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Abstract

The primary contribution of this thesis is to advance the theory of complexity
for sampling from a continuous probability density over Rd. Some highlights
include: a new analysis of the proximal sampler, taking inspiration from the
proximal point algorithm in optimization; an improved and sharp analysis of the
Metropolis-adjusted Langevin algorithm, yielding new state-of-the-art guarantees
for high-accuracy log-concave sampling; the first lower bounds for the complexity of
log-concave sampling; an analysis of mirror Langevin Monte Carlo for constrained
sampling; and the development of a theory of approximate first-order stationarity
in non-log-concave sampling.

We further illustrate the main tools in this work—diffusions and Wasserstein
gradient flows—through applications to functional inequalities, the entropic bar-
rier, Wasserstein barycenters, variational inference, and diffusion models.
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Chapter 1

Introduction

The primary aim of this thesis is to study the complexity of the task of sampling :
given a target probability density π ∝ exp(−V ) on Rd, how expensive is it to
generate random variables whose law is close to π in suitable metrics? Since the
dawn of the Markov chain Monte Carlo (MCMC) revolution [GS90], sampling
has been the algorithmic cornerstone of Bayesian inference and scientific comput-
ing [RC04; Liu08; Gel+14]. How do we design fast samplers, and how can we
develop a theory of complexity for this task?

The key to both of these questions lies in the remarkable connections between
sampling and the mature field of optimization. Towards the question of algorithm
design, there is a striking parallel between the gradient flow

Ẋt = −∇V (Xt) ,

the canonical continuous-time dynamics for obtaining a minimizer of V , and the
Langevin diffusion

dXt = −∇V (Xt) dt+
√

2 dBt , (1.1)

where (Bt)t≥0 is a standard Brownian motion, which converges in law to its
stationary distribution π ∝ exp(−V ). This suggests a first connection between
the two fields in which sampling can be viewed as the “probabilistic counterpart”
to optimization. Whereas in optimization we seek global minimizers of V , in
sampling we must sample from π ∝ exp(−V ), thereby exploring regions in which
V is small, and perhaps unsurprisingly the dynamics (1.1) for sampling is a noisy
version of the gradient flow for optimization.

There is, however, a more profound link, due to the seminal work of [JKO98].
In this perspective, if we do not track the noisy evolution of the stochastic process
(Xt)t≥0 but instead focus our attention on the evolution of the marginal law µt :=

law(Xt), then we obtain dynamics on the space P(Rd) of probability measures over
Rd. Developing a calculus for understanding dynamics on this space introduces
many new technical difficulties, but the price we pay for the increased level

11



12 CHAPTER 1. INTRODUCTION

of abstraction is richly compensated by a deep and newfound intuition for the
Langevin diffusion. Namely, [JKO98] observed that once the space P(Rd) is
equipped with an appropriate geometric structure—the geometry arising from
the theory of optimal transport [Vil03]—the marginal law (µt)t≥0 of the Langevin
diffusion becomes a gradient flow for the Kullback–Leibler divergence KL(· ∥ π).
Thus, the Langevin diffusion is not merely a noisy variant of a gradient flow, but
is in fact exactly a gradient flow from the right perspective!

The motto of this viewpoint can be succinctly summarized as saying that
“sampling is optimization in the space of measures” [Wib18]. Besides its aesthetic
appeal, it has inspired novel analyses of the Langevin diffusion [DMM19] and
has given rise to a flurry of new samplers inspired by algorithms from convex
optimization; for example, in this thesis we study sampling counterparts of the
proximal point method (§4), Nesterov’s accelerated gradient method (§6), and
mirror descent (§8 and §9).

The second question we asked above was the problem of developing a theory of
complexity for sampling. Here too, we draw inspiration from optimization through
the celebrated oracle model of [NY83]. This model, adapted to the context of
sampling, measures the work exerted by an algorithm in terms of the number of
queries made to a first-order oracle for π. Given a query point x ∈ Rd, the oracle
returns V (x) − V (0) and ∇V (x). Note that this query model accommodates
applications such as Bayesian inference in which the normalization constant of π
is unknown, since the oracle outputs can be simulated without this knowledge.
Within this framework, the complexity of sampling of becomes an information-
theoretic question, although it usually carries practical implications for algorithm
design since for most samplers, the computational complexity and the oracle
complexity are tightly related.

Once we adopt the oracle model, it is now possible to ask rather fine-grained
complexity questions for sampling. One question of particular interest in this
work is the following canonical one. Consider the following class of distributions:
π ∝ exp(−V ), where V is α-convex and β smooth with 0 < α < β <∞, and V is
minimized at 0. What is the minimal number of queries to the first-order oracle
necessary to output a sample which is ε-close to π in total variation distance?

Despite the extensive literature on MCMC methods, this flavor of complexity
question which aims at truly understanding the intrinsic and non-asymptotic
difficulty of sampling has only been studied in earnest relatively recently with
early works such as [DT12; Dal17b]. This is the starting point of this thesis. In
short, we use inspiration from optimization to design and analyze new samplers
and make progress towards understanding the fundamental complexity problem.

We give an overview of relevant background in §2. In the rest of this introduc-
tory chapter, we summarize the contributions of the thesis.
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Sampling under log-concavity and isoperimetry

§3: Analysis of Langevin Monte Carlo. We begin by studying the basic Langevin
diffusion (1.1), which once discretized becomes the standard Langevin Monte
Carlo (LMC) algorithm

X(k+1)h = Xkh − h∇V (Xkh) +
√

2 (B(k+1)h −Bkh) .

Here, the Brownian motion increment B(k+1)h − Bkh ∼ normal(0, hId) is easy to
simulate and hence LMC is easily implemented.

Although LMC has been extensively studied in a non-asymptotic context
since [DT12], still several questions about LMC remained unresolved.

• Is it possible to provide guarantees for LMC that hold in more stringent
performance metrics? In particular, the family of Rényi divergences Rq (for
q ≥ 1) is particularly strong as it controls many other common divergences
(§2.2.3). Rényi divergences have recently played an important role in the
application of sampling to differential privacy [GT20], and they are also
crucial for obtaining warm starts for high-accuracy samplers in §6.

• Can we obtain guarantees under weaker assumptions? Although [VW19]
obtained a result under a log-Sobolev inequality (LSI), it was unknown how
obtain a guarantee under a Poincaré inequality (PI). Moreover, most analyses
of LMC assume that ∇V is Lipschitz, which is too restrictive when moving
to the PI setting.

In this chapter, we address these questions by providing a suite of Rényi divergence
guarantees under various assumptions. We prove the first Rényi guarantees under
an LSI by extending the technique of [VW19]. We also develop an argument
based on Girsanov’s theorem that allows for a Lata la–Oleszkiewicz inequality
(LOI), which interpolates between PI and LSI, as well as Hölder continuity of
∇V (rather than only Lipschitz continuity). Altogether, our results paint a fuller
understanding of the behavior of LMC in various settings.

Besides the results themselves, some of the techniques developed in this chap-
ter are reused later. Namely, we find Lemma 3.6.3 to be particularly useful,
and the Girsanov argument is extended to the underdamped Langevin diffusion
in [Zha+23] and §6.

§4: Analysis of the proximal sampler. The results for LMC, however, suffer from
some notable disadvantages. First, LMC is biased (for any positive h > 0, the
stationary distribution of LMC is not equal to π); to control the size of the bias,
we must take h polynomially small in the desired accuracy ε, which leads to a
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low-accuracy guarantee, that is, the guarantee scales polynomially in 1/ε. Second,
the proofs for LMC are lengthy and tedious, and it is unclear if the guarantees
we obtain are sharp. For instance, our complexity guarantee for LMC under a PI
reads (with some simplifications) as Õ(κ2d3/ε2), where κ is an appropriate notion
of “condition number” for this setting.

Many of these issues are resolved by instead considering the proximal sam-
pler algorithm of [TP18; LST21c]. In this algorithm, we augment the target
distribution π to a joint distribution π over Rd × Rd via

π(x, y) ∝ exp
(
−V (x)− 1

2h
∥x− y∥2

)
.

We then apply Gibbs sampling to π, yielding the iterates

Yk ∼ πY |X(· | Xk) = normal(Xk, hId) ,

Xk+1 ∼ πX|Y (· | Yk) ∝ exp
(
−V (·)− 1

2h
∥· − Yk∥2

)
.

This algorithm can be understood as a proximal discretization of the Wasserstein
gradient flow of the KL divergence. Just as the proximal point method is well-
known within optimization to be a more stable discretization of the gradient flow,
we shall see that the proximal sampler affords substantial benefits over LMC. For
example, since the proximal sampler is an asymptotically unbiased Markov chain,
we generally it to be geometrically ergodic, leading to a high-accuracy sampler
whose complexity scales as polylog(1/ε) w.r.t. the target accuracy ε.

In the second step, we must sample from the distribution πX|Y , known as the
restricted Gaussian oracle (RGO). This introduces a trade-off for the step size
h > 0: if h is large, then the proximal sampler converges faster; however, if h is
small, then the RGO is easier to implement (because it more closely resembles a
Gaussian distribution). We explore different extremes of this trade-off:

• In §4, we consider an extremely small step size h = Θ( 1
βd

), where β is the
Lipschitz constant of ∇V , for which the RGO is extremely easy to implement
via rejection sampling.1

• In §6, we consider a large step size h = Θ( 1
β
), for which implementation of

the RGO is non-trivial and requires the use of an auxiliary sampler.

• In §17, diffusion models can morally be considered instantiations of the
proximal sampler with an extremely large step size, for which the proximal

1The later work of [FYC23] shows that with approximate rejection sampling, one can take a
much larger step size of h = Θ( 1

β
√
d
).
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sampler converges in one iteration but the “RGO” is implemented with the
use of deep learning.

Previously, [LST21c] established convergence guarantees for the proximal sam-
pler under strong log-concavity. In §4, we introduce a new interpretation of the
two steps of the proximal sampler as running a Brownian motion forwards and
backwards in time respectively. Through this interpretation, we are able to prove
new convergence results for the proximal sampler under weaker assumptions: un-
der weak log-concavity, and under functional inequalities such as PI, LSI, or more
generally, LOI. More broadly, the high-level message of our analysis is that, simi-
larly to the relationship between the proximal point method and the gradient flow
in optimization, the proximal sampler inherits any favorable convergence rates
enjoyed by the continuous-time Langevin diffusion.

Already with the näıve rejection sampling implementation of the RGO, it
yields surprising improvements over LMC; for instance, in the PI setting, the
complexity guarantee for the proximal sampler reads O(κd2 log(1/ε)) which is
a major improvement w.r.t. every problem parameter. For strongly log-concave
targets, the complexity is O(κd log(1/ε)).

In the step size regime h = Θ( 1
βd

) used for these results, the proximal sampler

is indeed directly comparable to LMC (which also uses step size scaling as 1/d
w.r.t. the dimension d), and its interpretation as a proximal discretization is
satisfying. However, even beyond this regime, the proximal sampler is a strikingly
powerful algorithmic framework for designing faster samplers. Taking h = Θ( 1

β
),

implementation of the RGO amounts to sampling from a certain log-concave
distribution with O(1) condition number2 to high accuracy (the latter requirement
arises to prevent accumulation of errors from inexact implementation of the RGO).
Crucially, this is true assuming only that V is β-smooth. The results of §4 therefore
provide a general reduction of the task of sampling under various assumptions (e.g.,
PI and LSI) to the task of high-accuracy well-conditioned log-concave sampling,
which will be profitably exploited in §6.

§5: Analysis of MALA from a warm start. As discussed above, through the proximal
sampler reduction, the problem of high-accuracy log-concave sampling takes on
special importance, and the next two chapters are dedicated to this problem.

A standard method for obtaining a high-accuracy sampler is to start with
an proposal kernel Q and to accept or reject proposed moves according to a
Metropolis–Hastings filter [Met+53; Has70]. When we apply this recipe with the
proposal kernel taken to be one step of LMC, we arrive at the Metropolis-adjusted
Langevin algorithm (MALA) [Bes+95], which remains quite popular in practice:

2The condition number of a distribution π ∝ exp(−V ) is the ratio between the smoothness
and strong convexity parameters of V .
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1. Propose Yk+1 ∼ Q(Xk, ·) = normal(Xk − h∇V (Xk), 2h Id).

2. Accept the proposal (i.e., set Xk+1 = Yk+1) with prob. 1 ∧ π(Yk+1)Q(Yk+1,Xk)

π(Xk)Q(Xk,Yk+1)
;

otherwise, set Xk+1 = Xk.

