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Abstract

This document contains supplementary material to the book [Che24] which was
omitted for space.
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1 Supplement to Chapter 2

1.1 Proof of Marton’s tensorization
We recall the statement and then give a proof.

Theorem 1.1 (Marton’s tensorization [Mar96]). Let X1, . . . ,X𝑁 be Polish spaces
equipped with probability measures 𝜋1, . . . , 𝜋𝑁 respectively. Let X B X1 × · · · ×X𝑁 be
equipped with the product measure 𝜋 B 𝜋1 ⊗ · · · ⊗ 𝜋𝑁 .

Let 𝜑 : [0,∞) → [0,∞) be convex and for 𝑖 ∈ [𝑁 ], let 𝑐𝑖 : X𝑖 × X𝑖 → [0,∞) be a
lower semicontinuous cost function. Suppose that

inf
𝛾𝑖∈C(𝜋𝑖 ,𝜈𝑖 )

𝜑

(∫
𝑐𝑖 d𝛾𝑖

)
≤ 2𝜎2 KL(𝜈𝑖 ∥ 𝜋𝑖) , ∀𝜈𝑖 ∈ P(X𝑖) , ∀𝑖 ∈ [𝑁 ] .

Then, it holds that

inf
𝛾∈C(𝜋,𝜈)

𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)
≤ 2𝜎2 KL(𝜈 ∥ 𝜋) , ∀𝜈 ∈ P(X) .

Proof. The proof goes by induction on 𝑁 , with 𝑁 = 1 being trivial. So, assume that the
result is true in dimension 𝑁 , and let us prove it for dimension 𝑁 + 1.

Let 𝜈 ∈ P(X) = P(X1 × · · · × X𝑁+1), let 𝜈1:𝑁 denote its X1 × · · · × X𝑁 marginal,
and let 𝜈𝑁+1|1:𝑁 denote the corresponding conditional kernel (and similarly for 𝜋 ). Let
K denote the set of conditional kernels 𝑦1:𝑁 ↦→ 𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 ) such that for 𝜈1:𝑁 -a.e.
𝑦1:𝑁 ∈ X1 × · · · × X𝑁 , it holds that 𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 ) ∈ C(𝜋𝑁+1, 𝜈𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )). Instead
of minimizing over all 𝛾 ∈ C(𝜋, 𝜈), we can minimize over couplings 𝛾 such that for all
bounded 𝑓 ∈ C(X × X),∫

𝑓 d𝛾 =

∫ (∫
𝑓 (𝑥1:𝑁+1, 𝑦1:𝑁+1) 𝛾𝑁+1|1:𝑁 (d𝑥𝑁+1, d𝑦𝑁+1 | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 ) ,

for some 𝛾1:𝑁 ∈ C(𝜋1:𝑁 , 𝜈1:𝑁 ) and 𝛾𝑁+1|1:𝑁 ∈ K.1 Thus,

inf
𝛾∈C(𝜋,𝜈)

𝑁+1∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁+1, d𝑦1:𝑁+1)

)
1Suppose 𝑁 = 2 and (𝑋1, 𝑋2) ∼ 𝜋 and (𝑌1, 𝑌2) ∼ 𝜈 . Observe that a general coupling 𝑝 ∈ C(𝜋, 𝜈) factorizes

as 𝑝 (𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑝𝑋1 (𝑥1) 𝑝𝑋2 (𝑥2) 𝑝𝑌1,𝑌2 |𝑋1,𝑋2 (𝑦1, 𝑦2 | 𝑥1, 𝑥2). In contrast, we are restricting to couplings
of the form 𝑝 (𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑝𝑋1 (𝑥1) 𝑝𝑌1 |𝑋1 (𝑦1 | 𝑥1) 𝑝𝑋2 (𝑥2) 𝑝𝑌2 |𝑋2,𝑌1 (𝑦2 | 𝑥2, 𝑦1).
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≤ inf
𝛾1:𝑁 ∈C(𝜋1:𝑁 ,𝜈1:𝑁 )

{ 𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)
+ inf

𝛾𝑁+1 |1:𝑁 ∈K
𝜑

(∫ (∫
𝑐𝑁+1 d𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)}
≤ inf

𝛾1:𝑁 ∈C(𝜋1:𝑁 ,𝜈1:𝑁 )

{ 𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)
+ inf

𝛾𝑁+1 |1:𝑁 ∈K

∫
𝜑

(∫
𝑐𝑁+1 d𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

}
.

Then, after checking that the integrands are indeed measurable,

inf
𝛾𝑁+1 |1:𝑁 ∈K

∫
𝜑

(∫
𝑐𝑁+1 d𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

=

∫
inf

𝛾𝑁+1 |1:𝑁 ∈C(𝜋𝑁+1,𝜈𝑁+1 |1:𝑁 (·|𝑦1:𝑁 ))
𝜑

(∫
𝑐𝑁+1 d𝛾𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

≤ 2𝜎2
∫

KL
(
𝜈𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

 𝜋𝑁+1
)
𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

= 2𝜎2
∫

KL
(
𝜈𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

 𝜋𝑁+1
)
𝜈1:𝑁 (d𝑦1:𝑁 ) ,

where we used the assumption. On the other hand, the inductive hypothesis is

inf
𝛾1:𝑁 ∈C(𝜋1:𝑁 ,𝜈1:𝑁 )

𝑁∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾1:𝑁 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)
≤ 2𝜎2 KL(𝜈1:𝑁 ∥ 𝜋1:𝑁 ) .

The chain rule for the KL divergence yields

KL(𝜈 ∥ 𝜋) = KL(𝜈1:𝑁 ∥ 𝜋1:𝑁 ) +
∫

KL
(
𝜈𝑁+1|1:𝑁 (· | 𝑦1:𝑁 )

 𝜋𝑁+1
)
𝜈1:𝑁 (d𝑦1:𝑁 ) .

Therefore, we have proven

inf
𝛾∈C(𝜋,𝜈)

𝑁+1∑︁
𝑖=1

𝜑

(∫
𝑐𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁+1, d𝑦1:𝑁+1)

)
≤ 2𝜎2 KL(𝜈 ∥ 𝜋) . □

The preceding proof is supposed to be a straightforward proof by induction, but it is
rather cumbersome to write out precisely.

