝑥∈R𝑑

{
𝜆 ∥𝑥 ∥1 +

1
2 ∥𝑦 − 𝑥 ∥2}

=

𝑑∑︁
𝑖=1

(
arg min
𝑥 [𝑖]∈R

{
𝜆 |𝑥 [𝑖] | + 1

2 (𝑦 [𝑖] − 𝑥 [𝑖])2}) 𝑒𝑖 .
Therefore, it suffices to solve the problem in dimension one. A direct computation
(see Exercise 8.1) then yields

prox𝜆 |·| (𝑦) = (|𝑦 | − 𝜆)+ sgn𝑦 C thresh𝜆 (𝑦)

where (·)+ B max{0, ·} denotes the positive part. The operator thesh𝜆 , known as the
soft thresholding operator, reduces the magnitude of its input by 𝜆, or to 0 if the original
magnitude is less than 𝜆. The proximal operator for 𝜆 ∥·∥1 simply applies thresh𝜆 to
each coordinate.

60

Example 8.4 (constrained optimization as composite optimization). Consider the prob-
lem of minimizing a smooth function 𝑓 over a closed convex set C. We can also treat
this as composite optimization with

𝑔 = 𝜒C .

(Recall the convex indicator defined in (6.1).) In this case, the proximal oracle for 𝑔 is

proxℎ𝜒C (𝑦) = arg min
𝑥∈R𝑑

{
𝜒C(𝑥) +

1
2ℎ ∥𝑦 − 𝑥 ∥2} = arg min

𝑥∈C

{ 1
2ℎ ∥𝑦 − 𝑥 ∥2} = ΠC(𝑦) .

So, the proximal oracle for 𝜒C is the projection oracle for C.

The above examples motivate the assumption that we have access to the proximal
oracle for the non-smooth part 𝑔. Further examples of computable proximal oracles can
be found on the website proximity-operator.net.

The algorithm we consider in this context is known as proximal gradient descent.

𝑥𝑛+1 B arg min
𝑥∈R𝑑

{
𝑓 (𝑥𝑛) + ⟨∇𝑓 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩ + 𝑔(𝑥) +

1
2ℎ ∥𝑥 − 𝑥𝑛∥2} . (PGD)

In other words, we take the objective function 𝐹 = 𝑓 + 𝑔 and linearize only the smooth
part. The update can be rewritten as follows. By completing the square,

𝑥𝑛+1 = arg min
𝑥∈R𝑑

{
𝑔(𝑥) + 1

2ℎ ∥𝑥 − 𝑥𝑛 + ℎ ∇𝑓 (𝑥𝑛)∥2} = proxℎ𝑔 (𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛)) .

This corresponds to taking an explicit step on 𝑓 , followed by an implicit step on 𝑔. It is
not obvious that this algorithm converges to 𝑥★, the minimizer of 𝐹 = 𝑓 + 𝑔. However,
note that if 𝑔 is differentiable, then

𝑥𝑛+1 = 𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛) − ℎ ∇𝑔(𝑥𝑛+1) .

If 𝑥𝑛 = 𝑥★, then 𝑥𝑛+1 = 𝑥★ is the solution since 0 = ∇𝐹 (𝑥★) = ∇𝑓 (𝑥★) + ∇𝑔(𝑥★). Thus,
provided that 𝑓 and 𝑔 are convex and differentiable, 𝑥★ is the unique fixed point.

For the LASSO problem, the iteration reads

𝑥𝑛+1 = thresh𝜆ℎ (𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛)) .

In the literature, this is known as the iterative shrinking-thresholding algorithm (ISTA).
For constrained optimization, proximal gradient descent is projected gradient descent.

61

https://proximity-operator.net

8.2 Convergence analysis
We study the convergence of PGD, since it includes PPM as a special case (take 𝑓 = 0).

Theorem 8.5 (convergence of PGD). Let 𝑓 be 𝛼 𝑓 -convex and 𝛽 𝑓 -smooth, and let 𝑔 be
𝛼𝑔-convex. Let the step size ℎ satisfy ℎ ≤ 1/𝛽 𝑓 , let 𝑥+ denote the next iterate of PGD
started from 𝑥 , and let 𝑦 ∈ R𝑑 . Then,

(1 + 𝛼𝑔ℎ) ∥𝑦 − 𝑥+∥2 ≤ (1 − 𝛼 𝑓ℎ) ∥𝑦 − 𝑥 ∥2 − 2ℎ (𝐹 (𝑥+) − 𝐹 (𝑦)) . (8.1)

In particular, if we set 𝑦 = 𝑥★ and iterate, it yields

𝐹 (𝑥𝑁) − 𝐹★ ≤
𝛼 𝑓 + 𝛼𝑔

2 (𝜆−𝑁
ℎ

− 1)
∥𝑥0 − 𝑥★∥2 ,

where 𝜆ℎ B (1 − 𝛼 𝑓ℎ)/(1 + 𝛼𝑔ℎ).

Proof. Let𝜓𝑥 denote the objective function in the definition of PGD. Then,𝜓𝑥 is (𝛼𝑔+1/ℎ)-
strongly convex with minimizer 𝑥+, so by the quadratic growth inequality,

𝜓𝑥 (𝑦) ≥ 𝜓𝑥 (𝑥+) +
𝛼𝑔 + 1/ℎ

2 ∥𝑦 − 𝑥+∥2 .

On one hand, by 𝛼 𝑓 -convexity,

𝜓𝑥 (𝑦) = 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝑔(𝑦) + 1
2ℎ ∥𝑦 − 𝑥 ∥2 ≤ 𝐹 (𝑦) +

1/ℎ − 𝛼 𝑓

2 ∥𝑦 − 𝑥 ∥2 .

On the other hand, by 𝛽 𝑓 -smoothness,

𝜓𝑥 (𝑥+) = 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝑔(𝑥+) + 1
2ℎ ∥𝑥+ − 𝑥 ∥2

≥ 𝐹 (𝑥+) +
1/ℎ − 𝛽 𝑓

2 ∥𝑥+ − 𝑥 ∥2 ≥ 𝐹 (𝑥+) .

Combining these inequalities and rearranging,

(1 + 𝛼𝑔ℎ) ∥𝑦 − 𝑥+∥2 ≤ (1 − 𝛼 𝑓ℎ) ∥𝑦 − 𝑥 ∥2 − 2ℎ (𝐹 (𝑥+) − 𝐹 (𝑦)) .

Note that by taking 𝑦 = 𝑥 , it yields the descent property

𝐹 (𝑥+) − 𝐹 (𝑥) ≤ −
1 + 𝛼𝑔ℎ

2ℎ ∥𝑥 − 𝑥+∥2 ≤ 0 .

The final bound follows from Lemma 3.5 and algebra. □

62

Refined analyses of PPM are presented in Exercise 8.3, Corollary 9.13, and Exercise 9.2.
The key feature of Theorem 8.5 is that it essentially recovers the smooth rate for GD

despite the presence of non-smoothness in the objective. Thus, for the LASSO problem
(Example 8.3), we can solve it as quickly as if it were a smooth problem via ISTA.

Moreover, the one-step inequality (8.1) is the PGD analogue of the inequality (3.3)
which holds for GD, and in turn, (3.3) is the only property of GD which plays a role in
the proof of Nesterov acceleration (Theorem 5.10); the remainder of the proof is purely
algebraic. This naturally leads to an accelerated algorithm for composite optimization.

Starting with 𝑥−1 = 𝑥0, consider

𝑥𝑛+1 B 𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1) − PGD𝐹,1/𝛽 (𝑥𝑛 + 𝜃𝑛 (𝑥𝑛 − 𝑥𝑛−1)) , (APGD)

where PGD𝐹,1/𝛽 denotes one step of PGD on 𝐹 = 𝑓 + 𝑔 with step size ℎ = 1/𝛽 .

Theorem 8.6 (convergence of APGD). Let 𝑓 be convex and 𝛽-smooth, and let 𝑔 be
convex. Define the sequence: 𝜆0 B 0 and 𝜆𝑛+1 B

1
2 (1 +

√︁
1 + 4𝜆2

𝑛) for 𝑛 ∈ N. Set
𝜃𝑛 B (𝜆𝑛 − 1)/𝜆𝑛+1. Then, APGD satisfies

𝐹 (𝑥𝑁) − 𝐹★ ≤ 2𝛽 ∥𝑥0 − 𝑥★∥2

𝑁 2 .

When applied to LASSO, this algorithm is known as fast ISTA or FISTA. Rates in the
strongly convex setting can be obtained from the reduction in Lemma 4.1.

Exercises
Exercise 8.1. Verify the computation of prox𝜆 |·| in Example 8.3.

Exercise 8.2. Prove that even for non-convex 𝑓 , as long as 𝑥+ B proxℎ𝑓 (𝑥) is well-defined,

𝑓 (𝑥+) − 𝑓★ ≤ 1
2ℎ ∥𝑥 − 𝑥★∥2 .

Thus, if we can implement PPM for arbitrarily large step sizes ℎ > 0, we can solve
non-convex optimization.

Exercise 8.3. To avoid technical difficulties, assume that 𝑓 is convex and differentiable
everywhere. Show that for the PPM, (8.1) can be refined as follows: for all 𝑦 ∈ R𝑑 ,

∥𝑥+ − 𝑦∥2 ≤ ∥𝑥 − 𝑦∥2 − 2ℎ (𝑓 (𝑥+) − 𝑓 (𝑦)) − ℎ2 ∥∇𝑓 (𝑥+)∥2 .

63

Next, in analogy to Exercise 2.1, define the Lyapunov function

ℒ𝑛 B 𝑛2ℎ2 ∥∇𝑓 (𝑥𝑛)∥2 + 2𝑛ℎ (𝑓 (𝑥𝑛) − 𝑓★) + ∥𝑥𝑛 − 𝑥★∥2 ,

where {𝑥𝑛}𝑛∈N are the iterates of PPM, and show that ℒ𝑛+1 ≤ ℒ𝑛 . (Use the fact that PPM
is contractive, see Corollary 9.13.) Deduce the bounds

∥∇𝑓 (𝑥𝑁)∥ ≤ ∥𝑥0 − 𝑥★∥
𝑁ℎ

, 𝑓 (𝑥𝑁) − 𝑓★ ≤ ∥𝑥0 − 𝑥★∥2

4𝑁ℎ
.

Observe that if ℎ ↘ 0 while 𝑁ℎ → 𝑡 , it recovers the results of Exercise 2.1.

9 Fenchel duality
In this section, we study a notion of duality for convex functions.

Definition 9.1. Let 𝑓 : R𝑑 → R ∪ {∞} be proper (dom 𝑓 ≠ ∅). The convex conjugate
or Fenchel–Legendre conjugate of 𝑓 is the function 𝑓 ∗ : R𝑑 → R ∪ {∞} defined by

𝑓 ∗(𝑦) B sup
𝑥∈R𝑑

{⟨𝑥,𝑦⟩ − 𝑓 (𝑥)} .

For any proper function 𝑓 , the conjugate 𝑓 ∗ is always convex and lower semicontinuous,
since it is a supremum of affine functions. Conversely, if 𝑓 is a regular convex function
(thus: proper, convex, and lower semicontinuous), then 𝑓 = 𝑓 ∗∗ (Theorem 9.7).

Example 9.2. The verification of these examples is left as Exercise 9.1.

1. If 𝑓 (𝑥) = 1
2 ⟨𝑥,𝐴 𝑥⟩ where 𝐴 ≻ 0, then 𝑓 ∗(𝑦) = 1

2 ⟨𝑦,𝐴
−1𝑦⟩.

2. If 𝑓 (𝑥) = |𝑥 |𝑝/𝑝 for 𝑝 > 1 and 𝑥 ∈ R, then 𝑓 ∗(𝑦) = |𝑦 |𝑞/𝑞 where 1/𝑝 + 1/𝑞 = 1.

3. Let |||·||| denote a norm over R𝑑 (not necessarily Euclidean), and let |||·|||∗ denote
the dual norm: |||𝑦 |||∗ B sup{⟨𝑥,𝑦⟩ : 𝑥 ∈ R𝑑 , |||𝑥 ||| ≤ 1}.
If 𝑓 (𝑥) = |||𝑥 |||, then 𝑓 ∗(𝑦) = 𝜒C(𝑦) where C B {𝑦 ∈ R𝑑 : |||𝑦 |||∗ ≤ 1} is the closed
unit ball in the dual norm.

Before formally establishing further properties of this duality, we take a detour to
explain the origin of this concept in classical mechanics.

64

9.1 (Optional) Connection with classical mechanics
Disclaimer: The material in this subsection is not necessarily the most relevant for
optimization, and it is included for the sake of broader historical context. We make no
attempt to be rigorous: assume all functions are smooth, etc.

Newton’s law of motion states that the trajectory (𝑥𝑡)𝑡≥0 of a particle of mass𝑚 obeys
the differential equation𝑚 ¥𝑥𝑡 = 𝐹 (𝑥𝑡), where 𝐹 is the force. The force is typically given as
the gradient of a potential: 𝐹 = −∇𝜙 .

In 1662, Pierre de Fermat proposed an explanation for the law of refraction via his
principle of least action: light takes the path which minimizes the total travel time. Is
there such a principle for classical mechanics as well? In 1760, Joseph-Louis Lagrange
found such a variational principle: let 𝐿(𝑥, 𝑣) B 1

2 𝑚 ∥𝑣 ∥2 − 𝜙 (𝑥) denote the Lagrangian,
where 𝑣 denotes the velocity of the particle. Note that the Lagrangian is the difference of
the kinetic energy and the potential energy. The action functional is

𝒜((𝑥𝑡)𝑡∈[0,𝑇]) B
∫ 𝑇

0
𝐿(𝑥𝑡 , ¤𝑥𝑡) d𝑡 .

Lagrangian mechanics states that if a particle starts at 𝑥0 at time 0, and ends at 𝑥𝑇 at time
𝑇 , then the path it takes in between is a stationary point of the action functional subject
to the endpoint constraints.

We solve for the path using calculus of variations. Let 𝑥 [0,𝑇] B (𝑥𝑡)𝑡∈[0,𝑇] be a short-
hand for the path. If 𝑥 [0,𝑇] is a stationary point, it means that for any perturbation 𝛿𝑥 [0,𝑇] ,
the difference 𝒜(𝑥 [0,𝑇] + 𝛿𝑥 [0,𝑇]) −𝒜(𝑥 [0,𝑇]) should vanish to first order in 𝛿𝑥 [0,𝑇] . The
endpoint constraints require that 𝛿𝑥0 = 𝛿𝑥𝑇 = 0. Thus,

𝒜(𝑥 [0,𝑇] + 𝛿𝑥 [0,𝑇]) −𝒜(𝑥 [0,𝑇]) =
∫ 𝑇

0
{𝐿(𝑥𝑡 + 𝛿𝑥𝑡 , ¤𝑥𝑡 + 𝛿 ¤𝑥𝑡) − 𝐿(𝑥𝑡 , ¤𝑥𝑡)} d𝑡

=

∫ 𝑇

0
{⟨∇𝑥𝐿(𝑥𝑡 , ¤𝑥𝑡), 𝛿𝑥𝑡 ⟩ + ⟨∇𝑣𝐿(𝑥𝑡 , ¤𝑥𝑡), 𝛿 ¤𝑥𝑡 ⟩} d𝑡 + 𝑜 (∥𝛿𝑥 ∥)

=

∫ 𝑇

0
⟨∇𝑥𝐿(𝑥𝑡 , ¤𝑥𝑡) − 𝜕𝑡∇𝑣𝐿(𝑥𝑡 , ¤𝑥𝑡), 𝛿𝑥𝑡 ⟩ d𝑡 + 𝑜 (∥𝛿𝑥 ∥) .

The stationary point therefore satisfies the Euler–Lagrange equation

𝜕𝑡∇𝑣𝐿(𝑥𝑡 , ¤𝑥𝑡) = ∇𝑥𝐿(𝑥𝑡 , ¤𝑥𝑡) .
For 𝐿(𝑥, 𝑣) = 1

2 𝑚 ∥𝑣 ∥2 − 𝜙 (𝑥), it recovers Newton’s equation.
We now introduce the Legendre transform. Define the Hamiltonian 𝐻 to be the convex

conjugate of 𝐿 with respect to the 𝑣-variable, i.e.,

𝐻 (𝑥, 𝑝) B sup
𝑣∈R𝑑

{⟨𝑝, 𝑣⟩ − 𝐿(𝑥, 𝑣)} .

65

The first-order condition reveals that

𝑝 = ∇𝑣𝐿(𝑥, 𝑣) .

Instead of working with the variables (𝑥, 𝑣), we now work with the variables (𝑥, 𝑝). The
inverse of the transformation is given by

𝑣 = ∇𝑝𝐻 (𝑥, 𝑝) . (9.1)

Indeed, we will argue that a regular convex function 𝑓 satisfies 𝑓 = 𝑓 ∗∗ (Theorem 9.7).
Assuming that 𝑣 ↦→ 𝐿(𝑥, 𝑣) is regular convex, it yields the dual representation

𝐿(𝑥, 𝑣) = sup
𝑝∈R𝑑

{⟨𝑝, 𝑣⟩ − 𝐻 (𝑥, 𝑝)} ,

and the first-order condition for this problem yields (9.1).
Thus, if we define 𝑝𝑡 B ∇𝑣𝐿(𝑥𝑡 , ¤𝑥𝑡), we can reformulate the Euler–Lagrange equation

as follows. First, ¤𝑥𝑡 = 𝑣𝑡 = ∇𝑝𝐻 (𝑥𝑡 , 𝑝𝑡) by (9.1). Also, ∇𝑥𝐻 (𝑥, 𝑝) = −∇𝑥𝐿(𝑥, 𝑣) by the
envelope theorem, so ¤𝑝𝑡 = 𝜕𝑡∇𝑣𝐿(𝑥𝑡 , ¤𝑥𝑡) = ∇𝑥𝐿(𝑥𝑡 , ¤𝑥𝑡) = −∇𝑥𝐻 (𝑥𝑡 , 𝑝𝑡). In summary,

¤𝑥𝑡 = ∇𝑝𝐻 (𝑥𝑡 , 𝑝𝑡) , ¤𝑝𝑡 = −∇𝑥𝐻 (𝑥𝑡 , 𝑝𝑡) .

These are known as Hamilton’s equations, and it is easy to verify that they conserve
the Hamiltonian: 𝜕𝑡𝐻 (𝑥𝑡 , 𝑝𝑡) = 0. Compared to Newton’s law, which is a second-order
differential equation for the trajectory, Hamilton’s equations are a system of coupled
first-order differential equations evolving in phase space.

For our running example, 𝑝 =𝑚𝑣 is interpreted as the momentum, and

𝐻 (𝑥, 𝑝) =
〈
𝑝,

𝑝

𝑚

〉
− 1

2 𝑚

 𝑝
𝑚

2 + 𝜙 (𝑥) = 1
2𝑚 ∥𝑝 ∥2 + 𝜙 (𝑥) ,

which is the total energy (kinetic plus potential). Hamilton’s equations read

𝑚 ¤𝑥𝑡 = 𝑝𝑡 , 𝑝𝑡 = −∇𝜙 (𝑥𝑡) .

What does duality say about the action functional? Surprisingly, it relates back to
other concepts we have already seen. Specialize now to the case where the Lagrangian
only depends on 𝑣 (𝜙 = 0; no external potential, so we expect particles to move in straight
lines). Define the following function of space and time:

𝑢 (𝑡, 𝑥) B inf
{∫ 𝑡

0
𝐿(¤𝑥𝑠) d𝑠 + 𝑓 (𝑥0)

��� 𝑥 : [0, 𝑡] → R𝑑 , 𝑥𝑡 = 𝑥

}
.

66

In words, we minimize the action functional up to time 𝑡 , subject to the constraint that we
hit 𝑥 at time 𝑡 . We also add an initial cost 𝑓 (𝑥0). The function 𝑢 resembles the notion of
the value function or cost-to-go function in dynamic programming, and indeed it satisfies a
dynamic programming principle: for 0 ≤ 𝑠 < 𝑡 ,

𝑢 (𝑡, 𝑦) = inf
𝑥∈R𝑑

{
(𝑡 − 𝑠) 𝐿

(𝑦 − 𝑥

𝑡 − 𝑠

)
+ 𝑢 (𝑠, 𝑥)

}
. (9.2)

The heuristic derivation of this identity is as follows: consider a potential candidate 𝑥 for
the value of the path at time 𝑠 . Given 𝑥 , the best possible value of

∫ 𝑠

0 𝐿(¤𝑥𝑟) d𝑟 + 𝑓 (𝑥0) is
𝑢 (𝑠, 𝑥). For the remaining part, by convexity,∫ 𝑡

𝑠

𝐿(¤𝑥𝑟) d𝑟 ≥ (𝑡 − 𝑠) 𝐿
(1
𝑡 − 𝑠

∫ 𝑡

𝑠

¤𝑥𝑟 d𝑟
)
= (𝑡 − 𝑠) 𝐿

(𝑦 − 𝑥

𝑡 − 𝑠

)
.

The lower bound is achieved if ¤𝑥𝑟 is constant for 𝑟 ∈ [𝑠, 𝑡], i.e., 𝑥 [𝑠,𝑡] is a straight line.
In particular, since 𝑢 (0, ·) = 𝑓 , we see that

𝑢 (𝑡, 𝑦) B inf
𝑥∈R𝑑

{
𝑡𝐿

(𝑦 − 𝑥

𝑡

)
+ 𝑓 (𝑥)

}
. (9.3)

Definition 9.3. The Hopf–Lax semigroup (𝑄𝑡)𝑡≥0 is a family of operators which maps
functions to functions, such that 𝑄𝑡 𝑓 (𝑦) is defined to be the right-hand side of (9.3).

The dynamic programming principle (9.2) shows that 𝑄𝑡 𝑓 = 𝑄𝑡−𝑠 (𝑄𝑠 𝑓). Thus, we
have the properties 𝑄0 = id, 𝑄𝑠+𝑡 = 𝑄𝑠𝑄𝑡 = 𝑄𝑡𝑄𝑠 for all 𝑠, 𝑡 ≥ 0, which are the defining
properties of a semigroup.

These concepts are fundamental, so it is unsurprising that they have been rediscovered
in different contexts. In the context of convex analysis, the corresponding operation is
known as the infimal convolution.

Definition 9.4. Let 𝑓 , 𝑔 : R𝑑 → R∪{∞}. The infimal convolution of 𝑓 and 𝑔, denoted
𝑓 □𝑔, is the function defined by

(𝑓 □𝑔) (𝑦) B inf
𝑥∈R𝑑

{𝑓 (𝑥) + 𝑔(𝑦 − 𝑥)} .

In this notation, 𝑄𝑡 𝑓 = 𝑡𝐿(·/𝑡) □ 𝑓 . Interestingly, the operation of convex conjugation
turns addition into infimal convolution and vice versa.

67

Theorem 9.5 (convex conjugation and infimal convolution). Let 𝑓 , 𝑔 be regular convex
functions. Then,

(𝑓 □𝑔)∗ = 𝑓 ∗ + 𝑔∗ .

Conversely, if int dom 𝑓 ∩ int dom𝑔 ≠ ∅, then

(𝑓 + 𝑔)∗ = 𝑓 ∗ □𝑔∗ .

Proof. For the first statement, note that

(𝑓 □𝑔)∗(𝑦) = sup
𝑥∈R𝑑

{⟨𝑥,𝑦⟩ − (𝑓 □𝑔) (𝑥)} = sup
𝑥∈R𝑑

{
⟨𝑥,𝑦⟩ − inf

𝑧∈R𝑑
{𝑓 (𝑧) + 𝑔(𝑥 − 𝑧)}

}
= sup

𝑥,𝑧∈R𝑑
{⟨𝑧,𝑦⟩ − 𝑓 (𝑧) + ⟨𝑥 − 𝑧,𝑦⟩ − 𝑔(𝑥 − 𝑧)} = 𝑓 ∗(𝑦) + 𝑔∗(𝑦) .

The first statement also implies that (𝑓 ∗ □𝑔∗)∗ = 𝑓 ∗∗ + 𝑔∗∗ = 𝑓 + 𝑔 by Theorem 9.7. By
applying convex conjugation to both sides, (𝑓 ∗ □𝑔∗)∗∗ = (𝑓 + 𝑔)∗, which implies the
second statement if 𝑓 ∗ □𝑔∗ equals its double conjugate. For this, we need to know that
𝑓 ∗ □𝑔∗ is regular convex, which follows from the condition on the domains (see [Roc97,
Theorem 16.4]). □

There is a surprising analogy with the Fourier transform, which transforms con-
volution into multiplication. Recall that for 𝑓 , 𝑔 : R𝑑 → C, the Fourier transform is
given by ℱ𝑓 (𝜉) B

∫
𝑓 (𝑥) exp(−2πi ⟨𝜉, 𝑥⟩) d𝑥 , the convolution is given by (𝑓 ∗ 𝑔) (𝑦) B∫

𝑓 (𝑥) 𝑔(𝑦 − 𝑥) d𝑥 , and we have the key property ℱ(𝑓 ∗ 𝑔) = ℱ𝑓 ℱ𝑔.
To see a connection more precisely, note that we usually work with the algebra (+, ·)

with its familiar properties: there is an additive identity 0 such that 𝑥 + 0 = 0 + 𝑥 = 𝑥 for
all 𝑥 ; every 𝑥 has an additive inverse −𝑥 satisfying 𝑥 + (−𝑥) = 0; multiplication distributes
over addition; etc. Now introduce a new structure, consisting of the operations (min, +).
This shares some properties with the usual algebra: the identity element for min is +∞,
and + distributes over min, i.e., 𝑥 + min(𝑦, 𝑧) = min(𝑥 + 𝑦, 𝑥 + 𝑧). However, we also lose
some properties: e.g., not every element has an inverse for the min operation. This is
sometimes known as the min-plus algebra despite the fact that it is not technically an
algebra; more accurately, it is called the tropical semiring.

If we think of integrals as continuous summations, then convolution is a sum of
products; infimal convolution is a min of sums. Hence, infimal convolution is the tropical
analogue of convolution. The following table summarizes further analogies.

68

(+,×) (min, +)
convolution infimal convolution

Fourier transform convex conjugate
Gaussians convex quadratics

diffusion processes gradient flow
heat equation Hamilton–Jacobi equation

heat semigroup Hopf–Lax semigroup

We conclude this discussion by using this perspective to show that the Hopf–Lax
semigroup solves the following PDE, known as the Hamilton–Jacobi equation:

𝜕𝑡𝑢 + 𝐻 (∇𝑥𝑢) = 0 . (9.4)

The proof is patterned on the following derivation of the solution to the heat equation
𝜕𝑡𝑢 = Δ𝑢 with initial condition 𝑢 (0, ·) = 𝑓 ; here Δ𝑢 =

∑𝑑
𝑖=1 𝜕

2
𝑖 𝑢 is the Laplacian. If we take

the Fourier transform of both sides of the equation, then 𝜕𝑡ℱ𝑢 = ℱΔ𝑢 = −4π
2 ∥·∥2

ℱ𝑢,
where the last equality follows from differentiating the Fourier transform under the
integral. This implies that 𝜕𝑡 logℱ𝑢 = −4π

2 ∥·∥2, orℱ𝑢 (𝑡, ·) = ℱ𝑓 exp(−4π
2𝑡 ∥·∥2). Using

the fact that the inverse Fourier transform transforms multiplication into convolution,
one can then show that 𝑢 (𝑡, ·) = 𝑓 ∗ℱ exp(−4π

2𝑡 ∥·∥2) = 𝑓 ∗ normal(0, 4𝑡𝐼).
In the same way, we start with (9.4) and take the convex conjugate of both sides. Using

the shorthand notation 𝑓𝑡 B 𝑢 (𝑡, ·), and since 𝑓 ∗𝑡 (𝑝) = sup𝑣∈R𝑑 {⟨𝑝, 𝑣⟩ − 𝑓𝑡 (𝑣)} with the
supremum attained at 𝑣 = ∇𝑓 ∗𝑡 (𝑝),

𝜕𝑡 𝑓
∗
𝑡 (𝑝) = −𝜕𝑡 𝑓𝑡 (∇𝑓 ∗𝑡 (𝑝)) = 𝐻

(
∇𝑓𝑡 (∇𝑓 ∗𝑡 (𝑝))

)
= 𝐻 (𝑝) .

Hence, 𝑓 ∗𝑡 = 𝑡𝐻 + 𝑓 and 𝑓𝑡 = (𝑡𝐻)∗ □ 𝑓 = 𝑡𝐿(·/𝑡) □ 𝑓 . Thus, the solution to (9.4) is given
by the Hopf–Lax semigroup as claimed.

When 𝐿 = 𝐻 = 1
2 ∥·∥

2, (9.4) becomes 𝜕𝑡𝑢 + 1
2 ∥∇𝑥𝑢∥2 = 0 and the Hopf–Lax semigroup

𝑄𝑡 𝑓 coincides with the Moreau–Yosida envelope (Definition 8.2). This yields an unexpected
connection between the Hamilton–Jacobi equation and the PPM.

9.2 Duality correspondences

Theorem 9.6 (Fenchel–Young). Let 𝑓 : R𝑑 → R ∪ {∞} be regular and convex. Then,

𝑓 (𝑥) + 𝑓 ∗(𝑝) ≥ ⟨𝑝, 𝑥⟩ for all 𝑝, 𝑥 ∈ R𝑑 .

Moreover, equality holds if and only if 𝑝 ∈ 𝜕𝑓 (𝑥), if and only if 𝑥 ∈ 𝜕𝑓 ∗(𝑝).

69

Proof. The inequality is trivial from the definition of 𝑓 ∗. If equality holds, then for any
𝑝′, 𝑥′ ∈ R𝑑 ,

𝑓 (𝑥′) ≥ ⟨𝑝, 𝑥′⟩ − 𝑓 ∗(𝑝) = 𝑓 (𝑥) + ⟨𝑝, 𝑥′ − 𝑥⟩ ,
𝑓 ∗(𝑝′) ≥ ⟨𝑝′, 𝑥⟩ − 𝑓 (𝑥) = 𝑓 ∗(𝑝) + ⟨𝑥, 𝑝′ − 𝑝⟩ ,

i.e., 𝑝 ∈ 𝜕𝑓 (𝑥) and 𝑥 ∈ 𝜕𝑓 ∗(𝑝). Conversely, if 𝑝 ∈ 𝜕𝑓 (𝑥), then

𝑓 ∗(𝑝) = sup
𝑥 ′∈R𝑑

{⟨𝑝, 𝑥′⟩ − 𝑓 (𝑥′)} ≤ ⟨𝑝, 𝑥⟩ − 𝑓 (𝑥) . □

Theorem 9.7 (double conjugation). Let 𝑓 : R𝑑 → R ∪ {∞}. Then, 𝑓 ≥ 𝑓 ∗∗.
Moreover, if 𝑓 is regular and convex, then equality holds: 𝑓 = 𝑓 ∗∗.