The non-asymptotic analysis of MALA was carried out in [Dwi+19; Che+20a;

LST20], yielding a complexity of Õ(κd polylog(1/ε)) in the well-conditioned log-
concave setting.3 Suppressing the dependence on ε (which is always polylog(1/ε)
for a high-accuracy sampler, by definition of “high accuracy”), the complexity of

Õ(κd) has also constituted a barrier for other high-accuracy samplers, such as the
Metropolized random walk (MRW) and Metropolized Hamiltonian Monte Carlo
(MHMC) [Che+20a]. In this chapter, we break this barrier for the first time by

improving the complexity of MALA to Õ(κ
√
d) (in the regime of small κ), under

the additional assumption of a warm start : an initialization for the algorithm
with O(1) Rényi divergence from the target π.

To achieve this result, we introduce a new analysis technique for Metropolis-
adjusted chains based on a projection characterization of the Metropolis–Hastings
filter [BD01], which reduces the computation of the acceptance probability to
a Girsanov discretization argument similarly to the one carried out in §3. We
complement our results with a lower bound (later refined in [WSC22]) showing
that our complexity bound under a warm start is tight.

The main drawback of this result is the need for a warm start. As shown
in [LST21a], this issue is fundamental rather than merely technical because the

complexity of MALA is Ω̃(κd) without this warm start. Hence, in the next chapter,
we focus on the question of algorithmically obtaining a warm start for MALA.

§6: Algorithmic warm starts for MALA. A natural approach to obtaining the warm
start is to use a low-accuracy sampler. For instance, we consider the underdamped
Langevin diffusion, which is thought to be the sampling analogue of Nesterov’s
accelerated gradient flow (although the acceleration phenomenon κ 7→ √κ has not
yet been established for log-concave sampling):

dXt = Pt dt ,

dPt = −∇V (Xt) dt− γPt dt+
√

2γ dBt .

The use of this diffusion is well-motivated: it was shown in [DR20] that once
discretized, the underdamped Langevin Monte Carlo (ULMC) algorithm enjoys

a complexity guarantee of Õ(κ3/2d1/2/ε), in the Wasserstein metric. For the

3Note that the proximal sampler with rejection sampling implementation of the RGO already
matches this guarantee.
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purposes of a warm start, as we discuss in §6 it is critical to obtain a guarantee
in the stronger Rényi divergence. Nevertheless, this result provides hope that if
the convergence guarantee of ULMC can be “upgraded” to hold in Rényi, then
the overall complexity of MALA with a warm start procured via ULMC would be
Õ(κ3/2d1/2 + κd1/2 polylog(1/ε))

This distinction between Wasserstein and Rényi may at first appear innocuous,
but is in fact deeper than it seems. Arguments in the Wasserstein metric are are
considerably simplified through the use of coupling methods, and once we move to
Rényi, we quickly run into long-standing challenges in the analysis of hypocoercive
partial differential equations [Vil09a]. Here, our main innovation is the extension
and judicious use of the shifted divergence method, a technique which originated
in the literature on differential privacy [Fel+18] and recently applied to sampling
in [AT22b]. Together with a suitable adaptation of the Girsanov argument of §3,
we establish the desired Rényi divergence guarantees for ULMC.

Hence, ULMC provides a warm start for MALA, and together it yields a faster
high-accuracy log-concave sampler than was known before. When we further
feed this into the proximal sampler reduction, it sharpens the dependence on
κ, leading to the current state-of-the-art complexity of Õ(κ

√
d polylog(1/ε)) for

high-accuracy log-concave sampling.4 As discussed above, the proximal sampler
reduction also furnishes state-of-the-art results under more general assumptions,
such as for targets satisfying a PI or LSI.

§7: Lower bound in one dimension. Thus far, we have focused on improved algo-
rithmic guarantees for sampling, which provide upper bounds on the complexity
of this task. As put forth in [NY83], however, a true understanding of this com-
plexity also requires matching lower bounds which chart fundamental limitations
shared by all potential algorithms. The problem of establishing such sampling
lower bounds is extremely nascent, and we in fact found no prior work which
directly address this question for log-concave sampling (although there have been
several related approaches, see §7 for a discussion).

In this chapter, we establish the first lower bound for log-concave sampling.
Our main result shows that the query complexity of sampling from densities
π ∝ exp(−V ), where V : R → R is a univariate potential minimized at 0 and
satisfying 1 ≤ V ′′ ≤ κ, is Θ(log log κ). Despite being restricted to univariate
distributions, and therefore falling short of capturing the dimension dependence of
sampling which is of central interest, our work provides important insights towards
further progress on the lower bound problem. In particular, our lower bound
construction demonstrates the effectiveness of information-theoretic techniques

4The same complexity was arrived at concurrently and independently in [FYC23] via an
approximate rejection sampling implementation of the RGO.



18 CHAPTER 1. INTRODUCTION

for this question. The upper bound is achieved via a tailored rejection sampling
algorithm and, similarly to Nesterov’s accelerated gradient method, was only
found due to the presence of the lower bound. It cannot be achieved by existing
MCMC samplers and serves as a reminder that the optimality of our existing
algorithms remains ever in question without a theory of lower bounds.

In subsequent work [Che+23b], we make further progress by settling the com-
plexity of log-concave sampling in any fixed dimension, and for the subclass of
Gaussian distributions, although we omit these results from the thesis.

Constrained sampling and Brascamp–Lieb

In this next part of the thesis, we study mirror Langevin Monte Carlo (MLMC),
which is the sampling analogue of the mirror descent algorithm for optimization,
and which can be used for sampling from distributions with compact support (i.e.,
constrained sampling), as well as poorly conditioned distributions.

§8: Continuous-time analysis of the mirror Langevin diffusion. We begin with a study
of the mirror Langevin diffusion in continuous time. The mirror Langevin diffusion
is determined by the potential V of the target distribution π ∝ exp(−V ), as well
as the choice of a mirror map ϕ : Rd → R∪ {∞}, which is a convex function that
determines the geometry of the algorithm. The diffusion is the solution (Xt)t≥0 to

Yt := ∇ϕ(Xt) , dYt = −∇V (Xt) dt+
√

2 [∇2ϕ(Xt)]
1/2

dBt . (1.2)

Our main observation is that provided that V is relatively convex w.r.t. ϕ,
that is, ∇2V ⪰ α∇2ϕ for some α > 0, then a well-known functional inequality,
the Brascamp–Lieb inequality, furnishes a spectral gap for the mirror Langevin
diffusion, and hence the diffusion converges rapidly to its stationary distribution π.
The notion of relative convexity is well-motivated from the convex optimization
literature [BBT17; LFN18].

In particular, when V is strictly convex and we choose ϕ = V , we arrive at
the sampling analogue of Newton’s method from optimization; we refer to the
specialization of (1.2) to this case as the Newton–Langevin diffusion. Here, the
relative convexity condition trivially holds with α = 1, and consequently, the
Newton–Langevin diffusion converges to stationarity exponentially fast with a
rate that is independent of the conditioning of the problem and the dimension.
This is reminiscent of the affine invariance of Newton’s method.

In this chapter, we perform numerical experiments to demonstrate the potential
applicability of this diffusion, and we leave the question of obtaining discretization
bounds to the next chapter.
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§9: Discretization analysis of mirror Langevin Monte Carlo. In this chapter, we take up
the question deferred from the preceding one: how do we obtain non-asymptotic
convergence guarantees for MLMC, in the spirit of part I of the thesis? This ques-
tion is considerably more difficult than the corresponding one for LMC, stemming
from the use of a non-isotropic and spatially dependent diffusion matrix in (1.2).
Consequently, the prior work [Zha+20] did not obtain a satisfactory discretization
result for the mirror Langevin diffusion, since their discretization bounds do not
vanish even as the step size h of the discretization is taken to zero—hence, it is
not possible to achieve any desired target accuracy ε from their results.

In [Zha+20], the authors considered the standard Euler–Maruyama discretiza-
tion of (1.2). In our work, we take a different approach and propose a modified
discretization in which we assume that the “null” mirror diffusion (that is, the
diffusion (1.2) with the potential V set to zero) can be exactly simulated. This
is a stringent assumption that limits the applicability of our results in practice,
but it is natural within the oracle model because the “null” mirror diffusion can
be simulated without making additional queries to the potential V . We can view
the situation as follows: even for mirror descent algorithm in optimization, one
must assume that the mirror map is simple enough so that basic operations (e.g.,
computing ∇ϕ and ∇ϕ⋆) can be carried out. In the sampling setting, we require
another algorithmic primitive involving the mirror map, namely, the simulation
of the “null” mirror diffusion.

Once this assumption is made, however, we show that a clean analysis of MLMC
can be carried out following the proof technique of [DMM19]. Appealingly, our
analysis only requires assumptions on ϕ which are natural from the standpoint
of convex analysis: relative convexity and smoothness of V w.r.t. ϕ, relative
Lipschitzness of the gradient of V w.r.t. ϕ, and self-concordance of ϕ. We obtain
discretization guarantees which recover state-of-the-art guarantees for LMC as a
special case, and which avoids the aforementioned issue of carrying a bias term
which does not vanish as h↘ 0.

§10: Interlude: two applications of Brascamp–Lieb inequalities. We pause our discus-
sion of sampling in order to explore two interesting consequences of the Brascamp–
Lieb inequality which drives the convergence of mirror Langevin.

In the first application, we resolve an open question of [BE19] by showing that
the entropic barrier for a convex body, which is known to be a self-concordant
barrier for that body, in fact attains the optimal barrier parameter of d, where d
is the ambient dimension. Self-concordant barriers are the cornerstone of interior-
point methods in structured optimization [NN94], and the question of obtaining
optimal and universal self-concordant barriers has been a long-standing one in
that field. Our proof shows that the optimality of the entropic barrier is a direct
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consequence of a certain dimensional refinement of the Brascamp–Lieb inequality.
Next, we give a new proof of Caffarelli’s celebrated theorem on contractive

properties of the optimal transport map [Caf00]; namely, the optimal transport
map from a β-log-smooth distribution to an α-strongly log-concave distribution
is
√
β/α-Lipschitz. Our proof in fact provides an extension of this result to the

entropic optimal transport map, thereby recovering Caffarelli’s original result as
the entropic regularization tends to zero. Key to our proof is the representation
of the Hessians of the entropic optimal dual potentials as covariance matrices, to
which we can apply a dual pair of covariance inequalities: the Brascamp–Lieb
inequality and the Cramér–Rao inequality.

Optimization and sampling without convexity

§11: Dimension-free log-Sobolev inequalities for mixtures. We next aim to study sam-
pling from non-log-concave distributions, which arise commonly in difficult but
practical inference problems. A standard approach to obtaining sampling guaran-
tees in this setting is to assume that the target distribution satisfies a functional
inequality such as an LSI, as was done in §3, §4, and §6. The LSI is a flexible
assumption which covers a wide range of non-log-concave distributions.

One barrier to pursuing this approach is that, surprisingly, the LSI constant
is not tightly characterized even for the canonical non-log-concave example of a
Gaussian mixture. In particular, it was an open question of [Bar+18] to show that
the convolution of a measure with compact support and a Gaussian satisfies an
LSI with a dimension-free constant (depending only on the radius of the support
and the variance of the Gaussian). In this chapter, we resolve this question by
proving a rather general result on the LSI constant of a mixture. Since the LSI
arises as a property of keen interest throughout high-dimensional probability, we
believe this result will be broadly useful.

§12: Lower bounds for stationary points in optimization. Although the LSI yields
guarantees for non-log-concave sampling, they are (unavoidably) poor because
the LSI constant typically scales exponentially in important problem parameters.
This is a manifestation of the fact that non-log-concave sampling is, in the worst
case, computationally hard. The same situation arises in the analogous field of
non-convex optimization, but in that setting there is a general and well-developed
theory on polynomial complexity bounds for obtaining approximate first-order
stationary points, which is the best goal to which we can strive in such generality.

However, even in the mature setting of optimization in which the optimal
complexity of finding stationary points is well-understood in the high-dimensional
regime [Car+20] (and moreover attained by gradient descent), there remain im-
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portant unresolved questions about the low-dimensional complexity of finding
stationary points. This question is motivated by the question of whether there
exists a cutting-plane method for optimization, the resolution to which would
deepen our understanding of the limitations of non-convex optimization.

In this chapter, we make a contribution in this direction by tightly charac-
terizing this complexity in dimension one, in four settings based on whether we
consider deterministic or randomized algorithms, and whether or not the oracle
returns zeroth-order information. One of the surprises of our findings is that gra-
dient descent is already optimal in dimension one among deterministic algorithms
using strictly first-order information, whereas this was previously only known in
dimension Ω̃(1/ε2).