As an application of the tensorization principle, we will examine the tensorization
properties of the T1 inequality.
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Example 1.1 (tensorization of T1). We will use the cost 𝑐𝑖 = d𝑖 , where d𝑖 is a lower
semicontinuous metric on X𝑖 , and we take the convex function 𝜑 (𝑥) B 𝑥2. Suppose
that for each 𝑖 ∈ [𝑁 ], the measure 𝜋𝑖 ∈ P(X) satisfies the T1 inequality

𝑊 2
1 (𝜈𝑖, 𝜋𝑖) ≤ 2𝜎2 KL(𝜈𝑖 ∥ 𝜋𝑖), ∀𝜈𝑖 ∈ P(X𝑖) .

Let 𝜋 B 𝜋1 ⊗ · · · ⊗ 𝜋𝑁 be the product measure and let 𝜈 ∈ P(X1 × · · · × X𝑁 ). Suppose
also that 𝛼1, . . . , 𝛼𝑁 > 0 are numbers with

∑𝑁
𝑖=1 𝛼

2
𝑖 = 1. Then, Marton’s tensorization

(Theorem 1.1) yields

2𝜎2 KL(𝜈 ∥ 𝜋) ≥
( 𝑁∑︁
𝑖=1

𝛼2
𝑖

)
inf

𝛾∈C(𝜋,𝜈)

𝑁∑︁
𝑖=1

(∫
d𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁 , d𝑦1:𝑁 )

)2

≥ inf
𝛾∈C(𝜋,𝜈)

(∫ 𝑁∑︁
𝑖=1

𝛼𝑖d𝑖 (𝑥𝑖, 𝑦𝑖) 𝛾 (d𝑥1:𝑁 , d𝑦1:𝑁 )
)2
,

where we used the Cauchy–Schwarz inequality. This is a T1 inequality for the weighted
distance d𝛼 (𝑥1:𝑁 , 𝑦1:𝑁 ) B

∑𝑁
𝑖=1 𝛼𝑖d𝑖 (𝑥𝑖, 𝑦𝑖).

Together with results from §1.2.3, this tensorization result is already powerful enough
to recover the bounded differences concentration inequality (see Exercise 1.3), but it is not
fully satisfactory as it yields a transport inequality for a weighted metric. On the other
hand, we recall that Marton’s argument shows that the T2 inequality does tensorize. This
is explored further in §1.3.

1.2 Concentration of measure
Here, we expand on the relationship between functional inequalities and concentration
of measure. Recall that we work on a Polish space (that is, a complete separable metric
space) (X, d) unless otherwise stated.

1.2.1 Equivalence between the mean and the median

Some statements regarding concentration are more easily phrased in terms of concentra-
tion around the median rather than around the mean. The following result shows that, up
to numerical constants, the mean and the median are equivalent. To state the result in
generality, we introduce the idea of an Orlicz norm.
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Definition 1.1 (Orlicz norm). If 𝜓 : [0,∞) → [0,∞) is a convex strictly increasing
function with𝜓 (0) = 0 and𝜓 (𝑥) → ∞ as 𝑥 → ∞, then it is an Orlicz function.

For a real-valued random variable 𝑋 , its Orlicz norm is defined to be

∥𝑋 ∥𝜓 B inf
{
𝑡 > 0

�� E𝜓 ( |𝑋 |
𝑡

)
≤ 1

}
.

Examples of Orlicz functions include𝜓 (𝑥) = 𝑥𝑝 for 𝑝 ≥ 1, for which the corresponding
Orlicz norm is the 𝐿𝑝 (P) norm, and𝜓2(𝑥) B exp(𝑥2) − 1 for which the Orlicz norm ∥𝑋 ∥𝜓2
captures the sub-Gaussianity of 𝑋 .

Lemma 1.1 (mean and median [Mil09]). Let 𝜓 be an Orlicz function and let 𝑋 be a
real-valued random variable. Then,

1
2 ∥𝑋 − E𝑋 ∥𝜓 ≤ ∥𝑋 − med𝑋 ∥𝜓 ≤ 3 ∥𝑋 − E𝑋 ∥𝜓 .

Proof. We can assume that 𝑋 is not constant; from the properties of Orlicz functions,
𝜓−1(𝑡) is well-defined for any 𝑡 > 0. Then,

∥𝑋 − E𝑋 ∥𝜓 ≤ ∥𝑋 − med𝑋 ∥𝜓 + ∥med𝑋 − E𝑋 ∥𝜓
= ∥𝑋 − med𝑋 ∥𝜓 + |med𝑋 − E𝑋 | ∥1∥𝜓
≤ ∥𝑋 − med𝑋 ∥𝜓 + E|𝑋 − med𝑋 | ∥1∥𝜓 .

Since

E𝜓
( |𝑋 − med𝑋 |
E|𝑋 − med𝑋 | ∥1∥𝜓

)
≥ 𝜓

( E|𝑋 − med𝑋 |
E|𝑋 − med𝑋 | ∥1∥𝜓

)
= 𝜓

( 1
∥1∥𝜓

)
= 1 ,

it implies E|𝑋 − med𝑋 | ∥1∥𝜓 ≤ ∥𝑋 − med𝑋 ∥𝜓 .
Next, assume that med𝑋 ≥ E𝑋 (or else replace 𝑋 by −𝑋 ). Then,

1
2 ≤ P{𝑋 ≥ med𝑋 } ≤ P{|𝑋 − E𝑋 | ≥ med𝑋 − E𝑋 }

≤ 1
𝜓 ((med𝑋 − E𝑋 )/∥𝑋 − E𝑋 ∥𝜓 )

,

so that
|med𝑋 − E𝑋 | ≤ 𝜓−1(2) ∥𝑋 − E𝑋 ∥𝜓 .

Therefore,
∥𝑋 − med𝑋 ∥𝜓 ≤ ∥𝑋 − E𝑋 ∥𝜓 + ∥E𝑋 − med𝑋 ∥𝜓 ≤

(
1 + ∥1∥𝜓 𝜓−1(2)

)
∥𝑋 − E𝑋 ∥𝜓 .