Proof. For the first statement,

𝑓 ∗∗(𝑧) = sup
𝑦∈R𝑑

{
⟨𝑦, 𝑧⟩ − sup

𝑥∈R𝑑
{⟨𝑥,𝑦⟩ − 𝑓 (𝑥)}

}
= sup

𝑦∈R𝑑
inf
𝑥∈R𝑑

{⟨𝑦, 𝑧 − 𝑥⟩ + 𝑓 (𝑥)} ≤ 𝑓 (𝑧) (9.5)

by choosing 𝑥 = 𝑧.
Now assume that 𝑓 is regular and convex. If 𝑧 ∈ int dom 𝑓 , then by Theorem 6.9 there

exists 𝑝 ∈ 𝜕𝑓 (𝑧), so that 𝑓 (𝑥) ≥ 𝑓 (𝑧) + ⟨𝑝, 𝑥 − 𝑧⟩ for all 𝑥 ∈ R𝑑 . By taking 𝑦 = 𝑝 ,

𝑓 ∗∗(𝑧) ≥ inf
𝑥∈R𝑑

{⟨𝑝, 𝑧 − 𝑥⟩ + 𝑓 (𝑥)} ≥ 𝑓 (𝑧) ,

which proves the equality for such 𝑧. For brevity, we omit the proof for 𝑧 ∉ int dom 𝑓 (see,
e.g., [Roc97, Theorem 12.2]). □

This result implies that in general, if 𝑓∗ is the largest convex and lower semicontinuous
function which is smaller than 𝑓 , then 𝑓∗ = 𝑓 ∗∗. Indeed, 𝑓∗ ≥ 𝑓 ∗∗ by definition, whereas
𝑓 ≥ 𝑓∗ implies 𝑓 ∗∗ ≥ (𝑓∗)∗∗ = 𝑓∗. The proof above also shows that whenever 𝜕𝑓 (𝑥) ≠ ∅,
then 𝑓 (𝑥) = 𝑓 ∗∗(𝑥). In particular, if 𝑥★ is a minimizer of 𝑓 , then 0 ∈ 𝜕𝑓 (𝑥★) and 𝑓 (𝑥★) =
𝑓 ∗∗(𝑥★); moreover, by taking 𝑦 = 0 in (9.5) we see that inf 𝑓 = inf 𝑓 ∗∗. Thus, we can start
with a non-convex function 𝑓 and “convexify” it by replacing it with 𝑓 ∗∗ while preserving
the optimal value, although this is seldom useful in practice.

Properties of 𝑓 are often reflected as “dual” properties for 𝑓 ∗. For example, if 𝑓 is
regular convex, the following assertions hold (see [Roc97]):

• 𝑓 is Lipschitz if and only if dom 𝑓 ∗ is bounded.

• epi 𝑓 contains no non-vertical half-lines if and only if dom 𝑓 ∗ = R𝑑 .

70

• 𝑓 has no lines along which it is affine if and only if int dom 𝑓 ∗ ≠ ∅.

• 𝑓 has bounded level sets if and only if 0 ∈ int dom 𝑓 ∗.

• 𝑓 is differentiable at 𝑥 with ∇𝑓 (𝑥) = 𝑝 if and only if (𝑝, 𝑓 ∗(𝑝)) is an exposed point
of epi 𝑓 ∗. (An exposed point of a convex set is a point at which some linear function
attains its strict maximum over the convex set.)

For our purposes, we are most interested in conditions under which ∇𝑓 is a well-defined
bijection from an open convex set C to its image ∇𝑓 (C), with inverse given by (∇𝑓)−1 =
∇𝑓 ∗. In this case, the correspondence between 𝑓 and 𝑓 ∗ is known as the Legendre
transformation and we informally discussed it in the previous subsection. We accept the
results in the following discussion without proof; see [Roc97, §26] for details.

Definition 9.8. Let 𝑓 : R𝑑 → R ∪ {∞} be regular convex.

• We say that 𝑓 is essentially smooth if 𝑓 is differentiable on C B int dom 𝑓 and
lim𝑛→∞ ∥∇𝑓 (𝑥𝑛)∥ → ∞ whenever {𝑥𝑛}𝑛∈N is a sequence in C converging to 𝜕C.

• We say that 𝑓 is essentially strictly convex if 𝑓 is strictly convex on every
convex subset of dom 𝜕𝑓 B {𝑥 ∈ R𝑑 : 𝜕𝑓 (𝑥) ≠ ∅}.

Lemma 9.9. A regular convex function 𝑓 is essentially smooth if and only if 𝑓 ∗ is
essentially strictly convex.

Theorem 9.10. Let 𝑓 be regular, strictly convex, and essentially smooth over C =

int dom 𝑓 . Then, 𝑓 ∗ is regular, strictly convex, and essentially smooth over C∗ B
int dom 𝑓 ∗. Moreover, ∇𝑓 : C → C∗ is a continuous bijection with (∇𝑓)−1 = ∇𝑓 ∗.

Definition 9.11. We say that a function 𝑓 : R𝑑 → R ∪ {∞} is of Legendre type if it
satisfies the assumptions of Theorem 9.10.

To summarize, the condition that 𝑓 is regular convex ensures duality at the level
of 𝑓 = 𝑓 ∗∗. The condition that 𝑓 is of Legendre type ensures duality at the level of
(∇𝑓)−1 = ∇𝑓 ∗. Note also that if 𝑓 , 𝑓 ∗ are sufficiently smooth, then by differentiating the
equality ∇𝑓 (∇𝑓 ∗) = id one obtains the identity

∇2𝑓 ◦ ∇𝑓 ∗ = [∇2𝑓 ∗]−1
.

71

In particular, ∇2𝑓 ⪰ 𝛼𝐼 is equivalent to [∇2𝑓 ∗]−1 ⪯ 𝛼−1𝐼 , i.e., there is a duality between
the properties of strong convexity and smoothness. Let us prove this last fact without
assuming differentiability.

Lemma 9.12 (convexity–smoothness duality). Let 𝑓 : R𝑑 → R ∪ {∞} be regular and
𝛼-convex for some 𝛼 > 0. Then, 𝑓 ∗ is 𝛼−1-smooth.

Proof. By the duality correspondences (including Lemma 9.9), dom 𝑓 ∗ = R𝑑 and 𝑓 ∗ is
differentiable everywhere. For two points 𝑦,𝑦′ ∈ R𝑑 , let 𝑥, 𝑥′ ∈ R𝑑 achieve the suprema in
the definitions of 𝑓 ∗(𝑦), 𝑓 ∗(𝑦′) respectively. By Theorem 9.6, 𝑥 = ∇𝑓 ∗(𝑦) and 𝑥′ = ∇𝑓 ∗(𝑦′).
Then, by strong convexity of 𝑓 − ⟨·, 𝑦⟩,

𝑓 (𝑥′) − ⟨𝑥′, 𝑦⟩ ≥ 𝑓 (𝑥) − ⟨𝑥,𝑦⟩ + 𝛼

2 ∥𝑥′ − 𝑥 ∥2 .

Adding this to the analogous inequality with 𝑥 and 𝑥′ swapped,

𝛼 ∥∇𝑓 ∗(𝑦′) − ∇𝑓 ∗(𝑦)∥2 = 𝛼 ∥𝑥′ − 𝑥 ∥2 ≤ ⟨𝑥,𝑦⟩ + ⟨𝑥′, 𝑦′⟩ − ⟨𝑥′, 𝑦⟩ − ⟨𝑥,𝑦′⟩
= ⟨𝑥′ − 𝑥,𝑦′ − 𝑦⟩ .

Rearranging this after Cauchy–Schwarz proves ∥∇𝑓 ∗(𝑦′) − ∇𝑓 ∗(𝑦)∥ ≤ 𝛼−1 ∥𝑦′ − 𝑦∥. □

Corollary 9.13 (contractivity of the proximal operator). Let 𝑓 : R𝑑 → R ∪ {∞} be
𝛼-convex. Then, prox𝑓 is 1/(1 + 𝛼)-Lipschitz.

Proof. We can write

prox𝑓 (𝑦) B arg min
𝑥∈R𝑑

{
𝑓 (𝑥) + 1

2 ∥𝑦 − 𝑥 ∥2} = − arg max
𝑥∈R𝑑

{
⟨𝑥,𝑦⟩ − 𝑓 (𝑥) − 1

2 ∥𝑥 ∥2} .
This shows that −prox𝑓 is the gradient of the convex conjugate of the function 𝑓 + 1

2 ∥·∥
2,

which is (1 + 𝛼)-convex. □

For a closed convex set C, ΠC = prox𝜒C
, so this corollary recovers Lemma 6.13. It also

shows that PPM with an 𝛼-convex function contracts with rate 1/(1 + 𝛼ℎ).

72

Bibliographical notes
The treatment of classical mechanics is based on [Eva10, §3.3]. Variational principles also
lead to an influential perspective on acceleration, see [WWJ16].

The problem of minimizing an action functional can be generalized to the problem
of optimal control, and in that context, the corresponding Hamilton–Jacobi equation
is known as the Hamilton–Jacobi–Bellman equation. The analogy between dynamic
programming and diffusions can be pushed even further to obtain “laws of large numbers”
and “central limit theorems” for the former, see [Bac+92, §9.4].

The result of Exercise 9.2 is from [Che+22].

Exercises
Exercise 9.1. Verify the assertions in Example 9.2.

Exercise 9.2. To avoid technical difficulties, assume that 𝑓 is differentiable everywhere
and satisfies (PŁ) with constant 𝛼 > 0. The goal of this exercise is to derive the sharp rate
of convergence of the PPM in this setting (which turns out to be non-trivial).

For any 𝑥 ∈ R𝑑 , let (𝑄𝑡)𝑡≥0 denote the Hopf–Lax semigroup and 𝑥𝑡 B prox𝑡 𝑓 (𝑥).
From the Hamilton–Jacobi equation (9.4) or via direct computation, show that 𝜕𝑡𝑄𝑡 𝑓 (𝑥) =
−∥𝑥𝑡 − 𝑥 ∥2/(2𝑡2). Use this to deduce that

𝜕𝑡 {𝑄𝑡 𝑓 (𝑥) − 𝑓★} ≤ − 𝛼

1 + 𝛼𝑡
{𝑄𝑡 𝑓 (𝑥) − 𝑓★} . (9.6)

Finally, by adapting Grönwall’s lemma (Lemma 2.3), use this to prove the sharp rate

𝑓 (𝑥ℎ) − 𝑓★ ≤ 𝑓 (𝑥) − 𝑓★

(1 + 𝛼ℎ)2 .

Exercise 9.3. The inequality (9.6) implies that

𝑄ℎ 𝑓 (𝑥) − 𝑓★ ≤ 1
1 + 𝛼ℎ

(𝑓 (𝑥) − 𝑓★) . (9.7)

In this exercise, we give an alternative proof of this fact under the assumption that 𝑓 is
𝛼-convex. As a consequence, we also obtain a result for 𝛼 = 0.

Write out the definition of 𝑄ℎ 𝑓 (𝑥) as an infimum, and choose as a test point the
interpolant (1 − 𝑡) 𝑥★ + 𝑡 𝑥 . Pick 𝑡 > 0 to derive (9.7). Also, in the case 𝛼 = 0, show that if
𝑓 (𝑥) − 𝑓★ ≤ ∥𝑥 − 𝑥★∥2/ℎ,

𝑄ℎ 𝑓 (𝑥) − 𝑓★ ≤
(
1 − 𝑓 (𝑥) − 𝑓★

2 ∥𝑥 − 𝑥★∥2 ℎ
)
(𝑓 (𝑥) − 𝑓★) .

73

10 Mirror methods
Consider the following situation.

Example 10.1 (optimization in a different norm). Suppose that 𝑓 : R𝑑 → R ∪ {∞} is
convex and that we wish to minimize it over the simplex Δ𝑑 B {𝑥 ∈ R𝑑+ :

∑𝑑
𝑖=1 𝑥 [𝑖] = 1}.

If 𝑓 is Lipschitz, then we can apply PSD and obtain an 𝜀-approximate solution in
𝑂 (𝐿2𝑅2/𝜀2) iterations. Here, 𝐿 is the Lipschitz constant, and 𝑅 ≤ 2 is the radius.

For example, suppose that we have 𝑑 actions and that the loss of the 𝑖-th action
is ℓ [𝑖], where the losses are bounded: |ℓ [𝑖] | ≤ 1. If we choose an action randomly
according to a probability distribution 𝑥 ∈ Δ𝑑 , the expected loss is ⟨ℓ, 𝑥⟩ C 𝑓 (𝑥). We
then seek to minimize the expected loss over Δ𝑑 .† The Lipschitz constant of 𝑓 is ∥ℓ ∥,
which could be as large as

√
𝑑 in the worst case; the resulting complexity estimate of

𝑂 (𝑑/𝜀2) is poor in high dimension.
Implicit in this discussion, however, is that we are measuring the Lipschitz constant

and the radius with respect to the usual Euclidean norm. In this setting, however, it may
make more sense to use the ℓ1 norm, in which case the Lipschitz constant is ∥ℓ ∥∞ ≤ 1.

†Trivially, the solution to the optimization problem is given by the distribution which puts all of its
mass on arg min𝑖∈[𝑑] ℓ [𝑖]. This problem is simply meant to illustrate the pitfalls of naı̈vely using the
Euclidean norm, but it also forms the basis for the more interesting setting of Example 10.14.

Until now, we have identified points 𝑥 and gradients ∇𝑓 (𝑥) as part of the same space
R𝑑 , but this is because of the self-dual nature of the Euclidean norm. Suppose now that
(X, |||·|||) is a general (finite-dimensional) normed vector space and 𝑓 : X → R∪ {∞}. The
dual space is (X∗, |||·|||∗), where X∗ is the space of linear functionals ℓ : X → R, equipped
with the dual norm |||ℓ |||∗ B sup{|ℓ (𝑥) | : |||𝑥 ||| ≤ 1}. The derivative of 𝑓 at 𝑥 is defined to
be the linearization at 𝑥 : if there exists an element ℓ ∈ X∗ such that

|𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥) − ℓ (𝑣) | = 𝑜 (|||𝑣 |||) as 𝑣 → 0 ,

we say that 𝑓 is differentiable10 at 𝑥 and we write 𝐷𝑓 (𝑥) for the functional ℓ . Note that in
this formalism, the derivative 𝐷𝑓 (𝑥) is an element of the dual space.

Above, we wrote 𝐷𝑓 (𝑥) instead of ∇𝑓 (𝑥) to emphasize that in this context, we should
no longer think of 𝐷𝑓 (𝑥) as belonging to the original space X. However, when X = R𝑑 , it
is still convenient to identify 𝐷𝑓 (𝑥) as a vector in R𝑑 , and we therefore continue to use
the notation ∇𝑓 (𝑥). This is fine as long as we remember the following two points:

• It does not make sense to add a point 𝑥 ∈ X to a gradient ∇𝑓 (𝑥) ∈ X∗.
10Strictly speaking, this is the Fréchet derivative.

74

• The size of ∇𝑓 (𝑥) should be measured in the dual norm |||·|||∗.

In the context of Example 10.1, the dual norm for ∥·∥1 is the ℓ∞ norm ∥·∥∞.
Immediately, the first point above rules out GD and PSD as sensible algorithms. A

first attempt to remedy this issue is to somehow develop analogues of these algorithms in
different norms, but this is seriously complicated by the fact that non-Euclidean norms
lack crucial properties, e.g., we cannot “expand the square” as we did in previous proofs.

Instead, the idea of [NY83] is to use the Fenchel–Legendre duality.

Throughout this section, 𝜙 : R𝑑 → R ∪ {∞} is a convex function of Legendre type. We
refer to it as the mirror map.

The idea is to use the auxiliary function 𝜙 to map the iterate 𝑥𝑛 into the dual space
via 𝑥∗𝑛 = ∇𝜙 (𝑥𝑛). Now that we are in the dual space, it makes sense to take a gradient
step: 𝑥∗𝑛+1 = 𝑥∗𝑛 − ℎ ∇𝑓 (𝑥𝑛). Then, we use ∇𝜙∗ to return: 𝑥𝑛+1 = ∇𝜙∗(𝑥𝑛+1). The goal of
this section is to formalize this idea and its analysis.

10.1 Bregman divergences and relative convexity/smoothness
We introduce a key definition which substitutes for the squared Euclidean norm.

Definition 10.2. Given a function 𝜙 : R𝑑 → R ∪ {∞} of Legendre type over C𝜙 , the
corresponding Bregman divergence associated with 𝜙 is the map 𝐷𝜙 : R𝑑 × C𝜙 →
R ∪ {∞} defined by

𝐷𝜙 (𝑥,𝑦) B 𝜙 (𝑥) − 𝜙 (𝑦) − ⟨∇𝜙 (𝑦), 𝑥 − 𝑦⟩ .

In words, 𝐷𝜙 (·, 𝑦) is defined by subtracting from 𝜙 its linearization at 𝑦. We can
observe the following properties:

• 𝐷𝜙 ≥ 0: this is equivalent to the convexity of 𝜙 .

• 𝐷𝜙 is convex with respect to its first argument.

• If 𝜙 is twice continuously differentiable, then

𝐷𝜙 (𝑥,𝑦) ∼
1
2 ⟨𝑥 − 𝑦,∇2𝜙 (𝑦) (𝑥 − 𝑦)⟩ as 𝑥 → 𝑦 . (10.1)

75

The last property indicates that 𝐷𝜙 should behave as a squared distance between 𝑥 and 𝑦.
In some respects this is true, e.g., 𝐷𝜙 satisfies a Pythagorean inequality (Exercise 10.1).
However, (10.1) is a purely local statement, and a priori there does not seem to be a reason
for 𝐷𝜙 to have useful global properties. For example, 𝐷𝜙 is asymmetric, and

√︁
𝐷𝜙 does not

in general satisfy a triangle inequality. Nevertheless, it turns out that 𝐷𝜙 is a powerful
global measure of progress, which is arguably the greatest surprise of mirror methods.

Example 10.3 (mirror maps).

1. Let 𝜙 (𝑥) = 1
2 ∥𝑥 ∥

2. Then, ∇𝜙 is the identity mapping and 𝐷𝜙 is one-half times
the squared Euclidean distance. So, our study of mirror methods subsumes the
preceding Euclidean methods.

2. Let 𝜙 (𝑥) = ∑𝑑
𝑖=1{𝑥 [𝑖] log𝑥 [𝑖] −𝑥 [𝑖]} for 𝑥 ∈ R𝑑+. Then, ∇𝜙 (𝑥) = log𝑥 , where log

is applied coordinate-wise. The associated Bregman divergence is the Kullback–
Leibler divergence 𝐷𝜙 (𝑥,𝑦) =

∑𝑑
𝑖=1{𝑥 [𝑖] log(𝑥 [𝑖]/𝑦 [𝑖]) − 𝑥 [𝑖] + 𝑦 [𝑖]}.

3. Let 𝜙 (𝑋) = tr(𝑋 log𝑋 − 𝑋) for 𝑋 ≻ 0; this is known as the von Neumann
entropy. The associated Bregman divergence is the quantum relative entropy
𝐷𝜙 (𝑋,𝑌) = tr(𝑋 (log𝑋 − log𝑌) − 𝑋 + 𝑌).

Let us define notions of convexity and smoothness relative to 𝜙 .

Definition 10.4. Let 𝑓 : R𝑑 → R ∪ {∞} be differentiable on int dom 𝑓 ⊆ C𝜙 .

• We say that 𝑓 is 𝛼-convex relative to 𝜙 if 𝐷 𝑓 ≥ 𝛼𝐷𝜙 .

• We say that 𝑓 is 𝛽-smooth relative to 𝜙 if 𝐷 𝑓 ≤ 𝛽𝐷𝜙 .

Similarly to §1.2, there are equivalent reformulations of these definitions; see [LFN18,
Proposition 1.1] for details.

Proposition 10.5 (relative convexity). For any 𝛼 ≥ 0, the following are equivalent.

• 𝑓 is 𝛼-convex relative to 𝜙 .

• 𝑓 − 𝛼𝜙 is convex.

• ⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≥ 𝛼 ⟨∇𝜙 (𝑦) − ∇𝜙 (𝑥), 𝑦 − 𝑥⟩ for all 𝑥,𝑦 ∈ int dom 𝑓 .

If 𝑓 is twice continuously differentiable on int dom 𝑓 , the above are also equivalent to:

• ∇2𝑓 ⪰ 𝛼 ∇2𝜙 on int dom 𝑓 .

76

Proposition 10.6 (relative smoothness). For any 𝛽 ≥ 0, the following are equivalent.

• 𝑓 is 𝛽-smooth relative to 𝜙 .

• 𝛽𝜙 − 𝑓 is convex.

• ⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≤ 𝛽 ⟨∇𝜙 (𝑦) − ∇𝜙 (𝑥), 𝑦 − 𝑥⟩ for all 𝑥,𝑦 ∈ int dom 𝑓 .

If 𝑓 is twice continuously differentiable on int dom 𝑓 , the above are also equivalent to:

• ∇2𝑓 ⪯ 𝛽 ∇2𝜙 on int dom 𝑓 .

For the case of 𝜙 = 1
2 ∥·∥

2, we recover the usual notions of convexity and smooth-
ness described in §1.2. These relative definitions satisfy similar properties as convex-
ity/smoothness, e.g., if 𝑓1, 𝑓2 are respectively 𝛼1- and 𝛼2-convex relative to 𝜙 and 𝜆1, 𝜆2 > 0,
then 𝜆1𝑓1 + 𝜆2𝑓2 is (𝜆1𝛼1 + 𝜆2𝛼2)-convex relative to 𝜙 . Also, we have a growth bound.

Lemma 10.7 (relative growth). Suppose that 𝑓 is 𝛼-convex relative to 𝜙 for some 𝛼 > 0,
and that 𝑓 is minimized at an interior point 𝑥★ of its domain. Then, for all 𝑥 ∈ R𝑑 ,

𝑓 (𝑥) − 𝑓★ ≥ 𝛼 𝐷𝜙 (𝑥, 𝑥★) .

Proof. The left-hand side is 𝐷 𝑓 (𝑥, 𝑥★). □

Other useful properties of Bregman divergences are explored in Exercise 10.1.

10.2 Algorithms and convergence analysis
Briefly, let us first consider the continuous-time picture. Since we add the gradient of 𝑓 in
the dual space, the dynamics we consider evolve according to

𝜕𝑡∇𝜙 (𝑥𝑡) = −∇𝑓 (𝑥𝑡) . (10.2)

By the chain rule, this is equivalent to the following evolution in the primal space:

¤𝑥𝑡 = −[∇2𝜙 (𝑥𝑡)]
−1 ∇𝑓 (𝑥𝑡) . (10.3)

This can be interpreted as a preconditioned gradient flow.
Despite the fact that (10.2) and (10.3) are equivalent in continuous time, they lead to

different discretizations. The discretization of (10.3) is usually called natural gradient
descent and it is related to the subject of information geometry [AN00]. In fact, one can

77

view the use of the mirror map 𝜙 as equipping the space C𝜙 with a Riemannian metric,
namely, a local inner product ⟨𝑢, 𝑣⟩𝑥 B ⟨𝑢,∇2𝜙 (𝑥) 𝑣⟩. This turns C𝜙 into a so-called
Hessian manifold. From this perspective, the natural objects are geometric in nature:
geodesics, length, curvature, etc.

However, this is not what we consider; mirror descent is obtained from discretization
of (10.2) in the dual. This conceptual point is so important that we isolate it into a remark.

Remark 10.8. The key distinguishing feature of mirror methods from preconditioned or
Riemannian gradient methods is the existence of the global progress measure given by
the Bregman divergence 𝐷𝜙 . In contrast, preconditioned/Riemannian gradient methods
are purely local in nature.

Now that we have emphasized the conceptual underpinnings of the methods, let us
now turn to concrete algorithms. We begin with the smooth case, and we consider the
following mirror proximal gradient descent method:

𝑥𝑛+1 B arg min
𝑥∈R𝑑

{
𝑓 (𝑥𝑛) + ⟨∇𝑓 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩ + 𝑔(𝑥) +

1
ℎ
𝐷𝜙 (𝑥, 𝑥𝑛)

}
. (MPGD)

Note that this incorporates the proximal splitting considered in §8, except that we replace
1
2 ∥𝑥 − 𝑥𝑛∥2 with the more general 𝐷𝜙 (𝑥, 𝑥𝑛). We consider this iteration for the sake of
generality, since it encompasses the following algorithms.

• When 𝑔 = 0, since ∇1𝐷𝜙 (𝑥, 𝑥𝑛) = ∇𝜙 (𝑥) − ∇𝜙 (𝑥𝑛), the first-order optimality condi-
tion reads

∇𝜙 (𝑥𝑛+1) = ∇𝜙 (𝑥𝑛) − ℎ ∇𝑓 (𝑥𝑛) .

This is known as mirror descent.

• When 𝑓 = 0, we obtain

𝑥𝑛+1 = arg min
𝑥∈R𝑑

{
𝑔(𝑥) + 1

ℎ
𝐷𝜙 (𝑥, 𝑥𝑛)

}
C prox𝜙

ℎ𝑔
(𝑥𝑛) ,

which is the mirror proximal point method.

• When 𝑔 = 𝜒C, where C ⊆ C𝜙 is a closed convex set,

𝑥𝑛+1 = arg min
𝑥∈C

{
⟨∇𝑓 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩ +

1
ℎ

(
𝜙 (𝑥) − ⟨∇𝜙 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩

)}
78

= arg min
𝑥∈C

{𝜙 (𝑥) − ⟨∇𝜙 (𝑥𝑛) − ℎ ∇𝑓 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩}

= Π
𝜙

C

(
∇𝜙∗(∇𝜙 (𝑥𝑛) − ℎ ∇𝑓 (𝑥𝑛))

)
,

where Π
𝜙

C
is the Bregman projection (see Exercise 10.1). This is the mirror analogue

of projected gradient descent.

Theorem 10.9 (convergence of MPGD). Let 𝑓 be 𝛼 𝑓 -convex and 𝛽 𝑓 -smooth, and let 𝑔
be 𝛼𝑔-convex, all relative to 𝜙 . Let the step size ℎ satisfy ℎ ≤ 1/𝛽 𝑓 , let 𝑥+ denote the
next iterate of MPGD started from 𝑥 , and let 𝑦 ∈ R𝑑 . Then,

(1 + 𝛼𝑔ℎ) 𝐷𝜙 (𝑦, 𝑥+) ≤ (1 − 𝛼 𝑓ℎ) 𝐷𝜙 (𝑦, 𝑥) − ℎ (𝐹 (𝑥+) − 𝐹 (𝑦)) .

In particular, if we set 𝑦 = 𝑥★ and iterate, it yields

𝐹 (𝑥𝑁) − 𝐹★ ≤
𝛼 𝑓 + 𝛼𝑔

𝜆−𝑁
ℎ

− 1
𝐷𝜙 (𝑥★, 𝑥0) ,

where 𝜆ℎ B (1 − 𝛼 𝑓ℎ)/(1 + 𝛼𝑔ℎ).

Proof. The proof is patterned upon the proof of Theorem 8.5. Let𝜓𝑥 denote the objective
in (MPGD) starting from 𝑥 (rather than 𝑥𝑛). Then,𝜓𝑥 is (𝛼𝑔 + 1/ℎ)-convex relative to 𝜙

with minimizer 𝑥+, so by the growth inequality (Lemma 10.7),

𝜓𝑥 (𝑦) ≥ 𝜓𝑥 (𝑥+) +
(
𝛼𝑔 +

1
ℎ

)
𝐷𝜙 (𝑦, 𝑥+) .

On one hand, by 𝛼 𝑓 -convexity,

𝜓𝑥 (𝑦) = 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝑔(𝑦) + 1
ℎ
𝐷𝜙 (𝑦, 𝑥)

= 𝑓 (𝑦) − 𝐷 𝑓 (𝑦, 𝑥) + 𝑔(𝑦) +
1
ℎ
𝐷𝜙 (𝑦, 𝑥) ≤ 𝐹 (𝑦) +

(1
ℎ
− 𝛼 𝑓

)
𝐷𝜙 (𝑦, 𝑥) .

On the other hand, by 𝛽 𝑓 -smoothness,

𝜓𝑥 (𝑥+) = 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝑔(𝑥+) + 1
ℎ
𝐷𝜙 (𝑥+, 𝑥)

= 𝑓 (𝑥+) − 𝐷 𝑓 (𝑥+, 𝑥) + 𝑔(𝑥+) +
1
ℎ
𝐷𝜙 (𝑥+, 𝑥) ≥ 𝐹 (𝑥+) +

(1
ℎ
− 𝛽 𝑓

)
𝐷𝜙 (𝑥+, 𝑥) .

79

Drop the term (1/ℎ − 𝛽 𝑓) 𝐷𝜙 (𝑥+, 𝑥) and combine the inequalities to prove the one-step
bound. If we set 𝑦 = 𝑥 in the one-step bound, it yields the descent lemma 𝐹 (𝑥+) − 𝐹 (𝑥) ≤
−ℎ−1 (1 + 𝛼𝑔ℎ) 𝐷𝜙 (𝑥, 𝑥+) ≤ 0, so we can iterate the one-step bound using the discrete
Grönwall lemma (Lemma 3.5). □

Although this result is the analogue of the smooth convergence rate for GD (Theo-
rem 3.4), since ∇𝜙 necessarily blows up at the boundary 𝜕C𝜙 , so can ∇𝑓 . Therefore, this
theorem actually covers examples in which 𝑓 is not at all smooth in the usual sense.

To relate this back to Example 10.1, consider convexity/smoothness relative to a norm.

Definition 10.10. A function 𝑓 is 𝛼-convex (resp. 𝛽-smooth) relative to a norm
|||·||| if for all 𝑥,𝑦 ∈ int dom 𝑓 ,

𝐷 𝑓 (𝑥,𝑦) ≥
𝛼

2 |||𝑦 − 𝑥 |||2
(
resp. 𝐷 𝑓 ≤ 𝛽

2 |||𝑦 − 𝑥 |||2
)
.

Suppose that 𝜙 is strongly convex relative to a norm |||·|||. Then, to check that 𝑓 is
smooth relative to 𝜙 , it suffices to check that 𝑓 is smooth relative to |||·|||, so the norm
can act as a useful intermediary. Moreover, whereas the Bregman structure is crucial for
carrying out the iterative analysis of MPGD, the norm structure is often convenient too,
e.g., for the use of tools such as Cauchy–Schwarz.

To illustrate this, we now consider the non-smooth case. Here, we assume that 𝑓 is
Lipschitz with respect to |||·|||:

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿 |||𝑥 − 𝑦 ||| for all 𝑥,𝑦 ∈ C𝜙 .

We again consider MPGD, except that ∇𝑓 (𝑥𝑛) should be interpreted as a subgradient;
we leave the notation unchanged because it should not cause confusion. The Lipschitz
condition is then equivalent to the subgradient bound

|||∇𝑓 (𝑥) |||∗ ≤ 𝐿 for all 𝑥 ∈ C𝜙 .

80

Theorem 10.11 (convergence of MPGD, non-smooth case). Let 𝑓 and 𝑔 be convex, and
let 𝑓 be 𝐿-Lipschitz with respect to a norm |||·|||. Let 𝜙 be 𝛼𝜙 -convex relative to |||·|||.
Then, for MPGD, it holds that

𝐹
(1
𝑁

𝑁∑︁
𝑛=1

𝑥𝑛
)
− 𝐹★ ≤ 1

𝑁

𝑁∑︁
𝑛=1

(𝐹 (𝑥𝑛) − 𝐹★) ≤
𝐷𝜙 (𝑥★, 𝑥0)

𝑁ℎ
+ 2𝐿2ℎ

𝛼𝜙
.