§13: Sampling upper bounds in the Fisher information metric. Motivated by the theory
of stationary points in non-convex optimization, in this chapter we develop a the-
ory of approximate first-order stationarity for non-log-concave sampling. Taking
inspiration from the interpretation of sampling as minimizing the KL divergence
functional over the space of probability measures endowed with the Wasserstein
geometry, we take as our definition of an ε-stationary a point for which the norm
of the Wasserstein gradient of the KL divergence is at most ε. This corresponds
to a relative Fisher information bound FI(µ ∥ π) ≤ ε2.

We provide an interpretation of this criterion in terms of the classical notion of
metastability of diffusions. Moreover, mirroring the corresponding result for non-
convex optimization, we show that under the sole assumption of log-smoothness
of π, averaged LMC attains an ε-stationary point in polynomially many queries.
As an interesting corollary, it implies an Õ(d2/ε4) iteration complexity bound for
averaged LMC to reach ε total variation error when π satisfies a PI, which can be
compared to the results in §3. Overall, our definition of approximate first-order
stationarity for sampling is the foundation for a novel framework for studying the
complexity of non-log-concave sampling which allows for quantitative comparisons
between algorithms, as done in the next chapter.

§14: Sampling lower bounds in the Fisher information metric. Complementing the
results of the previous chapter, here we obtain lower bounds on the complexity
of reaching ε-stationarity in sampling. As discussed above, the theory of lower
bounds for sampling is underdeveloped at present, and we view this as a promising
step in this direction.

Among the results of this chapter, we highlight a surprising reduction of non-
log-concave sampling to finding stationary points in non-convex optimization in a
certain regime for the Fisher information. In this regime, it implies that the upper
bound obtained for averaged LMC in the preceding chapter is optimal, whereas
optimality of LMC was not previously known in any setting.
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Other applications of Wasserstein gradient flows

In the last part of the thesis, we adopt a broader outlook and develop further
applications of Wasserstein gradient flows to Wasserstein barycenters, variational
inference, and diffusion models.

§15: Bures–Wasserstein barycenters. In this chapter, we consider the algorithmic
problem of averaging Gaussian distributions in the optimal transport metric. Since
this is an optimization problem with an intrinsic geometric structure, namely the
Wasserstein geometry over the space of Gaussians (called the Bures–Wasserstein
geometry), it is natural to consider Riemannian gradient algorithms for its solu-
tion. In this chapter, we provide the first non-asymptotic convergence guarantees
for such algorithms. In doing so, we develop machinery for general Wasserstein
barycenters (namely, a stability result in Theorem 15.3.3) as well as for optimiza-
tion more generally over the Bures–Wasserstein space (which will be fruitfully
employed in the next chapter).

§16: Gaussian variational inference. Next, we consider variational Bayes, which has
recently emerged as a tractable alternative to MCMC sampling. In this approach,
rather than using MCMC algorithms to sample from the posterior distribution
π ∝ exp(−V ), we instead seek the best variational approximation of π from
within a simpler class of distributions, hoping that this variational approximation
is accurate enough to yield information about useful summary statistics of π, such
as its mean and covariance. Here, we focus on Gaussian variational inference, in
which the simpler class of distributions is taken to be the class of Gaussians, and
the objective is to find a Gaussian p minimizing the KL divergence KL(p ∥ π).

Gaussian variational inference is naturally formulated as an optimization prob-
lem over the Bures–Wasserstein space, and in doing so we identify the Wasserstein
geometry over Gaussians as a canonical one for this problem. This is justified
because, as we show in §16, the objective of Gaussian variational inference is con-
vex as soon as V is. Consequently, by discretizing the Bures–Wasserstein gradient
flow of KL(· ∥ π), we arrive at a principled algorithm for variational inference for
which we can establish non-asymptotic convergence guarantees.

We can also extend our methodology to variational inference with the more
flexible class of Gaussian mixtures, using the geometry introduced in [CGT19;
DD20], albeit with a corresponding loss of theoretical guarantees. Nevertheless,
our algorithm for mixtures of Gaussians (and a more flexible variant thereof which
allows for time-varying weights via the Wasserstein–Fisher–Rao geometry) yields
encouraging results in experiments, providing a proof of concept in favor of our
geometrically motivated approach.
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§17: Theory for diffusion models. We end this thesis with a theoretical study of
diffusion models or score-based generative models (SGMs), which have achieved
state-of-the-art performance for generative modelling. Similarly to the proximal
sampler studied in §4, diffusion models are based on the idea of running a stochastic
process forwards and backwards in time. However, here we take the forward
process to be the Ornstein–Uhlenbeck (OU) process, which is known to converge
exponentially rapidly to the standard Gaussian measure, and we run the process
for a long time such that the resulting algorithm converges to the distribution of
interest in one iteration. The challenge, then, is to find a tractable implementation
of the backwards diffusion.

Unlike the results of the previous chapters, we depart from the oracle model
and instead assume that we have access to L2-accurate estimates of the score func-
tions (the gradients of the log densities) along the forward process. In practice,
such estimates are obtained by training a deep neural network with a score match-
ing objective [Hyv05] using samples from the target distribution (e.g., a database
of natural images). Under this assumption on score estimation error, the main
result of this chapter is that diffusion models can sample from essentially arbi-
trary distributions (including highly non-log-concave distributions or distributions
supported on lower-dimensional subsets) with polynomial complexity.

The catch, of course, is that it is unclear when the assumption of L2-accurate
score estimation is verified in practice, since this requires an understanding of
the generalization performance of neural network training that is currently out of
reach. Nevertheless, our result provides a principled justification for the use of
diffusion models and points towards the importance of going beyond the oracle
model in order to fully tackle the difficult task of non-log-concave sampling.





Chapter 2

Background

■ 2.1 Background on optimal transport

We recall here basic background and notation on optimal transport and refer the
reader to [Vil03; AGS08; Vil09b; San15] for more details.

■ 2.1.1 Optimal transport costs

Wasserstein distance. Given a Polish space (E, d), we denote by P2(E) the collec-
tion of all (Borel) probability measures µ on E such that EX∼µ[d(X, y)2] < ∞
for some y ∈ E. For two measures µ, ν ∈ P2(E), let C(µ, ν) be set of couplings
between µ and ν, that is, the collection of probability measures γ on E × E such
that if (X, Y ) ∼ γ, then X ∼ µ and Y ∼ ν.

Definition 2.1.1. Given two probability measures µ, ν ∈ P2(E), the 2-Wasserstein
distance between µ and ν is

W 2
2 (µ, ν) := inf

γ∈C(µ,ν)

∫
d(x, y)2 dγ(x, y) . (2.1)

We are primarily interested in the case when E = Rd equipped with the stan-
dard Euclidean metric. Thus, P2(Rd) denotes the space of probability measures on
Rd with finite second moment, and P2(P2(Rd)) denotes the space of measures P on
P2(Rd) such that Eν∼P W 2

2 (µ0, ν) <∞ for some, and therefore any, µ0 ∈ P2(Rd).
If µ ∈ P2(Rd) is absolutely continuous w.r.t. the Lebesgue measure, we write
µ ∈ P2,ac(Rd), and we similarly define the space P2(P2,ac(Rd)).

Transport map. Given a measure µ and a map T : Rd → Rd, the pushforward T#µ
is the law of T (X) when X ∼ µ.

Theorem 2.1.2 (Fundamental theorem of optimal transport). Suppose that µ ∈
P2,ac(Rd) and ν ∈ P2(Rd). Then, the unique optimal transport plan γ⋆ (i.e., the
minimizer in (2.1)) is induced by a transport map Tµ→ν, in the sense that if X ∼ µ,
then (X,Tµ→ν(X)) ∼ γ⋆ (this is known as Brenier’s theorem).

25
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Moreover, Tµ→ν is characterized as the (µ-a.e. unique) gradient of a con-
vex proper lower semicontinuous function ϕµ→ν : Rd → R ∪ {∞} such that
(∇ϕµ→ν)#µ = ν. We refer to ϕµ→ν as the Kantorovich potential, and it is the
solution to the dual optimal transport problem

1

2
W 2

2 (µ, ν) = sup
ϕ:Rd→R∪{∞}

convex proper LSC

{∫ (∥·∥2
2
− ϕ

)
dµ+

∫ (∥·∥2
2
− ϕ∗

)
dν

}
.

For α, β > 0, if ϕµ→ν is α-strongly convex and β-smooth, in the sense that for
all x, y ∈ Rd,

α

2
∥y − x∥2 ≤ ϕµ→ν(y)− ϕµ→ν(x)− ⟨∇ϕµ→ν(x), y − x⟩ ≤ β

2
∥y − x∥2 , (2.2)

then we say that the potential φµ→ν is (α, β)-regular.

Metric and topological properties. The space P2(Rd) endowed with the 2-Wasserstein
distance is a complete separable metric space, i.e., a Polish space. Convergence in
the W2 metric (W2(µn, µ)→ 0) is equivalent to weak convergence and convergence
of the second moment (i.e.,

∫
f dµn →

∫
f dµ for all bounded continuous functions

f : Rd → R, and
∫
∥·∥2 dµn →

∫
∥·∥2 dµ).

The 2-Wasserstein metric is useful because it lifts the geometry of Rd to the
space P2(Rd) of probability measures over Rd; for example, the mapping x 7→ δx
is an isometric embedding of Rd into P2(Rd). As we discuss shortly, this geometry
is particularly important because it admits a calculus (known as Otto calculus)
which allows for a geometric study of dynamics on P2(Rd).

Extension to other costs. More generally, the theory of optimal transport can be
fruitfully developed in the following abstract setting: E1, E2 are Polish spaces
and c : E1 × E2 → R ∪ {∞} is a lower semicontinuous cost function; the optimal
transport cost is infγ∈C(µ,ν)

∫
c(x, y) dγ(x, y). The infimum is always realized by

an optimal transport plan. The corresponding dual problem is to maximize the
objective

∫
f dµ+

∫
g dν over pairs (f, g) ∈ L1(µ)×L1(ν) such that f(x)+g(y) ≤

c(x, y) (for µ⊗ ν-a.e. x, y ∈ E1×E2). Strong duality holds (the optimal transport
cost equals the value of the dual problem), and the maximizers in the dual problem
also characterized by the notion of c-concavity which generalizes the usual notion
of convexity. Some key examples include:

• When E1 = E2 = Rd and c(x, y) = ∥x − y∥p for some p ≥ 1, then the
corresponding optimal transport cost is the p-th power of the p-Wasserstein
distance Wp(µ, ν).



Sec. 2.1. Background on optimal transport 27

• When E1 = E2 and c(x, y) = 1{x ̸= y} then the corresponding optimal
transport cost is the total variation distance ∥µ− ν∥TV.

• In §9, we also make use of Bregman coupling costs.

■ 2.1.2 Riemannian geometry

In this section we give a brief exposition to Riemannian geometry. We refer readers
to [Car92] for a standard introduction.

An n-dimensional manifold M is a topological space which is Hausdorff, second
countable, and locally homeomorphic to Rn. A smooth atlas is a collection of
smooth charts {ψα}α∈A so that each ψα : Uα ⊂M → Rn is a homeomorphism from
an open set Uα in M , M =

⋃
α∈A Uα, and such that for all α, α′ ∈ A, ψα ◦ ψ−1α′ is

smooth wherever defined. For a fixed choice of smooth atlas, we declare a function
f : M → R to be smooth if f ◦ ψ−1α is for each α ∈ A. The manifold together
with a smooth atlas defines a smooth n-dimensional manifold, and we shall always
suppress mention of the atlas. A map f : M → N between two smooth manifolds
is said to be smooth if its composition with smooth charts is.

Given a smooth n-dimensional manifold M and a point p ∈ M , the tangent
space TpM is the equivalence class of all smooth curves γ : (−ε, ε)→M such that
γ(0) = p, where two such curves γ0, γ1 are equivalent if, with respect to every
coordinate chart ψ defined in a neighborhood of p, (ψ ◦ γ0)′(0) = (ψ ◦ γ1)′(0). As
such, TpM is a real n-dimensional vector space for each p ∈ M . The cotangent
space at p ∈ M is then the dual to TpM , which we shall denote T ∗pM . The
tangent bundle is the disjoint union TM :=

⊔
p∈M TpM , and the cotangent bundle

is similarly the disjoint union T ∗M :=
⊔
p∈M T ∗pM . The smooth structure on M

induces a smooth structure on TM and T ∗M , so each is then a 2n-dimensional
smooth manifold in its own right.

A smooth vector field X : M → TM is then a smooth map p 7→ Xp such that
Xp ∈ TpM for all p ∈M , and similarly for a smooth covector field α : M → T ∗M .
Higher-order tensors are defined similarly: a (p, q)-tensor field is a smooth mapping
T : M → (TM)p ⊗ (T ∗M)q. The differential df : M → T ∗M of a smooth function
f on M is the smooth covector field such that dfp : TpM → R obeys dfp(v) :=
(f ◦ γ)′(0), where γ is any curve with tangent vector v ∈ TpM at γ(0) = p.