Note, however, that ∥1∥𝜓 = 1/𝜓−1(1). Since 𝜓 (𝜓−1(2)/2) ≤ 1 by convexity (and the
property𝜓 (0) = 0), it implies𝜓−1(2) ≤ 2𝜓−1(1), and we obtain the result. □

5



1.2.2 The Herbst argument

In this section, we specialize to the case where (X, d) is the Euclidean space R𝑑 .
To put it succinctly, the idea of the Herbst argument is to apply functional inequalities,

such as the Poincaré inequality or the log-Sobolev inequality, to the moment-generating
function of a 1-Lipschitz function 𝑓 : R𝑑 → R in order to deduce a concentration inequality
for 𝑓 . We illustrate this with the log-Sobolev inequality, which implies, for any 𝜆 ∈ R,

ent𝜋 exp(𝜆𝑓 ) ≤ 2𝐶LSI E𝜋
[𝜆 exp(𝜆𝑓 /2)

2 ∇𝑓
2]

=
𝐶LSI 𝜆

2

2 E𝜋 [exp(𝜆𝑓 ) ∥∇𝑓 ∥2]

≤ 𝐶LSI 𝜆
2

2 E𝜋 exp(𝜆𝑓 ) .
(1.1)

The next lemma shows how to apply this inequality.

Lemma 1.2 (Herbst argument). Suppose that a random variable 𝑋 satisfies

ent exp(𝜆𝑋 ) ≤ 𝜆2𝜎2

2 E exp(𝜆𝑋 ) for all 𝜆 ≥ 0 .

Then, it holds that

E exp{𝜆 (𝑋 − E𝑋 )} ≤ exp 𝜆2𝜎2

2 for all 𝜆 ≥ 0 .

In particular, via a standard Chernoff inequality,

P{𝑋 ≥ E𝑋 + 𝑡} ≤ exp
(
− 𝑡2

2𝜎2
)

for all 𝑡 ≥ 0 .

Proof. Let 𝜏 (𝜆) B 𝜆−1 lnE exp{𝜆 (𝑋 − E𝑋 )}. We leave it to the reader to check the
calculus identity

𝜏′(𝜆) = 1
𝜆2

ent exp(𝜆𝑋 )
E exp(𝜆𝑋 ) . (1.2)

Since 𝜏 (𝜆) → 0 as 𝜆 ↘ 0, the assumption of the lemma yields 𝜏 (𝜆) ≤ 𝜆𝜎2/2. □

The calculation in (1.1) shows that the assumption of the Herbst argument is satisfied
for all 1-Lipschitz functions 𝑓 , with𝜎2 = 𝐶LSI. Hence, we deduce a concentration inequality
for Lipschitz functions, which we formally state in the next theorem together with the
corresponding result under a Poincaré inequality.
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Theorem 1.2. Let 𝜋 ∈ P(R𝑑), and let 𝑓 : R𝑑 → R be a 1-Lipschitz function.

1. If 𝜋 satisfies a Poincaré inequality with constant 𝐶PI, then for all 𝑡 ≥ 0,

𝜋{𝑓 − E𝜋 𝑓 ≥ 𝑡} ≤ 3 exp
(
− 𝑡
√
𝐶PI

)
.

2. If 𝜋 satisfies a log-Sobolev inequality with constant 𝐶LSI, then for all 𝑡 ≥ 0,

𝜋{𝑓 − E𝜋 𝑓 ≥ 𝑡} ≤ exp
(
− 𝑡2

2𝐶LSI

)
.

The Poincaré case is left as Exercise 1.1.

1.2.3 Transport inequalities and concentration

Next, we show that a T1 transport inequality is equivalent to sub-Gaussian concentration
of Lipschitz functions, which was proven by Bobkov and Götze. The proof shows that in a
sense, the two statements are dual to each other.

Theorem 1.3 (Bobkov–Götze [BG99]). Let 𝜋 ∈ P1(X). The following are equivalent.

1. The function 𝑓 is 𝜎2-sub-Gaussian with respect to 𝜋 , in the sense that

E𝜋 exp{𝜆 (𝑓 − E𝜋 𝑓 )} ≤ exp 𝜆2𝜎2

2 for all 𝜆 ∈ R ,

for every 1-Lipschitz function 𝑓 : X → R.

2. The measure 𝜋 satisfies T1(𝜎2).

Proof. Let Lip1(X) denote the space of 1-Lipschitz and mean-zero functions onX. Lipschitz
concentration can be stated as

sup
𝜆∈R

sup
𝑓 ∈Lip1 (X)

{
ln
∫

exp(𝜆𝑓 ) d𝜋 − 𝜆2𝜎2

2

}
≤ 0 .

By Donsker–Varadhan duality, this is equivalent to

sup
𝜆∈R

sup
𝑓 ∈Lip1 (X)

sup
𝜈∈P(X)

{
𝜆

(∫
𝑓 d𝜈 −

∫
𝑓 d𝜋

)
− KL(𝜈 ∥ 𝜋) − 𝜆2𝜎2

2

}
≤ 0 ,
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where we recall that
∫
𝑓 d𝜋 = 0 for 𝑓 ∈ Lip1(X). If we first evaluate the supremum over

𝜆 ∈ R, then we obtain the statement

sup
𝑓 ∈Lip1 (X)

sup
𝜈∈P(X)

{ 1
2𝜎2

(∫
𝑓 d𝜈 −

∫
𝑓 d𝜋

)2
− KL(𝜈 ∥ 𝜋)

}
≤ 0 ,

If we next evaluate the supremum over functions 𝑓 ∈ Lip1(X) using the Kantorovich
duality formula for𝑊1, we obtain

sup
𝜈∈P(X)

{𝑊 2
1 (𝜈, 𝜋)
2𝜎2 − KL(𝜈 ∥ 𝜋)

}
≤ 0 ,

which is the T1 inequality. □

Using the fact that the𝑊1 distance for the trivial metric d(𝑥,𝑦) = 1{𝑥 ≠ 𝑦} coincides
with the TV distance2, the Bobkov–Götze theorem implies that two classical inequalities in
probability theory, Hoeffding’s inequality and Pinsker’s inequality, are in fact equivalent
to each other (see Exercise 1.2).

Although the T1 inequality implies sub-Gaussian concentration for all Lipschitz func-
tions, it is in fact equivalent to sub-Gaussian concentration of a single function, the
distance function d(·, 𝑥0) for some 𝑥0 ∈ X. The next theorem is not used often because
the quantitative dependence of the equivalence can be crude, but it is worth knowing. A
proof can be found in, e.g., [BV05].

Theorem 1.4. Let 𝜋 ∈ P1(X) and 𝑥0 ∈ X. The following are equivalent:

1. 𝜋 satisfies a T1 inequality.

2. There exists 𝑐 > 0 such that E𝜋 exp(𝑐 d(·, 𝑥0)2) < ∞.

Transport inequalities offer a flexible and powerful method for characterizing and
proving concentration inequalities, as we will see in the next section. Before doing so,
however, we wish to also demonstrate how concentration of measure, formulated via
blow-up of sets, can be deduced directly from a T1 inequality.