In particular, if 𝑅2
𝜙
≥ 𝐷𝜙 (𝑥★, 𝑥0) and we choose step size ℎ2 = 𝛼𝜙𝑅

2
𝜙
/(2𝐿2𝑁), then

𝐹
(1
𝑁

𝑁∑︁
𝑛=1

𝑥𝑛
)
− 𝐹★ ≤ 𝐿𝑅𝜙

√︄
8

𝛼𝜙𝑁
.

Proof. Following the proof of Theorem 10.9, we still have

𝜓𝑥 (𝑥+) +
1
ℎ
𝐷𝜙 (𝑥★, 𝑥+) ≤ 𝜓𝑥 (𝑥★) ≤ 𝐹 (𝑥★) +

1
ℎ
𝐷𝜙 (𝑥★, 𝑥) .

In the lower bound for𝜓𝑥 (𝑥+), we originally used smoothness to upper bound 𝐷 𝑓 (𝑥+, 𝑥),
which is no longer available to us. Instead, by Cauchy–Schwarz,

𝐷 𝑓 (𝑥+, 𝑥) = 𝑓 (𝑥+) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ ≤ 𝐿 |||𝑥+ − 𝑥 ||| + |||∇𝑓 (𝑥) |||∗ |||𝑥+ − 𝑥 |||
≤ 2𝐿 |||𝑥+ − 𝑥 ||| .

Thus,

𝜓𝑥 (𝑥+) = 𝐹 (𝑥+) − 𝐷 𝑓 (𝑥+, 𝑥) +
1
ℎ
𝐷𝜙 (𝑥+, 𝑥) ≥ 𝐹 (𝑥+) − 2𝐿 |||𝑥+ − 𝑥 ||| +

𝛼𝜙

2ℎ |||𝑥+ − 𝑥 |||2

≥ 𝐹 (𝑥+) − 2𝐿2ℎ

𝛼𝜙
.

This leads to the one-step bound

𝐷𝜙 (𝑥★, 𝑥+) ≤ 𝐷𝜙 (𝑥★, 𝑥) − ℎ (𝐹 (𝑥+) − 𝐹★) +
2𝐿2ℎ2

𝛼𝜙
.

Iterating this inequality finishes the proof. □

81

Example 10.12 (optimization over the simplex). We return to Example 10.1, and we
use the entropic mirror map 𝜙 (𝑥) =

∑𝑑
𝑖=1{𝑥 [𝑖] log𝑥 [𝑖] − 𝑥 [𝑖]}. Then, 𝜙 is 1-convex

relative to the ℓ1-norm ∥·∥1 over the probability simplex Δ𝑑 ; this is known as Pinsker’s
inequality (Exercise 10.3).

To minimize 𝑓 : R𝑑 → R ∪ {∞} over Δ𝑑 , we apply MPGD with 𝑔 = 𝜒Δ𝑑
. Then,

∇𝜙∗(∇𝜙 (𝑥𝑛) − ℎ ∇𝑓 (𝑥𝑛)) = 𝑥𝑛 ⊙ exp(−ℎ ∇𝑓 (𝑥𝑛)) ,

where exp is applied pointwise and ⊙ is the Hadamard (or pointwise) product. Also, one
can check that Π𝜙

Δ𝑑
(𝑥) = 𝑥/∥𝑥 ∥1 simply normalizes the vector (Exercise 10.4). Hence,

the algorithm reads

𝑥𝑛+1 =
𝑥𝑛 ⊙ exp(−ℎ ∇𝑓 (𝑥𝑛))

∥𝑥𝑛 ⊙ exp(−ℎ ∇𝑓 (𝑥𝑛))∥1
.

Consider initializing at the uniform distribution 𝑥0 = 1𝑑/𝑑 . Then, for any 𝑥★ ∈ Δ𝑑 ,

𝐷𝜙 (𝑥★, 𝑥0) = KL(𝑥★ ∥ 𝑥0) = log𝑑 −
𝑑∑︁
𝑖=1

𝑥0 [𝑖] log 1
𝑥0 [𝑖]

≤ log𝑑 ,

by Jensen’s inequality. Consequently, we can take 𝑅𝜙 =
√︁

log𝑑 , and

𝑓
(1
𝑁

𝑁∑︁
𝑛=1

𝑥𝑛
)
− 𝑓★ ≤ 𝐿1

√︂
8 log𝑑
𝑁

,

where 𝐿1 is the Lipschitz constant of 𝑓 in the ℓ1 norm. This estimate is far better than
the one described in Example 10.1 for the Euclidean norm; we only pay an overhead
which is logarithmic in the dimension.

10.3 Online algorithms and multiplicative weights
Let us examine the proof of Theorem 10.11 once more. In that proof, we start with

𝜓𝑥 (𝑥+) +
1
ℎ
𝐷𝜙 (𝑦, 𝑥+) ≤ 𝜓𝑥 (𝑦) ,

which holds for all 𝑦 ∈ R𝑑 . If we expand out the terms, this is equivalent to

⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝑔(𝑥+) + 1
ℎ
𝐷𝜙 (𝑥+, 𝑥) +

1
ℎ
𝐷𝜙 (𝑦, 𝑥+)

82

≤ ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝑔(𝑦) + 1
ℎ
𝐷𝜙 (𝑦, 𝑥) .

On the left-hand side, if we apply Lipschitzness,

⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 1
ℎ
𝐷𝜙 (𝑥+, 𝑥) ≥ −|||∇𝑓 (𝑥) |||∗ |||𝑥+ − 𝑥 ||| +

𝛼𝜙

2ℎ |||𝑥+ − 𝑥 |||2 ≥ −𝐿
2ℎ

2𝛼𝜙
.

If we now specialize to the case 𝑔 = 𝜒C, then for any 𝑦 ∈ C,

⟨∇𝑓 (𝑥), 𝑥 − 𝑦⟩ ≤ 1
ℎ

(
𝐷𝜙 (𝑦, 𝑥) − 𝐷𝜙 (𝑦, 𝑥+)

)
+ 𝐿2ℎ

2𝛼𝜙
.

Normally, we apply convexity to further lower bound the left-hand side, but let us now
refrain from doing so. We make the observation that in the derivation thus far, we have
not used any property of 𝑓 ; in fact, the same inequality holds even if ∇𝑓 (𝑥) is replaced
by an arbitrary vector 𝑝 ∈ R𝑑 with bounded dual norm, provided that we redefine the
update in MPGD accordingly.

We now define the online version of mirror descent. Let C ⊆ C𝜙 be a closed convex
set, and let {𝑝𝑛}𝑛∈N be an arbitrary sequence of vectors. Define the updates

𝑥𝑛+1 B arg min
𝑥∈C

{
⟨𝑝𝑛, 𝑥 − 𝑥𝑛⟩ +

1
ℎ
𝐷𝜙 (𝑥, 𝑥𝑛)

}
= Π

𝜙

C

(
∇𝜙∗(∇𝜙 (𝑥𝑛) − ℎ𝑝𝑛)

)
. (OMD)

We immediately obtain the following theorem.

Theorem 10.13 (regret guarantee for OMD). Let C ⊆ C𝜙 be a closed convex set, let 𝜙
be 𝛼𝜙 -convex relative to a norm |||·|||, and suppose that {𝑝𝑛}𝑁−1

𝑛=0 are bounded in dual
norm by 𝐿, i.e., |||𝑝𝑛 |||∗ ≤ 𝐿 for all 𝑛. Then, OMD satisfies

𝑇−1∑︁
𝑛=0

⟨𝑝𝑛, 𝑥𝑛⟩ ≤ inf
𝑦∈C

{𝑇−1∑︁
𝑛=0

⟨𝑝𝑛, 𝑦⟩ +
𝐷𝜙 (𝑦, 𝑥0)

ℎ

}
+ 𝐿2𝑇ℎ

2𝛼𝜙
.

In particular, if 𝑅2
𝜙
≥ sup𝑦∈C𝐷𝜙 (𝑦, 𝑥0) and ℎ = 𝑅𝜙

√︁
2𝛼𝜙/(𝐿

√
𝑇), then

𝑇−1∑︁
𝑛=0

⟨𝑝𝑛, 𝑥𝑛⟩ ≤ inf
𝑦∈C

𝑇−1∑︁
𝑛=0

⟨𝑝𝑛, 𝑦⟩ + 𝐿𝑅𝜙

√︃
2𝑇 /𝛼𝜙 .

In the setting of online learning (with full information feedback), at each round 𝑛,
the player must play an action 𝑥𝑛 belonging to some set C of actions. An adversary then

83

chooses a loss function ℓ𝑛 belonging to some class of losses, the player incurs the loss
ℓ𝑛 (𝑥𝑛), and the function ℓ𝑛 (·) is revealed to the player. Thus, the total loss incurred by the
player after 𝑇 rounds is

∑𝑇−1
𝑛=0 ℓ𝑛 (𝑥𝑛). Since the losses are chosen in an adversarial fashion,

one cannot hope to compete with a changing benchmark, so the measure of progress is
to compare against the best fixed point that one could have played in hindsight, which
incurs loss inf𝑦∈C

∑𝑇−1
𝑛=0 ℓ𝑛 (𝑦). The difference

∑𝑇−1
𝑛=0 ℓ𝑛 (𝑥𝑛) − inf𝑦∈C

∑𝑇−1
𝑛=0 ℓ𝑛 (𝑦) is called the

regret, and the goal is to minimize it. In particular, regret bounds that scale linearly with
𝑇 are often considered “trivial”, whereas regret bounds that scale as 𝑜 (𝑇) indicate that the
algorithm has learned from its past mistakes.

With this context in mind, Theorem 10.13 is a regret guarantee for the OMD algorithm
for the linear bandit problem in which the loss functions are linear, ℓ𝑛 (·) = ⟨𝑝𝑛, ·⟩, and the
vectors belong to the dual norm ball {|||·|||∗ ≤ 𝐿}. This result is already interesting in the
Euclidean case 𝜙 = 1

2 ∥·∥
2, but the simplex setting is of particular interest to its connection

with a well-established algorithm.

84

Example 10.14 (learning from expert advice). On each day 𝑛, an investor seeks to
predict the price of a stock. There are 𝑑 so-called “experts” who give daily predictions.
On the following day, the investor compares their predictions with reality and assigns
them losses ℓ𝑛 [1], . . . , ℓ𝑛 [𝑑] ∈ [−1, 1]. (For example, we could set ℓ𝑛 [𝑖] = +1 if expert 𝑖
incorrectly predicted the direction of change of the stock price on day 𝑛, and ℓ𝑛 [𝑖] = −1
otherwise.) Not all of the experts are necessarily reliable, but some might be. Can we
aggregate the expert forecasts and compete with the best of them in hindsight, i.e.,
incur small regret?

The algorithm maintains a vector 𝑥𝑛 ∈ Δ𝑑 in the probability simplex. On each day 𝑛,
the algorithm picks an expert 𝑖𝑛 ∼ 𝑥𝑛 and trusts the advice of the 𝑖𝑛-th expert. Note that
the expected loss incurred by the algorithm is E𝑖𝑛∼𝑥𝑛 ℓ𝑛 [𝑖𝑛] = ⟨ℓ𝑛, 𝑥𝑛⟩, where ℓ𝑛 ∈ R𝑑 is
the vector of losses. (This is the online version of Example 10.1.) The regret is

𝑇−1∑︁
𝑛=0

⟨ℓ𝑛, 𝑥𝑛⟩ − inf
𝑥∈Δ𝑑

𝑇−1∑︁
𝑛=0

⟨ℓ𝑛, 𝑥⟩ =
𝑇−1∑︁
𝑛=0

⟨ℓ𝑛, 𝑥𝑛⟩ − min
𝑖∈[𝑑]

𝑇−1∑︁
𝑛=0

ℓ𝑛 [𝑖] .

We update the vector 𝑥𝑛 using OMD with 𝑝𝑛 = ℓ𝑛 and the entropic mirror map 𝜙 . Note
that |||ℓ𝑛 |||∗ = ∥ℓ𝑛∥∞ ≤ 1, and by Example 10.12, we can take 𝑥0 = 1𝑑/𝑑 for which
𝑅𝜙 ≤

√︁
log𝑑 . Therefore, Theorem 10.13 implies

Regret𝑇 (OMD) ≤
√︁

2𝑇 log𝑑 .

The corresponding algorithm, with updates

𝑥𝑛+1 =
𝑥𝑛 ⊙ exp(−ℎℓ𝑛)

∥𝑥𝑛 ⊙ exp(−ℎℓ𝑛)∥1
,

is known as the multiplicative weights algorithm.

Bibliographical notes
The definitions and usage of relative convexity and smoothness are from [BBT17; LFN18].
An interesting discussion of the various ways to discretize (10.2) and (10.3) can be found
in the paper [GWS21]. The example in Exercise 10.7 is taken from [BBT17].

This section provides an introduction to online learning, although it should be noted
that many of the interesting questions revolve around the more challenging setting of
bandit feedback, i.e., after each round 𝑛, the player only receives the value ℓ𝑛 (𝑥𝑛) of
the incurred loss rather than the full loss function ℓ𝑛 (·). Tackling this setting requires

85

significant new ideas; see, e.g., [BC12] for an exposition.

Exercises
Exercise 10.1.

1. Prove that for all 𝑥, 𝑥′ ∈ C𝜙 , 𝐷𝜙 (𝑥, 𝑥′) = 𝐷𝜙∗ (∇𝜙 (𝑥′),∇𝜙 (𝑥)).

2. Let C ⊆ C𝜙 be a closed convex set and let Π𝜙

C
: C𝜙 → C denote the Bregman

projection operator:

Π
𝜙

C
(𝑥) B arg min

C∩C𝜙
𝐷𝜙 (·, 𝑥) .

Show that ⟨∇𝜙 (Π𝜙

C
(𝑥)) − ∇𝜙 (𝑥),Π𝜙

C
(𝑥) − 𝑧⟩ ≤ 0 for all 𝑧 ∈ C. Use this to justify the

Pythagorean inequality

𝐷𝜙 (𝑧, 𝑥) ≥ 𝐷𝜙 (𝑧,Π𝜙

C
(𝑥)) + 𝐷𝜙 (Π𝜙

C
(𝑥), 𝑥) .

3. Let 𝑋 be a random variable with E|𝜙 (𝑋) | < ∞. For any 𝑣 ∈ C𝜙 , establish the iden-
tity E𝐷𝜙 (𝑋, 𝑣) − E𝐷𝜙 (𝑋,E𝑋) = 𝐷𝜙 (E𝑋, 𝑣). From this, deduce that the Bregman
barycenter coincides with the usual mean: arg min𝑣∈C𝜙 E𝐷𝜙 (𝑋, 𝑣) = E𝑋 .

Exercise 10.2. Show that if 𝜙 is 𝛼-convex relative to a norm |||·|||, then 𝜙∗ is 𝛼−1-smooth
relative to the dual norm |||·|||∗.

Exercise 10.3. Prove that the entropic mirror map is 1-convex relative to ∥·∥1 over the
probability simplex Δ𝑑 .

Exercise 10.4. For the entropic mirror map 𝜙 , prove that the Bregman projection Π
𝜙

Δ𝑑

onto the probability simplex simply normalizes the vector: 𝑥 ↦→ 𝑥/∥𝑥 ∥1.

Exercise 10.5.

1. More generally, show that MPGD can be rewritten as the update

𝑥𝑛+1 = prox𝜙
ℎ𝑔

(
∇𝜙∗(∇𝜙 (𝑥𝑛 − ℎ ∇𝑓 (𝑥𝑛)))

)
.

2. Consider the mirror map 𝜙 : 𝑥 ↦→ −∑𝑑
𝑖=1 log𝑥 [𝑖], defined over R𝑑+. Compute

prox𝜙
ℎ ∥·∥1

, the Bregman proximal operator for ∥·∥1.

86

Exercise 10.6. Let 𝜙 be a mirror map and assume that 𝐹 = 𝑓 + 𝑔, where 𝑓 is 𝛼 𝑓 -convex
and 𝑔 is 𝛼𝑔-convex, 𝛼 𝑓 , 𝛼𝑔 ≥ 0. Instead of assuming that 𝑓 is relatively smooth, however,
we instead assume that 𝐷 𝑓 ≤ 𝛽 𝑓𝐷

(1+𝑠)/2
𝜙

for some 0 ≤ 𝑠 < 1.
Note that when 𝜙 = ∥·∥2/2, this corresponds to

𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≤ 𝛽 𝑓
(∥𝑦 − 𝑥 ∥

2
)1+𝑠

, for all 𝑥,𝑦 ∈ R𝑑 .

The case 𝑠 = 0 corresponds to Lipschitz 𝑓 , whereas the case 𝑠 ↗ 1 corresponds to smooth
𝑓 . The case 0 ≤ 𝑠 < 1 corresponds to partial smoothness (Hölder continuity of ∇𝑓).

We consider the update

𝑥+ B arg min
𝑦∈R𝑑

{
𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝑔(𝑦) + 1

ℎ
𝐷𝜙 (𝑦, 𝑥)

}
.

1. Prove that there is a constant 𝐶𝑠 > 0 depending only on 𝑠 (which you do not need
to specify) such that

(1 + 𝛼𝑔ℎ) 𝐷𝜙 (𝑦, 𝑥+) ≤ (1 − 𝛼 𝑓ℎ) 𝐷𝜙 (𝑦, 𝑥) − ℎ (𝐹 (𝑥+) − 𝐹 (𝑦)) +𝐶𝑠 (𝛽 𝑓ℎ)2/(1−𝑠) .

2. Suppose that 𝛼 𝑓 = 𝛼𝑔 = 0. What iteration complexity does this imply to reach
𝐹 (𝑥𝑁) − 𝐹★ ≤ 𝜀, as a function of 𝛽 𝑓 , 𝑅 B

√︁
𝐷𝜙 (𝑥★, 𝑥0), 𝑠 , and 𝜀? (Ignore numerical

constants depending on 𝑠 .)

Exercise 10.7. Consider the problem of recovering an image 𝑥 ∈ R𝑑++ from a noisy
observation 𝑦 ≈ 𝐴𝑥 , where 𝑦 ∈ R𝑛+ and 𝐴 ∈ R𝑛×𝑑++ is a matrix with positive entries. To
solve this problem, we can set up the problem of minimizing

𝑥 ↦→ 𝐷𝜙ent (𝑦,𝐴𝑥) + 𝜆 ∥𝑥 ∥1 ,

where 𝜙ent is the entropic mirror map. We apply MPGD, using the negative logarithm
as a mirror map, i.e., 𝜙 : 𝑥 ↦→ −∑𝑑

𝑖=1 log𝑥 [𝑖]. Show that the first term in the objective is
relatively convex and smooth, with smoothness constant bounded by ∥𝑦∥1. Deduce that
we can obtain an 𝜀-approximate solution in 𝑂 (∥𝑦∥1 𝐷𝜙 (𝑥★, 𝑥0)/𝜀) iterations. Also, write
out the algorithm iterates explicitly.

11 Alternating minimization
In this section, we study the method of alternating minimization. The goal is to minimize
a function 𝑓 by decomposing the optimization variable 𝑥 into 𝐷 variables 𝑥1, . . . , 𝑥𝐷 . In

87

this decomposition, the individual variables do not have to be one-dimensional, so we let
𝑥𝑖 ∈ R𝑑𝑖 . The method is defined as follows:

𝑥𝑖𝑛+1 B arg min
𝑥𝑖∈R𝑑𝑖

𝑓 (𝑥1
𝑛+1, . . . , 𝑥

𝑖−1
𝑛+1, 𝑥

𝑖, 𝑥𝑖+1
𝑛 , . . . , 𝑥𝐷𝑛) .

In other words, we iterate through the variables cyclically and minimize 𝑓 over the 𝑖-th
variable 𝑥𝑖 , holding the other variables fixed. The decomposition is chosen so that it is
cheap to compute the minimizer over each individual variable.

Example 11.1 (low-rank matrix recovery). Suppose that we want to recover an un-
known matrix 𝑋★ ∈ R𝑝1×𝑝2 which is observed through noisy observations 𝑦𝑖 ≈ ⟨𝐴𝑖, 𝑋★⟩;
here, the matrices 𝐴𝑖 ∈ R𝑝1×𝑝2 are part of the design and are known. If we further posit
that 𝑋★ is low-rank, say of rank at most 𝑟 , then we aim to solve

minimize
𝑋∈R𝑝1×𝑝2

𝑛∑︁
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖, 𝑋 ⟩)2 such that rank𝑋 ≤ 𝑟 .

The rank constraint is difficult to deal with, so we instead factorize the matrix as
𝑋 = 𝑈𝑉 T where 𝑈 ∈ R𝑝1×𝑟 and 𝑉 ∈ R𝑝2×𝑟 . This factorization is known as the Burer–
Monteiro factorization, after [BM03; BM05]. The problem becomes

minimize
𝑈 ∈R𝑝1×𝑟 ,𝑉 ∈R𝑝2×𝑟

𝑛∑︁
𝑖=1

(𝑦𝑖 − ⟨𝐴𝑖,𝑈𝑉
T⟩)2

.

This is a non-convex problem, but at least it is now amenable to gradient-based methods.
Alternatively, we can apply alternating minimization. In words, we minimize over 𝑈
while holding𝑉 fixed, and then minimize over𝑉 while holding𝑈 fixed, and so on. Each
iteration corresponds to solving an unconstrained least-squares problem and admits a
closed-form solution.

Although we present Example 11.1 as motivation for the design of alternating mini-
mization methods in practice, as usual in these notes, we focus on guarantees in the convex
case. Nevertheless, the analysis of the convex case still applies to relevant problems; see
the bibliographical notes for examples.

11.1 Alternating projections
We can use alternating minimization to find a point in the intersection of two closed
convex sets C1 and C2. In this case, we take

𝑓 (𝑥,𝑦) = 𝜒C1 (𝑥) + 𝜒C2 (𝑦) + ∥𝑦 − 𝑥 ∥2 .

88

If there exists 𝑥★ ∈ C1 ∩ C2, then (𝑥★, 𝑥★) is a minimizer for 𝑓 , and the alternating
minimization algorithm reads

𝑥𝑛+1 B arg min
𝑥∈R𝑑

𝑓 (𝑥,𝑦𝑛) = ΠC1 (𝑦𝑛) ,

𝑦𝑛+1 B arg min
𝑦∈R𝑑

𝑓 (𝑥𝑛+1, 𝑦) = ΠC2 (𝑥𝑛+1) .

Thus, we alternate projecting onto C1 and onto C2. This method is quite useful when
projections onto C1, C2 individually are cheap, but the projection onto C1∩C2 is expensive.
The method easily generalizes to the intersection of more than two convex sets.

As a “warm up”, we first study the method of alternating projections. Actually, we
consider a generalization to alternating Bregman projections, which is needed for §11.3:

𝑥𝑛+1 B Π
𝜙

C1
(𝑦𝑛) , 𝑦𝑛+1 B Π

𝜙

C2
(𝑥𝑛+1) , (ABP)

where Π
𝜙

C
is the Bregman projection from Exercise 10.1. We assume that C1 ∩ C2 ≠ ∅ and

that C1,C2 ⊆ C𝜙 .

Lemma 11.2. For any 𝑥★ ∈ C1 ∩ C2, the iterates of ABP satisfy

∞∑︁
𝑛=0

{𝐷𝜙 (𝑥𝑛, 𝑦𝑛−1) + 𝐷𝜙 (𝑦𝑛, 𝑥𝑛)} ≤ 𝐷𝜙 (𝑥★, 𝑦0) .

Also, monotonicity holds:

𝐷𝜙 (𝑥★, 𝑦0) ≥ 𝐷𝜙 (𝑥★, 𝑥1) ≥ 𝐷𝜙 (𝑥★, 𝑦1) ≥ · · · .

Proof. By the Pythagorean inequality (Exercise 10.1),

𝐷𝜙 (𝑥★, 𝑦𝑛) ≥ 𝐷𝜙 (𝑥★,Π𝜙

C1
(𝑦𝑛)) + 𝐷𝜙 (Π𝜙

C1
(𝑦𝑛), 𝑦𝑛) = 𝐷𝜙 (𝑥★, 𝑥𝑛+1) + 𝐷𝜙 (𝑥𝑛+1, 𝑦𝑛) .

By adding this to a similar inequality for the other projection and summing,

𝐷𝜙 (𝑥★, 𝑦0) ≥
∞∑︁
𝑛=1

{𝐷𝜙 (𝑥𝑛, 𝑦𝑛−1) + 𝐷𝜙 (𝑦𝑛, 𝑥𝑛)} . □

We can use the preceding lemma to prove a convergence result for ABP. The following
corollary relies on two additional technical assumptions for 𝜙 which must be checked,
but note that they hold for the Euclidean case 𝜙 =

∥·∥2

2 .

89

Corollary 11.3 (convergence of ABP). Assume that the following conditions hold:

1. For any 𝑥 ∈ C𝜙 , the sublevel sets of 𝐷𝜙 (𝑥, ·) are compact.

2. If {𝑧𝑛}𝑛∈N, {𝑧′𝑛}𝑛∈N ⊆ C𝜙 are such that 𝐷𝜙 (𝑧𝑛, 𝑧′𝑛) → 0, then 𝑧𝑛 − 𝑧′𝑛 → 0.

Then, the iterates of ABP satisfy 𝑥𝑛 → 𝑥★ and 𝑦𝑛 → 𝑥★ for some 𝑥★ ∈ C1 ∩ C2.

Proof. The first assumption ensures that there is a convergent subsequence {𝑥𝑛𝑘 }𝑘∈N that
converges to some 𝑥★ ∈ C𝜙 . Since 𝑥𝑛 ∈ C1 for all 𝑛 and C1 is closed, then 𝑥★ ∈ C1.
Moreover, by Lemma 11.2, 𝐷𝜙 (Π𝜙

C2
(𝑥𝑛), 𝑥𝑛) = 𝐷𝜙 (𝑦𝑛, 𝑥𝑛) → 0, so the second property

shows that Π𝜙

C2
(𝑥𝑛) − 𝑥𝑛 → 0. Since C2 is closed, 𝑥★ ∈ C2 as well.

To upgrade the subsequential convergence to full convergence, we observe that
𝐷𝜙 (𝑥★, 𝑥𝑛𝑘) → 0, whence the monotonicity statement in Lemma 11.2 implies𝐷𝜙 (𝑥★, 𝑥𝑛) →
0 and 𝐷𝜙 (𝑥★, 𝑦𝑛) → 0. By the second assumption, 𝑥𝑛 → 𝑥★ and 𝑦𝑛 → 𝑥★. □

Furthermore, Lemma 11.2 implies

min
𝑛=1,...,𝑁

{𝐷𝜙 (𝑥𝑛, 𝑦𝑛−1) + 𝐷𝜙 (𝑦𝑛, 𝑥𝑛)} ≤
𝐷𝜙 (𝑥★, 𝑦0)

𝑁
. (11.1)

This does not, however, imply a rate of convergence for 𝑥𝑛 to 𝑥★. For example, if C1 and C2
are two lines that meet each other at a very small angle, then the successive projections
can lie very close to each other even though they are both very far from the common
point of intersection.

11.2 Convergence analysis for alternating minimization
We now return to the alternating minimization method. We use the shorthand 𝑥𝑆 to denote
the components in 𝑆 , 𝑥𝑆 B {𝑥𝑖}𝑖∈𝑆 , where we abbreviate consecutive indices {𝑖, . . . , 𝑗} as
𝑖: 𝑗 . We perform an analysis in the smooth case. However, similarly to how gradient-based
methods do not suffer from non-smoothness provided that one has access to a proximal
oracle, it turns out that coordinate-based methods do not suffer from non-smoothness
provided that the non-smooth part respects the coordinate decomposition. Hence, we
consider the slightly more general problem of minimizing

𝐹 : R𝑑1×···×𝑑𝐷 → R , 𝐹 (𝑥1:𝐷) B 𝑓 (𝑥1:𝐷) +
𝐷∑︁
𝑖=1

𝑔𝑖 (𝑥𝑖) ,

90

where 𝑓 is convex and smooth, and each 𝑔𝑖 is convex. For shorthand, write 𝑔 B
⊕𝐷

𝑖=1 𝑔𝑖 ,
that is, 𝑔(𝑥1:𝐷) B ∑𝐷

𝑖=1 𝑔𝑖 (𝑥𝑖). The algorithm reads

𝑥𝑖𝑛+1 ∈ arg min
𝑥𝑖∈R𝑑𝑖

{𝑓 (𝑥1:𝑖−1
𝑛+1 , 𝑥𝑖, 𝑥𝑖+1:𝐷

𝑛) + 𝑔𝑖 (𝑥𝑖)} . (AM)

Theorem 11.4 (convergence of AM). Assume that 𝑓 is convex and 𝛽-smooth, and that
each 𝑔𝑖 is convex. Then, AM achieves 𝐹 (𝑥1:𝐷

𝑁
) − 𝐹★ ≤ 𝜀 if

𝑁 ≥
(
log1/2

𝐹 (𝑥1:𝐷
0) − 𝐹★

4𝛽𝐷2𝑅2

)
+
+ 8𝛽𝐷2𝑅2

𝜀
,

where 𝑅 B sup𝑛∈N ∥𝑥1:𝐷
𝑛 − 𝑥1:𝐷

★ ∥.

Proof. By (3.4),

𝑓 (𝑥1:𝐷
𝑛) ≥ 𝑓 (𝑥1

𝑛+1, 𝑥
2:𝐷
𝑛) + ⟨∇1𝑓 (𝑥1

𝑛+1, 𝑥
2:𝐷
𝑛), 𝑥1

𝑛 − 𝑥1
𝑛+1⟩

+ 1
2𝛽 ∥∇𝑓 (𝑥1

𝑛+1, 𝑥
2:𝐷
𝑛) − ∇𝑓 (𝑥1:𝐷

𝑛)∥2 .

On the other hand, since ∇1𝑓 (𝑥1
𝑛+1, 𝑥

2:𝐷
𝑛) ∈ −𝜕𝑔1(𝑥1

𝑛+1),

𝑔1(𝑥1
𝑛) + ⟨∇1𝑓 (𝑥1

𝑛+1, 𝑥
2:𝐷
𝑛), 𝑥1

𝑛 − 𝑥1
𝑛+1⟩ ≥ 𝑔1(𝑥1

𝑛+1) .

By summing these two inequalities together with the corresponding ones for the other
coordinates, we obtain a “descent lemma”

𝐹 (𝑥1:𝐷
𝑛) − 𝐹 (𝑥1:𝐷

𝑛+1) ≥
1

2𝛽

𝐷∑︁
𝑖=1

∥∇𝑓 (𝑥1:𝑖
𝑛+1, 𝑥

𝑖+1:𝐷
𝑛) − ∇𝑓 (𝑥1:𝑖−1

𝑛+1 , 𝑥𝑖:𝐷𝑛)∥2 .