A Riemannian manifold (M, g) is a smooth n-dimensional manifold M with
a smooth metric tensor g : M → T ∗M ⊗ T ∗M ; at each point of M , this is a
positive definite bilinear form. The metric tensor therefore defines a smoothly
varying choice of inner product on the tangent spaces of M . In addition to giving
rise to notions of length and geodesics, the metric tensor provides a canonical
isomorphism (the Riesz isomorphism) between the tangent space and cotangent
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space: for a vector v ∈ TpM the covector αv ∈ T ∗pM is defined by αv(w) = gp(v, w).
For a covector α ∈ T ∗pM the vector vα ∈ TpM is defined as the unique solution of
α(w) = gp(vα, w) for all w ∈ TpM . A smooth vector field X can be accordingly
transformed into a smooth covector field denoted X♭, and a smooth covector field
ω can be transformed into a smooth vector field ω#. The gradient of a function
f : M → R is defined then as ∇f := (df)#: in other words, for all p ∈ M and
v ∈ TpM , dfp(v) = gp(∇f(p), v).

We typically write ⟨·, ·⟩p instead of gp(·, ·), and we write ∥·∥p for the norm
induced by the metric tensor, i.e., ∥v∥p :=

√
⟨v, v⟩p. In this notation, the distance

between points p, q ∈M is defined as

dM(p, q) := inf
γ∈Γ(p,q)

∫ 1

0

∥γ′(t)∥γ(t) dt ,

where Γ(p, q) is the collection of all smooth (or piecewise continuous) curves
γ : [0, 1] → M such that γ(0) = p and γ(1) = q. If M is connected, then
the distance dM is indeed a metric. If we additionally assume that (M,dM) is
complete as a metric space then by the Hopf–Rinow theorem the value of the
above minimization problem is attained by at least one curve γ : [0, 1]→M such
that t 7→ ∥γ′(t)∥γ(t) is constant, which is said to be a constant-speed geodesic.

For any p ∈ M , there always exists an ε > 0 such that for any vector v ∈
TpM with ∥v∥p < ε, there is a unique constant-speed geodesic γv : [0, 1] → M
obeying γv(0) = p and γ′v(0) = v.1 On the ball Bε(0) with radius ε and center
0 ∈ TpM (with respect to the norm ∥·∥p), we can now define the exponential map
expp : Bε(0)→ M by v ∈ Vp 7→ γv(1). The exponential map is a diffeomorphism
onto its image, so we can define the inverse mapping logp : expp(Bε(0))→ TpM . If
M is complete, the domain of definition of any constant-speed geodesic γ : [0, 1]→
R can be extended to all of R such that at each time γ is locally a constant-speed
minimizing geodesic; in this case, the exponential mapping can be extended
to a mapping expp : TpM → M . Note, however, that the mapping logp is not
necessarily defined everywhere.

We lastly recall that for fixed q ∈M and p which does not belong to the cut
locus of q (the set of points for which there exists more than one constant-speed
minimizing geodesic from p),

[∇d2M(·, q)](p) = −2 logp(q) . (2.3)

1In fact, a stronger result holds: there exists a neighborhood U of p such that for any two
points q, q′ ∈ U , there is a unique constant-speed minimizing geodesic γ : [0, 1]→ U joining q to
q′. Such a neighborhood is called a totally normal neighborhood of p.
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This statement has an intuitive meaning: it says that outside of the cut locus of q,
the gradient of the squared distance points in the direction of maximum increase.2

■ 2.1.3 Riemannian interpretation of Wasserstein space

In this section, we briefly explain the interpretation of the Wasserstein space of
probability measures as a Riemannian manifold. This interpretation is motivated
by the connection between dissipative evolution equations and the theory of
gradient flows on the Wasserstein space, first discovered in [Ott98]; subsequently,
this link was further developed and strengthened in the seminal works [JKO98;
Ott01]. Although the paper [JKO98] chronologically precedes [Ott01], the intuition
of the former is based heavily on the work of Otto in the latter paper, in which he
develops the formal3 rules governing the calculus which now bears his name. For
more introductory expositions of this subject, we refer to [Vil03, §8] and [San15,
§5]. The task of putting this formal discussion on rigorous footing is undertaken
in [AGS08, §8]. We also note that the Wasserstein space is a length space within the
framework of metric geometry; see [BBI01] for an introduction to this approach.

Otto calculus endows the space P2,ac(Rd) with a formal Riemannian structure
inspired by fluid dynamics. To describe the idea, suppose that (µt)t≥0 is a curve
of probability measures, with µt representing the fluid density at time t. Also, let
(vt)t≥0 denote the velocity vector fields governing the dynamics of the particles;
this means that the trajectory t 7→ Xt of an individual particle evolves according
to the ODE

Ẋt = vt(Xt) . (2.4)

In probabilistic language, if X0 is a random variable drawn from the density µ0

and it evolves according to (2.4), then Xt ∼ µt for all t ≥ 0. From this, we can
derive a partial differential equation (PDE) governing the evolution of (µt)t≥0 as

follows: fix a test function ψ : Rd → R (which is bounded, smooth, etc.). Formally,
if the integration by parts is justified, then

∂t

∫
ψ dµt = ∂t Eψ(Xt) = E ∂tψ(Xt) = E⟨∇ψ(Xt), vt(Xt)⟩

=

∫
⟨∇ψ, vt⟩ dµt = −

∫
ψ div(vtµt) ,

2When there are multiple constant-speed minimizing geodesics joining p to q, then the
following fact is still true: the squared distance function d2M (·, q) is superdifferentiable at p.
Moreover, for any constant-speed minimizing geodesic γ : [0, 1]→M joining p to q, the vector
−2γ′(0) ∈ TpM is a supergradient of d2M (·, q) at p.

3Here, “formal” is not a synonym for “rigorous”.
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from which we deduce the continuity equation of fluid dynamics:

∂tµt + div(µtvt) = 0 . (2.5)

This PDE can be interpreted in a suitable weak sense: for any smooth test
function ψ with compact support, the mapping t 7→

∫
ψ dµt should be absolutely

continuous and thus differentiable at almost every t ∈ [0, 1], and its derivative
should satisfy ∂t

∫
ψ dµt =

∫
⟨∇ψ, vt⟩ dµt.

Conversely, if (µt)t≥0 is a sufficiently nice curve, then it is always possible to
find a family of vector fields (vt)t≥0 such that the equation (2.5) holds, i.e., we
can interpret (µt)t≥0 as the evolution of a fluid density. Since the vector fields

(vt)t∈[0,1] fully govern the evolution of the curve of measures (µt)t∈[0,1] ⊆ P2,ac(Rd),

we would like to equip P2,ac(Rd) with the structure of a Riemannian manifold
such that (vt)t∈[0,1] is interpreted as the tangent vectors to the curve (µt)t∈[0,1].
However, a problem arises: given a curve (µt)t∈[0,1] in Wasserstein space, there
are many choices for the vector fields (vt)t∈[0,1] which solve (2.5) together with
(µt)t∈[0,1]. Indeed, if we fix any pair (µt)t∈[0,1], (vt)t∈[0,1] solving (2.5), then we
obtain another solution by replacing vt with vt + wt, where wt is any vector field
satisfying div(wtµt) = 0. This motivates the search for a distinguished family of
vector fields solving (2.5).

To do so, we pick vt to minimize the kinetic energy,

vt = arg min
{∫
∥wt∥2 dµt

∣∣∣ wt : Rd → R satisfies div(µtwt) = −∂tµt
}
.

If µt is regular (admits a density w.r.t. Lebesgue measure), then the minimum is
attained at a gradient vector field: vt = ∇ψt for a function ψt : Rd → R. We are
led to define the tangent space

TµP2,ac(Rd) = {∇ψ | ψ ∈ C∞c (Rd)}L
2(µ)

and endow it with the inner product

⟨v, w⟩µ =

∫
⟨v, w⟩ dµ .

This yields a formal Riemannian structure on P2(Rd). Moreover, the choice of
picking the vector field with minimal kinetic energy is closely related to the idea of
optimal transport of mass. Indeed, Brenier’s theorem asserts that in the optimal
transport problem of transporting a measure ν0 to another measure ν1, the optimal
transport plan is induced by a transport map, which is the gradient of a convex
function ϕ. In other words, if we interpret ν0 as a collection of particles, then
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each particle initially moves along the vector field ∇ϕ− id. In particular, taking
ν0 = µ0 and ν1 = µε for a small ε > 0, we expect the tangent vector of (µt)t∈[0,1]
at time 0 to be of the form ∇ϕ − id for a convex function ϕ. Therefore, it is
equivalent to write [see AGS08, §8] that

TµP2,ac(Rd) := {λ (∇ϕ− id) : λ > 0, ϕ ∈ C∞c (Rd), ϕ convex}L
2(µ)

.

To complete the story, [BB99] proved that

W2(µ0, µ1) = inf
{∫ 1

0

∥vt∥µt dt
∣∣∣ (µt)t∈[0,1], (vt)t∈[0,1] solve (2.5)

}
. (2.6)

From the lens of Riemannian geometry, this says that the notion of distance
induced by the Riemannian structure is precisely the quadratic Wasserstein dis-
tance, and hence we refer to the space P2,ac(Rd) equipped with this Riemannian
structure as the Wasserstein space.

Geodesics and generalized geodesics. Given two measures µ0, µ1 ∈ P2,ac(Rd), there
is a unique constant-speed minimizing geodesic joining µ0 to µ1.

Definition 2.1.3. Given µ0, µ1 ∈ P2,ac(Rd), the (constant-speed) geodesic joining
µ0 to µ1 is the curve

t 7→ [(1− t) id + t T ]#µ0 , t ∈ [0, 1] ,

where T is the optimal transport mapping from µ0 to µ1. This is also known as
displacement interpolation or McCann’s interpolation.

This geodesic has the following interpretation: draw a “particle” X0 ∼ µ0, and
move X0 to T (X0) with constant speed for one unit of time along the Euclidean
geodesic (i.e., straight line) joining these endpoints; thus, at time t, the particle
is at position Xt = (1− t)X0 + t T (X0). Then, µt is simply the law of Xt.

Let Tt := (1− t) id + t T . Since Ẋt = T (X0)−X0 = (T − id) ◦ T−1t (Xt), then
along the geodesic we see that (µt, vt)t∈[0,1] solves the continuity equation (2.5),

where the vector field is vt = (T − id) ◦ T−1t . This solution achieves the minimum
in the variational problem (2.6).

The geodesic satisfies

W2(µ0, µt) = tW2(µ0, µ1) ∀t ∈ [0, 1] . (2.7)

Moreover, it can be shown that any constant-speed geodesic in P2,ac(Rd), that
is, any curve (µt)t∈[0,1] ⊆ P2,ac(Rd) satisfying (2.7), is necessarily of the form
µt = [(1− t) id + t T ]#µ0. The tangent vector to (µt)t∈[0,1] at time 0 is the vector
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field T − id. With this notion of geodesics, the space P2,ac(Rd) becomes a geodesic
space [BBI01].

We also define the notion of a generalized geodesic, which has been used to
prove existence for the minimizing movements scheme for Wasserstein gradient
flows [AGS08]. This notion also turns out to be quite useful for applications; see,
e.g., §9 and §15.

Definition 2.1.4. For any ν ∈ P2,ac(Rd), we define the generalized geodesic with
base ν and connecting µ0 to µ1 to be the curve (µνs)s∈[0,1] where

µνs := [(1− s)Tν→µ0 + s Tν→µ1 ]#ν .

Observe that the notion of generalized geodesic reduces to that of a geodesic
when ν = µ0, so that convexity along generalized geodesic is a stronger notion
than convexity along geodesics. We say that a set C ⊂ P2,ac(Rd) is convex along
geodesics (resp. generalized geodesics) if its indicator function ιC is convex along
geodesics (resp. generalized geodesics). Note that C is convex along generalized
geodesics with base b if and only if the set logb(C) is convex in the usual sense.

Exponential and logarithmic maps. For any b, b′ ∈ P2,ac(Rd), define the map logb :
P2,ac(Rd)→ TbP2,ac(Rd) by logb(b

′) := Tb→b′ − id. Reciprocally, we define the map
expb : U → P2,ac(Rd) in some neighborhood U of the origin of TbP2,ac(Rd) by
expb(v) = (id + v)#b.

In Riemannian geometry, it is common to localize the argument around a
measure µ, which loosely means replacing a measure ν with its image logµ ν in the
tangent space at µ. This is convenient because the tangent space at µ is embedded
in the Hilbert space L2(µ), and we can leverage Hilbert space arguments (e.g.,
computing inner products). In order to do this one must quantify the distortion
introduced by the map logµ, which is morally related to curvature.