Suppose that T1(𝜎2) holds, i.e.,

𝑊 2
1 (𝜇, 𝜋) ≤ 2𝜎2 KL(𝜇 ∥ 𝜋) for all 𝜇 ∈ P1(X) , 𝜇 ≪ 𝜋 .

2One has to be slightly careful since for the trivial metric, (X, d) is usually not separable.
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For any disjoint sets 𝐴, 𝐵, with 𝜋 (𝐴) 𝜋 (𝐵) > 0, if we let 𝜋 (· | 𝐴) (resp. 𝜋 (· | 𝐵)) denote
the distribution 𝜋 conditioned on 𝐴 (resp. 𝐵), then

d(𝐴, 𝐵) ≤𝑊1
(
𝜋 (· | 𝐴), 𝜋 (· | 𝐵)

)
≤𝑊1

(
𝜋 (· | 𝐴), 𝜋

)
+𝑊1

(
𝜋 (· | 𝐵), 𝜋

)
≤
√︃

2𝜎2 KL
(
𝜋 (· | 𝐴)

 𝜋 ) +√︃
2𝜎2 KL

(
𝜋 (· | 𝐵)

 𝜋 ) .
However,

KL
(
𝜋 (· | 𝐴)

 𝜋 ) = ∫
𝐴

𝜋 (d𝑥)
𝜋 (𝐴) ln 1

𝜋 (𝐴) = ln 1
𝜋 (𝐴) ,

so that

d(𝐴, 𝐵) ≤
√︂

2𝜎2 ln 1
𝜋 (𝐴) +

√︂
2𝜎2 ln 1

𝜋 (𝐵) .

In particular, if we take 𝐵 = (𝐴𝜀)c where 𝜋 (𝐴) ≥ 1
2 , then d(𝐴, 𝐵) ≥ 𝜀. Hence, for all

𝜀 ≥ 2
√

2𝜎2 ln 2, it holds that 𝜀
2 ≤

√︃
2𝜎2 ln 1

𝜋 (𝐵) , or

𝜋
(
(𝐴𝜀)c

)
≤ exp

(
− 𝜀2

8𝜎2
)

for all 𝜀 ≥
√

8 ln 2𝜎 . (1.3)

1.3 Tensorization and Gozlan’s theorem
Our goal is now to investigate the relationship between concentration and tensorization.
Although results like the Bobkov–Götze theorem (Theorem 1.3) provide us with powerful
tools to establish concentration results, so far there is nothing inherently high-dimensional
about these phenomena.

Indeed, to discuss dimensionality, we should move to the product space X𝑁 and ask
when concentration results can hold independently of 𝑁 . If such a statement holds, then
the concentration inequality typically becomes stronger3 as 𝑁 becomes larger.

For instance, whenX = R, then we know that the Poincaré and log-Sobolev inequalities
both tensorize: if they hold for 𝜋 ∈ P(R) with a constant𝐶 , then they also hold for 𝜋⊗𝑁 ∈
P(R𝑁 ) with the same constant 𝐶 . Since these inequalities imply powerful concentration
results (Theorem 1.2), they yield examples of genuinely high-dimensional concentration.

For transport inequalities, the tensorization for the T1 inequality is unsatisfactory in
the sense that once we equip X𝑁 with the product metric d(𝑥1:𝑁 , 𝑥

′
1:𝑁 )

2 B
∑𝑁

𝑖=1 d(𝑥𝑖, 𝑥′𝑖 )
2,

3Here, the word “stronger” is not precisely defined but it means something akin to “more useful” or
“produces more surprising consequences”.
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the validity of T1(𝐶) for 𝜋 ∈ P(X) does not imply the validity of T1(𝐶) for 𝜋⊗𝑁 ∈ P(X𝑁 )
with the same constant 𝐶 . In fact, from Example 1.1, we expect that the T1 constant for
𝜋⊗𝑁 can grow as

√
𝑁 . On the other hand, Marton’s tensorization (Theorem 1.1) shows

that the T2 inequality tensorizes. Since the T2 inequality on X𝑁 implies the T1 inequality
on X𝑁 (trivially), it in turn implies high-dimensional concentration via the Bobkov–Götze
equivalence (Theorem 1.3).

In this section, we prove the surprising fact that high-dimensional concentration is
actually equivalent to the T2 inequality, in a sense that we shall make precise shortly.

First, we need a few preliminary results, which we shall not prove. The first one is a
straightforward technical lemma (see Exercise 1.4).

Lemma 1.3. Let 𝜋 ∈ P2(X).

1. The mapping (𝑥1, . . . , 𝑥𝑁 ) ↦→𝑊2(𝑁 −1 ∑𝑁
𝑖=1 𝛿𝑥𝑖 , 𝜋) is 𝑁 −1/2-Lipschitz.

2. (Wasserstein law of large numbers) Suppose that (𝑋𝑖)∞𝑖=1
i.i.d.∼ 𝜋 , and that for some

𝑥0 ∈ X and some 𝜀 > 0, it holds that E[d(𝑥0, 𝑋1)2+𝜀] < ∞. Then,

E𝑊2
( 1
𝑁

𝑁∑︁
𝑖=1

𝛿𝑋𝑖
, 𝜋

)
→ 0 as 𝑁 → ∞ .

The second result, Sanov’s theorem, is a foundational theorem from large deviations.
Although Sanov’s theorem is of fundamental importance in its own right, it would take
us too far afield to develop large deviations theory here, so we invoke it as a black box.

Theorem 1.5 (Sanov’s theorem). Let (𝑋𝑖)∞𝑖=1
i.i.d.∼ 𝜋 and let 𝜋𝑁 B 𝑁 −1 ∑𝑁

𝑖=1 𝛿𝑋𝑖
denote

the empirical measure. Then, for any Borel set 𝐴 ⊆ P(X), it holds that

− inf
int𝐴

KL(· ∥ 𝜋) ≤ lim inf
𝑁→∞

1
𝑁

lnP{𝜋𝑁 ∈ 𝐴}

≤ lim sup
𝑁→∞

1
𝑁

lnP{𝜋𝑁 ∈ 𝐴} ≤ − inf
𝐴

KL(· ∥ 𝜋) .

We are now ready to establish the equivalence.