Next,

𝐹 (𝑥1:𝐷
𝑛+1) − 𝐹★ ≤ ⟨∇𝑓 (𝑥1:𝐷

𝑛+1), 𝑥1:𝐷
𝑛+1 − 𝑥1:𝐷

★ ⟩ + 𝑔(𝑥1:𝐷
𝑛+1) − 𝑔(𝑥1:𝐷

★)

=

𝐷∑︁
𝑖=1

{⟨∇𝑖 𝑓 (𝑥1:𝐷
𝑛+1), 𝑥𝑖𝑛+1 − 𝑥𝑖★⟩ + 𝑔𝑖 (𝑥𝑖𝑛+1) − 𝑔𝑖 (𝑥𝑖★)}

≤
𝐷∑︁
𝑖=1

⟨∇𝑖 𝑓 (𝑥1:𝐷
𝑛+1) − ∇𝑖 𝑓 (𝑥1:𝑖

𝑛+1, 𝑥
𝑖+1:𝐷
𝑛), 𝑥𝑖𝑛+1 − 𝑥𝑖★⟩

91

≤
𝐷∑︁
𝑖=1

∥∇𝑓 (𝑥1:𝐷
𝑛+1) − ∇𝑓 (𝑥1:𝑖

𝑛+1, 𝑥
𝑖+1:𝐷
𝑛)∥ ∥𝑥𝑖𝑛+1 − 𝑥𝑖★∥

≤
𝐷∑︁
𝑖=1

(𝐷−1∑︁
𝑗=𝑖

∥∇𝑓 (𝑥1: 𝑗+1
𝑛+1 , 𝑥

𝑗+2:𝐷
𝑛) − ∇𝑓 (𝑥1: 𝑗

𝑛+1, 𝑥
𝑗+1:𝐷
𝑛)∥

)
∥𝑥𝑖𝑛+1 − 𝑥𝑖★∥

≤
(𝐷−1∑︁
𝑖=0

∥∇𝑓 (𝑥1:𝑖+1
𝑛+1 , 𝑥𝑖+2:𝐷

𝑛) − ∇𝑓 (𝑥1:𝑖
𝑛+1, 𝑥

𝑛+1:𝐷
𝑛)∥

) (𝐷∑︁
𝑖=1

∥𝑥𝑖𝑛+1 − 𝑥𝑖★∥
)

≤ 𝐷

√√√(𝐷−1∑︁
𝑖=0

∥∇𝑓 (𝑥1:𝑖+1
𝑛+1 , 𝑥𝑖+2:𝐷

𝑛) − ∇𝑓 (𝑥1:𝑖
𝑛+1, 𝑥

𝑛+1:𝐷
𝑛)∥2

) (𝐷∑︁
𝑖=1

∥𝑥𝑖
𝑛+1 − 𝑥𝑖★∥2

)
≤ 𝐷𝑅

√√√
𝐷−1∑︁
𝑖=0

∥∇𝑓 (𝑥1:𝑖+1
𝑛+1 , 𝑥𝑖+2:𝐷

𝑛) − ∇𝑓 (𝑥1:𝑖
𝑛+1, 𝑥

𝑛+1:𝐷
𝑛)∥2 .

Combined with the previous inequality, it yields, for Δ𝑛 B 𝐹 (𝑥1:𝐷
𝑛) − 𝐹★,

Δ𝑛+1 − Δ𝑛 ≤ − 1
2𝛽

𝐷∑︁
𝑖=1

∥∇𝑓 (𝑥1:𝑖
𝑛+1, 𝑥

𝑖+1:𝐷
𝑛) − ∇𝑓 (𝑥1:𝑖−1

𝑛+1 , 𝑥𝑖:𝐷𝑛)∥2 ≤ − 1
2𝛽𝐷2𝑅2 Δ

2
𝑛+1 .

If Δ𝑛+1 ≥ Δ𝑛/2, this yields Δ𝑛+1 − Δ𝑛 ≤ −Δ2
𝑛/(8𝛽𝐷2𝑅2), so in general

Δ𝑛+1 ≤ max
{1

2 ,
(
1 − Δ𝑛

8𝛽𝐷2𝑅2
)}

Δ𝑛 .

This implies that the error decays exponentially fast until iteration 𝑛0 which satisfies
Δ𝑛0 ≤ 4𝛽𝐷2𝑅2. Thereafter,

1
Δ𝑛

− 1
Δ𝑛+1

=
Δ𝑛+1 − Δ𝑛

Δ𝑛Δ𝑛+1
≤ − 1

8𝛽𝐷2𝑅2 ,

which yields

Δ𝑁 ≤
8𝛽𝐷2𝑅2 Δ𝑛0

8𝛽𝐷2𝑅2 + (𝑁 − 𝑛0) Δ𝑛0
≤ 8𝛽𝐷2𝑅2

𝑁 − 𝑛0
. □

Although Theorem 11.4 provides a convergence guarantee for AM, it incurs a poor
dependence on the number of blocks 𝐷—the complexity scales as 𝐷3. It turns out that this

92

can be alleviated by randomly choosing a block at each iteration. More precisely, define
the following randomized alternating minimization algorithm:

𝑥𝑛+1 B arg min
𝑥𝑖 (𝑛)∈R𝑑𝑖 (𝑛)

{𝑓 (𝑥1:𝑖 (𝑛)−1
𝑛 , 𝑥𝑖 (𝑛), 𝑥𝑖 (𝑛)+1:𝐷

𝑛) + 𝑔𝑖 (𝑛) (𝑥𝑖 (𝑛))} , 𝑖 (𝑛) ∼ uniform([𝐷]) .

(RAM)

The analysis below also handles anisotropic smoothness: we assume that for each 𝑖 ,

𝑓 (𝑥1:𝑖−1, ·, 𝑥𝑖+1:𝐷) is 𝛽𝑖-smooth for each 𝑥1:𝐷 ∈ R𝑑1×···×𝑑𝐷 .

We refer to this condition succinctly by saying that 𝑓 is 𝜷-smooth, where 𝜷 = (𝛽1, . . . , 𝛽𝐷).
It induces the norm

∥𝑥1:𝐷 ∥𝜷 B
(𝐷∑︁
𝑖=1

𝛽𝑖 ∥𝑥𝑖 ∥2
)1/2

.

Theorem 11.5 (convergence of RAM). Assume that 𝑓 is 𝜷-smooth and 𝛼 𝑓 -convex w.r.t.
∥·∥𝜷 . Also, assume that 𝑔 is 𝛼𝑔-convex w.r.t. ∥·∥𝜷 . Then, the iterates of RAM satisfy the
following bounds. If 𝛼 𝑓 + 𝛼𝑔 > 0, then

E 𝐹 (𝑥1:𝐷
𝑁) − 𝐹★ ≤

(
1 −

𝛼 𝑓 + 𝛼𝑔

(1 + 𝛼𝑔) 𝐷

)𝑁
(𝐹 (𝑥1:𝐷

0) − 𝐹★) .

Otherwise, if 𝛼 𝑓 + 𝛼𝑔 = 0, then

E 𝐹 (𝑥1:𝐷
𝑁) − 𝐹★ ≤

2𝐷𝑅2
𝜷

𝑁
,

where 𝑅𝜷 ≥ sup𝑛∈Nmax{
√︁
𝐹 (𝑥1:𝐷

𝑛) − 𝐹★, ∥𝑥1:𝐷
𝑛 − 𝑥1:𝐷

★ ∥𝜷 } almost surely.

Before proving the theorem, let us compare the computational costs implied by these
various results in the weakly convex case. Suppose, for the sake of argument, that
computing a full gradient ∇𝑓 is 𝑂 (𝐷). If the proximal oracle for 𝑔 is available, we can
run PGD to obtain an 𝜀-solution at cost 𝑂 (𝛽𝐷𝑅2/𝜀). On the other hand, each iteration
of AM requires minimization with respect to one of the variables, leading to a total cost
of roughly 𝑂 (𝛽𝐷3𝑅2/𝜀), assuming that minimization over one variable is comparable in
cost to computing a partial gradient.

93

For RAM, let 𝛽max B max𝑖∈[𝐷] 𝛽𝑖 . The overall smoothness of 𝑓 satisfies 𝛽max ≤ 𝛽 ≤∑𝐷
𝑖=1 𝛽𝑖 ≤ 𝐷𝛽max and, ignoring the first term in the definition of 𝑅𝜷 , 𝑅2

𝜷 ≤ 𝛽max𝑅
2.11 The

cost for RAM is therefore 𝑂 (𝛽max𝐷𝑅
2/𝜀), which is “never worse” than the rate for PGD,

but could be substantially better when 𝛽 is closer to the upper bound 𝐷𝛽max. This is
the case when the directions of high smoothness are not aligned with the coordinate
directions (e.g., imagine that the Hessian matrix looks like the all-ones matrix). Thus, RAM
can “adapt” to directional smoothness, which is particularly appealing since RAM has no
tuning parameters (not even a step size!).

Proof of Theorem 11.5. Let 𝑦1:𝐷 ∈ R𝑑1×···×𝑑𝐷 and let E𝑛 denote the expectation over 𝑖 (𝑛)
only. Then,

E𝑛 𝐹 (𝑥1:𝐷
𝑛+1) ≤ E𝑛 𝐹 (𝑥

1:𝑖 (𝑛)−1
𝑛 , 𝑦𝑖 (𝑛), 𝑥𝑖 (𝑛)+1:𝐷

𝑛)

≤ E𝑛
[
𝑓 (𝑥1:𝐷

𝑛) + ⟨∇𝑖 (𝑛) 𝑓 (𝑥1:𝐷
𝑛), 𝑦𝑖 (𝑛) − 𝑥

𝑖 (𝑛)
𝑛 ⟩ +

𝛽𝑖 (𝑛)
2 ∥𝑦𝑖 (𝑛) − 𝑥

𝑖 (𝑛)
𝑛 ∥2]

+ E𝑛
[∑︁
𝑖≠𝑖 (𝑛)

𝑔𝑖 (𝑥𝑖𝑛) + 𝑔𝑖 (𝑛) (𝑦𝑖 (𝑛))
]

= 𝑓 (𝑥1:𝐷
𝑛) + 1

𝐷
⟨∇𝑓 (𝑥1:𝐷

𝑛), 𝑦1:𝐷 − 𝑥1:𝐷
𝑛 ⟩ + 1

2𝐷 ∥𝑦1:𝐷 − 𝑥1:𝐷
𝑛 ∥2

𝜷

+ 𝐷 − 1
𝐷

𝑔(𝑥1:𝐷
𝑛) + 1

𝐷
𝑔(𝑦1:𝐷)

≤ 𝐷 − 1
𝐷

𝑓 (𝑥1:𝐷
𝑛) + 1

𝐷
𝑓 (𝑦1:𝐷) +

1 − 𝛼 𝑓

2𝐷 ∥𝑦1:𝐷 − 𝑥1:𝐷
𝑛 ∥2

𝜷

+ 𝐷 − 1
𝐷

𝑔(𝑥1:𝐷
𝑛) + 1

𝐷
𝑔(𝑦1:𝐷) .

By taking the infimum over 𝑦1:𝐷 , we have shown that

E𝑛 𝐹 (𝑥1:𝐷
𝑛+1) ≤

𝐷 − 1
𝐷

𝐹 (𝑥1:𝐷
𝑛) + 1

𝐷
𝑄1/(1−𝛼 𝑓)𝐹 (𝑥

1:𝐷
𝑛) ,

where (𝑄𝑡)𝑡≥0 denotes the Hopf–Lax semigroup (Definition 9.3) with respect to ∥·∥𝜷 .
By Exercise 9.3, we have

𝑄1/(1−𝛼 𝑓)𝐹 (𝑥1:𝐷
𝑛) − 𝐹★

𝐹 (𝑥1:𝐷
𝑛) − 𝐹★

≤
{
(1 − 𝛼 𝑓)/(1 + 𝛼𝑔) , if 𝛼 𝑓 + 𝛼𝑔 > 0 ,
1 − (𝐹 (𝑥1:𝐷

𝑛) − 𝐹★)/(2𝑅2
𝜷) , if 𝛼 𝑓 + 𝛼𝑔 = 0 .

11The result for RAM requires an almost sure bound on the iterates, but let us ignore this detail for the
sake of this discussion.

94

By taking the expectation again, in the first case it yields

E 𝐹 (𝑥1:𝐷
𝑛+1) − 𝐹★ ≤

(
1 −

𝛼 𝑓 + 𝛼𝑔

(1 + 𝛼𝑔) 𝐷

)
{E 𝐹 (𝑥1:𝐷

𝑛) − 𝐹★} ,

and in the second case, by Jensen’s inequality,

E 𝐹 (𝑥1:𝐷
𝑛+1) − 𝐹★ ≤ E

[(
1 − 𝐹 (𝑥1:𝐷

𝑛) − 𝐹★

2𝐷𝑅2
𝜷

)
{𝐹 (𝑥1:𝐷

𝑛) − 𝐹★}
]

≤
(
1 − E 𝐹 (𝑥

1:𝐷
𝑛) − 𝐹★

2𝐷𝑅2
𝜷

)
{E 𝐹 (𝑥1:𝐷

𝑛) − 𝐹★} .

The results follow by iterating these inequalities. □

11.3 Case study: entropic optimal transport
As a case study, we apply these ideas to a concrete problem of modern interest. Namely,
over the past decade, there has been considerable interest in applications of optimal
transport to machine learning, among other domains. In this problem, we are given two
probability distributions 𝜇, 𝜈 over spaces X and Y respectively, as well as a cost function
𝑐 : X × Y → R. In this section, we focus on the case where X, Y are finite sets, although
the ideas presented here readily generalize. The optimal transport cost between 𝜇 and 𝜈

with cost 𝑐 is

OT(𝜇, 𝜈) B inf{E 𝑐 (𝑋,𝑌) : 𝑋 ∼ 𝜇 , 𝑌 ∼ 𝜈} ,

where the infimum is taken over all couplings (𝑋,𝑌), i.e., jointly defined random variables
with marginal laws 𝜇 and 𝜈 respectively. A particularly common choice is the Euclidean
cost, 𝑐 (𝑥,𝑦) = ∥𝑦 − 𝑥 ∥2, but other choices are common too. Since the structure of the cost
does not play any role here, we leave it general.

Focus on the case where X, Y are finite sets. If we write 𝛾 for the joint distribution of
(𝑋,𝑌), the optimal transport problem can be written

minimize
𝛾∈RX×Y

+

∑︁
𝑥∈X, 𝑦∈Y

𝑐𝑥,𝑦𝛾𝑥,𝑦 such that
{∑

𝑦∈Y 𝛾𝑥,𝑦 = 𝜇𝑥 for all 𝑥 ∈ X ,∑
𝑥∈X 𝛾𝑥,𝑦 = 𝜈𝑦 for all 𝑦 ∈ Y .

More compactly, if we write 𝐶 = (𝑐𝑥,𝑦)𝑥∈X, 𝑦∈Y for the cost matrix and 1X, 1Y for the
all-ones vectors on X and on Y respectively, this can be written

minimize
𝛾∈RX×Y

+

⟨𝐶,𝛾⟩ such that
{
𝛾1Y = 𝜇 ,

𝛾T1X = 𝜈 .

95

This is readily recognized as a linear program, but solving it as such is expensive. There
are specialized combinatorial algorithms—see [PC19]—but the computational cost scales
at least as 𝑑3 if 𝑑 = |X| = |Y| (for simplicity, the input dimensions are the same).

On the other hand, the size of the input matrix𝐶 is 𝑑2, and optimistically we ask if we
can solve the problem in 𝑂 (𝑑2) time—that is, nearly linear time in the size of the input.
We shall see that this is the case, provided that we add some entropic regularization to
the problem, as popularized in machine learning by Cuturi [Cut13].

Given a regularization parameter 𝜀reg > 0, the goal is to instead solve

minimize
𝛾∈RX×Y

+

⟨𝐶,𝛾⟩ + 𝜀reg KL(𝛾 ∥ 𝜇 ⊗ 𝜈) such that
{
𝛾1Y = 𝜇 ,

𝛾T1X = 𝜈 .
(11.2)

Call the value of this problem OT𝜀reg (𝜇, 𝜈). Why does this make the problem so much
easier to solve? The answer is that by Kantorovich duality, the dual to the unregularized
problem turns out to be

maximize
𝑓 ∈RX, 𝑔∈RY

∑︁
𝑥∈X

𝑓𝑥𝜇𝑥 +
∑︁
𝑦∈Y

𝑔𝑦𝜈𝑦 such that 𝑓𝑥 + 𝑔𝑦 ≤ 𝑐𝑥,𝑦 for all 𝑥 ∈ X , 𝑦 ∈ Y ,

which is still a constrained problem. On the other hand, the dual to the regularized
problem is unconstrained.

Theorem 11.6 (EOT duality). Consider the following dual problem:

maximize
𝑓 ∈RX, 𝑔∈RY

∑︁
𝑥∈X

𝑓𝑥𝜇𝑥 +
∑︁
𝑦∈Y

𝑔𝑦𝜈𝑦 − 𝜀reg

(∑︁
𝑥∈X, 𝑦∈Y

exp
(𝑓𝑥 + 𝑔𝑦 − 𝑐𝑥,𝑦

𝜀reg

)
𝜇𝑥𝜈𝑦 − 1

)
(11.3)

Let 𝑓 ★, 𝑔★ solve the dual problem. Then, 𝛾★ defined by

𝛾★𝑥,𝑦 B exp
(𝑓 ★𝑥 + 𝑔★𝑦 − 𝑐𝑥,𝑦

𝜀reg

)
𝜇𝑥𝜈𝑦 (11.4)

is the unique solution to the entropic optimal transport problem.
Moreover, 𝛾★ is characterized as the unique distribution of the form (11.4) for some

𝑓 ★, 𝑔★ with the correct marginals.

For a proof, see, e.g., [CNR25, Proposition 4.3], although in this discrete setting it can
be proven via Lagrange multipliers (Exercise 11.3).

96

By replacing 𝑐𝑥,𝑦 with 𝑐𝑥,𝑦/𝜀reg and rescaling 𝑓𝑥 , 𝑔𝑦 accordingly, we may set 𝜀reg = 1
without loss of generality, so we adopt this convention henceforth.

Let D(𝑓 , 𝑔) denote the dual functional, i.e., the objective of (11.3). Since the dual is
unconstrained, we propose to solve it by alternating maximization. Namely, given iterates
𝑓 𝑛 , 𝑔𝑛 , we set

𝑓 𝑛+1 B arg max
𝑓 ∈RX

D(𝑓 , 𝑔𝑛) , 𝑔𝑛+1 B arg max
𝑔∈RY

D(𝑓 𝑛+1, 𝑔) .

By solving for the first-order conditions, the updates can be written explicitly:

𝑓 𝑛+1
𝑥 = − log

∑︁
𝑦∈Y

exp(𝑔𝑛𝑦 − 𝑐𝑥,𝑦) 𝜈𝑦 , 𝑔𝑛+1
𝑦 = − log

∑︁
𝑥∈X

exp(𝑓 𝑛+1
𝑥 − 𝑐𝑥,𝑦) 𝜇𝑥 . (11.5)

At this point, one can try to apply Theorem 11.4, but the correct geometry for this problem
is not Euclidean.

Instead, consider what happens to the matrices

𝛾𝑛𝑥,𝑦 B exp(𝑓 𝑛𝑥 + 𝑔𝑛𝑦 − 𝑐𝑥,𝑦) 𝜇𝑥𝜈𝑦 , 𝛾
𝑛+1/2
𝑥,𝑦 B exp(𝑓 𝑛+1

𝑥 + 𝑔𝑛𝑦 − 𝑐𝑥,𝑦) 𝜇𝑥𝜈𝑦 .

Performing the update 𝑓 𝑛 ↦→ 𝑓 𝑛+1 implicitly performs the update 𝛾𝑛 ↦→ 𝛾𝑛+1/2. The
X-marginal of 𝛾𝑛+1/2 is computed as follows:∑︁

𝑦∈Y
𝛾
𝑛+1/2
𝑥,𝑦 = 𝜇𝑥

∑︁
𝑥∈X

exp(𝑓 𝑛+1
𝑥 + 𝑔𝑛𝑦 − 𝑐𝑥,𝑦) 𝜈𝑦 = 𝜇𝑥 ,

by (11.5). Thus, 𝛾𝑛+1/2 has the correct X-marginal 𝜇, although its Y-marginal may not be
correct. In fact, one can see that 𝛾𝑛+1/2 is obtained from 𝛾𝑛 by normalizing its rows to fix its
X-marginal. Similarly, the update 𝑔𝑛 ↦→ 𝑔𝑛+1 implicitly performs the update 𝛾𝑛+1/2 ↦→ 𝛾𝑛+1,
and 𝛾𝑛+1 has the correct Y-marginal 𝜈 . In this form, this is known as Sinkhorn’s matrix
scaling algorithm [Sin64]. In words, Sinkhorn’s algorithm iteratively “fixes the rows, and
then fixes the columns, and then fixes the rows. . . ”.

We can therefore identify Sinkhorn’s algorithm as an instance of alternating Bregman
projections. Indeed, we define the constraint sets

C𝜇 B {𝛾 ∈ RX×Y+ : 𝛾1Y = 𝜇} , C𝜈 B {𝛾 ∈ RX×Y+ : 𝛾T1X = 𝜈} ,

and we let 𝜙 : 𝛾 ↦→ ∑
𝑥∈X, 𝑦∈Y(𝛾𝑥,𝑦 log𝛾𝑥,𝑦 − 𝛾𝑥,𝑦) denote the entropic mirror map, then

similarly to Exercise 10.4 one can show that the Bregman projections onto C𝜇 and C𝜈
normalize the rows and columns respectively. This yields

𝛾𝑛+1/2 = Π
𝜙

C𝜇 (𝛾𝑛) , 𝛾𝑛+1 = Π
𝜙

C𝜈
(𝛾𝑛+1/2) .

97

From this perspective, Sinkhorn’s algorithm aims to find a point in the intersection
C𝜇 ∩ C𝜈 . Does this mean that the intersection is a singleton, which is the solution to
the entropic optimal transport problem? No! Note that the intersection C𝜇 ∩ C𝜈 only
encodes the constraints of the original problem, not the objective which depends on the
cost function 𝑐 . In fact, by Theorem 11.6, different choices of 𝑐 give rise to different
entropic optimal couplings, so C𝜇 ∩ C𝜈 is certainly not a singleton.

What is true, however, is that if Γ𝑐 denotes the set of joint distributions of the form (11.4),
then the unique element of C𝜇 ∩ C𝜈 ∩ Γ𝑐 solves the entropic optimal transport problem.
This is the last statement of Theorem 11.6. Moreover, Sinkhorn’s algorithm maintains
the property that if we initialize at an element of Γ𝑐 , e.g., by taking 𝑓 0 = 𝑔0 = 0, then the
algorithm iterates all remain in Γ𝑐 . So, remarkably, the alternating Bregman projections
do indeed solve our problem.

Let us now see what Lemma 11.2 implies for Sinkhorn’s algorithm. In the following,
we assume that we initialize at a probability distribution 𝛾0 ∈ Γ𝑐 , e.g., we can take

𝛾0 =
exp(−𝑐) (𝜇 ⊗ 𝜈)

∥exp(−𝑐) (𝜇 ⊗ 𝜈)∥1
.

Theorem 11.7 (convergence of Sinkhorn’s algorithm). Initialize Sinkhorn’s algorithm
at a probability distribution 𝛾0 ∈ Γ𝑐 . Suppose that the number of iterations 𝑁 satisfies

𝑁 ≥ 2KL(𝛾★ ∥ 𝛾0)
𝜀2 .

Then, there exists an iteration 𝑛 ∈ {0, 1, . . . , 𝑁 − 1} and 𝛾 ∈ {𝛾𝑛, 𝛾𝑛+1/2} such that if 𝜇, 𝜈
denote the marginals of 𝛾 , then

∥𝜇 − 𝜇∥1 + ∥𝜈 − 𝜈 ∥1 ≤ 𝜀 .

Proof. By (11.1), we know that

min
𝑛=0,1,...,𝑁−1

{KL(𝛾𝑛+1/2 ∥ 𝛾𝑛) + KL(𝛾𝑛+1 ∥ 𝛾𝑛+1/2)} ≤ KL(𝛾★ ∥ 𝛾0)
𝑁

.

Let 𝜇𝑛 denote the X-marginal of 𝛾𝑛:

𝜇𝑛𝑥 =
∑︁
𝑦∈Y

𝛾𝑛𝑥,𝑦 = 𝜇𝑥 exp(𝑓 𝑛𝑥)
∑︁
𝑦∈Y

exp(𝑔𝑛𝑦 − 𝑐𝑥,𝑦) 𝜈𝑦 = 𝜇𝑥 exp(𝑓 𝑛𝑥 − 𝑓 𝑛+1
𝑥) .

98

Therefore, since the X-marginal of 𝛾𝑛+1/2 is 𝜇,

KL(𝛾𝑛+1/2 ∥ 𝛾𝑛) =
∑︁

𝑥∈X, 𝑦∈Y
𝛾
𝑛+1/2
𝑥,𝑦 log

exp(𝑓 𝑛+1
𝑥 + 𝑔𝑛𝑦 − 𝑐𝑥,𝑦)

exp(𝑓 𝑛𝑥 + 𝑔𝑛𝑦 − 𝑐𝑥,𝑦)
=

∑︁
𝑥∈X, 𝑦∈Y

𝛾
𝑛+1/2
𝑥,𝑦 (𝑓 𝑛+1

𝑥 − 𝑓 𝑛𝑥)

=
∑︁
𝑥∈X

𝜇𝑥 (𝑓 𝑛+1
𝑥 − 𝑓 𝑛𝑥) =

∑︁
𝑥∈X

𝜇𝑥 log 𝜇𝑥

𝜇𝑛𝑥
= KL(𝜇 ∥ 𝜇𝑛) ≥ 1

2 ∥𝜇𝑛 − 𝜇∥2
1 ,

where the last inequality is Pinsker’s inequality. The result follows. □

However, this is not the last word on Sinkhorn’s algorithm. For instance, it does not
provide convergence of the last iterate. It turns out that Sinkhorn’s algorithm admits a
third interpretation: as an instantiation of mirror descent (Exercise 11.4). Using this, one
can prove the following theorem.

Theorem11.8 (convergence of Sinkhorn’s algorithm, II). Initialize Sinkhorn’s algorithm
at a probability distribution 𝛾0 ∈ Γ𝑐 . Then, if 𝜇𝑁 denotes the X-marginal of 𝛾𝑁 ,

KL(𝜇𝑁 ∥ 𝜇) ≤ KL(𝛾★ ∥ 𝛾0)
𝑁

.

Bibliographical notes
The analysis of alternating minimization has recently inspired analyses of the coordinate
ascent variational inference (CAVI) algorithm [AL24; LZ24], the expectation maximization
(EM) algorithm [CJ24], and Gibbs sampling [ALZ24]. The proof of Theorem 11.5 is also
taken from [LZ24].

For an introduction to optimal transport for statisticians, see [CNR25]. Other treat-
ments of optimal transport, aimed at more mathematical audiences, include [Vil03; Vil09;
San15]. The literature on (entropic) optimal transport is vast, so we only mention a few
relevant references: the proof of Theorem 11.7 is similar in spirit to [ANR17]; Sinkhorn’s al-
gorithm as interpreted as mirror descent in [Lég21]; and the interpretation in Exercise 11.4
is from [AKL22].

Exercises
Exercise 11.1. Here, we present a simple convergence analysis of alternating minimization
in the case where there are only two blocks, 𝑓 satisfies (PŁ) with constant 𝛼 and is 𝛽-
smooth, and 𝑔 = 0.

99

For any ℎ > 0, by definition of alternating minimization,

𝑓 (𝑥1
𝑛+1, 𝑥

2
𝑛) ≤ 𝑓 (𝑥1

𝑛 − ℎ ∇1𝑓 (𝑥1
𝑛, 𝑥

2
𝑛), 𝑥2

𝑛) .

Apply the descent lemma for GD (Lemma 3.1), the fact that ∇2𝑓 (𝑥1
𝑛, 𝑥

2
𝑛) = 0 (why?), and the

PŁ inequality to deduce a one-step inequality 𝑓 (𝑥1
𝑛+1, 𝑥

2
𝑛) − 𝑓★ ≤ (1−𝛼/𝛽) (𝑓 (𝑥1

𝑛, 𝑥
2
𝑛) − 𝑓★).

Deduce that

𝑓 (𝑥1
𝑁 , 𝑥

2
𝑁) − 𝑓★ ≤

(
1 − 𝛼

𝛽

)2𝑁 (𝑓 (𝑥1
0, 𝑥

2
0) − 𝑓★) .

Exercise 11.2. Consider coordinate descent with the Gauss–Southwell rule:

𝑥𝑛+1 B 𝑥𝑛 − ℎ ∇𝑖𝑛 𝑓 (𝑥𝑛) 𝑒𝑖𝑛 , 𝑖𝑛 = arg max
𝑖∈[𝑑]

|∇𝑖 𝑓 (𝑥𝑛) | .

This is a “greedy” version of coordinate descent.

1. Show that

𝑥𝑛+1 = arg min
𝑥∈R𝑑

{
𝑓 (𝑥𝑛) + ⟨∇𝑓 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩ +

1
2ℎ ∥𝑥 − 𝑥𝑛∥2

1
}
.

2. Therefore, argue that if 𝑓 is smooth in the ℓ1-norm,

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝛽

2 ∥𝑦 − 𝑥 ∥2
1 ,

then for ℎ = 1/𝛽 we have the descent lemma

𝑓 (𝑥𝑛+1) ≤ 𝑓 (𝑥𝑛) −
1

2𝛽 ∥∇𝑓 (𝑥𝑛)∥2
∞ .

3. If 𝑓 satisfies a PŁ inequality in the ℓ1-norm,

∥∇𝑓 (𝑥)∥2
∞ ≥ 2𝛼 (𝑓 (𝑥) − 𝑓★) , for all 𝑥 ∈ R𝑑 ,

then for 𝜅 = 𝛽/𝛼 ,

𝑓 (𝑥𝑁) − 𝑓★ ≤
(
1 − 1

𝜅

)𝑁 (𝑓 (𝑥0) − 𝑓★) .

The moral of the story is that coordinate methods operate in the ℓ1 geometry.

100

Exercise 11.3.

1. Setting 𝜀reg = 1 in (11.2), show that the objective is equivalent to minimizing
𝛾 ↦→ KL(𝛾 ∥ 𝛾0), where 𝛾0

𝑥,𝑦 = 𝜇𝑥𝜈𝑦 exp(−𝑐𝑥,𝑦).

2. Introduce two Lagrange multipliers 𝜅, 𝜆 ∈ R and argue that (11.2) is equivalent to

min
𝛾∈RX×Y

+

max
𝜅,𝜆∈R

{
KL(𝛾 ∥ 𝛾0) + 𝜅 (𝛾1Y − 𝜇) + 𝜆 (𝛾T1X − 𝜈)

}
.

Without justification, assume that we can switch the min and max, so that the above
problem is equivalent to

max
𝜅,𝜆∈R

min
𝛾∈RX×Y

+

{
KL(𝛾 ∥ 𝛾0) + 𝜅 (𝛾1Y − 𝜇) + 𝜆 (𝛾T1X − 𝜈)

}
.

Argue that the solution 𝛾 to this problem is of the form 𝛾𝑥,𝑦 = exp(𝑓𝑥 +𝑔𝑦 −𝑐𝑥,𝑦) 𝜇𝑥𝜈𝑦
for some 𝑓 ∈ RX, 𝑔 ∈ RY.