Convexity. We are now in a position to define two notions of convexity in Wasser-
stein space. Consider any functional F : P2,ac(Rd) → (−∞,∞] defined over the
Wasserstein space.

Definition 2.1.5. Let α ∈ R. We say that F is α-geodesically convex if for all
µ0, µ1 ∈ P2,ac(Rd), the constant-speed geodesic (µs)s∈[0,1] from µ0 to µ1 satisfies

F(µs) ≤ (1− s)F(µ0) + sF(µ1)−
α s (1− s)

2
W 2

2 (µ0, µ1) , for all s ∈ [0, 1] .

We say that F is α-convex along generalized geodesics if for all choices ν, µ0, µ1 ∈
P2,ac(Rd), it holds that

F(µνs) ≤ (1− s)F(µ0) + sF(µ1)−
α s (1− s)

2
W 2

2 (µ0, µ1) , for all s ∈ [0, 1] .
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If we omit mention of the parameter α, then we refer to the case α = 0.

Note that convexity along generalized geodesics is stronger than geodesic
convexity since it requires F to be convex along a larger set of curves.

The interpretation of generalized geodesics is that we linearize P2,ac(Rd) on
the tangent space TνP2,ac(Rd). This means that we replace µ0 with its image
logν µ0 = Tν→µ0 − id in the tangent space, and similarly for µ1. Since the tangent
space is a subset of a Hilbert space, geodesics in the tangent space are described
by straight lines, i.e.,

t 7→ (1− t)Tν→µ0 + t Tν→µ1 − id .

If we translate back to P2,ac(Rd), we end up with the curve

t 7→ expν
(
(1− t)Tν→µ0 + t Tν→µ1 − id

)
= [(1− t)Tν→µ0 + t Tν→µ1 ]#ν = µνt .

Thus, the property of being convex along generalized geodesics can be reformulated
as requiring that

F ◦ expν : TνP2,ac(Rd)→ R is convex for every ν ∈ P2,ac(Rd) . (2.8)

In Euclidean space, convexity of a function f : Rd → R is equivalent, via
Jensen’s inequality, to the following statement: for every probability measure P on
Rd, it holds that f(

∫
x dP (x)) ≤

∫
f(x) dP (x). Since the Wasserstein barycenter

(see §15) is the Wasserstein analogue of the mean, we can write a similar definition
on Wasserstein space. Given a probability measure P on P2,ac(Rd), let bP denote
its Wasserstein barycenter. We say that F : P2,ac(Rd) → R is convex along
barycenters if

F(bP ) ≤
∫
F(µ) dP (µ) , for all P ∈ P2

(
P2,ac(Rd)

)
.

Similarly, via (2.8), we can define F : P2,ac(Rd)→ R to be convex along generalized
barycenters if

F ◦ expν

(∫
v dP (v)

)
≤

∫
F ◦ expν(v) dP (v)

for all ν ∈ P2,ac(Rd) and P ∈ P2

(
TνP2,ac(Rd)

)
.

(2.9)

However, since the tangent space is embedded in a Hilbert space, there is no
difference between (2.8) and (2.9).
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To summarize the relationship between these four concepts:

convex along generalized barycenters ⇐⇒ convex along generalized geodesics

=⇒ convex along barycenters

=⇒ geodesically convex .

For a justification of these facts and further discussion, see [AC11].

Curvature. We often use the fact that P2,ac(Rd) is non-negatively curved in the
sense of Alexandrov. More specifically, we use the fact that for µ0, µ1, ν ∈
P2,ac(Rd), if (µs)s∈[0,1] denotes the constant-speed geodesic connecting µ0 to µ1,
then for all s ∈ [0, 1],

W 2
2 (µs, ν) ≥ (1− s)W 2

2 (µ0, ν) + sW 2
2 (µ1, ν)− s (1− s)W 2

2 (µ0, µ1) . (2.10)

Moreover, for any µ, ν, b ∈ P2,ac(Rd) it holds that

W2(µ, ν) ≤ ∥Tb→ν ◦ Tµ→b − id∥L2(µ) = ∥Tb→ν − Tb→µ∥L2(b)

= ∥logb(µ)− logb(ν)∥b .
(2.11)

We note that the use of terminology from Riemannian geometry can be justified
when the measures are regular, see [AGS08]. For our purposes these analogies are
merely employed for better readability and intuition.

JKO scheme. This formal picture already allows one to compute gradients of
functionals defined over P2(Rd) and hence to consider gradient flows, as well as
to derive criteria which imply quantitative rates of convergence for these flows.
However, it is a considerable technical undertaking to make the preceding formal
considerations fully rigorous, and this was only accomplished later in the com-
prehensive monograph [AGS08]. Instead, in [JKO98], the authors sidestep this
difficulty by considering an implicit time-discretization scheme which only requires
the metric structure of (P2(Rd),W2). For a step size h > 0, define the updates

µh,k+1 := arg min
µ∈P2(Rd)

{
F(µ) +

1

2h
W 2

2 (µ, µh,k)
}
, (2.12)

where F : P2(Rd) → R ∪ {∞} is the functional of interest defined over the
Wasserstein space. Note that in optimization, this is known as the “proximal
point method” for minimizing F .

As h↘ 0, one hopes that we have convergence µh,⌊t/h⌋ → µt in a suitable sense,
and then the limiting curve (µt)t≥0 can be interpreted as the Wasserstein gradient
flow of F. This is indeed what [JKO98] showed in a particular, but important case.
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Namely, if π ∝ exp(−V ) is a density on Rd obeying mild regularity conditions, and
we take the functional to be the KL divergence, F = KL(·∥π), then the sequence of
discrete approximations converges to the solution of the Fokker–Planck equation

∂tµt = div
(
µt∇ ln

µt
π

)
. (2.13)

As discussed further in §2.2, the Fokker–Planck equation governs the evolution of
the marginal law of the Langevin diffusion

dXt = −∇V (Xt) dt+
√

2 dBt ,

where (Bt)t≥0 is a standard Brownian motion on Rd. Hence, this celebrated result
says that the Langevin diffusion can be interpreted as the Wasserstein gradient
flow of the KL divergence. The implicit discretization (2.12) is now commonly
known as the “JKO scheme” after the authors Jordan, Kinderlehrer, and Otto.

Although the Wasserstein space is not truly a Riemannian manifold, many of
the formal calculations of [Ott01] can now be justified rigorously, under appropriate
technical conditions, due to the extensive theory developed in [AGS08; Vil09b].

■ 2.1.4 Optimization over the Wasserstein space

Gradients and gradient flows. Given a functional F : P2,ac(Rd)→ R, we can define
its Wasserstein gradient formally as follows. The gradient of F at µ0 is the element
∇W2F(µ0) ∈ Tµ0P2,ac(Rd) satisfying

∂t|t=0F(µt) = ⟨∇W2F(µ0), v0⟩µ0 (2.14)

for any curve (µt)t∈R with Wasserstein tangent vector v0 at time 0; that is,
(µt)t∈R and (vt)t∈R solve the continuity equation (2.5) with vt ∈ TµtP2,ac(Rd)
for a.e. t ∈ R. To compute the Wasserstein gradient, suppose that F admits
a first variation δF(µ0) : Rd → R, that is, for any such curve (µt)t∈R, we
have ∂t|t=0F(µt) =

∫
δF(µ0) ∂t|t=0µt.

4 By the continuity equation (2.5), we
have ∂t|t=0µ0 = − div(µ0v0). Integrating by parts, we see that (2.14) equals
⟨∇δF(µ0), v0⟩µ0 . Moreover, since ∇δF(µ0) is a gradient vector field, it belongs to
Tµ0P2,ac(Rd). We conclude that

∇W2F(µ) = ∇δF(µ) .

Definition 2.1.6. A curve (µt)t≥0 ⊆ P2,ac(Rd) is a Wasserstein gradient flow of

the functional F : P2,ac(Rd)→ R∪{∞} if for a.e. t ∈ R, the Wasserstein tangent

4The first variation is only defined up to an additive constant.
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vector to the curve at time t is −∇W2F(µt). In light of (2.5), it means that the
following PDE holds:

∂tµt = div
(
µt∇W2F(µt)

)
.

The Riemannian gradient descent update for F with step size η starting at µ
is given by

µ+ := expµ
(
−η∇W2F(µ)

)
= [id− η∇W2F(µ)]#µ .

Note that the step size η should be chosen small enough that −η∇W2F(µ) lies in
the domain of the exponential map. From the general description of the tangent
space of Wasserstein space, ∇W2F(µ) is the gradient of a mapping ψ : Rd → R;
then, −η∇W2F(µ) belongs to the domain of the exponential map if ∥·∥2/2− ηψ
is convex.

Convexity and smoothness. We say that F is α-convex if

F(µ1) ≥ F(µ0) + ⟨∇W2F(µ0), logµ0 µ1⟩µ0 +
α

2
W 2

2 (µ0, µ1) , ∀µ0, µ1 ∈ P2,ac(Rd) ,

(2.15)

and β-smooth if

F(µ1) ≤ F(µ0) + ⟨∇W2F(µ0), logµ0 µ1⟩µ0 +
β

2
W 2

2 (µ0, µ1) , ∀µ0, µ1 ∈ P2,ac(Rd) .

These two properties are formally equivalent to the following statements: for any
constant-speed geodesic (µt)t∈[0,1], one has

∂2t |t=0F(µt) ≥ αW 2
2 (µ0, µ1) or ∂2t |t=0F(µt) ≤ β W 2

2 (µ0, µ1),

respectively. Also, (2.15) is equivalent to F being α-geodesically convex in the
sense of Definition 2.1.5.

■ 2.2 Background on diffusions

We assume familiarity with basic notions from stochastic calculus, see [Le 16;
Str18]. We refer to [BGL14] for further background.

■ 2.2.1 Markov semigroup theory and functional inequalities

Diffusions. Diffusion processes play a predominant role in the study of sampling,
and in this work we shall be particularly interested in the Langevin diffusion.
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Definition 2.2.1. Let V : Rd → R be a C1 function such that
∫

exp(−V ) < ∞,
called the potential. The Langevin diffusion associated with V is the solution
(Xt)t≥0 to the stochastic differential equation (SDE)

dXt = −∇V (Xt) dt+
√

2 dBt . (2.16)

Here, (Bt)t≥0 is a standard Brownian motion in Rd.

If we assume, as we do in most of this work for discretization purposes, that∇V
is Lipschitz, then according to the standard theory of SDEs there is a unique strong
solution to (2.16). That is, given a filtered probability space (Ω,P,F , (Ft)t≥0)
supporting a standard Brownian motion (Bt)t≥0, there is a unique adapted process
(Xt)t≥0 with continuous sample paths such that (2.16) holds, which is to be

interpreted via stochastic integrals: for all t ≥ 0, Xt = X0−
∫ t
0
∇V (Xs) ds+

√
2Bt.

This process satisfies the strong Markov property.
As we discuss below, the stationary distribution of the Langevin diffusion is

π ∝ exp(−V ). In the special case when V = ∥·∥2
2

, then the stationary distribution
is standard Gaussian and the diffusion is known as the Ornstein–Uhlenbeck (OU)
process. In this case, the SDE is linear and can be solved in closed form.

Besides the Langevin diffusion, in §6 we will also study the underdamped
Langevin diffusion, which describes motion in a particle well with friction.

Markov semigroups. In order to develop a useful calculus for working with dif-
fusions, it is helpful to abstractly represent them through their actions on test
functions, as captured via the following definition.

Definition 2.2.2. A Markov semigroup is a semigroup of linear operators (Pt)t≥0
acting on a suitable space of functions (containing constant functions) such that:

1. For all t ≥ 0, Pt1 = 1.

2. For all t ≥ 0, if f ≥ 0, then Ptf ≥ 0.

3. We have P0 = id, and for all s, t ≥ 0, it holds that Ps+t = Ps ◦ Pt = Pt ◦ Ps
(semigroup property).

Given a Markov process (Xt)t≥0, the corresponding Markov semigroup is given
by Ptf(x) := E[f(Xt) | X0 = x]. Conversely, there are many results which provide
conditions under which there exists a corresponding Markov process for a given
Markov semigroup (Pt)t≥0.

Calculus enters the picture once we consider the “time derivative of the semi-
group”. The semigroup property ensures that it suffices to consider this derivative
at time 0, as in the following definition.