Theorem 1.6 (Gozlan). The measure 𝜋 ∈ P2(X) satisfies T2(𝜎2) if and only if for
all 𝑁 ∈ N+ and all 1-Lipschitz 𝑓 : X𝑁 → R, the centered function 𝑓 − E𝜋⊗𝑁 𝑓 is
𝜎2-sub-Gaussian under 𝜋⊗𝑁 .
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Proof. It remains to prove the converse implication. Fix 𝑡 > 0 and apply the assumption
statement to the 𝑁 −1/2-Lipschitz function (𝑥1, . . . , 𝑥𝑁 ) ↦→𝑊2(𝑁 −1 ∑𝑁

𝑖=1 𝛿𝑥𝑖 , 𝜋). It implies

P{𝑊2(𝜋𝑁 , 𝜋) > 𝑡} ≤ exp
(
−𝑁 {𝑡 − E𝑊2(𝜋𝑁 , 𝜋)}2

2𝜎2

)
,

where 𝜋𝑁 B 𝑁 −1 ∑𝑁
𝑖=1 𝛿𝑋𝑖

, with (𝑋𝑖)𝑖∈N+
i.i.d.∼ 𝜋 . On the other hand, the lower semicon-

tinuity of 𝑊2 implies that {𝜈 ∈ P(X) | 𝑊2(𝜇, 𝜈) > 𝑡} is open. By Sanov’s theorem
(Theorem 1.5), we obtain

− inf{KL(𝜈 ∥ 𝜋) |𝑊2(𝜈, 𝜋) > 𝑡} ≤ lim inf
𝑁→∞

1
𝑁

lnP{𝑊2(𝜋𝑁 , 𝜋) > 𝑡}

≤ − lim sup
𝑁→∞

{𝑡 − E𝑊2(𝜋𝑁 , 𝜋)}2

2𝜎2 = − 𝑡2

2𝜎2 ,

where the last inequality comes from the Wasserstein law of large numbers (our assump-
tion implies that 𝜋 has sub-Gaussian tails, which in particular means E[d(𝑥,𝑋1)𝑝] < ∞
for any 𝑥 ∈ X and any 𝑝 ≥ 1).

We have proven that𝑊2(𝜈, 𝜋) > 𝑡 implies KL(𝜈 ∥ 𝜋) ≥ 𝑡2/(2𝜎2), which is seen to be
equivalent to the T2 inequality. □

Observe in particular that this theorem implies the Otto–Villani theorem: due to
tensorization and the Herbst argument (Lemma 1.2), a log-Sobolev inequality implies
high-dimensional sub-Gaussian concentration of Lipschitz functions, which by Gözlan’s
theorem is equivalent to a T2 inequality.

1.4 Metric measure spaces
1.4.1 Metric geometry

We now depart from the setting of smooth manifolds and consider metric spaces (X, d).

Definition 1.2 (length). Given a continuous curve 𝛾 : [0, 1] → X, we define the length
of 𝛾 to be

len𝛾 B sup
{ 𝑛∑︁
𝑖=1

d
(
𝛾 (𝑡𝑖), 𝛾 (𝑡𝑖−1)

) ��� 0 ≤ 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 ≤ 1
}
.

We can check that this definition agrees with the usual notion of length on R𝑑 . By the
triangle inequality, if 𝛾 (0) = 𝑝 and 𝛾 (1) = 𝑞, then d(𝑝, 𝑞) ≤ len𝛾 .
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Definition 1.3. We say that (X, d) is a geodesic space if for all 𝑝, 𝑞 ∈ X, there is a
constant-speed curve 𝛾 : [0, 1] → X such that 𝛾 (0) = 𝑝 , 𝛾 (1) = 𝑞, and d(𝑝, 𝑞) = len𝛾 .
Here, “constant speed” implies that for all 𝑠, 𝑡 ∈ [0, 1],

d(𝛾 (𝑠), 𝛾 (𝑡)) = |𝑠 − 𝑡 | d(𝑝, 𝑞) .

The curve 𝛾 is called the geodesic joining 𝑝 to 𝑞.

Geodesic spaces are a broader class of spaces than Riemannian manifolds. In particular,
they do not have to have a smooth structure, and they can have “kinks”. For example,
the Wasserstein space (P2,ac(R𝑑),𝑊2) is not truly a Riemannian manifold, as it is infinite-
dimensional (along with other issues, e.g., it is not locally homeomorphic to a Hilbert
space), but it is a geodesic space. The study of geodesic spaces is called metric geometry,
and a comprehensive treatment of this subject can be found in [BBI01].

There is a way to generalize the idea of a uniform bound on the sectional curvature to
the setting of geodesic spaces. It is based on comparing the sizes of triangles in X with
the corresponding sizes in a model space.

Definition 1.4 (model space). Let 𝜅 ∈ R. The model spaceM2
𝜅 of curvature 𝜅 is the

standard two-dimensional Riemannian manifold with constant sectional curvature
equal to 𝜅, that is:

1. the hyperbolic plane H2 of curvature 𝜅 (that is, the usual hyperbolic plane but
with metric rescaled by 1/

√
−𝜅) if 𝜅 < 0;

2. the Euclidean plane R2 if 𝜅 = 0;

3. the rescaled sphere S2/
√
𝜅 if 𝜅 > 0.

Definition 1.5 (Alexandrov curvature). Let (X, d) be a geodesic space and let 𝜅 ∈ R.
We say that (X, d) has Alexandrov curvature bounded from below by 𝜅 (resp.
from above by 𝜅) if the following holds. For any triple of points 𝑎, 𝑏, 𝑐 ∈ X, and any
corresponding triple of points 𝑎, 𝑏, 𝑐 in the model spaceM2

𝜅 such that

d(𝑎, 𝑏) = d(𝑎, 𝑏) , d(𝑎, 𝑐) = d(𝑎, 𝑐) , d(𝑏, 𝑐) = d(𝑏, 𝑐) ,

for any 𝑝 ∈ X in the geodesic joining 𝑎 to 𝑐 , and any 𝑝 ∈ M2
𝜅 in the geodesic joining 𝑎

to 𝑐 with d(𝑎, 𝑝) = d(𝑎, 𝑝), it holds that d(𝑏, 𝑝) ≥ d(𝑏, 𝑝) (resp. d(𝑏, 𝑝) ≤ d(𝑏, 𝑝)).
If such a curvature bound holds, then (X, d) is called an Alexandrov space.
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Thus, triangles in X are thicker (resp. thinner) than their counterparts in M2
𝜅 . The

advantage of this definition is that it can be stated using only the metric (and geodesic)
structure of X. For the case when 𝜅 = 0, there is another useful reformulation.