Exercise 11.4. For a joint distribution 𝛾 , let (ΠX)#𝛾 denote its X-marginal. Consider
the objective functional F : 𝛾 ↦→ KL((ΠX)#𝛾 ∥ 𝜇). Show that the iteration 𝛾𝑛 ↦→ 𝛾𝑛+1 of
Sinkhorn’s algorithm can be viewed as one step of mirror descent on F with the entropic
mirror map 𝜙 , constraint set C𝜈 , and step size 1. By checking relative convexity and
smoothness, prove Theorem 11.8.

12 Stochastic optimization
Our next topic is optimization with stochastic gradients. Besides its relevance in situations
where the gradient cannot be computed exactly, stochastic optimization is particularly
important for machine learning and statistics for at least two reasons. First, it can be
viewed as a method for directly minimizing the population risk, and we can establish
generalization bounds provided that we perform a single pass over our data. Second, it is
routinely used to minimize empirical risk functions by approximating the full gradient by
mini-batches over the data. Our treatment therefore centers around these applications.

12.1 Stochastic mirror proximal gradient descent
We start with the fundamental convergence result. Suppose that we wish to minimize
𝐹 = 𝑓 + 𝑔, where we only have access to stochastic gradients for 𝑓 . More precisely, we
assume that at each 𝑥 ∈ int dom 𝑓 , we can compute a random vector ∇̂𝑓 (𝑥) which is
unbiased: E ∇̂𝑓 (𝑥) = ∇𝑓 (𝑥). Actually, we can also let 𝑓 be non-smooth, in which case

101

we require that E ∇̂𝑓 (𝑥) ∈ 𝜕𝑓 (𝑥). The analysis below can also handle the case where the
stochastic gradient is biased, at the expense of an additional error term.

Let 𝜙 : R𝑑 → R ∪ {∞} be a mirror map. We consider the following iteration:

𝑥𝑛+1 B arg min
𝑥∈R𝑑

{
𝑓 (𝑥𝑛) + ⟨∇̂𝑓 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩ + 𝑔(𝑥) +

1
ℎ
𝐷𝜙 (𝑥, 𝑥𝑛)

}
. (SMPGD)

This is the stochastic mirror proximal gradient descent algorithm.12 For most applications,
we do not need all of these aspects (stochastic, mirror, proximal) simultaneously, but we
may as well include them to emphasize that a unified proof is possible. Anyway, it is
helpful to include a proximal term since it allows for projections, and the use of a Bregman
divergence is a bonus since it covers stochastic mirror descent.

Theorem 12.1 (convergence of SMPGD). Let 𝜙 be a mirror map which is 𝛼𝜙 -convex
relative to a norm |||·|||. We assume that 𝑓 is 𝛼 𝑓 -convex and 𝑔 is 𝛼𝑔-convex, relative to
𝜙 ; we let 𝜆ℎ B (1 − 𝛼 𝑓ℎ)/(1 + 𝛼𝑔ℎ). We assume that the stochastic gradient is unbiased.

• (smooth case) Assume that 𝑓 is 𝛽 𝑓 -smooth relative to 𝜙 , that ℎ ≤ 1/(2𝛽 𝑓), and
that we have a variance bound for the stochastic gradient:

E[|||∇̂𝑓 (𝑥) − ∇𝑓 (𝑥) |||2∗] ≤ 𝜎2𝑑 for all 𝑥 ∈ C𝜙 . (12.1)

Then, for a suitably averaged iterate 𝑥𝑁 ,

E 𝐹 (𝑥𝑁) − 𝐹★ ≤
𝛼 𝑓 + 𝛼𝑔

𝜆−𝑁
ℎ

− 1
𝐷𝜙 (𝑥★, 𝑥0) +

(1 + 𝛼𝑔ℎ) 𝜎2𝑑ℎ

𝛼𝜙
.

• (non-smooth case) Assume that the stochastic gradients are 𝐿2-bounded,

E[|||∇̂𝑓 (𝑥) |||2∗] ≤ 𝐿2 for all 𝑥 ∈ C𝜙 . (12.2)

Then, for a suitably averaged iterate 𝑥𝑁 ,

E 𝐹 (𝑥𝑁) − 𝐹★ ≤
𝛼 𝑓 + 𝛼𝑔

𝜆−𝑁
ℎ

− 1
𝐷𝜙 (𝑥★, 𝑥0) +

2 (1 + 𝛼𝑔ℎ) 𝐿2ℎ

𝛼𝜙
.

Proof. We prove a one-step inequality for

𝑥+ B arg min𝜓𝑥 , 𝜓𝑥 (𝑦) B 𝑓 (𝑥) + ⟨∇̂𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝑔(𝑦) + 1
ℎ
𝐷𝜙 (𝑦, 𝑥) .

12Yes, the name is comically long.

102

By the relative growth inequality (Lemma 10.7), for any 𝑦 ∈ C𝜙 ,(
𝛼𝑔 +

1
ℎ

)
𝐷𝜙 (𝑦, 𝑥+) +𝜓𝑥 (𝑥+) ≤ 𝜓𝑥 (𝑦) .

For the right-hand side, in both cases,

E𝜓𝑥 (𝑦) = 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝑔(𝑦) + 1
ℎ
𝐷𝜙 (𝑦, 𝑥) = 𝐹 (𝑦) − 𝐷 𝑓 (𝑦, 𝑥) +

1
ℎ
𝐷𝜙 (𝑦, 𝑥)

≤ 𝐹 (𝑦) +
1 − 𝛼 𝑓ℎ

ℎ
𝐷𝜙 (𝑦, 𝑥) .

Smooth case. Here, we lower bound E𝜓𝑥 (𝑥+) as follows: since ℎ ≤ 1/(2𝛽 𝑓),

E𝜓𝑥 (𝑥+) = E
[
𝑓 (𝑥) + ⟨∇̂𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝑔(𝑥+) + 1

ℎ
𝐷𝜙 (𝑥+, 𝑥)

]
= E

[
𝑓 (𝑥) + ⟨∇𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝑔(𝑥+) + 1

ℎ
𝐷𝜙 (𝑥+, 𝑥) + ⟨∇̂𝑓 (𝑥) − ∇𝑓 (𝑥), 𝑥+ − 𝑥⟩

]
= E

[
𝐹 (𝑥+) − 𝐷 𝑓 (𝑥+, 𝑥) +

1
ℎ
𝐷𝜙 (𝑥+, 𝑥) + ⟨∇̂𝑓 (𝑥) − ∇𝑓 (𝑥), 𝑥+ − 𝑥⟩

]
≥ E

[
𝐹 (𝑥+) + 1

2ℎ 𝐷𝜙 (𝑥+, 𝑥) − |||∇̂𝑓 (𝑥) − ∇𝑓 (𝑥) |||∗ |||𝑥+ − 𝑥 |||
]

≥ E
[
𝐹 (𝑥+) +

𝛼𝜙

4ℎ |||𝑥+ − 𝑥 |||2
]
−
√︃
E[|||∇̂𝑓 (𝑥) − ∇𝑓 (𝑥) |||2∗] E[|||𝑥+ − 𝑥 |||2]

≥ E
[
𝐹 (𝑥+) +

𝛼𝜙

4ℎ |||𝑥+ − 𝑥 |||2
]
−
√︃
𝜎2𝑑 E[|||𝑥+ − 𝑥 |||2] ≥ E 𝐹 (𝑥+) − 𝜎2𝑑ℎ

𝛼𝜙
.

This leads to the one-step bound

(1 + 𝛼𝑔ℎ) E𝐷𝜙 (𝑦, 𝑥+) ≤ (1 − 𝛼 𝑓ℎ) 𝐷𝜙 (𝑦, 𝑥) − ℎ (E 𝐹 (𝑥+) − 𝐹 (𝑦)) + 𝜎2𝑑ℎ2

𝛼𝜙
.

Non-smooth case. In this case, note that

|||∇𝑓 (𝑥) |||∗ = |||E ∇̂𝑓 (𝑥) |||∗ ≤
√︃
E[|||∇̂𝑓 (𝑥) |||2∗] ≤ 𝐿 ,

so that 𝑓 is 𝐿-Lipschitz with respect to |||·|||. Then,

E𝜓𝑥 (𝑥+) = E
[
𝑓 (𝑥) + ⟨∇̂𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 𝑔(𝑥+) + 1

ℎ
𝐷𝜙 (𝑥+, 𝑥)

]
= E

[
𝐹 (𝑥+) + 𝑓 (𝑥) − 𝑓 (𝑥+) + ⟨∇̂𝑓 (𝑥), 𝑥+ − 𝑥⟩ + 1

ℎ
𝐷𝜙 (𝑥+, 𝑥)

]
103

≥ E
[
𝐹 (𝑥+) − 𝐿 |||𝑥+ − 𝑥 ||| − |||∇̂𝑓 (𝑥) |||∗ |||𝑥+ − 𝑥 ||| + 1

ℎ
𝐷𝜙 (𝑥+, 𝑥)

]
≥ E

[
𝐹 (𝑥+) +

𝛼𝜙

2ℎ |||𝑥+ − 𝑥 |||2
]
− 2𝐿

√︃
E[|||𝑥+ − 𝑥 |||2] ≥ E 𝐹 (𝑥+) − 2𝐿2ℎ

𝛼𝜙
.

This leads to the one-step bound

(1 + 𝛼𝑔ℎ) E𝐷𝜙 (𝑦, 𝑥+) ≤ (1 − 𝛼 𝑓ℎ) 𝐷𝜙 (𝑦, 𝑥) − ℎ (E 𝐹 (𝑥+) − 𝐹 (𝑦)) + 2𝐿2ℎ2

𝛼𝜙
.

Completing the proof. Observe that the one-step bounds have exactly the same
form in both cases. We take 𝑦 = 𝑥★ and iterate as usual. Let 𝐸 = 𝜎2𝑑ℎ2/𝛼𝜙 in the first case,
and 𝐸 = 2𝐿2ℎ2/𝛼𝜙 in the second case. Then, the discrete Grönwall lemma (Lemma 3.5)
and some computations yield

𝑁∑︁
𝑛=1

𝜆𝑁−𝑛
ℎ∑𝑁
𝑘=1 𝜆

𝑘
ℎ

{E 𝐹 (𝑥𝑛) − 𝐹★} ≤
𝛼 𝑓 + 𝛼𝑔

𝜆−𝑁
ℎ

− 1
𝐷𝜙 (𝑥★, 𝑥0) +

1 + 𝛼𝑔ℎ

ℎ
𝐸 .

This yields a convergence rate for a suitably averaged iterate. □

For simplicity, let us assume that 𝛼𝜙 = 1 and 𝑅2 ≥ 𝐷𝜙 (𝑥★, 𝑥0). We let 𝛼 B 𝛼 𝑓 + 𝛼𝑔. To
obtain 𝜀 error, Theorem 12.1 implies the rates in Table 2.

Assumptions Iterations
convex, smooth 𝑂 (𝜎2𝑑𝑅2/𝜀2)

strongly convex, smooth 𝑂 (𝜎2𝑑 log(𝛼𝑅2/𝜀)/(𝛼𝜀))
convex, non-smooth 𝑂 (𝐿2𝑅2/𝜀2)

strongly convex, non-smooth 𝑂 (𝐿2 log(𝛼𝑅2/𝜀)/(𝛼𝜀))

Table 2: Rates for SMPGD with an appropriate step size and averaging.

A few remarks are in order.

1. The effect of the stochasticity of the gradients, at least under our assumptions, is
qualitatively the same as the effect of non-smoothness. Indeed, the rates of 𝑂 (1/𝜀2)
under convexity and𝑂 (1/𝜀) under strong convexity reflect the rates for PSD in §6.2.
Similarly, in this setting we do not have a descent lemma, and hence we should
average the iterates.

2. In the non-smooth case, stochasticity of the gradients does not hurt the rate at all,
provided that the stochastic gradients satisfy an appropriate 𝐿2 bound.

104

3. By Jensen’s inequality, it is not hard to see that (12.2) implies (12.1) with 𝜎2𝑑 ≤ 4𝐿2.
Hence, the variance bound (12.1) is indeed a weaker assumption, although the
analysis requires a stronger assumption—smoothness—for 𝑓 . At first glance, it may
seem that (12.1) and (12.2) are similar, but the former is a variance bound and the
latter is an 𝐿2 bound. Suppose, for instance, that |||·||| is the Euclidean norm, and that
∇̂𝑓 is computed on the basis of a mini-batch of 𝐵 samples. Then, we expect (12.1) to
decay as 1/𝐵, whereas (12.2) does not.

4. Since stochastic optimization behaves like non-smooth optimization, we also expect
that it is not possible to “accelerate”. Indeed, many of the rates in Theorem 12.1 can
be shown to be optimal up to logarithmic terms [Aga+12].

12.2 Implications for statistical generalization
Suppose that we have a dataset {𝑍𝑖 : 𝑖 ∈ [𝑛]} ⊆ Z of i.i.d. samples, a parameter space
Θ ⊆ R𝑑 , and a loss ℓ : Θ × Z → R. Define the empirical risk and the population risk:

R𝑛 (𝜃) B
1
𝑛

𝑛∑︁
𝑖=1

ℓ (𝜃 ;𝑍𝑖) , R(𝜃) B ER𝑛 (𝜃) .

We further assume that 𝜃 ↦→ ℓ (𝜃 ; 𝑧) is 𝐿-Lipschitz for all 𝑧 ∈ Z, and that Θ is is the ball
B(0, 𝑅) of radius 𝑅.

Example 12.2 (regression). Suppose that 𝑍𝑖 = (𝑋𝑖, 𝑌𝑖) with 𝑋𝑖 ∈ R𝑑 and 𝑌𝑖 ∈ [−1, 1].
Assume that for each 𝜃 ∈ Θ, we have a predictor 𝑓𝜃 : R𝑑 → [−1, 1]. Then, we can
consider the squared loss

ℓ (𝜃 ; 𝑧) = ℓ (𝜃 ; (𝑥,𝑦)) = (𝑦 − 𝑓𝜃 (𝑥))2 ,

If we further consider linear regression, 𝑓𝜃 : 𝑥 ↦→ ⟨𝜃, 𝑥⟩, then 𝑓𝜃 is 4𝑟 -Lipschitz for all
𝑧 = (𝑥,𝑦) with ∥𝑥 ∥ ≤ 𝑟 and |𝑦 | ≤ 1. Linear regression is not as restrictive as it may
seem, since we can imagine that each 𝑋𝑖 is actually the output of a high-dimensional
feature map, in which case we obtain kernel regression.

The setting we have described is actually the standard one for statistical learning theory,
and it covers much more than regression (e.g., classification and density estimation), but
regression is a good representative example. Also, since our conclusions below will not
involve the dimension 𝑑 , we can think of the function class as infinite-dimensional.

105

Define the minimizers

𝜃𝑛 ∈ arg min
𝜃∈Θ

R𝑛 (𝜃) , 𝜃★ ∈ arg min
𝜃∈Θ

R(𝜃) .

We view 𝜃★ as the ground truth value of the parameter that we wish to recover. Since
we do not have access to the population risk R, we must base our procedures on the
samples {𝑍𝑖}𝑖∈[𝑛] , so it is natural to use 𝜃𝑛, the empirical risk minimizer (ERM), as our
estimator. This is the starting point for statistical theory, but it says nothing about how
we can actually compute 𝜃𝑛 .

The power of stochastic gradient descent (SGD) is that we can view it as a method to
directly minimize the population risk. We consider the iteration

𝜃𝑘+1 B 𝜃𝑘 − ℎ ∇𝜃 ℓ (𝜃𝑘 ;𝑍𝑘+1) . (SGD)

If we denote ∇̂R(𝜃) = ∇𝜃 ℓ (𝜃 ;𝑍), then this is indeed an unbiased stochastic gradient:
E ∇̂R(𝜃) = ∇R(𝜃). Due to our Lipschitz assumption, we also know that

E[∥∇̂R(𝜃)∥2] ≤ 𝐿2 .

However, the implicit assumption in Theorem 12.1 is that the randomness is fresh at each
iteration, so we are not allowed to reuse any samples. This limits the total number of
iterations of SGD to the sample size 𝑛, and we refer to this as one-pass SGD.

From Theorem 12.1, if we further assume that 𝜃 ↦→ ℓ (𝜃 ; 𝑧) is convex for every 𝑧 ∈ Z,
then SGD with an optimized step size and averaging satisfies

ER(𝜃𝑛) − R(𝜃★) ≲ 𝐿𝑅
√
𝑛
.

Here, the guarantee is in terms of the difference between the expected risk of our estimator,
the averaged iterate of SGD, and the best possible risk. This is known as the excess risk
and it is the best we can hope for, since 𝜃★ may not be identifiable (unique).

How does this compare to the performance of ERM? Analysis of the ERM estimator
starts with the following decomposition:

R(𝜃𝑛) − R(𝜃★) = R(𝜃𝑛) − R𝑛 (𝜃𝑛) + R𝑛 (𝜃𝑛) − R𝑛 (𝜃★)︸ ︷︷ ︸
≤0

+ R𝑛 (𝜃★) − R(𝜃★)

≤ 2 sup
𝜃∈Θ

|R𝑛 (𝜃) − R(𝜃) | .

We therefore want to show that sup𝜃∈Θ |R𝑛 (𝜃) − R(𝜃) | tends to zero at a certain rate,
which is known as a uniform convergence argument. This is a type of stochastic process

106

(since R𝑛 is random) known as an empirical process, and sophisticated tools have been
developed for its study. After applying a number of them (symmetrization, contraction
principle, control of the Rademacher complexity), one can show that

ER(𝜃𝑛) − R(𝜃★) ≲ 𝐿𝑅
√
𝑛
, (12.3)

just as for SGD.
Actually, it is worth remarking that the bounds from empirical process theory depend

on various notions of the complexity of the class {ℓ (𝜃 ; ·) : 𝜃 ∈ Θ}. A traditional approach
measures this complexity essentially by counting the number of free parameters in the
class (Vapnik–Chervonenkis or VC theory), and would not match the dimension-free rate
attained by SGD. In order to do so, one needs to turn toward “size-based” measures of
complexity that take into account the fact that Θ lies in a ball, hence the need to control
the Rademacher complexity directly.

Anyway, we can show that the ERM estimator satisfies (12.3), and moreover, this
argument does not require convexity of the loss. However, when we discuss how to
compute the ERM estimator, we need to assume convexity anyway. Let us suppose that
we compute it by running GD (or more specifically, PSD) on the empirical risk R𝑛 . Since
the statistical error is already 𝐿𝑅/

√
𝑛, we only need to optimize to this level of accuracy.

Applying Theorem 6.14, we see that the number of iterations of PSD is roughly 𝑛. This
is the same number of iterations as one-pass SGD, except that each iteration of SGD is
roughly 𝑛 times cheaper than the corresponding one for PSD.

In conclusion, one-pass SGD produces an estimator which has comparable statistical
performance to the ERM estimator, with a computational cost roughly 𝑛 times cheaper
than minimizing the empirical risk directly using PSD.

The𝑛−1/2 dependence on the sample size𝑛 is known as a “slow rate”. It can be improved
when we additionally assume that for every 𝑧 ∈ Z, 𝜃 ↦→ ℓ (𝜃 ; 𝑧) is 𝛼-convex for some
𝛼 > 0. In this case, Theorem 12.1 yields

ER(𝜃𝑛) − R(𝜃★) ≲ 𝐿2

𝛼𝑛
.

(Actually, Theorem 12.1 yields a slightly worse result by a logarithmic factor, but this can
be fixed with a time-varying choice of step sizes.) Due to strong convexity, it also implies
parameter recovery: √︃

E[∥𝜃𝑛 − 𝜃★∥2] ≲ 𝐿

𝛼
√
𝑛
.

107

What about for the ERM estimator? This time, one needs a refined argument based on
localized Rademacher complexities, and it again eventually yields

ER(𝜃𝑛) − R(𝜃★) ≲ 𝐿2

𝛼𝑛
.

As for computation, by applying PSD and the result of Exercise 6.5 (again, omitting the
logarithmic factor which can be removed with better step sizes), the conclusion is the
same: the number of iterations is the same as for SGD, but each iteration is roughly 𝑛

times more expensive.
This discussion suggests that, at least when the risk is convex, averaged one-pass SGD

is expected to be an excellent estimator, both computationally and statistically. The next
subsection will further reinforce this point.

12.3 Central limit theorem for Polyak–Ruppert averaging
Disclaimer: This subsection is somewhat technical, so rather than tracing through all of
the details, you are encouraged to follow the high-level ideas.

We now turn to a celebrated result in stochastic optimization: namely, that the iterates
of SGD with Polyak–Ruppert averaging obey a central limit theorem. Let

𝜃𝑛+1 B 𝜃𝑛 − ℎ𝑛+1 ∇̂𝑓 (𝜃𝑛) , 𝜃𝑛 B
1
𝑛

𝑛−1∑︁
𝑗=0

𝜃 𝑗 . (ASGD)

Our goal is to show that
√
𝑛 (𝜃𝑛 − 𝜃★) → normal(0, Σ) for a certain covariance matrix Σ.

Throughout, we write

∇̂𝑓 (𝜃𝑛) = ∇𝑓 (𝜃𝑛) + 𝜉𝑛+1 ,

where conditionally on 𝜃𝑛 , the random vector 𝜉𝑛+1 has zero mean. Our condition on the
step sizes is

ℎ𝑛 = 𝑛−𝛾 , for some 1
2 < 𝛾 < 1 . (12.4)

We recall some preliminaries on convergence in distribution.

• We say that a sequence {𝑋𝑛}𝑛∈N of random vectors converges in distribution (or
converges weakly in law) to a probability distribution 𝜇, denoted 𝑋𝑛

d−→ 𝜇, if
E 𝑓 (𝑋𝑛) →

∫
𝑓 d𝜇 for every bounded, continuous function 𝑓 : R𝑑 → R. This

is the same notion of convergence as in the classical central limit theorem (CLT).

108

• We say that {𝑋𝑛}𝑛∈N tends to 0 in probability if for all 𝜀 > 0, P(∥𝑋𝑛∥ ≥ 𝜀) → 0. If
E∥𝑋𝑛∥ → 0, then 𝑋𝑛 → 0 in probability; this follows from Markov’s inequality.

• If 𝑋𝑛 = 𝑌𝑛 +𝑍𝑛 , and 𝑍𝑛 → 0 in probability, then {𝑋𝑛}𝑛∈N and {𝑌𝑛}𝑛∈N have the same
distributional limit.

Quadratic case. We begin with the quadratic case with

𝑓 : R𝑑 → R , 𝑓 (𝜃) = 1
2 ⟨𝜃 − 𝜃★, 𝐴 (𝜃 − 𝜃★)⟩ .

We assume𝐴 ≻ 0. We do not treat this case separately merely as a “warm-up”; the analysis
here is crucial for the general case as well.

Theorem 12.3 (CLT for ASGD, quadratic case). Assume that 𝑓 is a strongly con-
vex quadratic function, and that the step sizes satisfy the condition (12.4). Assume
that conditionally on 𝜃𝑛, each 𝜉𝑛+1 is mean zero and has covariance Ξ𝑛+1, such that
𝑛−1 ∑𝑛

𝑘=1 Ξ𝑘 → 𝑆∞ in probability and sup𝑛≥1 E trΞ𝑛 < ∞. Then,

√
𝑛 (𝜃𝑛 − 𝜃★) d−→ normal(0, 𝐴−1𝑆∞𝐴

−1) .

Before turning toward the proof, let us consider a simple example.

Example 12.4 (estimating the mean of a Gaussian). Suppose that we have samples
{𝑋𝑛}𝑛∈N

i.i.d.∼ normal(𝜃★, 𝐴−1) for a known covariance matrix 𝐴 ≻ 0, and we wish to
estimate the mean 𝜃★. We consider

𝜃𝑛+1 = 𝜃𝑛 − ℎ𝑛+1 𝐴 (𝜃𝑛 − 𝑋𝑛+1) , 𝜃𝑛 =
1
𝑛

𝑛−1∑︁
𝑗=0

𝜃 𝑗 .

This corresponds to the quadratic loss function with 𝜉𝑛 = 𝐴 (𝜃★ − 𝑋𝑛). In this case, the
{𝜉𝑛}𝑛∈N are i.i.d., with mean zero and covariance matrix 𝐴.

If we use the sample mean, then

√
𝑛

(1
𝑛

𝑛∑︁
𝑗=1

𝑋 𝑗 − 𝜃★
)
∼ normal(0, 𝐴−1) .

On the other hand, the CLT for ASGD with 𝑆∞ = 𝐴 shows that
√
𝑛 (𝜃𝑛 − 𝜃★) → normal(0, 𝐴−1) .

109

The first step is to write out the iterates. For 𝛿𝑛 B 𝜃𝑛 − 𝜃★,

𝛿𝑛+1 = 𝛿𝑛 − ℎ𝑛+1 𝐴𝛿𝑛 − ℎ𝑛+1𝜉𝑛+1 = (𝐼 − ℎ𝑛+1𝐴) 𝛿𝑛 − ℎ𝑛+1𝜉𝑛+1 .

Unrolling,

𝛿𝑛 =

[𝑛∏
𝑗=1

(𝐼 − ℎ 𝑗𝐴)
]
𝛿0 −

𝑛∑︁
𝑗=1

[
ℎ 𝑗

𝑛∏
𝑘= 𝑗+1

(𝐼 − ℎ𝑘𝐴)
]
𝜉 𝑗 .

Defining 𝛿𝑛 B 𝑛−1 ∑𝑛−1
𝑗=0 𝛿 𝑗 , it yields

𝛿𝑛 =
1
𝑛

𝑛−1∑︁
𝑗=0

[𝑗∏
𝑘=1

(𝐼 − ℎ𝑘𝐴)
]
𝛿0 −

1
𝑛

𝑛−1∑︁
𝑗=0

𝑗∑︁
𝑘=1

[
ℎ𝑘

𝑗∏
ℓ=𝑘+1

(𝐼 − ℎℓ𝐴)
]
𝜉𝑘

=
1
𝑛

𝑛−1∑︁
𝑗=0

[𝑗∏
𝑘=1

(𝐼 − ℎ𝑘𝐴)
]
𝛿0 −

1
𝑛

𝑛−1∑︁
𝑘=1

ℎ𝑘

𝑛−1∑︁
𝑗=𝑘

[𝑗∏
ℓ=𝑘+1

(𝐼 − ℎℓ𝐴)
]

︸ ︷︷ ︸
C𝑀𝑛

𝑘

𝜉𝑘

=
1
𝑛
𝑀𝑛

0𝛿0 −
1
𝑛

𝑛−1∑︁
𝑘=1

𝐴−1𝜉𝑘 −
1
𝑛

𝑛−1∑︁
𝑘=1

(𝑀𝑛
𝑘
−𝐴−1) 𝜉𝑘 , (12.5)

where we set ℎ0 B 1. The intuition is that if all of the ℎℓ were the same, then 𝑀𝑛
𝑘

would
equal ℎ

∑𝑛−1
𝑗=𝑘

(𝐼 − ℎ𝐴) 𝑗−𝑘 → 𝐴−1 as 𝑛 → ∞, so we hope that the last term tends to zero.

Lemma 12.5. The 𝑀𝑛
𝑘

matrices are uniformly bounded in operator norm. Also,

1
𝑛

𝑛−1∑︁
𝑘=1

∥𝑀𝑛
𝑘
−𝐴−1∥op → 0 as 𝑛 → ∞ .

Proof sketch. For intuition, suppose that 𝑆 =
∑∞

𝑛=0 (𝐼 − ℎ𝐴)𝑛 for ℎ < 1/∥𝐴∥op. To show
that ℎ𝑆 = 𝐴−1, one can argue that (𝐼 − ℎ𝐴) 𝑆 = 𝑆 − 𝐼 , which leads to ℎ𝑆 = 𝐴−1. We want
to replicate this type of proof, but it is significantly complicated due to the time-varying
step sizes. Let 𝐵𝑘𝑗 B

∏𝑘
ℓ= 𝑗 (𝐼 − ℎℓ𝐴), so that 𝑀𝑛

𝑘
= ℎ𝑘

∑𝑛−1
𝑗=𝑘

𝐵
𝑗

𝑘+1. We start with an equation
for the 𝐵’s: since

𝐵𝑘+1
𝑗 = 𝐵𝑘𝑗 − ℎ𝑘+1𝐴𝐵

𝑘
𝑗 = · · · = 𝐼 −𝐴

𝑘∑︁
ℓ= 𝑗−1

ℎℓ+1𝐵
ℓ
𝑗 ,

110

we can write

𝑀𝑛
𝑘
= ℎ𝑘

𝑛−1∑︁
𝑗=𝑘

𝐵
𝑗

𝑘+1 =
𝑛−1∑︁
𝑗=𝑘

(ℎ𝑘 − ℎ 𝑗+1 + ℎ 𝑗+1) 𝐵 𝑗

𝑘+1 =
𝑛−1∑︁
𝑗=𝑘

(ℎ𝑘 − ℎ 𝑗+1) 𝐵 𝑗

𝑘+1 +𝐴−1 (𝐼 − 𝐵𝑛
𝑘+1) .

Therefore,

𝐴𝑀𝑛
𝑘
− 𝐼 = 𝐴

𝑛−1∑︁
𝑗=𝑘

(ℎ𝑘 − ℎ 𝑗+1) 𝐵 𝑗

𝑘+1 − 𝐵𝑛
𝑘+1 .

Since 𝐴 is bounded above and below,

1
𝑛

𝑛−1∑︁
𝑘=1

∥𝑀𝑛
𝑘
−𝐴−1∥op ≲

1
𝑛

𝑛−1∑︁
𝑘=1

𝑛−1∑︁
𝑗=𝑘

|ℎ𝑘 − ℎ 𝑗+1 | ∥𝐵 𝑗

𝑘+1∥op +
1
𝑛

𝑛∑︁
𝑘=2

∥𝐵𝑛
𝑘
∥op .

Also, it is easy to see that for sufficiently small step sizes (which is all that matters in the
asymptotic regime),

∥𝐵𝑛
𝑘
∥op ≤

𝑛∏
ℓ=𝑘

(𝐼 − 𝛼ℎℓ) ≤ exp
(
−𝛼

𝑛∑︁
ℓ=𝑘

ℎℓ

)
.

So, for the second term,

1
𝑛

𝑛∑︁
𝑘=2

∥𝐵𝑛
𝑘
∥op ≤ 1

𝑛

𝑛∑︁
𝑘=1

exp
(
−𝛼

𝑛∑︁
ℓ=𝑘

ℎℓ

)
.

Let 𝜏𝑘 B
∑𝑘

ℓ=1 ℎℓ ≈ (1 − 𝛾)−1 𝑘1−𝛾 . If, for any 𝑡 > 0, we define 𝜏 (𝑡) = 𝑡1−𝛾 , the summation
is roughly equivalent to the following integral (up to replacing 𝛼 by 𝛼/(1 − 𝛾)):

𝐼 B

∫ 𝑛

1
exp(−𝛼 (𝜏 (𝑛) − 𝜏 (𝑘))) d𝑘 .

For ease of presentation, we focus on bounding the integral instead. By change of variables,
𝑡 = 𝜏 (𝑘),

𝐼 ≍
∫ 𝑛1−𝛾

1
𝑡𝛾/(1−𝛾) exp(−𝛼 (𝑛1−𝛾 − 𝑡)) d𝑡 ≲ 𝑛𝛾

∫ 𝑛1−𝛾

1
exp(−𝛼 (𝑛1−𝛾 − 𝑡)) d𝑡 ≲ 𝑛𝛾 .