38 CHAPTER 2. BACKGROUND

Definition 2.2.3. Given a Markov semigroup (Pt)t≥0, the infinitesimal generator
L is defined via

L f := lim
t↘0

Ptf − f
t

. (2.17)

In Definitions 2.2.2 and 2.2.3, we are purposefully vague regarding the class of
functions on which the semigroup acts, as well as the sense in which the limit (2.17)
is taken. This is a rather subtle issue. In order to develop a satisfactory spectral
theory, we would like to consider the space of functions L2(π), where π is the
stationary distribution of the corresponding Markov process. However, not all
functions f ∈ L2(π) have sufficient regularity for the limit in (2.17) to exist (e.g.,
in L2(π)). To address this, one can consider L to be an unbounded operator on
L2(π), meaning that it comes together with a corresponding domain of definition
which is a strict subspace of L2(π). The choice of domain is not obvious, and it
must be done carefully in order to properly define notions such as self-adjointness.
These issues are also handled in [BGL14] through the formalism of a Markov triple
which specifies an algebra of test functions (e.g., compactly supported and smooth
functions). For the sake of this informal introduction, we ignore these issues and
focus on the calculus itself.

For the Langevin diffusion (2.16), the infinitesimal generator is given by

L f = ∆f − ⟨∇V,∇f⟩ .
For standard Brownian motion, the generator is L = 1

2
∆.

The Markov semigroup encodes the dynamics of the Markov process, as shown
by Kolmogorov’s equations : for any test function f , it holds that ∂tPtf = L Ptf .
In other words, if we set ut := Ptf for all t ≥ 0, then u solves the heat equation
∂tut = L ut, which coincides with the usual heat equation (up to a factor 1

2
) for

Brownian motion.
Dually, we can let the semigroup act on probability densities by setting P ∗t µ

to denote the law of the diffusion at time t when initialized at µ. This notation
is justified because for any test function f , E f(Xt) = EPtf(X0) =

∫
Ptf dµ =∫

f P ∗t µ, where P ∗t denotes the adjoint of Pt w.r.t. Lebesgue measure. Then, the
dual to the heat equation is ∂tP

∗
t µ = L ∗P ∗t µ, where L ∗ denotes the Lebesgue

adjoint of L . In the case of Langevin diffusion, we have L ∗µ = ∆µ+ div(µ∇V ).
Hence, if µt is the marginal of the Langevin diffusion at time t, we have the PDE
for the evolution of the probability density, known as the Fokker–Planck equation:

∂tµt = ∆µt + div(µt∇V ) . (2.18)

The Fokker–Planck equation readily implies that π ∝ exp(−V ) is stationary for
the Langevin diffusion, because L ∗π = 0. Dually, Eπ L f = 0 for f .
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Reversibility and integration by parts. In the above discussion, we had to introduce
P ∗t and L ∗ as new operators because the semigroup and generator are typically
not self-adjoint w.r.t. Lebesgue measure. Instead, they are typically self-adjoint
w.r.t. another measure π, in which case the Markov semigroup is called reversible.

Definition 2.2.4. A Markov semigroup (Pt)t≥0 is reversible w.r.t. a probability
measure π if Pt defines a self-adjoint operator on L2(π) for all t ≥ 0.

If (Pt)t≥0 is reversible w.r.t. π, then it implies that π is the stationary dis-
tribution of the corresponding Markov process. Also, reversibility implies (and
is equivalent to) the generator L being self-adjoint on L2(π), once “self-adjoint”
is defined appropriately for unbounded operators. As the name suggests, the
property of reversibility indeed implies that the Markov process (started at the
stationary distribution π) has the same law backwards and forwards in time. The
Langevin diffusion is a key example of a reversible diffusion.

For a reversible diffusion, if we instead consider the relative density ρt := µt/π
w.r.t. the stationary distribution π, then the semigroup coincides with its L2(π)
adjoint and hence the Fokker–Planck equation can be written simply as ∂tρt = L ρt
or ρt = Ptρ0.

Observe that Kolmogorov’s equation shows that the dynamics of the diffusion
are encoded via a linear PDE involving the generator L , and under the condition
of reversibility, the operator L is self-adjoint. Hence, we expect to obtain a
spectral theory for L in which L has real spectrum, and moreover this spectrum
should govern the rate of convergence to stationarity for the diffusion. This is
indeed the case, and the first step is to identify the quadratic form associated with
L . Actually, it is convenient to consider the form associated with −L instead.

Definition 2.2.5. Suppose that (Pt)t≥0 is a reversible Markov semigroup with
generator L and stationary distribution π. The Dirichlet energy associated with
L is the bilinear form

E (f, g) := ⟨f, (−L ) g⟩π = ⟨(−L ) f, g⟩π .

One can show that the Dirichlet energy can be written as E (f, g) =
∫

Γ(f, g) dπ,
where Γ is a bilinear operator called the carré du champ; moreover, Γ(f, f) ≥ 0
for any function f . In particular, E (f, f) ≥ 0. For example, for the Langevin
diffusion, we have Γ(f, g) = ⟨∇f,∇g⟩, which does not depend on the potential V .

The inequality E (f, f) ≥ 0 for all f shows that −L is a positive operator. Con-
stant functions always lie in the kernel of −L , and the infimum of the spectrum
restricted to the orthogonal complement of constant functions (that is, functions
f with Eπ f = 0) is called the spectral gap of the diffusion.
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Functional inequalities. A functional inequality is an inequality that holds true for
all elements of a suitable function class. Functional inequalities can encode a
wealth of information, with implications ranging from concentration of measure
to rapid mixing of Markov processes.

In the context of sampling, the most well-studied functional inequalities are
the Poincaré inequality (PI) and the log-Sobolev inequality (LSI).

Definition 2.2.6. A probability distribution π on Rd satisfies a Poincaré inequal-
ity (PI) with constant CPI if for all smooth and compactly supported functions
ϕ : Rd → R,

varπ(ϕ) ≤ CPI Eπ[∥∇ϕ∥2] . (2.19)

Definition 2.2.7. A probability distribution π on Rd satisfies a log-Sobolev in-
equality (LSI) with constant CLSI if for all smooth and compactly supported func-
tions ϕ : Rd → R,

entπ(ϕ2) := Eπ
[
ϕ2 log

ϕ2

Eπ[ϕ2]

]
≤ 2CLSI Eπ[∥∇ϕ∥2] . (2.20)

By taking f =
√

dµ
dπ

, the LSI can also be rewritten in the equivalent form

KL(µ ∥ π) ≤ 2CLSI Eπ
[∥∥∇√dµ

dπ

∥∥2]
=
CLSI

2
Eµ

[∥∥∇ ln
dµ

dπ

∥∥2]
=:

CLSI

2
FI(µ ∥ π) .

(2.21)

These functional inequalities are classically related to the ergodicity properties
of the Langevin diffusion (3.1). Indeed, if πt denotes the law of the diffusion at
time t, then a PI is equivalent to

χ2(πt ∥ π) ≤ exp
(
− 2t

CPI

)
χ2(π0 ∥ π) , for all t ≥ 0 , (2.22)

whereas an LSI is equivalent to

KL(πt ∥ π) ≤ exp
(
− 2t

CLSI

)
KL(π0 ∥ π) , for all t ≥ 0 . (2.23)

We review information divergences such as KL and χ2 in §2.2.3 below.
The inequality (2.22) can be understood from the spectral perspective: the

right-hand side of the Poincaré inequality (2.19) is precisely the Dirichlet energy
E (ϕ, ϕ) for the Langevin diffusion, and hence (2.19) is equivalent to a lower



Sec. 2.2. Background on diffusions 41

bound of C−1PI on the spectral gap for the Langevin diffusion. On the other
hand, the chi-squared divergence χ2(πt ∥ π) is just the squared L2(π) norm of
the projection of the relative density πt/π orthogonal to constant functions, i.e.,
χ2(πt ∥π) = ∥πt/π− 1∥2L2(π). Therefore, the equivalence between (2.19) and (2.22)
follows from the Fokker–Planck equation and spectral theory. The equivalence
between (2.20) and (2.23) does not admit such a spectral interpretation, but it
follows via a quick calculation using Markov semigroup theory.

Improving upon the prior result of [CLL19], [VW19] showed that the functional
inequalities (2.19) and (2.20) also imply convergence for the Langevin diffusion in
Rényi divergence; see Theorem 3.2.1 in §3.

We next collect together key facts about these functional inequalities. The
following results show that the class of distributions satisfying these inequalities is
larger than the class of strongly log-concave distributions; see [BGL14, Proposition
5.1.3 and Corollary 5.7.2].

Lemma 2.2.8 (Strong log-concavity implies LSI implies PI). Let π be a distribu-
tion on Rd.

1. ( Bakry–Émery theorem) If π is α-strongly log-concave, then it satisfies an
LSI with constant at most 1/α.

2. If π satisfies an LSI with constant CLSI, then it also satisfies a PI with constant
at most CLSI.

The second part of the lemma is standard and follows from linearizing the LSI.
The first part of the lemma (the Bakry–Émery theorem) is deeper and we discuss
it further below.

A useful consequence of the LSI is the following sub-Gaussian concentration
inequality for Lipschitz functions, typically established via the Herbst argument;
see [BGL14, Proposition 5.4.1].

Lemma 2.2.9 (LSI implies sub-Gaussian concentration). Suppose that π is a
distribution on Rd satisfying an LSI with constant CLSI. Then, for any L-Lipschitz
function ϕ : Rd → R and any λ ∈ R,

Eπ exp
(
λ (ϕ− Eπ ϕ)

)
≤ exp

(λ2CLSIL
2

2

)
.

Consequently, for all η ≥ 0,

π{ϕ− Eπ ϕ ≥ η} ≤ exp
(
− η2

2CLSIL2

)
.

Similarly, the PI implies subexponential concentration, see [BGL14, §4.4.3].
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Lemma 2.2.10 (PI implies subexponential concentration). Suppose that π is a
distribution on Rd satisfying a PI with constant CPI. Then, for any L-Lipschitz
function ϕ : Rd → R and any η ≥ 0,

π{ϕ− Eπ ϕ ≥ η} ≤ 3 exp
(
− η√

CPI L

)
.

Next we recall two comparison inequalities which enable proving sampling
guarantees in Wasserstein distance as an immediate corollary of proving sam-
pling guarantees in other metrics—namely KL divergence in the LSI setting, and
chi-squared divergence in the PI setting. Such comparison inequalities are of-
ten called transport inequalities. Specifically, the first result, attributed to Otto
and Villani [OV00], shows that under an LSI, a transportation inequality be-
tween Wasserstein and KL divergence holds (this inequality is often referred to as
Talagrand’s T2 inequality).

Lemma 2.2.11 (Otto–Villani theorem). Suppose that π is a distribution on Rd

satisfying an LSI with constant CLSI. Then, for all distributions µ ∈ P2(Rd),

W 2
2 (µ, π) ≤ 2CLSI KL(µ ∥ π) .

The second result shows a similar transport inequality in the PI setting [Liu20].
Under a PI, Talagrand’s T2 inequality does not necessarily hold anymore. Never-
theless, a useful transport inequality still holds if one replaces the KL divergence
by the chi-squared divergence.

Lemma 2.2.12 (Quadratic transport-variance inequality). Suppose that π is a
distribution on Rd satisfying a PI with constant CPI. Then, for all distributions
µ ∈ P2(Rd),

W 2
2 (µ, π) ≤ 2CPI χ

2(µ ∥ π) .

Finally, we record the following standard second-moment-type bound for
strongly log-concave measures; see, e.g., [DKR22, Proposition 2]. We give a
short proof sketch for the convenience of the reader.

Lemma 2.2.13 (Second moment bound). Suppose that π ∝ exp(−V ) is α-strongly
log-concave, with mode at x⋆. Then, it holds that

∫
∥· − x⋆∥2 dπ ≤ d/α.

Proof. Integration by parts shows that for any smooth function ϕ : Rd → R of
controlled growth, it holds that Eπ L ϕ = Eπ[∆ϕ − ⟨∇V,∇ϕ⟩] = 0, where L is
the generator of the Langevin diffusion. We apply this to ϕ(x) := 1

2
∥x− x⋆∥2, for

which ∇ϕ(x) = x− x⋆ and ∆ϕ = d. By strong convexity of V , ⟨∇V (x), x− x⋆⟩ ≥
α ∥x− x⋆∥2, and the result follows.
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Functional inequalities are particularly useful for high-dimensional non-log-
concave sampling because they tensorize (if two measures satisfy the same func-
tional inequality, then their product also satisfies the functional inequality with
the same constant) and they are stable under common operations such as bounded

perturbation (replacing the potential V with Ṽ , with sup |V − Ṽ | < ∞), Lips-
chitz mapping (replacing π with T#π where T : Rd → Rd is Lipschitz and the
pushforward T#π is the distribution of T (X) when X ∼ π), or taking mixtures
(see §11). We refer to [BGL14] for a comprehensive treatment.