Proposition 1.1. Let (X, d) be a geodesic space. Then, (X, d) has Alexandrov curvature
bounded below by 0 (resp. bounded above by 0) if and only if the following holds. For
any constant-speed geodesic (𝑝𝑡 )𝑡∈[0,1] in X, any 𝑞 ∈ X, and any 𝑡 ∈ [0, 1],

d(𝑝𝑡 , 𝑞)2 ≥ (resp. ≤) (1 − 𝑡) d(𝑝0, 𝑞)2 + 𝑡 d(𝑝1, 𝑞)2 − 𝑡 (1 − 𝑡) d(𝑝0, 𝑝1)2 .

We saw in Chapter 1 (see exercises) that (P2,ac(R𝑑),𝑊2) has non-negative Alexandrov
curvature. One can show that a Riemannian manifold has section curvature bounded by
𝜅 if and only if the corresponding Alexandrov curvature bound holds.

Alexandrov curvature bounds enforce enough regularity that a satisfactory infinites-
imal theory can be developed for Alexandrov spaces. For instance, one can define the
notion of a tangent cone4, and in the case of the Wasserstein space, its tangent cone
coincides with the definition of the tangent space that we gave in Section 1.3; see [AGS08,
§12.4] for details.

1.4.2 The Lott–Sturm–Villani theory of synthetic Ricci curvature

If (X, d) is a geodesic space, then (P2(X),𝑊2) is also a geodesic space, which is sufficient
to define displacement convexity. Hence, we can work in the setting of metric geometry,
together with the additional data of a reference measure 𝜋 ∈ P(X). In general, technical
issues arise when geodesics on X can “branch” off into multiple geodesics, and so we ought
to impose a mild non-branching assumption; however, we will ignore this technicality.
We can then formulate the following definition.

Definition 1.6. Let (X, d, 𝜋) be a metric measure space, where (X, d) is a geodesic
space. Then, we say that (X, d, 𝜋) satisfies the CD(𝛼,∞) condition if for all measures
𝜇0, 𝜇1 ∈ P2(X), there exists a constant-speed geodesic (𝜇𝑡 )𝑡∈[0,1] joining 𝜇0 to 𝜇1 with

KL(𝜇𝑡 ∥ 𝜋) ≤ (1 − 𝑡) KL(𝜇0 ∥ 𝜋) + 𝑡 KL(𝜇1 ∥ 𝜋) −
𝛼 𝑡 (1 − 𝑡)

2 𝑊 2
2 (𝜇0, 𝜇1) ,

for all 𝑡 ∈ [0, 1].

4In general, this is only a cone and not a vector space, because of the possibility of kinks.
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We now pause to discuss the motivation behind the introduction of this definition.
Unlike the statement Ric ⪰ 𝛼 , which only makes sense on Riemannian manifolds (and
hence requires a smooth structure), the above definition makes sense on a wider class
of spaces, including non-smooth spaces. The question of to what extent the concept of
curvature makes sense on non-smooth spaces is perhaps an interesting question in its
own right, but it also arises even when one is solely interested in smooth Riemannian
manifolds. Suppose, for instance, that we have a sequence of Riemannian manifolds
(M𝑘)𝑘∈N that is converging in some sense to a limit space M; what properties of the
sequence are preserved in the limit?

If we want to pass to the limit in the condition RicM𝑘 ⪰ 𝛼 , then typically we would
need the Ricci curvature tensors RicM𝑘 to be converging in the limit. Since curvature
involves two derivatives of the metric, this holds if the sequence converges in a C2 sense.
However, for some applications, this notion of convergence is too strong. Instead, it is
common to work with Gromov–Hausdorff convergence, which is based on a notion
of distance between metric spaces. More specifically, it metrizes the space5 of compact
metric spaces. Moreover, this notion of convergence is weak enough that it admits a
useful compactness theorems.

As a consequence of the compactness theorem, a sequence of Riemannian manifolds
(M𝑘)𝑘∈N with a uniform upper bound on the diameter and a uniform lower bound on
the Ricci curvature converges to a limit space M in the Gromov–Hausdorff topology.
However, in this topology, the space of Riemannian manifolds with diameter ≤ 𝐷 and
with Ric ⪰ 𝛼 is not closed; the limit space M is not necessarily a Riemannian manifold.
So what then is M? It is a geodesic space, but understanding whether it can be said to
satisfy “RicM ⪰ 𝛼” requires developing a theory of Ricci curvature lower bounds that
makes sense on such spaces.

An analogy is in order. For a function 𝑓 : R𝑑 → R, convexity can be described via the
Hessian, ∇2𝑓 ⪰ 0, or via the property

𝑓
(
(1 − 𝑡) 𝑥 + 𝑡 𝑦

)
≤ (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦) , for all 𝑥,𝑦 ∈ R𝑑 , 𝑡 ∈ [0, 1] .

The former definition only makes sense for C2 functions, whereas the latter definition
makes sense for any function. The former is called the analytic definition, whereas the
definition is called synthetic definition. Although the analytic definition is often more
intuitive, the synthetic definition is more general and more useful for technical arguments.
For example, from the synthetic definition is apparent that convexity is preserved under
pointwise convergence, whereas from the analytic definition one needs the stronger
notion of C2 convergence.

5The space of all compact metric spaces is too large to be a set (it is a proper class). However, if we
choose one representative from each isometry class of metric spaces, then this is a bona fide set.
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From this perspective, the definition of Alexandrov curvature bounds in Section 1.4.1
is the synthetic counterpart to sectional curvature bounds from Riemannian geometry.
However, as we have already seen, sectional curvature bounds are often too strong for
geometric purposes, as we can obtain a wide array of geometric consequences (spectral
gap estimates, log-Sobolev and Sobolev inequalities, diameter bounds, volume growth
estimates, heat kernel bounds, etc.) from Ricci curvature lower bounds. Here, the curvature-
dimension condition provides us with synthetic Ricci curvature lower bounds.

By deducing geometric facts from the CD(𝛼,∞) condition, one shows that spaces
satisfying the CD(𝛼,∞) condition, despite the lack of smoothness, enjoy many of the
good properties shared by Riemannian manifolds satisfying Ric ⪰ 𝛼 . To complete the
program described in this section, we should ask whether synthetic Ricci curvature lower
bounds are preserved under a weak notion of convergence. The correct notion to consider
is an extension of Gromov–Hausdorff convergence to take into account the reference
measure, called measured Gromov–Hausdorff convergence.