Since 𝛾 < 1, the second term tends to zero.

111

As for the first term, we follow a similar strategy and approximate it via
1
𝑛

∬
1≤𝑘≤ 𝑗≤𝑛

(1
𝑘𝛾

− 1
𝑗𝛾

)
exp(−𝛼 (𝜏 (𝑗) − 𝜏 (𝑘))) d 𝑗 d𝑘

≍ 1
𝑛

∬
1≤𝑠≤𝑡≤𝑛1−𝛾

(𝑡𝛾/(1−𝛾) − 𝑠𝛾/(1−𝛾))︸ ︷︷ ︸
apply Taylor expansion

exp(−𝛼 (𝑡 − 𝑠)) d𝑠 d𝑡

≲
𝑛2𝛾−1

𝑛

∬
1≤𝑠≤𝑡≤𝑛1−𝛾

(𝑡 − 𝑠) exp(−𝛼 (𝑡 − 𝑠)) d𝑠 d𝑡 ≲ 𝑛𝛾

𝑛

∫ 𝑛1−𝛾

1
𝑡 exp(−𝛼𝑡) d𝑡 → 0 .

This completes the heuristic proof of the convergence. The first statement, about the
boundedness of the 𝑀𝑛

𝑘
, can be proved via similar arguments. □

Returning to (12.5), note that

√
𝑛 𝛿𝑛 =

1
𝑛1/2 𝑀

𝑛
0𝛿0 −

1
𝑛1/2

𝑛−1∑︁
𝑘=1

𝐴−1𝜉𝑘 −
1

𝑛1/2

𝑛−1∑︁
𝑘=1

(𝑀𝑛
𝑘
−𝐴−1) 𝜉𝑘 ,

where E∥𝑀𝑛
0𝛿0∥/

√
𝑛 → 0. For the last term, we use the fact that the 𝜉𝑘 ’s are orthogonal:

for 𝑘 < ℓ , by conditioning on 𝜃1:ℓ−1 B (𝜃1, . . . , 𝜃ℓ−1),

E⟨(𝑀𝑛
𝑘
−𝐴−1) 𝜉𝑘 , (𝑀𝑛

ℓ −𝐴−1) 𝜉ℓ⟩ = E⟨(𝑀𝑛
𝑘
−𝐴−1) 𝜉𝑘 , (𝑀𝑛

ℓ −𝐴−1) E[𝜉ℓ | 𝜃1:ℓ−1]⟩ = 0 .

Therefore,

1
𝑛
E
[

𝑛−1∑︁

𝑘=1
(𝑀𝑛

𝑘
−𝐴−1) 𝜉𝑘

2]
=

1
𝑛

𝑛−1∑︁
𝑘=1
E[∥(𝑀𝑛

𝑘
−𝐴−1) 𝜉𝑘 ∥2] = 1

𝑛

𝑛−1∑︁
𝑘=1

⟨(𝑀𝑛
𝑘
−𝐴−1)2

,EΞ𝑘⟩

≲
1
𝑛

𝑛∑︁
𝑘=1

∥𝑀𝑛
𝑘
−𝐴−1∥op → 0 .

Hence, to obtain a distributional limit for
√
𝑛 𝛿𝑛 , it suffices to obtain one for the second

term above. This will be accomplished via martingale theory.

Martingale CLT. In the context of stochastic optimization, the noise sequence {𝜉𝑛}𝑛∈N
is not i.i.d.; indeed, we want to consider

𝜉𝑛 = ∇̂𝑓 (𝜃𝑛) − ∇𝑓 (𝜃𝑛) ,

and since the iterates {𝜃𝑛}𝑛∈N are random and depend on the noise sequence, it leads to a
complicated dependence structure for the noise sequence. Nevertheless, it falls within the
framework of martingale theory.

112

Definition 12.6. An increasing sequence of 𝜎-algebras {ℱ𝑛}𝑛∈N is called a filtration.
We think of ℱ𝑛 as the information available to an observer up to iteration 𝑛.

A sequence of random vectors {𝑋𝑛}𝑛∈N is called a martingale if for all 𝑛, 𝑋𝑛 is
ℱ𝑛-measurable, E∥𝑋𝑛∥ < ∞, and

E[𝑋𝑛+1 | ℱ𝑛] = 𝑋𝑛 .

In other words, the difference𝑋𝑛+1−𝑋𝑛 is conditionally unbiased given the information
ℱ𝑛 available at iteration 𝑛. If we set 𝑋𝑛 B

∑𝑛
𝑘=1 𝜉𝑘 , then {𝑋𝑛}𝑛∈N is a martingale; we

sometimes refer to the noise sequence {𝜉𝑛}𝑛∈N as a martingale difference sequence.
Our next goal is to establish the following theorem.

Theorem 12.7 (martingale CLT). Let {𝜉𝑛}𝑛∈N be a martingale difference sequence and
write Ξ𝑛+1 B cov(𝜉𝑛+1 | ℱ𝑛). Assume that sup𝑛∈N E trΞ𝑛 < ∞ and that 𝑛−1 ∑𝑛

𝑘=1 Ξ𝑘 →
𝑆∞ in probability. Then,

1
√
𝑛

𝑛∑︁
𝑘=1

𝜉𝑘
d−→ normal(0, 𝑆∞) as 𝑛 → ∞ .

This is a special case of a more general theorem on triangular arrays of Lindeberg–
Feller type. For simplicity, we prove it under the stronger hypothesis that {𝜉𝑛}𝑛∈N is
uniformly bounded.

Proof. Let 𝑋𝑘 B 𝑛−1/2 ∑𝑘
ℓ=1 𝜉ℓ ; note that this depends on 𝑛 but we suppress it from the

notation. Consider the characteristic function: for i B
√
−1 and 𝜆 ∈ R𝑑 ,

𝜙𝑛 (𝜆) B E exp(i ⟨𝜆,𝑋𝑛⟩) .

Due to standard results on Fourier inversion, it suffices to prove that the characteristic
function 𝜙𝑛 converges pointwise to the characteristic function of the Gaussian,

𝜙∞(𝜆) B E exp(i ⟨𝜆, 𝑍 ⟩) = exp
(
−1

2 ⟨𝜆, 𝑆∞ 𝜆⟩
)
, 𝑍 ∼ normal(0, 𝑆∞) .

Let 𝑆𝑘 B 𝑛−1 ∑𝑘
ℓ=1 Ξℓ . We start by writing

|𝜙𝑛 (𝜆) − 𝜙∞(𝜆) | ≤
��E[exp(i ⟨𝜆,𝑋𝑛⟩)

(
1 − exp

(1
2 ⟨𝜆, 𝑆𝑛 𝜆⟩ −

1
2 ⟨𝜆, 𝑆∞ 𝜆⟩

))] ��
+
��exp

(
−1

2 ⟨𝜆, 𝑆∞ 𝜆⟩
) (
E exp

(
i ⟨𝜆,𝑋𝑛⟩ +

1
2 ⟨𝜆, 𝑆𝑛 𝜆⟩

)
− 1

) ��
113

≤ E
��1 − exp

(1
2 ⟨𝜆, 𝑆𝑛 𝜆⟩ −

1
2 ⟨𝜆, 𝑆∞ 𝜆⟩

) ��
+
��E exp

(
i ⟨𝜆,𝑋𝑛⟩ +

1
2 ⟨𝜆, 𝑆𝑛 𝜆⟩

)
− 1

�� .
Since {𝜉𝑛}𝑛∈N is bounded, say by 𝐵, then ∥Ξ𝑘 ∥op ≤ 𝐵2, so {𝑆𝑛}𝑛∈N is bounded. Since
𝑆𝑛 → 𝑆∞ in probability, the first term above tends to zero as 𝑛 → ∞.

For the second term, we peel off the terms in 𝑋𝑛 by conditioning. Indeed,

E[exp(i ⟨𝜆,𝑋𝑛⟩) | ℱ𝑛−1] = E[exp(i ⟨𝜆,𝑋𝑛−1 + 𝑛−1/2𝜉𝑛⟩) | ℱ𝑛−1]
= exp(i ⟨𝜆,𝑋𝑛−1⟩) E[exp(i ⟨𝜆, 𝑛−1/2𝜉𝑛⟩) | ℱ𝑛−1] .

By Taylor expansion,

E[exp(i ⟨𝜆, 𝑛−1/2𝜉𝑛⟩) | ℱ𝑛−1] = E
[
1 + i

𝑛1/2 ⟨𝜆, 𝜉𝑛⟩ −
1

2𝑛 ⟨𝜆, 𝜉𝑛⟩2 +𝑂 (𝑛−3/2)
�� ℱ𝑛−1

]
where the error term 𝑂 (𝑛−3/2) is uniform, due to the assumption of boundedness. By the
martingale property, this equals

1 − 1
2𝑛 ⟨𝜆,Ξ𝑛 𝜆⟩ +𝑂 (𝑛−3/2) = exp

(
− 1

2𝑛 ⟨𝜆,Ξ𝑛 𝜆⟩ +𝑂 (𝑛−3/2)
)
.

Hence,

E exp
(
i ⟨𝜆,𝑋𝑛⟩ +

1
2 ⟨𝜆, 𝑆𝑛 𝜆⟩

)
= E exp

(
i ⟨𝜆,𝑋𝑛−1⟩ +

1
2 ⟨𝜆, 𝑆𝑛 𝜆⟩ −

1
2𝑛 ⟨𝜆,Ξ𝑛 𝜆⟩ +𝑂 (𝑛−3/2)

)
= E exp

(
i ⟨𝜆,𝑋𝑛−1⟩ +

1
2 ⟨𝜆 𝑆𝑛−1 𝜆⟩ +𝑂 (𝑛−3/2)

)
.

Iterating,

E exp
(
i ⟨𝜆,𝑋𝑛⟩ +

1
2 ⟨𝜆, 𝑆𝑛 𝜆⟩

)
= exp(𝑂 (𝑛−1/2)) ,

so the second error term above also tends to zero. □

This completes the proof of Theorem 12.3 since, if 𝑛−1/2 ∑𝑛
𝑘=1 𝜉𝑘

d−→ normal(0, 𝑆∞), it
follows that 𝑛−1/2 ∑𝑛

𝑘=1 𝐴
−1𝜉𝑘

d−→ normal(0, 𝐴−1𝑆∞𝐴−1).

114

General case. We now return to ASGD for a general function 𝑓 . In this case, the CLT
still holds, where we take 𝐴 = ∇2𝑓 (𝜃★) to be the Hessian at the minimizer.

Theorem 12.8 (CLT for ASGD, general case). Assume that 𝑓 is a strongly convex,
smooth, and has a bounded third derivative, and that the step sizes satisfy the condi-
tion (12.4). Assume that conditionally on 𝜃𝑛 , each 𝜉𝑛+1 is mean zero and has covariance
Ξ𝑛+1, such that 𝑛−1 ∑𝑛

𝑘=1 Ξ𝑘 → 𝑆∞ in probability and sup𝑛≥1 E trΞ𝑛 < ∞. Then,

√
𝑛 (𝜃𝑛 − 𝜃★) d−→ normal(0, 𝐴−1𝑆∞𝐴

−1) , 𝐴 B ∇2𝑓 (𝜃★) .

Write the iterate for ASGD as

𝜃𝑛+1 = 𝜃𝑛 − ℎ𝑛+1 (∇𝑓 (𝜃𝑛) + 𝜉𝑛+1)
= 𝜃𝑛 − ℎ𝑛+1𝐴 (𝜃𝑛 − 𝜃★) − ℎ𝑛+1𝜉𝑛+1 − ℎ𝑛+1 (∇𝑓 (𝜃𝑛) −𝐴 (𝜃𝑛 − 𝜃★))︸ ︷︷ ︸

C𝜁𝑛

,

which leads to

𝛿𝑛+1 = 𝛿𝑛 − ℎ𝑛+1𝐴𝛿𝑛 − ℎ𝑛+1 (𝜉𝑛+1 + 𝜁𝑛) .

By applying the derivation of (12.5), replacing 𝜉𝑛+1 with 𝜉𝑛+1 + 𝜁𝑛 , we obtain

√
𝑛 𝛿𝑛 =

1
𝑛1/2 𝑀

𝑛
0𝛿0 −

1
𝑛1/2

𝑛−1∑︁
𝑘=1

𝐴−1 (𝜉𝑘 + 𝜁𝑘−1) −
1

𝑛1/2

𝑛−1∑︁
𝑘=1

(𝑀𝑛
𝑘
−𝐴−1) (𝜉𝑘 + 𝜁𝑘−1) .

We must show that the extra terms involving the 𝜁𝑘 ’s vanish in the limit. Since the 𝑀𝑛
𝑘

matrices are bounded, it suffices to show that

1
√
𝑛

𝑛∑︁
𝑘=1
E∥𝜁𝑘 ∥ → 0 .

Since we assume that the third derivative of 𝑓 is bounded, Taylor expansion shows that

∥𝜁𝑛∥ = ∥∇𝑓 (𝜃𝑛) − ∇2𝑓 (𝜃★) (𝜃𝑛 − 𝜃★)∥ ≲ ∥𝜃𝑛 − 𝜃★∥2 .

By our usual argument, for 𝑛 large so that ℎ𝑛 is small,

E[∥𝜃𝑛+1 − 𝜃★∥2] = E[∥𝜃𝑛 − 𝜃★∥2 − 2ℎ𝑛+1 ⟨∇𝑓 (𝜃𝑛), 𝜃𝑛 − 𝜃★⟩ + ℎ2
𝑛+1 ∥∇̂𝑓 (𝜃𝑛)∥2]

= E[∥𝜃𝑛 − 𝜃★∥2 − 2ℎ𝑛+1 ⟨∇𝑓 (𝜃𝑛), 𝜃𝑛 − 𝜃★⟩]

115

+ E[ℎ2
𝑛+1 ∥∇𝑓 (𝜃𝑛)∥2 + ℎ2

𝑛+1 ∥∇̂𝑓 (𝜃𝑛) − ∇𝑓 (𝜃𝑛)∥2]
≤ E[(1 − 𝛼ℎ𝑛+1) ∥𝜃𝑛 − 𝜃★∥2 + ℎ2

𝑛+1 trΞ𝑛]
= (1 − 𝛼ℎ𝑛+1) E[∥𝜃𝑛 − 𝜃★∥2] +𝑂 (ℎ2

𝑛+1) .

Iterating,

E[∥𝜃𝑛 − 𝜃★∥2] ≤ exp
(
−𝛼

𝑛∑︁
𝑘=1

ℎ𝑘

)
∥𝜃0 − 𝜃★∥2 +

𝑛∑︁
𝑘=1

𝑂 (ℎ2
𝑘
) exp

(
−𝛼

𝑛∑︁
ℓ=𝑘+1

ℎℓ

)
.

The estimate for the summation in the second term is similar to the computation that
appears in Lemma 12.5, except that it corresponds to the integral

𝐼 ′ B

∫ 𝑛

1

1
𝑘2𝛾 exp(−𝛼 (𝜏 (𝑛) − 𝜏 (𝑘))) d𝑘 .

A trickier calculation eventually shows that

E[∥𝜃𝑛 − 𝜃★∥2] ≤ exp(−Ω(𝑛1−𝛾)) ∥𝜃0 − 𝜃★∥2 +𝑂 (𝑛−𝛾) = 𝑂 (𝑛−𝛾) . (12.6)

Hence,

1
√
𝑛

𝑛∑︁
𝑘=1
E∥𝜁𝑘 ∥ ≲

1
√
𝑛

𝑛∑︁
𝑘=1
E[∥𝜃𝑘 − 𝜃★∥2] ≲ 1

√
𝑛

𝑛∑︁
𝑘=1

1
𝑘𝛾

≍ 𝑛1/2−𝛾 .

This tends to zero provided 𝛾 > 1/2, completing the proof of Theorem 12.8.

Application to parameter recovery. We now consider the example of parameter
recovery in a parametric family of densities {𝑝𝜃 }𝜃∈Θ. Write ℓ (𝜃 ; 𝑧) B log(1/𝑝𝜃 (𝑧)). In this
case, the empirical risk minimizer 𝜃𝑛 corresponds to the maximum likelihood estimator
(MLE), and if 𝑍1, . . . , 𝑍𝑛

i.i.d.∼ 𝑝𝜃★, the population minimizer is indeed 𝜃★ (provided that the
model is identifiable).

Consider one-pass averaged SGD, so that

𝜉𝑘+1 = ∇𝜃 ℓ (𝜃𝑘 ;𝑍𝑘+1) −
∫

∇𝜃 ℓ (𝜃𝑘 ; 𝑧) 𝑝𝜃★ (d𝑧) .

This is conditionally unbiased, and if we define

𝐼 (𝜃) B cov𝑝𝜃★ ∇𝜃 ℓ (𝜃 ;𝑍) ,

then Ξ𝑘+1 = 𝐼 (𝜃𝑘). Now, adopt the following assumptions:

116

• For each 𝑧 ∈ Z, the function 𝜃 ↦→ ℓ (𝜃 ; 𝑧) is strongly convex, smooth, and has a
bounded third derivative.

• 𝐼 (·) is Lipschitz continuous.

The second assumption, together with the fact that𝜃𝑛 → 𝜃★ in probability by (12.6), implies
that Ξ𝑛 = 𝐼 (𝜃𝑛−1) → 𝐼 (𝜃★) in probability, hence 𝑛−1 ∑𝑛

𝑘=1 Ξ𝑘 → 𝐼 (𝜃★) in probability as
well. Actually, since E∥𝐼 (𝜃𝑛−1) − 𝐼 (𝜃★)∥op ≲ E∥𝜃𝑛−1 − 𝜃★∥ → 0, it readily implies that
sup𝑛∈N E trΞ𝑛 < ∞. All of the assumptions of Theorem 12.8 are met.

The value of 𝐼 (·) at 𝜃★ is special: it is called the Fisher information matrix and we
denote it by ℐ:

ℐ B 𝐼 (𝜃★) = cov𝑝𝜃★ ∇𝜃 ℓ (𝜃★;𝑍) .

Since ∫
∇𝜃 ℓ (𝜃 ; 𝑧) 𝑝𝜃 (d𝑧) = −

∫
∇𝜃 log𝑝𝜃 (𝑧) 𝑝𝜃 (d𝑧) = −

∫
∇𝜃𝑝𝜃 (𝑧) d𝑧

= −∇𝜃

∫
𝑝𝜃 (d𝑧) = 0 ,

it follows that

0 = ∇𝜃

∫
∇𝜃 ℓ (𝜃★; 𝑧) 𝑝𝜃★ (d𝑧) =

∫
∇2
𝜃
ℓ (𝜃★; 𝑧) 𝑝𝜃★ (d𝑧) +

∫
∇𝜃 ℓ (𝜃★; 𝑧) ⊗ ∇𝜃𝑝𝜃★ (𝑧) d𝑧

=

∫
∇2
𝜃
ℓ (𝜃★; 𝑧) 𝑝𝜃★ (d𝑧) −

∫
∇𝜃 ℓ (𝜃★; 𝑧) ⊗ ∇𝜃 ℓ (𝜃★; 𝑧) 𝑝𝜃★ (d𝑧) .

Combined with the fact that
∫
∇𝜃 ℓ (𝜃★; 𝑧) 𝑝𝜃★ (d𝑧) = 0, we can identify the second term

above as cov𝑝𝜃★ ∇𝜃 ℓ (𝜃★;𝑍), hence

ℐ =

∫
∇2
𝜃
ℓ (𝜃★; 𝑧) 𝑝𝜃★ (d𝑧) = ∇2R(𝜃★) ,

since R(𝜃) =
∫
ℓ (𝜃 ; 𝑧) 𝑝𝜃★ (d𝑧) for every 𝜃 ∈ Θ. Therefore, Theorem 12.8 implies

√
𝑛 (𝜃𝑛 − 𝜃★) d−→ normal(0,ℐ−1) .

On the other hand, it is classical that under these assumptions, the MLE also has an
asymptotically Gaussian limit:

√
𝑛 (𝜃𝑛 − 𝜃★) d−→ normal(0,ℐ−1) .

117

This is a celebrated result in statistics because the asymptotic covariance ℐ
−1 is also

a lower bound on the covariance of any unbiased estimator of 𝜃★, by the Cramér–Rao
or information inequality. Moreover, via comparison of experiments, it is known that
no estimator can perform better than the MLE, in the sense that the MLE is locally
asymptotically minimax optimal. We have just shown that this asymptotic optimality
property also carries over to Polyak–Ruppert averaging of SGD. Finally, we remark that
when 𝑝𝜃 = normal(𝜃,𝐴−1), this encompasses Example 12.4.

12.4 Variance reduction
In §12.2, we argued that the generalization bounds for GD and SGD are comparable,
yet the overall computational cost for GD is roughly 𝑛 times larger due to the larger
per-iteration cost. In making this comparison, our assumption was that we do not aim
to completely minimize the empirical risk; we simply want the optimization error to be
comparable to the statistical error. However, if our goal is indeed to fully minimize the
empirical risk R𝑛 , then GD can be faster than SGD for high-accuracy solutions.

In this section, the structural assumption we impose on the objective 𝑓 is that it is a
finite sum of 𝑛 functions:

𝑓 =
1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 .

In this setting, it makes sense to measure the complexity in terms of the number of gradient
evaluations of the individual functions 𝑓𝑖 .

For example, in the convex and smooth setting, assume that the cost of computing
the full gradient of R𝑛 is 𝑛 times larger than the cost of computing the gradient of a
single term (corresponding to a single sample). Then, in order to obtain an 𝜀-approximate
minimizer of R𝑛 , the overall computational cost for GD is 𝑂 (𝑛𝛽𝑅2/𝜀) (Theorem 3.4). For
SGD, we take our stochastic gradient ∇̂𝑓 (𝑥) to be ∇𝑓𝑖 (𝑥) for a randomly chosen index
𝑖 ∼ uniform([𝑛]). Then, the variance of the stochastic gradient is

1
𝑛

𝑛∑︁
𝑖=1

∥∇𝑓𝑖 (𝑥) − ∇𝑓 (𝑥)∥2

≲
1
𝑛

𝑛∑︁
𝑖=1

∥∇𝑓𝑖 (𝑥★)∥2 + 1
𝑛

𝑛∑︁
𝑖=1

∥∇𝑓𝑖 (𝑥) − ∇𝑓𝑖 (𝑥★)∥2 + ∥∇𝑓 (𝑥) − ∇𝑓 (𝑥★)∥2

≲
1
𝑛

𝑛∑︁
𝑖=1

∥∇𝑓𝑖 (𝑥★)∥2

︸ ︷︷ ︸
𝑐0

+ 𝛽2︸︷︷︸
𝑐1

∥𝑥 − 𝑥★∥2 .

118

We can apply (a variant of) Exercise 12.1 to conclude that for sufficiently small 𝜀, the
complexity of SGD is𝑂 (𝑐0𝑅

2/𝜀2). In the strongly convex and smooth setting, the rates are
𝑂 (𝑛𝜅 log(𝛼𝑅2/𝜀)) and 𝑂 (𝑐0/(𝛼𝜀)) respectively. In general, these rates are incomparable.

In this section, we show that we can improve upon these rates through a technique
known as variance reduction. Namely, the method we develop runs in a number of
iterations comparable to GD, but with a per-iteration cost comparable to SGD.

To see why there is a possibility for variance reduction, note that if we run SGD, the
variance of the stochastic gradient is bounded away from zero—even at the minimizer
𝑥★—due to the presence of the 𝑐0 term. However, if the iterates of the algorithm are
converging to the minimizer, 𝑥𝑛 → 𝑥★, then we can hope that the variance of the gradient
estimator also tends to zero.

This intuition is carried out by the family of variance reduction methods, of which we
pick one representative one: stochastic variance reduced gradient descent (SVRG) [JZ13].
We generalize our setting to a composite objective:

𝐹 = 𝑓 + 𝑔 =
1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 + 𝑔 .

The algorithm proceeds via “epochs”, where the 𝑡-th epoch runs for 𝑁𝑡 iterations. In the
𝑡-th epoch, we initialize 𝑥𝑡0 B 𝑥𝑡−1

𝑁𝑡−1
(that is, we start the 𝑡-epoch at the last iterate of the

previous epoch). The algorithm is described as follows:

𝑥𝑡𝑛+1 B arg min
𝑥∈R𝑑

{
⟨∇̂𝑡

𝑛 𝑓 , 𝑥 − 𝑥𝑡𝑛⟩ + 𝑔(𝑥) +
1

2ℎ ∥𝑥 − 𝑥𝑛𝑡 ∥2} ,
∇̂𝑡
𝑛 𝑓 B ∇𝑓𝑖𝑡𝑛 (𝑥

𝑡
𝑛) − ∇𝑓𝑖𝑡𝑛 (𝑥

𝑡
0) + ∇𝑓 (𝑥𝑡𝑛) , 𝑖𝑡𝑛 ∼ uniform([𝑛]) .

(SVRG)

Here, 𝑥𝑡0 is a certain average of iterates from the previous epoch 𝑡 − 1. Note that in
each epoch, we compute (and store) the full gradient ∇𝑓 (𝑥𝑡0), which requires 𝑛 gradient
computations, and then each subsequent iteration requires only one gradient computation.
Therefore, the 𝑡-th epoch requires 𝑛 + 𝑁𝑡 gradient computations, and the total cost after 𝑇
epochs is 𝑇𝑛 +∑𝑇−1

𝑡=0 𝑁𝑡 .
The intuition here is that if we take the expectation over 𝑖𝑡𝑛 , then

E ∇̂𝑡
𝑛 𝑓 = E[∇𝑓𝑖𝑡𝑛 (𝑥

𝑡
𝑛) − ∇𝑓𝑖𝑡𝑛 (𝑥

𝑡
0) + ∇𝑓 (𝑥𝑡0)] = ∇𝑓 (𝑥𝑡𝑛) ,

so the gradient estimator is indeed unbiased. But the extra centered term that we added
to the gradient estimator, −∇𝑓𝑖𝑡𝑛 (𝑥

𝑡
0) + ∇𝑓 (𝑥𝑡0), reduces the variance: since 𝑥𝑡0, 𝑥𝑡𝑛 → 𝑥★, we

expect that

∇̂𝑡
𝑛 𝑓 − ∇𝑓 (𝑥𝑡𝑛) = ∇𝑓𝑖𝑡𝑛 (𝑥

𝑡
𝑛) − ∇𝑓𝑖𝑡𝑛 (𝑥

𝑡
0) + ∇𝑓 (𝑥𝑡0) − ∇𝑓 (𝑥𝑡𝑛) → 0 .

119

Theorem 12.9 (convergence of SVRG). Assume that 𝑓 is 𝛼 𝑓 -convex and 𝛽-smooth, and
that 𝑔 is 𝛼𝑔-convex. Then, the following assertions hold for a suitable choice of step
size ℎ and averaged iterate 𝑥𝑡0. Let Δ0 B 𝐹 (𝑥0) − 𝐹★ + 𝛽 ∥𝑥0 − 𝑥★∥2.

• If 𝛼 𝑓 + 𝛼𝑔 = 0, then SVRG can achieve E 𝐹 (𝑥𝑇0) − 𝐹★ ≤ 𝜀 with a total number of
gradient evaluations at most 𝑂 (𝑛 log(Δ0/𝜀) + Δ0/𝜀).

• If 𝛼 𝑓 + 𝛼𝑔 > 0, then SVRG can achieve E 𝐹 (𝑥𝑇0) − 𝐹★ ≤ 𝜀 with a total number
of gradient evaluations at most 𝑂 ((𝑛 + 𝜅) log(Δ0/𝜀)), where 𝜅 B 𝛽/(𝛼 𝑓 + 𝛼𝑔),
where 𝜅 B 𝛽/(𝛼 𝑓 + 𝛼𝑔).

Proof. We start by analyzing a single epoch; thus, for simplicity of notation, we drop the
superscript 𝑡 . The one-step inequality for SGD (see Theorem 12.1) shows that

E 𝐹 (𝑥𝑛+1) − 𝐹★ ≤
1 − 𝛼 𝑓ℎ

2ℎ E[∥𝑥𝑛 − 𝑥★∥2] −
1 + 𝛼𝑔ℎ

2ℎ E[∥𝑥𝑛+1 − 𝑥★∥2]

+ ℎ E[∥∇̂𝑛 𝑓 − ∇𝑓 (𝑥𝑛)∥2] .

We upper bound the variance of the stochastic gradient: by (3.4),

E[∥∇𝑓𝑖𝑛 (𝑥𝑛) − ∇𝑓𝑖𝑛 (𝑥0) + ∇𝑓 (𝑥0) − ∇𝑓 (𝑥𝑛)∥2] ≤ E[∥∇𝑓𝑖𝑛 (𝑥𝑛) − ∇𝑓𝑖𝑛 (𝑥0)∥2]
≤ 2E[∥∇𝑓𝑖𝑛 (𝑥𝑛) − ∇𝑓𝑖𝑛 (𝑥★)∥2] + 2E[∥∇𝑓𝑖𝑛 (𝑥0) − ∇𝑓𝑖𝑛 (𝑥★)∥2]
≤ 2𝛽 E[𝐷 𝑓𝑖𝑛

(𝑥𝑛, 𝑥★) + 𝐷 𝑓𝑖𝑛
(𝑥0, 𝑥★)] = 2𝛽 E[𝐷 𝑓 (𝑥𝑛, 𝑥★) + 𝐷 𝑓 (𝑥0, 𝑥★)]

≤ 2𝛽 E[𝐷𝐹 (𝑥𝑛, 𝑥★) + 𝐷𝐹 (𝑥0, 𝑥★)] = 2𝛽 E[𝐹 (𝑥𝑛) − 𝐹★ + 𝐹 (𝑥0) − 𝐹★] .

Note that this already captures the intuition above, namely, the variance decreases with
the objective gap. Therefore, we end up with the recursion

E 𝐹 (𝑥𝑛+1) − 𝐹★ ≤
1 − 𝛼 𝑓ℎ

2ℎ E[∥𝑥𝑛 − 𝑥★∥2] −
1 + 𝛼𝑔ℎ

2ℎ E[∥𝑥𝑛+1 − 𝑥★∥2]

+ 2𝛽ℎ E[𝐹 (𝑥𝑛) − 𝐹★ + 𝐹 (𝑥0) − 𝐹★] .

We now choose ℎ = 1/(8𝛽) so that 2𝛽ℎ = 1/4. After dividing by 1 + 𝛼𝑔ℎ and iterating
using Lemma 3.5, it yields

E[∥𝑥𝑁 − 𝑥★∥2]
2ℎ ≤

𝜆𝑁
ℎ
E[∥𝑥0 − 𝑥★∥2]

2ℎ

+
𝑁∑︁
𝑛=1

𝜆𝑁−𝑛
ℎ

(1
4 {E 𝐹 (𝑥𝑛−1) − 𝐹★ + E 𝐹 (𝑥0) − 𝐹★} − {E 𝐹 (𝑥𝑛) − 𝐹★}

)
︸ ︷︷ ︸

=(★)

.