Curvature-dimension condition. The Bakry–Émery theorem in Lemma 2.2.8 is a
celebrated result due to its geometric interpretation, which we briefly describe.
We have already mentioned that associated to a reversible Markov semigroup, we
have a carré du champ operator Γ, which is a bilinear operator mapping pairs
of functions to functions. One can also define another operator in the same
spirit, called the iterated carré du champ operator and denoted Γ2. Then, we say
that the Markov diffusion satisfies the curvature-dimension condition CD(α, d) if
Γ2(f, f) ≥ αΓ(f, f) + (L f)2/d. Although we have not defined the operators Γ,
Γ2, as they will not be used in the sequel, the salient point is that the curvature-
dimension condition can be defined solely in terms of the Markov semigroup.

The relevance of the curvature-dimension condition is that the semigroup
associated to the standard Brownian motion on a Riemannian manifold satisfies
CD(α, d) if and only if the Ricci curvature of the manifold is at least α and the
dimension of the manifold is at most d. Thus, as the name indicates, in this context
the curvature-dimension condition encodes curvature and dimension information
in Riemannian geometry. However, since the curvature-dimension condition is
purely written in terms of the Markov semigroup, we can also ask if it holds
for diffusions outside of this Riemannian context; for instance, we can ask if the
Langevin diffusion satisfies this condition. If so, we can interpret it as encoding
abstract geometric properties intrinsic to the Markov process.

It turns out that the Langevin diffusion satisfies CD(α,∞) if and only if
∇2V ⪰ αId. Hence, the curvature of the potential V acts as a substitute for the
Ricci curvature of the ambient space. In this abstract context, the Bakry–Émery
theorem asserts that CD(α,∞) with α > 0 implies the validity of an LSI with
constant 1/α.

■ 2.2.2 The Langevin diffusion as a Wasserstein gradient flow

We now briefly review the interpretation in [JKO98] of the Langevin diffusion as
a Wasserstein gradient flow.

Let V : Rd → R denote the potential, and let π ∝ exp(−V ). Consider the KL
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divergence KL(µ ∥ π), which can be decomposed as a sum

F(µ) := KL(µ ∥ π) =

∫
V dµ+

∫
µ lnµ+ constant .

The first term can be interpreted as the potential energy, and the second term
is the (negative) entropy. Recall from §2.1 that the Wasserstein gradient of F is
given by ∇δF . One can show via direct calculation that δF(µ) = V + lnµ up
to an additive constant, and we deduce that the Wasserstein gradient of the KL
divergence is

∇W2F(µ) = ∇V +∇ lnµ = ∇ ln
µ

π
.

The Wasserstein gradient flow for the KL divergence is the curve (µt)t≥0 with

∂tµt = div
(
µt∇ ln

µt
π

)
.

By comparison with (2.18), we can deduce that the marginal law of the Langevin
diffusion traces out the Wasserstein gradient flow of KL(· ∥ π). This celebrated
result endows the Langevin diffusion with a geometric interpretation with close
connections to optimization, which is a central theme explored in this thesis.
Namely, since the Langevin diffusion is a gradient flow, we can use the theory of
gradient flows to study its convergence.

The starting point is to investigate the convexity of the objective functional.
Using Otto calculus, one can show that the Hessian of the KL divergence, viewed
as a quadratic form on TµP2,ac(Rd), formally takes the form

∇2
W2
F(µ)[v, v] =

∫
⟨∇2V v, v⟩ dµ+

∫
∥∇v − Id∥2HS dµ .

In particular, if ∇2V ⪰ αId, then ∇2
W2
F(µ)[v, v] ≥ α ∥v∥2µ and hence F is α-

convex along Wasserstein geodesics. Via general principles for gradient flows (see
§16.8), it implies the following result: if (µt)t≥0, (νt)t≥0 are the marginal laws of
two copies of the Langevin diffusion (but with possibly different initializations)
corresponding to an α-convex potential V , then

W2(µt, νt) ≤ exp(−αt)W2(µ0, ν0) .

This result could also be deduced by a synchronous coupling of the diffusions,
together with Itô’s formula.
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Since ∇W2F(µ) = ∇ ln(µ/π), then the squared norm of the Wasserstein gradi-
ent is given by ∥∇ ln(µ/π)∥2µ, which is also called the relative Fisher information
FI(µ ∥ π). By general calculation rules for gradient flows,

∂t KL(µt ∥ π) = −
∥∥∇ ln

µt
π

∥∥2

µt
= −FI(µt ∥ π) .

From this equality, we see that exponential decay of the KL divergence follows
from the condition FI(µ ∥ π) ≥ 2αKL(µ ∥ π) for all µ. Recalling (2.21), we see
that this precisely amounts to a LSI with constant 1/α, and thus we obtain (2.23).
In this context, however, the LSI takes on an operational meaning: namely, it
is seen to be the gradient domination or Polyak– Lojasiewicz (PL) inequality
from optimization (see, e.g., [KNS16]). In general, α-convexity implies a PL
inequality, which therefore recovers the Bakry–Émery theorem (Lemma 2.2.8) for
the Langevin diffusion. This perspective was first laid out in [OV00].

Finally, we mention that the Otto–Villani theorem (Lemma 2.2.11), which
asserts that an LSI implies a transport inequality, is also an instantiation of a
general fact from optimization, namely, that a PL inequality implies a quadratic
growth inequality [KNS16].

■ 2.2.3 Comparisons between divergences

In this section, we collect together common divergences between probability mea-
sures as well as the relationships between them.

Definition 2.2.14. The total variation (TV) distance between µ and π is

∥µ− π∥TV := sup
A⊆Rd measurable

|µ(A)− π(A)| .

Definition 2.2.15. The KL divergence of µ from π is

KL(µ ∥ π) :=

∫
ln

dµ

dπ
dµ =

∫
dµ

dπ
ln

dµ

dπ
dπ ,

where KL(µ ∥ π) is understood to be +∞ if µ ̸≪ π.

Definition 2.2.16. The chi-squared divergence of µ from π is

χ2(µ ∥ π) :=

∫ (dµ

dπ
− 1

)2
dπ =

∫ (dµ

dπ

)2
dπ − 1 ,

where χ2(µ ∥ π) is understood to be +∞ if µ ̸≪ π.

We also introduce the family of Rényi divergences, which includes both the
KL divergence and the chi-squared divergence as special cases.
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Definition 2.2.17. The Rényi divergence of order q ∈ (1,∞) of µ from π is

Rq(µ ∥ π) :=
1

q − 1
ln
∥∥∥dµ

dπ

∥∥∥q
Lq(π)

,

where Rq(µ ∥ π) is understood to be +∞ if µ ̸≪ π.

Remark 2.2.18 (Special cases of Rényi divergence). The Rényi divergence of
order q = 1 coincides with the KL divergence, i.e.,

R1(µ ∥ ν) = KL(µ ∥ ν) .

The Rényi divergence of order q = 2 is related to the χ2 divergence via the formula

R2(µ ∥ ν) = ln
(
1 + χ2(µ ∥ ν)

)
.

The Rényi divergence of order q =∞ is given by

R∞(µ ∥ ν) = ln
∥∥∥dµ

dν

∥∥∥
L∞(ν)

.

We repeatedly use the following elementary properties of the Rényi divergence.
Further details about these properties and their proofs can be found in, e.g., the
Rényi divergence survey [EH14] as Theorem 1, Theorem 3, Equation 10, and
Remark 1, respectively.

Lemma 2.2.19 (Data-processing inequality for Rényi divergences). For any Rényi
order q ≥ 1, any Markov transition kernel P , and any probability distributions µ,
ν, it holds that

Rq(µP ∥ νP ) ≤ Rq(µ ∥ ν) .

Lemma 2.2.20 (Monotonicity of Rényi divergences). For any Rényi orders q′ ≥
q ≥ 1, and any probability distributions µ, ν,

Rq(µ ∥ ν) ≤ Rq′(µ ∥ ν) .

Lemma 2.2.21 (Rényi divergence between isotropic Gaussians). For any Rényi
order q ≥ 1, any variance σ2 > 0, and any means x, y ∈ Rd,

Rq

(
normal(x, σ2Id)

∥∥ normal(y, σ2Id)
)

=
q ∥x− y∥2

2σ2
.

Lemma 2.2.22 (Relation to f -divergences). For any Rényi order q ∈ (1,∞),
the corresponding function exp((q − 1) Rq(· ∥ ·)) is an f -divergence, and thus in
particular is jointly convex in its arguments.
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We end this section with one last property of Rényi divergences: the weak
triangle inequality. The name of this property arises from the fact that although
Rényi divergences do not satisfy the triangle inequality, they do satisfy a modified
version of it in which the Rényi order is increased and the bound is weakened by
a multiplicative factor. Since this property does not appear in the aforementioned
survey [EH14] on Rényi divergences, we provide a brief proof for completeness. It
can also be found in, e.g., [Mir17, Proposition 11].

Lemma 2.2.23 (Weak triangle inequality for Rényi divergence). For any Rényi
order q > 1, any λ ∈ (0, 1), and any probability distributions µ, ν, π,

Rq(µ ∥ π) ≤ q − λ
q − 1

Rq/λ(µ ∥ ν) + R(q−λ)/(1−λ)(ν ∥ π) .

Proof. Expand Rq(µ∥ν) = 1
q−1 ln

∫
fg where f = µq/νq−λ and g = νq−λ/πq−1, and

then apply Hölder’s inequality
∫
fg ≤ (

∫
fa)

1/a
(
∫
gb)

1/b
using Hölder exponents

a = 1/λ and b = 1/(1− λ).

Under a Poincaré inequality (2.19), the quadratic transport-variance inequality
of Lemma 2.2.12 together with standard comparison inequalities such as Pinsker’s
inequality (see [Tsy09]) imply the comparisons

max
{

2 ∥µ− π∥2TV, ln
(
1 +

1

2CPI
W 2

2 (µ, π)
)
, KL(µ ∥ π)

}
≤ R2(µ ∥ π) .

This makes Rényi divergences a convenient family of divergences for proving sam-
pling guarantees, since they imply guarantees in many other common divergences.

■ 2.3 Background on the Bures–Wasserstein space

The material from this section is used in §15 and §16.

■ 2.3.1 Geometry

We now specialize concepts from §2.1 to the Bures–Wasserstein manifold of cen-
tered non-degenerate Gaussian measures (identified with their covariance matri-
ces), equipped with the Wasserstein metric. Thus, the Bures–Wasserstein manifold
is the space Sd++ of positive-definite symmetric matrices equipped with a certain
Riemannian metric.

The optimal transport problem between Gaussians is discussed in many places,
e.g., [BJL19]. Given two covariance matrices Σ,Σ′ ∈ Sd++, the optimal transport
map between the corresponding centered Gaussians is the linear map

TΣ→Σ′ = Σ−1/2 (Σ1/2Σ′Σ1/2)
1/2

Σ−1/2 . (2.24)
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Note that this is a symmetric matrix. Since AX ∼ normal(0, AΣAT) for X ∼
normal(0,Σ), the fact that TΣ→Σ′X ∼ normal(0,Σ′) reduces to the matrix identity
TΣ→Σ′ΣTΣ→Σ′ = Σ′, which can be verified by hand. The above formula yields

W 2
2 (Σ,Σ′) = E[∥X − TΣ→Σ′X∥2] = E[∥X∥2 + ∥TΣ→Σ′X∥2 − 2 ⟨X,TΣ→Σ′X⟩]

= tr(Σ + Σ′ − 2 ΣTΣ→Σ′) .

(2.25)

From the general description of Wasserstein geodesics, the constant-speed
geodesic (Σt)t∈[0,1] joining Σ to Σ′ is given by

Σt =
(
(1− t) Id + t TΣ→Σ′

)
Σ
(
(1− t) Id + t TΣ→Σ′

)
, t ∈ [0, 1] . (2.26)

The tangent space TΣS
d
++ is identified with the space Sd of symmetric d× d ma-

trices. Given S ∈ TΣSd++, the tangent space norm of S is given by ∥S∥L2(N (0,Σ)) =√
E[∥SX∥2] =

√
⟨S2,Σ⟩, which we simply denote as ∥S∥Σ. More generally,

given matrices A, B, we write ⟨A,B⟩Σ := tr(ATΣB). The exponential map5 is
expΣ S = (Id + S) Σ (Id + S), so that expΣ(TΣ→Σ′ − Id) = Σ′. The inverse of the
exponential map is then logΣ Σ′ = TΣ→Σ′ − Id.

The description of the Bures–Wasserstein tangent space is in accordance with
the general Riemannian structure of Wasserstein space (see [AGS08]). We now
elaborate on other possible conventions, in order to dispel possible confusion.