Definition 1.7. Let (X𝑘 , d𝑘 , 𝜋𝑘)𝑘∈N be a sequence of compact metric measure spaces.
We say that the sequence converges to (X, d, 𝜋) in the measured Gromov–Hausdorff
topology if there is a sequence (𝑓𝑘)𝑘∈N of maps 𝑓𝑘 : X𝑘 → X with:

1. sup𝑥𝑘 ,𝑥 ′𝑘∈X𝑘
|d(𝑓𝑘 (𝑥𝑘), 𝑓𝑘 (𝑥′𝑘)) − d𝑘 (𝑥𝑘 , 𝑥′𝑘) | = 𝑜 (1);

2. sup𝑥∈X inf𝑥𝑘∈X𝑘
|d(𝑓𝑘 (𝑥𝑘), 𝑥) | = 𝑜 (1);

3. (𝑓𝑘)#𝜋𝑘 → 𝜋 weakly.

The following stability result is a key achievement of the theory of synthetic Ricci
curvature, arrived at simultaneously by Lott and Villani [LV09] and Sturm [Stu06a; Stu06b].

Theorem 1.7 (stability of synthetic Ricci curvature bounds). Let (X𝑘 , d𝑘 , 𝜋𝑘)𝑘∈N →
(X, d, 𝜋) in the measured Gromov–Hausdorff topology. Let 𝛼 ∈ R and 𝑑 ≥ 1. If each
(X𝑘 , d𝑘 , 𝜋𝑘) satisfies CD(𝛼,𝑑), then so does (X, d, 𝜋).

Note that we have not defined the CD(𝛼,𝑑) condition for 𝑑 < ∞ in this context; we
refer readers to the original sources for the full treatment.

1.4.3 Discussion

A remark on the settings of the results. Throughout this chapter, we have not been
careful to state in what generality the various results hold. Certainly the results hold
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on the Euclidean space R𝑑 , and with appropriate modifications they continue to hold on
weighted Riemannian manifolds.

The results based on optimal transport (e.g., results on transport inequalities) typically
hold on general Polish spaces. The theory of synthetic Ricci curvature makes sense on
geodesic spaces (with mild regularity conditions).

The results based on Markov semigroup theory only require an abstract space X on
which there is a Markov semigroup (𝑃𝑡 )𝑡≥0 satisfying various properties (e.g., a chain rule
for the carré du champ). Although this usually arises from a diffusion on a Riemannian
manifold, one can also start with a Dirichlet energy functional on a metric space and
develop a theory of non-smooth analysis. See [AGS15] for further discussion on how the
two approaches may be reconciled in a quite general setting.

Comparison between the two approaches. The discussion thus far has been rather
abstract, and it may be difficult to grasp how the two main approaches (Bakry–Émery
theory and optimal transport) can capture geometric information such as the curvature.
Here, we will briefly provide some intuition for this connection following [Vil09, §14].

Starting with the optimal transport perspective, fix 𝑥0 ∈ M and a mapping ∇𝜓 . For
𝑡 ≥ 0, let 𝑥𝑡 B exp(𝑡 ∇𝜓 (𝑥0)), and let 𝛿 > 0. If 𝑒1, . . . , 𝑒𝑑 be an orthonormal basis of 𝑇𝑥0M,
in an abuse of notation let 𝑥0 + 𝛿𝑒𝑖 denote a point obtained by travelling along a curve
emanating from 𝑥0 with velocity 𝑒𝑖 for time 𝛿 . The points (𝑥0 + 𝛿𝑒𝑖)𝑑𝑖=1 form the vertices
of a parallelepiped 𝐴𝛿

0. On the other hand, for 𝑡 > 0, we can consider pushing the point
𝑥0 + 𝛿𝑒𝑖 along the exponential map to obtain a new point exp𝑥0+𝛿𝑒𝑖 (𝑡 ∇𝜓 (𝑥0 + 𝛿𝑒𝑖)). These
points form the vertices of a new parallelepiped 𝐴𝛿

𝑡 .
In terms of measures, let 𝜇𝛿0 denote the uniform measure on𝐴𝛿

0 , and 𝜇𝛿𝑡 = exp(𝑡 ∇𝜓 )#𝜇
𝛿
0 ,

so that 𝜇𝛿𝑡 is approximately the uniform measure on 𝐴𝛿
𝑡 . Then, the displacement convexity

of entropy states that

ln 1
𝔪(𝐴𝛿

𝑡 )
≤ (1 − 𝑡) ln 1

𝔪(𝐴𝛿
0)

+ 𝑡 ln 1
𝔪(𝐴𝛿

1)
+ 𝑜 (1)

as 𝛿 ↘ 0. On the other hand, the infinitesimal change in volume is governed by the
Jacobian determinant

𝔪(𝐴𝛿
𝑡 )

𝔪(𝐴𝛿
0)

→ J (𝑡, 𝑥) B det 𝐽 (𝑡, 𝑥) ,

where 𝐽𝑖 (𝑡, 𝑥) B 𝜕𝛿 |𝛿=0 exp𝑥0+𝛿𝑒𝑖 (𝑡 ∇𝜓 (𝑥0+𝛿𝑒𝑖)). Hence, the displacement convexity yields

ln J (𝑡, 𝑥) ≥ (1 − 𝑡) ln J (0, 𝑥) + 𝑡 ln J (1, 𝑥) . (1.4)
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In Euclidean space, we have the formula J (𝑡, 𝑥) = |det(𝐼𝑑 + 𝑡 ∇2𝜓 (𝑥)) |, but the situation
is more complicated on a Riemannian manifold because there is also a change of volume
due to curvature. To account for this, one can derive an equation for 𝐽 , known as the
Jacobi equation:

¥𝐽 (𝑡, 𝑥) + 𝑅(𝑡, 𝑥) 𝐽 (𝑡, 𝑥) = 0 ,

where𝑅(𝑡, 𝑥) B Riem𝑥𝑡 ( ¤𝑥𝑡 , ·, ¤𝑥𝑡 , ·). By taking the trace and performing some computations,
we arrive at

𝜕2
𝑡 J (𝑡, 𝑥) = −∥ 𝐽−1(𝑡, 𝑥) ¤𝐽 (𝑡, 𝑥)∥2

HS − Ric𝑥𝑡 ( ¤𝑥𝑡 , ¤𝑥𝑡 ) . (1.5)

By comparing (1.4) and (1.5), we now obtain a hint as to how optimal transport captures
curvature: displacement convexity of the entropy is related to concavity of the Jacobian
determinant, which in turn is tied to Ricci curvature lower bounds.