120

Since by assumption 1/(4𝜆ℎ) ≤ 1/3, the last summation is at most

(★) = −
𝑁∑︁
𝑛=1

𝜆𝑁−𝑛
ℎ

(
1 − 1

4𝜆ℎ
)
(E 𝐹 (𝑥𝑛) − 𝐹★) −

1
4𝜆ℎ

(E 𝐹 (𝑥𝑁) − 𝐹★)

+
𝜆𝑁−1
ℎ

4 (E 𝐹 (𝑥0) − 𝐹★) +
𝑆

4 (E 𝐹 (𝑥0) − 𝐹★)

≤ −2
3

𝑁∑︁
𝑛=1

𝜆𝑁−𝑛
ℎ

(E 𝐹 (𝑥𝑛) − 𝐹★) −
1

4𝜆ℎ
(E 𝐹 (𝑥𝑁) − 𝐹★)

+
𝜆𝑁−1
ℎ

4 (E 𝐹 (𝑥0) − 𝐹★) +
𝑆

3 (E 𝐹 (𝑥0) − 𝐹★) ,

where 𝑆 B
∑𝑁−1

𝑛=0 𝜆𝑛
ℎ
. Thus, the above inequality can be rearranged to yield

𝜆𝑁
ℎ
E[∥𝑥0 − 𝑥★∥2]

2ℎ𝑆 +
𝜆𝑁−1
ℎ

4𝑆 (E 𝐹 (𝑥0) − 𝐹★) +
1
3 (E 𝐹 (𝑥0) − 𝐹★)

≥ E[∥𝑥𝑁 − 𝑥★∥2]
2ℎ𝑆 + 1

4𝜆ℎ𝑆
(E 𝐹 (𝑥𝑁) − 𝐹★) +

2
3

𝑁∑︁
𝑛=1

𝜆𝑁−𝑛
ℎ

𝑆
(E 𝐹 (𝑥𝑛) − 𝐹★) .

The goal now is to make this inequality telescope across the epochs. We recall that
𝑥𝑡+1

0 = 𝑥𝑡
𝑁𝑡

, and we define 𝑥𝑡+1
0 B 𝑆−1

𝑡

∑𝑁𝑡

𝑛=1 𝜆
𝑁𝑡−𝑛
ℎ

𝑥𝑡𝑛, where 𝑆𝑡 B
∑𝑁𝑡

𝑛=0 𝜆
𝑛
ℎ
. By applying

convexity to the last term, the inequality can be rewritten

𝜆
𝑁𝑡

ℎ
E[∥𝑥𝑡0 − 𝑥★∥2]

2ℎ𝑆𝑡
+
𝜆
𝑁𝑡−1
ℎ

4𝑆𝑡
(E 𝐹 (𝑥𝑡0) − 𝐹★) +

1
3 (E 𝐹 (𝑥𝑡0) − 𝐹★)

≥
E[∥𝑥𝑡+1

0 − 𝑥★∥2]
2ℎ𝑆𝑡

+ 1
4𝜆ℎ𝑆𝑡

(E 𝐹 (𝑥𝑡+1
0) − 𝐹★) +

2
3 (E 𝐹 (𝑥𝑡+1

0) − 𝐹★) .

We now divide the proof up into two cases.
Convex case. In this case, 𝜆ℎ = 1, so 𝑆𝑡 = 𝑁𝑡 . Here, we set 𝑁𝑡+1 = 2𝑁𝑡 , which leads to
E[∥𝑥𝑡0 − 𝑥★∥2]

2ℎ𝑁𝑡

+ 1
4𝑁𝑡

(E 𝐹 (𝑥𝑡0) − 𝐹★) +
1
3 (E 𝐹 (𝑥𝑡0) − 𝐹★)

≥ 2
[E[∥𝑥𝑡+1

0 − 𝑥★∥2]
2ℎ𝑁𝑡+1

+ 1
4𝑁𝑡+1

(E 𝐹 (𝑥𝑡+1
0) − 𝐹★) +

1
3 (E 𝐹 (𝑥𝑡+1

0) − 𝐹★)
]
.

The inequality clearly telescopes and shows that E 𝐹 (𝑥𝑇0) − 𝐹★ ≤ 𝜀 after 𝑇 epochs, where
𝑇 ≤ log2 [𝑂 (𝐹 (𝑥0)−𝐹★+𝛽 ∥𝑥0−𝑥★∥2)/𝜀] andℎ ≍ 1/𝛽 . The number of gradient evaluations
is 𝑇𝑛 +∑𝑇−1

𝑡=0 𝑁𝑡 = 𝑇𝑛 + 2𝑇 , which yields the final result.

121

Strongly convex case. In this case, we set 𝑁𝑡 = 𝑁 for all 𝑡 , where 𝑁 is chosen so that
𝜆𝑁
ℎ
≤ 1/2. With ℎ ≍ 1/𝛽 , this leads to 𝑁 ≍ 𝜅 and

E[∥𝑥𝑡0 − 𝑥★∥2]
4ℎ𝑆 + 1

8𝜆ℎ𝑆
(E 𝐹 (𝑥𝑡0) − 𝐹★) +

1
3 (E 𝐹 (𝑥𝑡0) − 𝐹★)

≥ 2
[E[∥𝑥𝑡+1

0 − 𝑥★∥2]
4ℎ𝑆 + 1

8𝜆ℎ𝑆
(E 𝐹 (𝑥𝑡+1

0) − 𝐹★) +
1
3 (E 𝐹 (𝑥𝑡+1

0) − 𝐹★)
]
.

Again, this telescopes, and the computational cost is 𝑇𝑛 +𝑇𝑁 = 𝑂 (𝑇 (𝑛 + 𝜅)). □

The result of Theorem 12.9 indeed improves upon the rates for GD. Before presenting
the final rate comparison, however, we note that the rates in Theorem 12.9 are generally
incomparable with the ones achieved via acceleration, i.e., for AGD. One can ask whether
acceleration can also be combined with variance reduction, and the answer is yes; we
state a representative result from [Sha+18].

Theorem 12.10 (accelerated SVRG). Assume that each 𝑓𝑖 is convex and 𝛽𝑖-smooth,
and that 𝑔 is 𝛼-convex.† Then, there is an algorithm which achieves the following
guarantees. Let Δ0 B 𝐹 (𝑥0) − 𝐹★ + 𝛽 ∥𝑥0 − 𝑥★∥2.

• If 𝛼 = 0, then the algorithm obtains an 𝜀-approximate solution with a total number
of gradient evaluations at most 𝑂 (𝑛 log(Δ0/𝜀) +

√︁
𝑛Δ0/𝜀).

• If 𝛼 > 0, then the algorithm obtains an 𝜀-approximate solution with a total
number of gradient evaluations at most 𝑂 ((𝑛 +

√
𝑛𝜅) log(Δ0/𝜀)).

†The cited paper works under slightly different assumptions compared to Theorem 12.9, but they are
broadly comparable.

These accelerated rates are almost the best possible due to nearly matching lower
bounds [WS16]. Interestingly, in this setting, randomness is crucial for attaining the
optimal complexity; otherwise, among the class of deterministic algorithms, AGD is the
best possible (but strictly worse than Theorem 12.10).

The rates for the finite sum setting are presented in Table 3.

Bibliographical notes
For more discussion on the statistical performance of SGD, see [Bac24]. For an exposition
to empirical process theory and statistics, see any standard reference, e.g., [Wai19].

122

Algorithm Iterations (Convex) Iterations (Strongly Convex)
SGD† 𝑂 (𝑐0𝑅

2/𝜀2) 𝑂 (𝑐0/(𝛼𝜀))
GD 𝑂 (𝑛Δ0/𝜀) 𝑂 (𝑛𝜅 log(Δ0/𝜀))
AGD 𝑂 (𝑛

√︁
Δ0/𝜀) 𝑂 (𝑛

√
𝜅 log(Δ0/𝜀))

SVRG 𝑂 (𝑛 log(Δ0/𝜀) + Δ0/𝜀) 𝑂 ((𝑛 + 𝜅) log(Δ0/𝜀))
ASVRG 𝑂 (𝑛 log(Δ0/𝜀) +

√︁
Δ0/𝜀) 𝑂 ((𝑛 +

√
𝑛𝜅) log(Δ0/𝜀))

Table 3: Rates for finite sum minimization.

The CLT for ASGD was first established in [PJ92]. The treatment of the martingale
CLT follows [Bil95]. For an exposition to asymptotic statistics, see [Vaa98].

The proof of Theorem 12.9 is inspired by [AY16], although care was taken to unify the
convex and strongly convex proofs.

Exercises
Exercise 12.1. Often, stochastic gradients do not have uniformly bounded variance. For
example, suppose we have the objective function 𝑓 : 𝑥 ↦→ 1

2𝑛
∑𝑛

𝑖=1⟨𝑎𝑖, 𝑥⟩2, with stochastic
gradient ∇̂𝑓 (𝑥) = ⟨𝑎𝑖, 𝑥⟩ 𝑎𝑖 with 𝑖 ∼ uniform([𝑛]). Then, the variance of the stochastic
gradient is

E[∥∇̂𝑓 (𝑥) − ∇𝑓 (𝑥)∥2] = 1
𝑛

𝑛∑︁
𝑖=1

(𝑎𝑖𝑎T𝑖 − 1
𝑛

𝑛∑︁
𝑗=1

𝑎 𝑗𝑎
T
𝑗

)
𝑥

2
,

which grows quadratically with ∥𝑥 ∥.
Assume therefore that 𝑓 is 𝛼-strongly convex and 𝛽-smooth with respect to the

Euclidean norm, and that the following variance condition holds:

E[∥∇̂𝑓 (𝑥) − ∇𝑓 (𝑥)∥2] ≤ 𝑐0 + 𝑐1 ∥𝑥 − 𝑥★∥2 for all 𝑥 ∈ R𝑑 .

Show that the iterates of stochastic gradient descent satisfy the following guarantee. If 𝜀
is sufficiently small and the step size ℎ is chosen appropriately, then E 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀 for
a suitably averaged iterate 𝑥𝑁 and all

𝑁 ≳
𝑐0
𝛼𝜀

log 𝛼 ∥𝑥0 − 𝑥★∥2

𝜀
.

123

Exercise 12.2. Let 𝑓 : R𝑑 → R be 𝛼-PŁ and 𝛽-smooth, 𝜅 B 𝛽/𝛼 . Assume that we have
access to a stochastic gradient ∇̂𝑓 which is unbiased and satisfies the variance bound (12.1)
for the Euclidean norm ∥·∥. Prove that SGD with step size ℎ ≤ 1/𝛽 achieves the bound

E 𝑓 (𝑥𝑁) − 𝑓★ ≤ (1 − 𝛼ℎ)𝑁 (𝑓 (𝑥0) − 𝑓★) +
𝜅𝜎2𝑑ℎ

2 .

What rate does this imply to reach E 𝑓 (𝑥𝑁) − 𝑓★ ≤ 𝜀?

Exercise 12.3. Consider linear regression with fixed design: our dataset is {(𝑋𝑖, 𝑌𝑖)}𝑖∈[𝑛] ,
where the covariates 𝑋𝑖 are deterministic and fixed, and the 𝑌𝑖 are independent with

𝑌𝑖 = ⟨𝜃★, 𝑋𝑖⟩ + 𝜉𝑖 , 𝜉𝑖 ∼ normal(0, 𝜎2𝐼) .

The empirical and population risks are

R𝑛 (𝜃) B
1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − ⟨𝜃, 𝑋𝑖⟩)2 , R(𝜃) B ER𝑛 (𝜃) .

1. Show that the population risk is given by R(𝜃) = 𝜎2 + ∥𝑋 (𝜃 − 𝜃★)∥2/𝑛, where
𝑋 ∈ R𝑛×𝑑 is the matrix whose rows are {𝑋 T

𝑖 }𝑖∈[𝑛] .

2. Show that the ERM of minimal norm is the least-squares estimator 𝜃𝑛 = (𝑋 T𝑋)†𝑋 T𝑌 ,
where † denotes the Moore–Penrose pseudoinverse. Show that the excess risk of
the ERM is given by

ER(𝜃𝑛) − R(𝜃★) = 𝜎2 rank𝑋
𝑛

.

3. Consider the iterates of GD on the empirical risk R𝑛. Show that for a step size ℎ
sufficiently small, it holds that

ER(𝜃𝑁) − R(𝜃★) ≤ 𝜎2 rank𝑋
𝑛

+𝑂
(∥𝜃0 − 𝜃★∥2

𝑁ℎ

)
.

Hints: For all of these parts, make extensive use of the singular value decomposition of 𝑋 .
For the third part, write an exact recursion for 𝜃𝑘 − 𝜃★, iterate this recursion, and then
compute the excess risk. Use the fact that max𝑥∈[0,1] 𝑥 (1 − 𝑥)𝑁 ≲ 1/𝑁 for 𝑁 ≥ 1.

124

13 Interior point methods
We present polynomial-time methods for solving linear programs (LPs) and semidefinite
programs (SDPs), among other structured optimization problems, through the family of
interior point methods.

13.1 Self-concordant analysis of Newton’s method
We begin with an analysis of Newton’s method: to minimize a function 𝑓 : R𝑑 → R, we
consider the iteration

𝑥𝑛+1 = 𝑥𝑛 − [∇2𝑓 (𝑥𝑛)]−1 ∇𝑓 (𝑥𝑛) . (NM)

The method is derived as follows: consider the local quadratic approximation of 𝑓 around
the current iterate 𝑥𝑛:

𝑓 (𝑥) ≈ 𝑓 (𝑥𝑛) + ⟨∇𝑓 (𝑥𝑛), 𝑥 − 𝑥𝑛⟩ +
1
2 ⟨𝑥 − 𝑥𝑛,∇2𝑓 (𝑥𝑛) (𝑥 − 𝑥𝑛)⟩ .

It is straightforward to check that, provided ∇2𝑓 (𝑥𝑛) ≻ 0, the minimizer of the quadratic
approximation is given by the next iterate 𝑥𝑛+1 of NM. Unlike the methods we have studied
thus far, Newton’s method is a second-order method in that it uses Hessian information.
Since the Hessian of 𝑓 may not even be invertible everywhere if 𝑓 is not strictly convex,
Newton’s method is not always well-defined, and we certainly cannot expect Newton’s
method to converge globally without further assumptions. However, unlike first-order
methods, Newton’s method exhibits local quadratic convergence.

Theorem 13.1 (local quadratic convergence of NM). Assume that ∇2𝑓 (𝑥★) ⪰ 𝛼𝐼 ≻ 0
and that ∇2𝑓 is 𝛾-Lipschitz in the operator norm:

∥∇2𝑓 (𝑥) − ∇2𝑓 (𝑦)∥op ≤ 𝛾 ∥𝑥 − 𝑦∥ for all 𝑥,𝑦 ∈ R𝑑 .

Then, provided ∥𝑥0 − 𝑥★∥ ≤ 𝛼/(2𝛾), NM satisfies

∥𝑥𝑛+1 − 𝑥★∥ ≤ 𝛾

𝛼
∥𝑥𝑛 − 𝑥★∥2 ≤ 1

2 ∥𝑥𝑛 − 𝑥★∥ . (13.1)

Proof. By Taylor expansion,

𝑥𝑛+1 − 𝑥★ = 𝑥𝑛 − 𝑥★ − [∇2𝑓 (𝑥𝑛)]−1 ∇𝑓 (𝑥𝑛)

125

= [∇2𝑓 (𝑥𝑛)]−1
∫ 1

0
[∇2𝑓 (𝑥𝑛) − ∇2𝑓 ((1 − 𝑡) 𝑥★ + 𝑡 𝑥𝑛)] (𝑥𝑛 − 𝑥★) d𝑡 ,

∥𝑥𝑛+1 − 𝑥★∥ ≤ 𝛾 ∥ [∇2𝑓 (𝑥𝑛)]−1∥op

∫ 1

0
(1 − 𝑡) ∥𝑥𝑛 − 𝑥★∥2 d𝑡

≤ 𝛾

2 ∥ [∇2𝑓 (𝑥𝑛)]−1∥op ∥𝑥𝑛 − 𝑥★∥2 .

On the other hand,

𝜆min(∇2𝑓 (𝑥𝑛)) ≥ 𝜆min(∇2𝑓 (𝑥★)) − 𝛾 ∥𝑥𝑛 − 𝑥★∥ ≥ 𝛼 − 𝛾 ∥𝑥𝑛 − 𝑥★∥ ≥ 𝛼

2 ,

since inductively we have ∥𝑥𝑛 − 𝑥★∥ ≤ 𝛼/(2𝛾). Thus, ∥ [∇2𝑓 (𝑥𝑛)]−1∥op ≤ 2/𝛼 . □

The inequality (13.1) implies that the error at iteration 𝑛 + 1 is proportional to the
square of the error at iteration 𝑛, hence “quadratic” convergence. To see what rate of
convergence this implies, multiply both sides by 𝛾/𝛼 , yielding

𝛾

𝛼
∥𝑥𝑛+1 − 𝑥★∥ ≤

(𝛾
𝛼
∥𝑥𝑛 − 𝑥★∥

)2
.

Thus,

log 𝛼

𝛾 ∥𝑥𝑛+1 − 𝑥★∥
≥ 2 log 𝛼

𝛾 ∥𝑥𝑛 − 𝑥★∥
.

Iterating, it yields

∥𝑥𝑁 − 𝑥★∥ ≤ exp
(
−2𝑁 log 𝛼

𝛾 ∥𝑥0 − 𝑥★∥

)
≤ exp(−(log 2) 2𝑁) .

Hence, as soon as 𝑥0 lies in the region of local quadratic convergence, ∥𝑥0 −𝑥★∥ ≤ 𝛼/(2𝛾),
achieving ∥𝑥𝑁 − 𝑥★∥ ≤ 𝜀 only requires a further 𝑂 (log log(1/𝜀)) iterations.

Our main interest in Newton’s method is as a subroutine for developing interior point
methods. For this purpose, local quadratic convergence is actually not as relevant as
another key property: namely, affine invariance. If 𝐴 is an invertible matrix, then the
iterates of NM on the transformed function 𝑥 ↦→ 𝑓 (𝐴𝑥) are equal to 𝐴−1 times the iterates
of NM on the original function 𝑓 . (This is the same notion of affine invariance that we
encountered for the Frank–Wolfe algorithm in Exercise 7.1.)

From this perspective, the analysis of Theorem 13.1 is not satisfactory, since the ratio
𝛾/𝛼 is not affine-invariant. Thus, instead of assuming that ∇2𝑓 is Lipschitz with respect
to the Euclidean norm, let us instead assume that it is Lipschitz with respect to the norm
generated by ∇2𝑓 itself.

126

Definition 13.2. Let 𝑓 : R𝑑 → R ∪ {∞} be convex. For 𝑥 ∈ int dom 𝑓 , the local norm
of 𝑣 ∈ R𝑑 at 𝑥 is

∥𝑣 ∥𝑥 B
√︁
⟨𝑣,∇2𝑓 (𝑥) 𝑣⟩ .

The dual local norm of 𝑣∗ ∈ R𝑑 is

∥𝑣∗∥∗𝑥 B
√︁
⟨𝑣∗, [∇2𝑓 (𝑥)]−1 𝑣∗⟩ .

Definition 13.3. Let 𝑓 : R𝑑 → R ∪ {∞} be a regular convex with an open domain.
Then, 𝑓 is self-concordant with parameter 𝑀 > 0 if for all 𝑥 ∈ int dom 𝑓 and 𝑣 ∈ R𝑑 ,

∇3𝑓 (𝑥) [𝑣, 𝑣, 𝑣] ≤ 2𝑀 ∥𝑣 ∥3
𝑥 .

If this inequality holds with 𝑀 = 1, we simply say that 𝑓 is self-concordant.

The fact that 𝑓 is regular convex with an open domain implies that it tends to +∞
at the boundary of its domain, i.e., it acts as a barrier. Clearly, any quadratic function is
self-concordant. The main example of a self-concordant function is −log, which is used as
a building block for further self-concordant functions in §13.3.

Example 13.4 (self-concordance of −log). Direct computation shows that for the uni-
variate function 𝑓 : 𝑥 ↦→ − log𝑥 over R+,

𝑓 ′(𝑥) = −1
𝑥
, 𝑓 ′′(𝑥) = 1

𝑥2 , 𝑓 ′′′(𝑥) = − 2
𝑥3 .

Hence,

|𝑓 ′′′(𝑥) | = 2
𝑥3 ≤ 2 [𝑓 ′′(𝑥)]3/2 ,

which shows that −log is self-concordant (with parameter 1).

Notice that even though −log blows up at the boundary of its domain, it still satisfies
self-concordance. This provides a hint as to why the notion of self-concordance is useful
for constrained minimization.

Putting aside the development of further examples for now, let us describe some key
properties of self-concordant functions.

127

Definition 13.5. Given a convex function 𝑓 : R𝑑 → R∪ {∞}, 𝑥 ∈ int dom 𝑓 , and 𝑟 > 0,
the Dikin ellipsoid of 𝑓 at 𝑥 with radius 𝑟 is

Dikin(𝑥, 𝑟) B {𝑦 ∈ R𝑑 : ∥𝑦 − 𝑥 ∥𝑥 < 𝑟 } .

Self-concordance implies that the Hessian of 𝑓 is stable inside the Dikin ellipsoid.

Lemma 13.6 (self-concordance). Let 𝑓 : R𝑑 → R ∪ {∞} be a self-concordant function
with parameter 𝑀 , and let 𝑥,𝑦 ∈ dom 𝑓 .

1. For any 𝑣 ∈ R𝑑 , ∇3𝑓 [𝑣, ·, ·] ⪯ 2𝑀 ∥𝑣 ∥𝑥 ∇2𝑓 (𝑥).

2. Dikin(𝑥, 1/𝑀) ⊆ dom 𝑓 .

3. If 𝑦 ∈ Dikin(𝑥, 1/𝑀), then

∥𝑦 − 𝑥 ∥𝑥
1 +𝑀 ∥𝑦 − 𝑥 ∥𝑥

≤ ∥𝑦 − 𝑥 ∥𝑦 ≤ ∥𝑦 − 𝑥 ∥𝑥
1 −𝑀 ∥𝑦 − 𝑥 ∥𝑥

.

4. If 𝑦 ∈ Dikin(𝑥, 1/𝑀) and 𝑣 ∈ R𝑑 , then

(1 −𝑀 ∥𝑦 − 𝑥 ∥𝑥)2 ∇2𝑓 (𝑥) ⪯ ∇2𝑓 (𝑦) ⪯ 1
(1 −𝑀 ∥𝑦 − 𝑥 ∥𝑥)2 ∇

2𝑓 (𝑥) .

5. It holds that

⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≥ ∥𝑦 − 𝑥 ∥2
𝑥

1 +𝑀 ∥𝑦 − 𝑥 ∥𝑥
.

Proof. The first statement follows from general theory about multilinear forms, see [NN94,
Appendix 1].

Let 𝑧𝑡 B (1− 𝑡) 𝑥 + 𝑡 𝑦 and 𝜙 (𝑡) B ⟨𝑦 −𝑥,∇2𝑓 (𝑧𝑡) (𝑦 −𝑥)⟩−1/2. Then, by the definition
of self-concordance,

|𝜙′(𝑡) | =
���∇3𝑓 (𝑧𝑡) [𝑦 − 𝑥,𝑦 − 𝑥,𝑦 − 𝑥]
2 ⟨𝑦 − 𝑥,∇2𝑓 (𝑧𝑡) (𝑦 − 𝑥)⟩3/2

��� ≤ 𝑀 ∥𝑦 − 𝑥 ∥𝑥 .

Hence, 𝜙 (0) − 𝑀 ≤ 𝜙 (1) ≤ 𝜙 (0) + 𝑀 , which yields the third statement. The second
statement follows from the third since𝑦 ∈ Dikin(𝑥, 1/𝑀) implies that ∥𝑦−𝑥 ∥𝑧𝑡 is bounded
for 𝑡 ∈ [0, 1], which contradicts the fact that 𝑓 blows up at 𝜕 dom 𝑓 .

128

For the fourth statement, let 𝜓 (𝑡) B ⟨𝑣,∇2𝑓 (𝑧𝑡) 𝑣⟩. Then, by the definition of self-
concordance and the first and third statements,

|𝜓 ′(𝑡) | ≤ |∇3𝑓 (𝑧𝑡) [𝑦 − 𝑥, 𝑣, 𝑣] | ≤ 2𝑀 ∥𝑦 − 𝑥 ∥𝑥𝑡 ∥𝑣 ∥2
𝑥𝑡
=

2𝑀
𝑡

∥𝑧𝑡 − 𝑥 ∥𝑥𝑡 ∥𝑣 ∥2
𝑥𝑡

≤ 2𝑀 ∥𝑦 − 𝑥 ∥𝑥
1 −𝑀𝑡 ∥𝑦 − 𝑥 ∥𝑥

𝜓 (𝑡) .

Letting

𝐶 B

∫ 1

0

2𝑀 ∥𝑦 − 𝑥 ∥𝑥
1 −𝑀𝑡 ∥𝑦 − 𝑥 ∥𝑥

d𝑡 = 2 log 1
1 −𝑀 ∥𝑦 − 𝑥 ∥𝑥

,

a suitable generalization of Grönwall’s inequality (Lemma 2.3) implies

𝜓 (0) exp(−𝐶) ≤ 𝜓 (1) ≤ 𝜓 (0) exp(𝐶) .

For the last statement,

⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ =
∫ 1

0
⟨∇2𝑓 (𝑧𝑡) (𝑦 − 𝑥), 𝑦 − 𝑥⟩ d𝑡 ≥

∫ 1

0

∥𝑦 − 𝑥 ∥2
𝑥

(1 +𝑀𝑡 ∥𝑦 − 𝑥 ∥𝑥)2 d𝑡

=
∥𝑦 − 𝑥 ∥2

𝑥

1 +𝑀 ∥𝑦 − 𝑥 ∥𝑥
. □

We are now ready to analyze the local convergence of Newton’s method under self-
concordance. It is convenient to measure convergence via the following object.

Definition 13.7. Let 𝑓 : R𝑑 → R ∪ {∞} be convex. The Newton decrement of 𝑓 at
𝑥 ∈ int dom 𝑓 is the quantity

𝜆𝑓 (𝑥) B ∥∇𝑓 (𝑥)∥∗𝑥 = ∥𝑥+ − 𝑥 ∥𝑥 ,

where 𝑥+ B 𝑥 − [∇2𝑓 (𝑥)]−1 ∇𝑓 (𝑥).

Theorem 13.8 (local quadratic convergence of NM under self-concordance). Consider
a self-concordant function 𝑓 : R𝑑 → R ∪ {∞} with parameter 𝑀 . Then,

𝜆𝑓
(
𝑥 − [∇2𝑓 (𝑥)]−1 ∇𝑓 (𝑥)

)
≤

𝑀𝜆𝑓 (𝑥)2

(1 −𝑀𝜆𝑓 (𝑥))2 .

129

Proof. Let 𝑥+ B 𝑥 − [∇2𝑓 (𝑥)]−1 ∇𝑓 (𝑥). By Lemma 13.6,

𝜆𝑓 (𝑥+) = ∥∇𝑓 (𝑥+)∥∗𝑥+ ≤ ∥∇𝑓 (𝑥+)∥𝑥
1 −𝑀 ∥𝑥+ − 𝑥 ∥𝑥

=
∥∇𝑓 (𝑥+)∥𝑥
1 −𝑀𝜆𝑓 (𝑥)

.

Then, for 𝑧𝑡 B (1 − 𝑡) 𝑥 + 𝑡 𝑥+,

∇𝑓 (𝑥+) = ∇𝑓 (𝑥) +
∫ 1

0
∇2𝑓 (𝑧𝑡) (𝑥+ − 𝑥) d𝑡 =

(∫ 1

0
∇2𝑓 (𝑧𝑡) d𝑡 − ∇2𝑓 (𝑥)

)
︸ ︷︷ ︸

CΔ

(𝑥+ − 𝑥) .

Thus,

∥∇𝑓 (𝑥+)∥2
𝑥 = ⟨Δ (𝑥+ − 𝑥), [∇2𝑓 (𝑥)]−1 Δ (𝑥+ − 𝑥)⟩
≤ ∥[∇2𝑓 (𝑥)]−1/2 Δ [∇2𝑓 (𝑥)]−1 Δ [∇2𝑓 (𝑥)]−1/2∥op ∥𝑥+ − 𝑥 ∥2

𝑥

= ∥ [∇2𝑓 (𝑥)]−1/2 Δ [∇2𝑓 (𝑥)]−1/2∥2
op 𝜆𝑓 (𝑥)2 .

To bound the operator norm, we take any unit vector 𝑣 ∈ R𝑑 and compute

⟨𝑣, [∇2𝑓 (𝑥)]−1/2 Δ [∇2𝑓 (𝑥)]−1/2 𝑣⟩

=

∫ 1

0
⟨[∇2𝑓 (𝑥)]−1/2 𝑣, [∇2𝑓 (𝑧𝑡) − ∇2𝑓 (𝑥)] [∇2𝑓 (𝑥)]−1/2 𝑣⟩ d𝑡

≤
∫ 1

0
⟨[∇2𝑓 (𝑥)]−1/2 𝑣,

(1
(1 −𝑀𝑡𝜆𝑓 (𝑥))2 − 1

)
∇2𝑓 (𝑥) [∇2𝑓 (𝑥)]−1/2 𝑣⟩ d𝑡

=

∫ 1

0

(1
(1 −𝑀𝑡𝜆𝑓 (𝑥))2 − 1

)
d𝑡 =

𝑀𝜆𝑓 (𝑥)
1 −𝑀𝜆𝑓 (𝑥)

.

Putting everything together yields the result. □

13.2 Following the central path
We now consider the following structured minimization problem:

minimize
𝑥∈C

⟨𝑎, 𝑥⟩ .

One can also consider non-linear objective functions, but this setup is already enough to
capture LPs and SDPs.

130

Our main assumption is that we have explicit access to a self-concordant function
𝜙 with dom𝜙 = C. Motivation for this assumption is provided in [Nes18, §5.1.1], in
which Nesterov argues that a fundamental conceptual contradiction lies at the heart of
black-box optimization. Namely, black-box optimization assumes that the problem under
consideration is convex, but in order to verify convexity in practice, one often needs to
exploit some structure of the problem.

The typical strategy to verify convexity is to appeal to the fact that convexity is pre-
served under various operations (conic combinations, composition with affine mappings,
taking suprema, etc.), and thereby reduce the question to checking convexity of a few
primitive building blocks. Similarly, as we describe in §13.3, one can develop a barrier
calculus which produces self-concordant functions for convex sets C which are built up
out of primitive building blocks by applying basic operations. Consequently, one can
furnish a self-concordant barrier for a huge number of problems of practical interest.

Once we have such a function 𝜙 , how can we use it to solve the constrained opti-
mization problem? As the name suggests, the family of interior point methods maintain
iterates which lie in the interior of C (unlike other methods, such as cutting plane methods,
projected gradient methods, the simplex algorithm, etc.), by using the function 𝜙 as a
barrier to exiting C. Although there are many types of interior point methods, here we
focus on following the so-called central path, i.e., the path

𝑡 ↦→ 𝑥★(𝑡) B arg min
𝑥∈R𝑑

{𝑡 ⟨𝑎, 𝑥⟩ + 𝜙 (𝑥)︸ ︷︷ ︸
C𝑓𝑡 (𝑥)

} .