The calculations above are performed with the Lagrangian description of fluid flows,
as they follow a single trajectory 𝑡 ↦→ 𝑥𝑡 . If we switch to the Eulerian perspective,
then we are led to define the vector field ∇𝜓𝑡 as follows: ∇𝜓𝑡 (𝑥) is the velocity ¤𝑥𝑡 of
the curve 𝑡 ↦→ exp𝑥 (𝑡 ∇𝜓 (𝑥)) at time 𝑡 . By reformulating the Jacobi equation in the
Eulerian perspective, we arrive precisely at the Bochner identity for𝜓 which underlies
the curvature-dimension condition from the Bakry–Émery perspective. In this sense, the
two approaches to curvature are dual.

1.5 Exercises
Exercise 1.1 (Herbst argument). Consider the Herbst argument from §1.2.2.

1. Verify the calculus identity (1.2) in the Herbst argument.

2. Suppose that 𝑋 is a real-valued random variable satisfying the following condition:
for all 𝜆 ≥ 0, it holds that

var exp 𝜆𝑋

2 ≤ 𝜆2𝜎2

4 E exp(𝜆𝑋 ) .

Let 𝜂 (𝜆) B E exp(𝜆𝑋 ) and deduce an inequality for 𝜂 (𝜆) in terms of 𝜂 (𝜆/2). Solve
this recursion to prove that for 𝜆 < 2/𝜎 ,

E exp{𝜆 (𝑋 − E𝑋 )} ≤ 2 + 𝜆𝜎

2 − 𝜆𝜎
.

3. Prove the Poincaré case of Theorem 1.2.
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Exercise 1.2 (Hoeffding’s lemma and Pinsker’s inequality). This exercise establishes the
equivalence of Pinsker’s inequality with a statement about sub-Gaussian concentration.

1. Hoeffding’s lemma states that for any mean-zero random variable 𝑋 with values
in [𝑎, 𝑏] a.s., it holds that 𝑋 is (𝑏 − 𝑎)2/4-sub-Gaussian. Prove this lemma as follows.
For 𝜆 ∈ R, let𝜓 (𝜆) B lnE exp(𝜆𝑋 ). Differentiate𝜓 twice and show that𝜓 ′′(𝜆) can
be interpreted as the variance of a random variable under a change of measure and
hence𝜓 ′′(𝜆) ≤ (𝑏 − 𝑎)2/4.

2. Pinsker’s inequality states that for any two probability measures 𝜇 and 𝜈 on the
same space, ∥𝜇 − 𝜈 ∥2

TV ≤ 1
2 KL(𝜇 ∥ 𝜈). Prove this inequality as follows. First, by the

data-processing inequality, for any event 𝐴,

KL(𝜇 ∥ 𝜈) ≥ KL
(
(1𝐴)#𝜇

 (1𝐴)#𝜈
)
= KL

(
Bernoulli(𝜇 (𝐴))

 Bernoulli(𝜈 (𝐴))) .
Next, for any 𝑞 ∈ (0, 1), differentiate 𝑝 ↦→ 𝑘𝑞 (𝑝) B KL(Bernoulli(𝑝) ∥ Bernoulli(𝑞))
twice to show that 𝑘𝑞 is 4-strongly convex, and deduce that 𝑘𝑞 (𝑝) ≥ 2 |𝑝 − 𝑞 |2.
Finally, take the supremum over events 𝐴.

3. Apply the Bobkov–Götze theorem (Theorem 1.3) to show that Hoeffding’s lemma
and Pinsker’s inequality are equivalent to each other.

Exercise 1.3 (bounded differences inequality). This exercise establishes a broadly useful
concentration inequality.

1. Prove the Azuma–Hoeffding inequality: let (ℱ𝑖)𝑛𝑖=0 be a filtration, let (Δ𝑖)𝑛𝑖=1 be
a martingale difference sequence (that is, Δ𝑖 is ℱ𝑖-measurable and E[Δ𝑖 | ℱ𝑖−1] = 0),
and assume that for each 𝑖 there exist ℱ𝑖−1-measurable random variables 𝐴𝑖 and 𝐵𝑖
such that 𝐴𝑖 ≤ Δ𝑖 ≤ 𝐵𝑖 a.s. Then,

∑𝑛
𝑖=1 Δ𝑖 is

∑𝑛
𝑖=1∥𝐵𝑖 −𝐴𝑖 ∥2

𝐿∞ (P)/4-sub-Gaussian.
Hint: Apply Hoeffding’s lemma from Exercise 1.2 conditionally.

2. Use this to prove the bounded differences inequality: if 𝑋1, . . . , 𝑋𝑛 are indepen-
dent, then 𝑓 (𝑋1, . . . , 𝑋𝑛) − E 𝑓 (𝑋1, . . . , 𝑋𝑛) is

∑𝑛
𝑖=1 ∥𝐷𝑖 𝑓 ∥2

sup/4-sub-Gaussian.
Hint: Recall the proof of the Efron–Stein inequality.

3. Next, apply Marton’s tensorization (Theorem 1.1) to Pinsker’s inequality from Ex-
ercise 1.2 (see Example 1.1) to obtain a transport inequality for the product space
X𝑁 . Using the Bobkov–Götze equivalence (Theorem 1.3), give a second proof of the
bounded differences inequality.

Exercise 1.4 (a loose end in Gozlan’s theorem). Prove the first statement of Lemma 1.3.
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Exercise 1.5 (inequivalence between PI and T1). We show that the Poincaré inequality
and the T1 inequality are incomparable, i.e., one does not necessarily imply the other.

1. Use Theorem 1.4 to provide an example of a measure 𝜋 ∈ P1(R𝑑) which satisfies a
T1 inequality but which does not satisfy a Poincaré inequality.
Hint: Explain why a Poincaré inequality necessarily requires the support of the
measure to be connected.

2. For the converse direction, let 𝜇 be the exponential distribution on R, so that the
density is 𝜇 (𝑥) = exp(−𝑥) 1{𝑥 > 0}. Let 𝑓 : R+ → R; we may assume that 𝑓 (0) = 0.
Now apply the identity 𝑓 (𝑥)2 = 2

∫ 𝑥

0 𝑓 (𝑠) 𝑓 ′(𝑠) d𝑠 to the integral
∫
𝑓 2 d𝜇 and prove

that 𝜇 satisfies PI(4). Explain why 𝜇 cannot satisfy a T1 inequality.
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