When 𝑡 = 0, 𝑥★(0) B arg min𝜙 is called the analytical center of C (relative to 𝜙). We
discuss later how to obtain a point close to 𝑥★(0) (and thereby initialize the scheme). On
the other hand, as 𝑡 → ∞, we expect that 𝑥★(𝑡) → 𝑥★ = arg min𝑥∈C ⟨𝑎, 𝑥⟩.

Suppose that the algorithm is currently on the central path at the point 𝑥★(𝑡). The
path following scheme proceeds by incrementing 𝑡 to some 𝑡+ > 𝑡 . To compute the next
point 𝑥★(𝑡+), we must minimize the function 𝑓𝑡+ , and we can use the previous point 𝑥★(𝑡)
as a warm start. In fact, since 𝑓𝑡+ is self-concordant, a natural choice is to apply a step of
Newton’s method, which requires 𝑥★(𝑡) to be in the region of local convergence for 𝑓𝑡+ .
This places a constraint on how fast we can increase 𝑡 .

We remark that although the use of Newton’s method is standard, it is not the only
choice; one could use, e.g., a few steps of preconditioned gradient descent.

Next, let us calculate the increment for 𝑡 , starting at 𝑥★(𝑡). From Theorem 13.8, taking
𝑀 = 1, we want to ensure that 𝜆𝑓𝑡+ (𝑥★(𝑡)) < 1. However, since 𝑡𝑎 + ∇𝜙 (𝑥★(𝑡)) = 0,

𝜆𝑓𝑡+ (𝑥★(𝑡)) = ∥𝑡+𝑎 + ∇𝜙 (𝑥★(𝑡))∥∗𝑥★(𝑡) = (𝑡+ − 𝑡) ∥𝑎∥∗
𝑥★(𝑡) =

𝑡+ − 𝑡

𝑡
∥∇𝜙 (𝑥★(𝑡))∥∗𝑥★(𝑡) .

131

In order for this to be controlled, we want a uniform bound on ∥∇𝜙 (𝑥)∥∗𝑥 . Note that
even though the objective function is changing with time, the local norms above are
unambiguous because ∇2𝑓𝑡 is independent of 𝑡 .

Definition 13.9. A self-concordant function 𝑓 : R𝑑 → R∪{∞} is a 𝜈-self-concordant
barrier if ∥∇𝑓 (𝑥)∥∗𝑥 ≤

√
𝜈 for all 𝑥 ∈ dom 𝑓 .

Assuming that 𝜙 is a 𝜈-self-concordant barrier, it follows that we can take 𝑡+ =

(1 + Ω(1/
√
𝜈)) 𝑡 . Therefore, we expect the number of iterations of the scheme to scale as

𝑂 (
√
𝜈) (up to logarithmic factors).

Before carrying out the full analysis (which takes into account the fact that we do
not exactly follow the central path, as well as the issue of initialization), we first consider
elements of the barrier calculus and applications.

13.3 Barrier calculus and applications

Example 13.10 (−log is a 1-self-concordant barrier). Indeed, by explicit calculation,
the self-concordant function 𝑥 ↦→ 𝑓 (𝑥) = − log𝑥 satisfies

𝑓 ′(𝑥)2

𝑓 ′′(𝑥) = 1 .

Starting from this example, we can build many more.

Proposition 13.11 (barrier calculus).

1. Let 𝑓1, 𝑓2 be 𝜈1- and 𝜈2-self-concordant barriers respectively. Then, 𝑓1 + 𝑓2 is a
(𝜈1 + 𝜈2)-self-concordant barrier for dom 𝑓1 ∩ dom 𝑓2.

2. Let 𝑓1, 𝑓2 be 𝜈1- and 𝜈2-self-concordant barriers respectively. Then, (𝑥,𝑦) ↦→
𝑓1(𝑥) + 𝑓2(𝑦) is a (𝜈1 + 𝜈2)-self-concordant barrier for dom 𝑓1 × dom 𝑓2.

3. Let 𝒜 : 𝑥 ↦→ 𝐴𝑥 +𝑏 be an affine map and let 𝑓 be a 𝜈-self-concordant barrier with
dom 𝑓 ⊆ range𝒜. Then, the composition 𝑥 ↦→ 𝑓 (𝒜(𝑥)) is a 𝜈-self-concordant
barrier for the set 𝒜−1(dom 𝑓).

4. Let 𝑓 be a 𝜈-self-concordant barrier over R𝑑1 × R𝑑2 . Then, 𝑥 ↦→ inf𝑦∈R𝑑2 𝑓 (𝑥,𝑦) is
a 𝜈-self-concordant barrier.

132

We do not prove these statements since the verification can be tedious.
Since the barrier parameter 𝜈 plays a decisive role in determining the iteration com-

plexity, it is important to know what the best possible value for 𝜈 is.

Proposition 13.12 (lower bound for the barrier parameter). Let C ⊆ R𝑑 be a convex
polytope such that there exists a point in 𝜕C which belongs to exactly 𝑘 of the (𝑑 − 1)-
dimensional facets of C, with the normals to these facets being linearly independent.
Then, any 𝜈-self-concordant barrier for C satisfies 𝜈 ≥ 𝑘 .

In particular, for the cube, the non-negative orthant, and the simplex, this holds
with 𝑘 = 𝑑 .

Proof. See [NN94, Proposition 2.3.6]. □

On the other hand, for any convex body C, there exists a 𝑑-self-concordant barrier.

Theorem 13.13 (optimal self-concordant barriers). Let C ⊆ R𝑑 be a convex body. The
following are 𝑑-self-concordant barriers for C:

• ([Che23]) the entropic barrier, defined as the convex conjugate of the map
𝜃 ↦→ log

∫
C

exp ⟨𝜃, 𝑥⟩ d𝑥 ;

• ([LY21]) the universal barrier, defined as the map 𝑥 ↦→ log volC◦(𝑥), where
C◦(𝑥) B {𝑦 ∈ R𝑑 : ⟨𝑦, 𝑧 − 𝑥⟩ ≤ 1 for all 𝑧 ∈ C} is the polar of C with respect to 𝑥 .

Although these results are elegant, they are quite useless in practice since the con-
structed barriers do not lend themselves to easy implementation. Instead, we present the
canonical example of logarithmic barriers, although many more sophisticated barriers
have been developed subsequently.

133

Example 13.14 (logarithmic barriers).

1. Let C = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 𝑏} be a polytope, where 𝐴 ∈ R𝑚×𝑑 and 𝑏 ∈ R𝑚 . If we let
{𝑎𝑖}𝑖∈[𝑚] denote the rows of 𝐴, then 𝑥 ↦→ − log(𝑏𝑖 − ⟨𝑎𝑖, 𝑥⟩) is a 1-self-concordant
barrier for the set {⟨𝑎𝑖, ·⟩ ≤ 𝑏𝑖}, by Example 13.10 and Proposition 13.11. Hence,
by Proposition 13.11 again, 𝑥 ↦→ −∑𝑚

𝑖=1 log(𝑏𝑖 − ⟨𝑎𝑖, 𝑥⟩) is an𝑚-self-concordant
barrier for C.
Since we assume that C is a convex body (in particular, compact), we must have
𝑚 ≥ 𝑑 . From Theorem 13.13, we know that a 𝑑-self-concordant barrier for C
exists, but the logarithmic barrier is far more tractable.

2. Let C = S𝑑+ be the cone of PSD matrices. Then, one can show via direct calculation
that 𝑋 ↦→ − log det𝑋 is a 𝑑-self-concordant barrier for C, and that this is the best
possible value for the barrier parameter [Nes18, Theorem 5.4.3, Lemma 5.4.7].
This is perhaps surprising since the dimension of S𝑑+ as a vector space is 𝑑 (𝑑+1)/2.

We are about to show that interior point methods achieve an iteration complexity of
roughly 𝑂 (

√
𝜈). With the barriers constructed above, we obtain the following results.

• Linear programs (LPs). An LP consists of minimizing a linear function 𝑥 ↦→ ⟨𝑎, 𝑥⟩
over a polytope C = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 𝑏}. Let 𝐴 be of size𝑚 × 𝑑 . Then, the arithmetic
cost of taking a Newton step with the logarithmic barrier is roughly 𝑂 (𝑑2𝑚), so the
overall computational cost is 𝑂 (𝑑2𝑚3/2). For𝑚 ≍ 𝑑 , this is 𝑂 (𝑑7/2).

• Semidefinite programs (SDPs). An SDP consists of minimizing a linear function
𝑋 ↦→ ⟨𝐴,𝑋 ⟩ over the PSD cone C = S𝑑+, possibly with other linear constraints. One
can show that the arithmetic cost of a Newton step is 𝑂 (𝑑4), which leads to an
overall computational cost of 𝑂 (𝑑9/2).

As mentioned in the bibliographical notes, there are numerous improvements over these
basic results and it remains an active area of research.

13.4 Convergence analysis
Here, we roughly analyze the iteration complexity of the path following scheme. We
recall the setup from §13.2.

134

Lemma 13.15 (properties of self-concordant barriers). Let 𝑓 : R𝑑 → R ∪ {∞} be a
𝜈-self-concordant barrier.

1. For any 𝑣 ∈ R𝑑 ,

⟨∇𝑓 (𝑥), 𝑣⟩2 ≤ 𝜈 ⟨𝑣,∇2𝑓 (𝑥) 𝑣⟩ .

2. For all 𝑥,𝑦 ∈ dom 𝑓 ,

⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ ≤ 𝜈 .

Proof.

1. By Cauchy–Schwarz,

|⟨∇𝑓 (𝑥), 𝑣⟩| ≤ ∥∇𝑓 (𝑥)∥∗𝑥 ∥𝑣 ∥𝑥 ≤
√
𝜈 ∥𝑣 ∥𝑥 .

2. For 𝑡 ∈ [0, 1], let 𝑧𝑡 B (1 − 𝑡) 𝑥 + 𝑡 𝑦. Then,

𝜕𝑡 ⟨∇𝑓 (𝑧𝑡), 𝑦 − 𝑥⟩ = ⟨∇2𝑓 (𝑧𝑡) (𝑦 − 𝑥), 𝑦 − 𝑥⟩ ≥ 1
𝜈
⟨∇𝑓 (𝑧𝑡), 𝑦 − 𝑥⟩2 .

This implies that 𝜕𝑡 ⟨∇𝑓 (𝑧𝑡), 𝑦 − 𝑥⟩−1 ≤ −1/𝜈 , which leads to the desired inequality.

□

Main stage. Assume that at iteration 𝑛, we have a pair (𝑡𝑛, 𝑥𝑛) ∈ R+ × R𝑑 such that

𝜆𝑓𝑡𝑛 (𝑥𝑛) ≤
1
4 .

When we update 𝑡𝑛 ↦→ 𝑡𝑛+1, we note that

𝜆𝑡𝑛+1 (𝑥𝑛) = ∥𝑡𝑛+1𝑎 + ∇𝜙 (𝑥𝑛)∥∗𝑥𝑛 =

𝑡𝑛+1
𝑡𝑛

(𝑡𝑛𝑎 + ∇𝜙 (𝑥𝑛)) +
(
1 − 𝑡𝑛+1

𝑡𝑛

)
∇𝜙 (𝑥𝑛)

∗
𝑥𝑛

≤ 𝑡𝑛+1
𝑡𝑛

𝜆𝑓𝑡𝑛 (𝑥𝑛) +
(𝑡𝑛+1
𝑡𝑛

− 1
) √

𝜈 .

Set 𝑡𝑛+1 = (1 + 𝑐0/
√
𝜈) 𝑡𝑛 . This yields

𝜆𝑡𝑛+1 (𝑥𝑛) ≤
(
1 + 𝑐0√

𝜈

) 1
4 + 𝑐0 ≤ 1 + 𝑐0

4 + 𝑐0 ,

135

since we can assume 𝜈 ≥ 1. The update 𝑥𝑛 ↦→ 𝑥𝑛+1 is a Newton’s step for 𝑓𝑡𝑛+1 , so
by Theorem 13.8 we have

𝜆𝑡𝑛+1 (𝑥𝑛+1) ≤
𝜆𝑡𝑛+1 (𝑥𝑛)2

(1 − 𝜆𝑡𝑛+1 (𝑥𝑛))2 ≤
((1 + 𝑐0)/4 + 𝑐0
1 − (1 + 𝑐0)/4 − 𝑐0

)2
≤ 1

4 ,

provided that 𝑐0 is sufficiently small: 𝑐0 ≤ 1/16 suffices.
This implies that

𝑡𝑁 =
(
1 + 𝑐0√

𝜈

)𝑁
𝑡0 ,

so that the value of 𝑡 increases exponentially fast. Once 𝑡 is sufficiently large, we have a
nearly optimal solution to the original problem.

Lemma 13.16. For any (𝑡, 𝑥) ∈ R+ × R𝑑 ,

⟨𝑎, 𝑥⟩ − ⟨𝑎, 𝑥★⟩ ≤
1
𝑡

(
𝜈 +

(𝜆𝑓𝑡 (𝑥) +
√
𝜈) 𝜆𝑓𝑡 (𝑥)

1 − 𝜆𝑓𝑡 (𝑥)

)
.

Proof. First, by Lemma 13.15,

⟨𝑎, 𝑥★(𝑡)⟩ − ⟨𝑎, 𝑥★⟩ =
1
𝑡
⟨∇𝜙 (𝑥★(𝑡)), 𝑥★ − 𝑥★(𝑡)⟩ ≤

𝜈

𝑡
.

Next,

⟨𝑎, 𝑥⟩ − ⟨𝑎, 𝑥★(𝑡)⟩ =
1
𝑡
⟨∇𝑓𝑡 (𝑥) − ∇𝜙 (𝑥), 𝑥 − 𝑥★(𝑡)⟩ ≤

𝜆𝑓𝑡 (𝑥) +
√
𝜈

𝑡
∥𝑥 − 𝑥★(𝑡)∥𝑥 .

From Lemma 13.6,

∥𝑥 − 𝑥★(𝑡)∥2
𝑥

1 + ∥𝑥 − 𝑥★(𝑡)∥𝑥
≤ ⟨∇𝑓𝑡 (𝑥) − ∇𝑓𝑡 (𝑥★(𝑡))︸ ︷︷ ︸

=0

, 𝑥 − 𝑥★(𝑡)⟩ ≤ 𝜆𝑓𝑡 (𝑥) ∥𝑥 − 𝑥★(𝑡)∥𝑥 .

Thus, ∥𝑥 − 𝑥★(𝑡)∥𝑥/(1 + ∥𝑥 − 𝑥★(𝑡)∥𝑥) ≤ 𝜆𝑓𝑡 (𝑥), or, upon rearranging,

∥𝑥 − 𝑥★(𝑡)∥𝑥 ≤
𝜆𝑓𝑡 (𝑥)

1 − 𝜆𝑓𝑡 (𝑥)
.

Putting everything together completes the proof. □

The lemma implies that in order to obtain an 𝜀-approximate solution, it suffices to take
𝑁 such that 𝑡𝑁 ≳ 𝜈/𝜀. The number of iterations is therefore 𝑂 (

√
𝜈 log(𝜈/(𝜀𝑡0))).

136

Preliminary stage. The remaining missing piece is to obtain (𝑡0, 𝑥0) such that 𝜆𝑓𝑡0 (𝑥0) ≤
1/4. The idea here is to use another path following scheme to obtain the initial point.
Namely, if we replace the vector 𝑎 with −∇𝜙 (𝑥0), where 𝑥0 is an arbitrary point in intC,
we obtain the central path

𝑡 ↦→ 𝑥★(𝑡) = arg min
𝑥∈R𝑑

{−𝑡 ⟨∇𝜙 (𝑥0), 𝑥⟩ + 𝜙 (𝑥)︸ ︷︷ ︸
C𝑓𝑡 (𝑥)

} .

Note that this central path connects 𝑥★(1) = 𝑥0 to 𝑥★(0) = 𝑥★(0) = arg min𝜙 . Therefore,
we should follow the central path by decreasing 𝑡 . By a similar analysis (see [Nes18,
§5.3.5]), one can show that 𝑂 (

√
𝜈 log(𝜈 ∥∇𝜙 (𝑥0)∥∗𝑥★(0))) iterations of the path following

scheme suffices in order to initialize the main stage. Here, the quantity ∥∇𝜙 (𝑥0)∥∗𝑥★(0) is a
measure of how far the initial guess 𝑥0 is from the true analytical center 𝑥★(0).

Actually, this still does not fully resolve the initialization issue, since it may be difficult
to find any strictly feasible point 𝑥0 at all. In some situations, one can first augment the
problem so that it is trivial to find a strictly feasible starting point, and then one can use
yet another path following scheme to compute a strictly feasible point for the original
problem. We omit the details.

Bibliographical notes
The presentation of this section is heavily inspired by [Bub15]. A comprehensive guide to
interior point methods can be found in [NN94].

There are many ways to speed up interior point methods beyond the basic theory
covered here, e.g., by amortizing the computations cleverly across steps, or by using
improved self-concordant barriers. This remains an active area of research and we do not
survey recent developments here.

The universal barrier was introduced and shown to be𝑂 (𝑑)-self-concordant in [NN94].
The entropic barrier was introduced and shown to be (1+𝑜 (1)) 𝑑-self-concordant in [BE19].
The cited references [LY21; Che23] in Theorem 13.13 obtained the optimal barrier parame-
ter 𝑑 for these two barriers respectively.

137

References
[Aga+12] A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. “Information-

theoretic lower bounds on the oracle complexity of stochastic convex opti-
mization”. In: IEEE Trans. Inform. Theory 58.5 (2012), pp. 3235–3249.

[AKL22] P.-C. Aubin-Frankowski, A. Korba, and F. Léger. “Mirror descent with relative
smoothness in measure spaces, with application to Sinkhorn and EM”. In: Ad-
vances in Neural Information Processing Systems. Ed. by S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran Associates, Inc.,
2022, pp. 17263–17275.

[AL24] M. Arnese and D. Lacker. “Convergence of coordinate ascent variational
inference for log-concave measures via optimal transport”. In: arXiv preprint
2404.08792 (2024).

[ALZ24] F. Ascolani, H. Lavenant, and G. Zanella. “Entropy contraction of the Gibbs
sampler under log-concavity”. In: arXiv preprint 2410.00858 (2024).

[AN00] S.-i. Amari and H. Nagaoka. Methods of information geometry. Vol. 191. Trans-
lations of Mathematical Monographs. Translated from the 1993 Japanese
original by Daishi Harada. American Mathematical Society, Providence, RI;
Oxford University Press, Oxford, 2000, pp. x+206.

[ANR17] J. M. Altschuler, J. Niles-Weed, and P. Rigollet. “Near-linear time approxima-
tion algorithms for optimal transport via Sinkhorn iteration”. In: Advances
in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran
Associates, Inc., 2017, pp. 1964–1974.

[AP24a] J. M. Altschuler and P. A. Parrilo. “Acceleration by stepsize hedging: multi-step
descent and the silver stepsize schedule”. In: J. ACM (Dec. 2024).

[AP24b] J. M. Altschuler and P. A. Parrilo. “Acceleration by stepsize hedging: silver
stepsize schedule for smooth convex optimization”. In: Mathematical Pro-
gramming (2024).

[AY16] Z. Allen-Zhu and Y. Yuan. “Improved SVRG for non-strongly-convex or sum-
of-non-convex objectives”. In: Proceedings of the 33rd International Conference
on Machine Learning. Ed. by M. F. Balcan and K. Q. Weinberger. Vol. 48.
Proceedings of Machine Learning Research. New York, New York, USA: PMLR,
June 2016, pp. 1080–1089.

138

[Bac+92] F. L. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and
linearity. Wiley Series in Probability and Mathematical Statistics: Probability
and Mathematical Statistics. An algebra for discrete event systems. John Wiley
& Sons, Ltd., Chichester, 1992, pp. xx+489.

[Bac24] F. Bach. Learning theory from first principles. MIT Press, 2024.
[Bar93] A. R. Barron. “Universal approximation bounds for superpositions of a sig-

moidal function”. In: IEEE Trans. Inform. Theory 39.3 (1993), pp. 930–945.
[BBT17] H. H. Bauschke, J. Bolte, and M. Teboulle. “A descent lemma beyond Lipschitz

gradient continuity: first-order methods revisited and applications”. In: Math.
Oper. Res. 42.2 (2017), pp. 330–348.

[BC12] S. Bubeck and N. Cesa-Bianchi. “Regret analysis of stochastic and nonstochas-
tic multi-armed bandit problems”. In: Foundations and Trends® in Machine
Learning 5.1 (2012), pp. 1–122.

[BE19] S. Bubeck and R. Eldan. “The entropic barrier: exponential families, log-
concave geometry, and self-concordance”. In: Math. Oper. Res. 44.1 (2019),
pp. 264–276.

[Bil95] P. Billingsley. Probability and measure. Third. Wiley Series in Probability and
Mathematical Statistics. A Wiley-Interscience Publication. John Wiley & Sons,
Inc., New York, 1995, pp. xiv+593.

[BM03] S. Burer and R. D. C. Monteiro. “A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization”. In: vol. 95. 2. Com-
putational semidefinite and second order cone programming: the state of the
art. 2003, pp. 329–357.

[BM05] S. Burer and R. D. C. Monteiro. “Local minima and convergence in low-rank
semidefinite programming”. In: Math. Program. 103.3 (2005), pp. 427–444.

[Bub15] S. Bubeck. “Convex optimization: algorithms and complexity”. In: Foundations
and Trends® in Machine Learning 8.3-4 (2015), pp. 231–357.

[Che+22] Y. Chen, S. Chewi, A. Salim, and A. Wibisono. “Improved analysis for a
proximal algorithm for sampling”. In: Proceedings of Thirty Fifth Conference
on Learning Theory. Ed. by P.-L. Loh and M. Raginsky. Vol. 178. Proceedings
of Machine Learning Research. PMLR, July 2022, pp. 2984–3014.

[Che23] S. Chewi. “The entropic barrier is 𝑛-self-concordant”. In: Geometric Aspects
of Functional Analysis: Israel Seminar (GAFA) 2020-2022. Ed. by R. Eldan, B.
Klartag, A. Litvak, and E. Milman. Cham: Springer International Publishing,
2023, pp. 209–222.

139

[Che25] S. Chewi. Log-concave sampling. Available online at chewisinho.github.io.
Forthcoming, 2025.

[CJ24] R. Caprio and A. M. Johansen. “Fast convergence of the expectation maxi-
mization algorithm under a logarithmic Sobolev inequality”. In: arXiv preprint
2407.17949 (2024).

[CLM24] H. Chardon, M. Lerasle, and J. Mourtada. “Finite-sample performance of
the maximum likelihood estimator in logistic regression”. In: arXiv preprint
2411.02137 (2024).

[CNR25] S. Chewi, J. Niles-Weed, and P. Rigollet. Statistical optimal transport. Lecture
Notes in Mathematics. École d’Été de Probabilités de Saint-Flour XLIX—2019.
Springer Cham, 2025, pp. xiv+260.

[Cut13] M. Cuturi. “Sinkhorn distances: lightspeed computation of optimal trans-
port”. In: Advances in Neural Information Processing Systems. Ed. by C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger. Vol. 26. Curran
Associates, Inc., 2013.

[Eva10] L. C. Evans. Partial differential equations. Second. Vol. 19. Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, 2010,
pp. xxii+749.

[GWS21] S. Gunasekar, B. Woodworth, and N. Srebro. “Mirrorless mirror descent: a
natural derivation of mirror descent”. In: Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics. Ed. by A. Banerjee and K.
Fukumizu. Vol. 130. Proceedings of Machine Learning Research. PMLR, Apr.
2021, pp. 2305–2313.

[JZ13] R. Johnson and T. Zhang. “Accelerating stochastic gradient descent using
predictive variance reduction”. In: Advances in Neural Information Processing
Systems. Ed. by C. J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger. Vol. 26. Curran Associates, Inc., 2013.

[KNS16] H. Karimi, J. Nutini, and M. Schmidt. “Linear convergence of gradient and
proximal-gradient methods under the Polyak–Łojasiewicz condition”. In: Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases—
Volume 9851. ECML PKDD 2016. Riva del Garda, Italy: Springer-Verlag, 2016,
pp. 795–811.

[Lég21] F. Léger. “A gradient descent perspective on Sinkhorn”. In: Appl. Math. Optim.
84.2 (2021), pp. 1843–1855.

140

https://chewisinho.github.io/

[LFN18] H. Lu, R. M. Freund, and Y. Nesterov. “Relatively smooth convex optimization
by first-order methods, and applications”. In: SIAM J. Optim. 28.1 (2018),
pp. 333–354.

[LMW24] J. Liang, S. Mitra, and A. Wibisono. “On independent samples along the
Langevin diffusion and the unadjusted Langevin algorithm”. In: arXiv preprint
2402.17067 (2024).

[Łoj63] S. Łojasiewicz. “Une propriété topologique des sous-ensembles analytiques
réels”. In: Les Équations aux Dérivées Partielles (Paris, 1962). Éditions du Centre
National de la Recherche Scientifique (CNRS), Paris, 1963, pp. 87–89.

[LRP16] L. Lessard, B. Recht, and A. Packard. “Analysis and design of optimization
algorithms via integral quadratic constraints”. In: SIAM J. Optim. 26.1 (2016),
pp. 57–95.

[LY21] Y. T. Lee and M.-C. Yue. “Universal barrier is 𝑛-self-concordant”. In: Math.
Oper. Res. 46.3 (2021), pp. 1129–1148.

[LZ24] H. Lavenant and G. Zanella. “Convergence rate of random scan coordinate
ascent variational inference under log-concavity”. In: SIAM J. Optim. 34.4
(2024), pp. 3750–3761.

[Nes18] Y. Nesterov. Lectures on convex optimization. Vol. 137. Springer Optimization
and Its Applications. Springer, 2018, pp. xxiii+589.

[NN94] Y. Nesterov and A. S. Nemirovski. Interior-point polynomial algorithms in
convex programming. Vol. 13. SIAM Studies in Applied Mathematics. Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994,
pp. x+405.

[NY83] A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in
optimization. Wiley-Interscience Series in Discrete Mathematics. Translated
from the Russian and with a preface by E. R. Dawson. John Wiley & Sons,
Inc., New York, 1983, pp. xv+388.

[OV00] F. Otto and C. Villani. “Generalization of an inequality by Talagrand and
links with the logarithmic Sobolev inequality”. In: J. Funct. Anal. 173.2 (2000),
pp. 361–400.

[OV01] F. Otto and C. Villani. “Comment on: “Hypercontractivity of Hamilton–Jacobi
equations” [J. Math. Pures Appl. (9) 80 (2001), no. 7, 669–696] by S. G. Bobkov,
I. Gentil and M. Ledoux”. In: J. Math. Pures Appl. (9) 80.7 (2001), pp. 697–700.

[PC19] G. Peyré and M. Cuturi. Computational optimal transport: with applications to
data science. Now, 2019.

141

[PJ92] B. T. Polyak and A. B. Juditsky. “Acceleration of stochastic approximation by
averaging”. In: SIAM J. Control Optim. 30.4 (1992), pp. 838–855.

[Pol63] B. T. Polyak. “Gradient methods for minimizing functionals”. In: Ž. Vyčisl.
Mat i Mat. Fiz. 3 (1963), pp. 643–653.

[Roc97] R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics.
Reprint of the 1970 original, Princeton Paperbacks. Princeton University
Press, Princeton, NJ, 1997, pp. xviii+451.

[San15] F. Santambrogio. Optimal transport for applied mathematicians. Vol. 87. Progress
in Nonlinear Differential Equations and their Applications. Calculus of varia-
tions, PDEs, and modeling. Birkhäuser/Springer, Cham, 2015, pp. xxvii+353.

[SBC16] W. Su, S. Boyd, and E. J. Candès. “A differential equation for modeling Nes-
terov’s accelerated gradient method: theory and insights”. In: J. Mach. Learn.
Res. 17 (2016), Paper No. 153, 43.

[Sha+18] F. Shang, L. Jiao, K. Zhou, J. Cheng, Y. Ren, and Y. Jin. “ASVRG: accelerated
proximal SVRG”. In: Proceedings of the 10th Asian Conference on Machine
Learning. Ed. by J. Zhu and I. Takeuchi. Vol. 95. Proceedings of Machine
Learning Research. PMLR, Nov. 2018, pp. 815–830.

[Sin64] R. Sinkhorn. “A relationship between arbitrary positive matrices and doubly
stochastic matrices”. In: Ann. Math. Statist. 35 (1964), pp. 876–879.

[Vaa98] A. W. van der Vaart. Asymptotic statistics. Vol. 3. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998,
pp. xvi+443.

[Ver18] R. Vershynin. High-dimensional probability. Vol. 47. Cambridge Series in Sta-
tistical and Probabilistic Mathematics. An introduction with applications in
data science, With a foreword by Sara van de Geer. Cambridge University
Press, Cambridge, 2018, pp. xiv+284.

[Vil03] C. Villani. Topics in optimal transportation. Vol. 58. Graduate Studies in Math-
ematics. American Mathematical Society, Providence, RI, 2003, pp. xvi+370.

[Vil09] C. Villani. Optimal transport. Vol. 338. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Old and
new. Springer-Verlag, Berlin, 2009, pp. xxii+973.

[Vis12] N. K. Vishnoi. “𝐿𝑥 = 𝑏 Laplacian solvers and their algorithmic applications”.
In: Found. Trends Theor. Comput. Sci. 8.1-2 (2012), front matter, 1–141.

142

[Wai19] M. J. Wainwright. High-dimensional statistics. Vol. 48. Cambridge Series in
Statistical and Probabilistic Mathematics. A non-asymptotic viewpoint. Cam-
bridge University Press, Cambridge, 2019, pp. xvii+552.

[WS16] B. E. Woodworth and N. Srebro. “Tight complexity bounds for optimizing
composite objectives”. In: Advances in Neural Information Processing Systems.
Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29.
Curran Associates, Inc., 2016.

[WWJ16] A. Wibisono, A. C. Wilson, and M. I. Jordan. “A variational perspective on
accelerated methods in optimization”. In: Proc. Natl. Acad. Sci. USA 113.47
(2016), E7351–E7358.

143

	Introduction and basics of convex functions
	Overview of the course
	Preliminaries on convexity and smoothness

	Gradient flow
	Gradient descent: smooth case
	Lower bounds for smooth optimization
	Reductions between the convex and strongly convex settings
	Lower bounds

	Acceleration
	Quadratic case: the conjugate gradient method
	General case: continuous time
	General case: discrete time

	Non-smooth convex optimization
	Convex analysis
	Projected subgradient methods
	Cutting plane methods
	Lower bounds

	Frank–Wolfe
	Proximal methods
	Algorithms and examples
	Convergence analysis

	Fenchel duality
	(Optional) Connection with classical mechanics
	Duality correspondences

	Mirror methods
	Bregman divergences and relative convexity/smoothness
	Algorithms and convergence analysis
	Online algorithms and multiplicative weights

	Alternating minimization
	Alternating projections
	Convergence analysis for alternating minimization
	Case study: entropic optimal transport

	Stochastic optimization
	Stochastic mirror proximal gradient descent
	Implications for statistical generalization
	Central limit theorem for Polyak–Ruppert averaging
	Variance reduction

	Interior point methods
	Self-concordant analysis of Newton's method
	Following the central path
	Barrier calculus and applications
	Convergence analysis