The space Sd++ is often studied as a manifold in other contexts, and the tangent
space at any point is usually identified with Sd. It is crucial to realize, however,
that a tangent space is not simply a vector space (or inner product space); a
tangent space also has the interpretation of describing velocities of curves. In
other words, for each tangent vector S, we also need to prescribe which curves
have velocity S. In the usual way of describing the manifold structure of Sd++,

this prescription is given as follows. Given a curve (Σt)t∈R ⊆ Sd++, if Σ̇0 denotes

the ordinary time derivative of this curve at time 0, then we declare Σ̇0 to be
the tangent vector of the curve at time 0. Although this prescription is natural,
observe that it conflicts with our description of the tangent space structure of
the Bures–Wasserstein manifold; in particular, for the curve in (2.26), we have
described the tangent vector to this curve (at time 0) to be TΣ→Σ′ − Id, but the
ordinary time derivative of this curve is (TΣ→Σ′ − Id) Σ + Σ (TΣ→Σ′ − Id).

To summarize the discussion in the preceding paragraph: although the usual
description of the tangent space of Sd++ at Σ and our description of the tangent
space are formally the same, in that they are both identified with Sd, they differ in

5Technically the exponential map is only defined if S + Id ⪰ 0; this is because if S + Id is not
positive semidefinite, then S + Id is not an optimal transport map due to Brenier’s theorem.
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that tangent vectors from the two descriptions give rise to different curves. Note
that if we were to adopt the usual description of the tangent space of Sd++, then
we would have to define the tangent space norm ∥·∥Σ differently from above. In
this thesis, we adopt the convention described earlier in this section in order to
preserve the connection with the general setting of optimal transport.

■ 2.3.2 Additional useful facts

Here we collect various facts about the Wasserstein metric for easy reference.

1. Euclidean gradient vs. Bures–Wasserstein gradient.

Let F : Sd++ → R be a function. Temporarily denote by DF the usual
Euclidean gradient of F , and we reserve ∇F for the gradient with respect to
the Bures–Wasserstein geometry. In fact, under our tangent space convention,
these two quantities are related as follows: let (Σt)t∈R denote a curve in Sd++.
We temporarily denote the Euclidean tangent vector (i.e., ordinary time
derivative) to this curve via Σ̇E, and the Bures–Wasserstein tangent vector
via Σ̇BW, which are related via Σ̇E = Σ̇BWΣ + ΣΣ̇BW (see the discussion
above). We can compute the time derivative of F in two ways:

⟨∇F (Σ0), Σ̇
BW
0 ⟩Σ0 = ∂t|t=0F (Σt) = ⟨DF (Σ0), Σ̇

E
0 ⟩

= ⟨DF (Σ0), Σ̇
BW
0 Σ0 + Σ0Σ̇

BW
0 ⟩ = 2 ⟨DF (Σ0), Σ̇

BW
0 ⟩Σ0 .

From this we can conclude that

∇F (Σ0) = 2 DF (Σ0) .

2. Gradient of the squared Wasserstein distance.

For any ν ∈ P2,ac(Rd), the gradient of the functional W 2
2 (·, ν) at µ is

∇W 2
2 (·, ν)(µ) = −2 (Tµ→ν − id) = −2 logµ ν .

This is derived in, e.g., [ZP19]; see also (2.3). In the Bures–Wasserstein
setting, it can be proven via matrix calculus.

3. Inverse of the transport map.

If Σ,Σ′ ∈ Sd++, then the transport map TΣ→Σ′ is the inverse matrix for the
transport map TΣ′→Σ. This can be verified from the formula (2.24) using the
symmetry of the geometric mean. More generally, it is a special case of the
convex conjugacy relation between optimal Kantorovich potentials.
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4. Diagonal case.

If Σ0,Σ1 ∈ Sd++ are diagonal matrices, then W 2
2 (Σ0,Σ1) = ∥Σ1/2

0 − Σ
1/2
1 ∥2HS

is the squared Hilbert–Schmidt norm between the square roots. This can
be verified, e.g., from the explicit formula (15.2) using the fact that Σ0 and
Σ1 commute. Note that in one dimension, all matrices are diagonal. More
generally, these observations extend to when Σ0 and Σ1 commute.

Similarly, it can be seen from (2.26) that the geodesic is given by

Σ
1/2
t = (1− t) Σ

1/2
0 + tΣ

1/2
1 , t ∈ [0, 1] ,

which says that the Bures–Wasserstein geodesic between diagonal (or com-
muting matrices) is simply the Euclidean geodesic after applying the square
root map.

5. The case of non-zero means.

For any µ, ν ∈ P2(Rd), suppose that the means of these distributions are
mµ and mν , respectively. Let µ̄, ν̄ denote the centered versions of these
distributions. Then, it holds that

W 2
2 (µ, ν) = ∥mµ −mν∥2 +W 2

2 (µ̄, ν̄) .

This can be proven directly from the definition (2.1).

6. A lower bound on the Wasserstein distance.

Let µ, ν ∈ P2(Rd). If µ̃ and ν̃ are Gaussian measures with the same moments
up to order two as µ and ν, respectively, then W2(µ, ν) ≥ W2(µ̃, ν̃) [CMT96].
This fact also follows from the dual formulation of optimal transport.
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Chapter 3

Analysis of Langevin Monte Carlo

We begin our study of sampling with perhaps the most canonical algorithm for this
task, namely, Langevin Monte Carlo (LMC). Although LMC has been intensively
studied for more than a decade, still the following fundamental question remained
open: what convergence guarantees can be obtained when the target distribution
π satisfies a Poincaré inequality?

Classically, a Poincaré inequality implies exponential convergence for the
continuous-time Langevin diffusion in the chi-squared divergence.1 Using this
fact to provide guarantees for the discrete-time LMC algorithm, however, is con-
siderably more challenging due to the need for working with chi-squared or Rényi
divergences, and prior works have largely focused on strongly log-concave targets.
In this chapter, we provide the first convergence guarantees for LMC assuming
that π satisfies either a Lata la–Oleszkiewicz or modified log-Sobolev inequality,
which interpolates between the Poincaré and log-Sobolev settings. Unlike prior
works, our results allow for weak smoothness and do not require convexity or dis-
sipativity conditions. The techniques we develop for Rényi discretization analysis
also play a key role for obtaining warm starts in §6.

This chapter is based on [Che+21a], joint with Murat A. Erdogdu, Mufan
(Bill) Li, Ruoqi Shen, and Matthew Zhang.2

■ 3.1 Introduction

The task of sampling from a target distribution π ∝ exp(−V ) on Rd, known only
up to a normalizing constant, is fundamental in many areas of scientific comput-
ing [Mac03; RC04; Liu08; Gel+14]. As such, there has been a considerable amount
of research dedicated to this task, yielding precise and non-asymptotic algorithmic
guarantees when the potential V is strongly convex; see, e.g., [Dal17a; DMM19;
Dwi+19; SL19; HBE20; LST20; CLW21]. Many distributions encountered in

1This fact will be revisited in the context of the mirror Langevin diffusion in §8.
2This work also appeared as an extended abstract at COLT 2022 [Che+22c].
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practice, however, are non-log-concave, and it is therefore of central importance to
provide sampling guarantees for such distributions. In this work, we address this
problem by working under the assumption that π satisfies a suitable functional
inequality, which we now motivate.

The canonical sampling algorithm, Langevin Monte Carlo (LMC), is based on
a discretization of the continuous-time Langevin diffusion, which is the solution
to the stochastic differential equation

dZt = −∇V (Zt) dt+
√

2 dBt . (3.1)

Here, (Bt)t≥0 is a standard Brownian motion in Rd. Classically, if π satisfies a
functional inequality such as a Poincaré inequality or a log-Sobolev inequality,
then the law of the Langevin diffusion (3.1) converges exponentially fast to the
target distribution π (see §2.2 for background). Namely, a Poincaré inequality
implies exponential convergence in chi-squared divergence, whereas a log-Sobolev
inequality (which is stronger than a Poincaré inequality) implies exponential
convergence in KL divergence.

The class of measures satisfying a Poincaré inequality is quite large, including
all strongly log-concave measures (due the Bakry–Émery criterion) and, more
generally, all log-concave measures [KLS95; Bob99; Che21a]. It also includes
many examples of non-log-concave distributions such as Gaussian convolutions
of measures with bounded support (see §11), and it is closed under bounded
perturbations of the log-density. Owing to its broad applicability and its favorable
continuous-time convergence properties, this class of measures is thus a natural
goal for providing quantitative guarantees for non-log-concave sampling.

Sampling guarantees under functional inequalities. Our work is inspired by [VW19],
which advocated the use of a functional inequality paired with a smoothness
condition as a minimal set of assumptions for obtaining sampling guarantees;
in their work, Vempala and Wibisono prove convergence of LMC under a log-
Sobolev inequality. This result was then improved using the proximal Langevin
algorithm under higher-order smoothness in [Wib19] and subsequently extended
to Riemannian manifolds in [LE23].

Despite the appeal of this program, however, the majority of works on non-
log-concave sampling instead make an additional assumption on the growth of
the potential known as a dissipativity condition, see, e.g., [RRT17; EMS18; EH21;
NDC21; EHZ22; Mou+22]. A representative example of such a condition is
⟨∇V (x), x⟩ ≥ a ∥x∥− b for some constants a, b > 0. Although useful for discretiza-
tion proofs, dissipativity conditions are arguably less natural from the standpoint
of the quantitative theory of Markov processes [BGL14], and ultimately redundant
in the presence of an appropriate functional inequality. Other drawbacks include
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the fact that b is typically dimension-dependent, and that dissipativity conditions
are not as stable under perturbations (see §3.4 for an example). Hence, we avoid
such conditions in our work.

In our first main result (Theorem 3.3.4), we assume that the target π satisfies
a Lata la–Oleszkiewicz inequality (LOI) with parameter α ∈ [1, 2]. The LOI is a
well-studied functional inequality that elegantly interpolates between Poincaré and
log-Sobolev inequalities [LO00]. Notably, the α = 1 case reduces to the Poincaré
inequality, while the α = 2 case reduces to the log-Sobolev inequality; intermediate
values of α enable capturing potentials with growth V (x) ≈ ∥x∥α (see §3.2.2). We
also complement our result by proving a sampling guarantee (Theorem 3.3.6)
under the modified log-Sobolev inequalities considered in [EH21], which is useful
for treating examples in which the LOI constant is dimension-dependent.

Towards weaker notions of smoothness. Since the assumption of a Poincaré inequality
allows for a variety of non-convex potentials with at least linear growth, it is
restrictive to pair this assumption with the gradient Lipschitz assumption which
is usually invoked in the sampling literature. Hence, following [DGN14; Nes15;
Cha+20; EH21], we instead assume that ∇V is Hölder-continuous with some
exponent s ∈ (0, 1].

An analysis in Rényi divergence. We now describe the main technical challenge of this
work. Recall that a log-Sobolev inequality (LSI) implies exponential ergodicity of
the diffusion (3.1) in KL divergence, and consequently the analysis of LMC under a
LSI naturally proceeds with the KL divergence as the performance metric [VW19;
Wib19; LE23]. Similarly, a Poincaré inequality implies exponential ergodicity
of (3.1) in chi-squared divergence, and accordingly we analyze LMC in chi-squared
divergence, or equivalently, in Rényi divergence. In turn, the techniques we develop
for the analysis may be useful for other situations in which only a Poincaré-
type inequality is available, such as the state-of-the-art convergence rate for the
underdamped Langevin diffusion [CLW20] or for the mirror Langevin diffusion
(which we discuss further in §8).

Via standard comparison inequalities, a convergence guarantee in Rényi di-
vergence implies convergence for other common divergences (e.g., total variation
distance, 2-Wasserstein distance, or KL divergence), and is therefore more desir-
able. Of particular interest in this regard is the role of Rényi divergence guarantees
for providing “warm starts” for high-accuracy samplers such as the Metropolis-
adjusted Langevin algorithm (MALA), see §5 and §6.

Unfortunately, working with Rényi divergences introduces substantial new
technical hurdles as it prevents the use of standard coupling-based discretization
arguments; as such, there are not many prior works to draw upon. The con-
vergence of the diffusion (3.1) in Rényi divergence was first proven in [CLL19;
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VW19]. The paper [VW19] also takes a first step towards discretization by in-
troducing a technique based on differential inequalities for the Rényi divergence
for a continuous-time interpolation of LMC. Although this strategy succeeds for
obtaining KL convergence under an LSI, it falls short for Rényi divergence; indeed,
the analysis of [VW19] only holds under the (currently unverifiable) assumption
that the biased stationary distribution of the LMC algorithm satisfies a Poincaré
inequality. Moreover, their result only establishes quantitative convergence of
LMC to its biased limit; to recover a convergence guarantee to π, this also re-
quires an estimate of the “Rényi bias” (the Rényi divergence between the biased
stationary distribution and π), which was unresolved. Instead, [GT20] provided
the first Rényi guarantee for LMC by using the adaptive composition theorem
from differential privacy to control the discretization error, albeit suboptimally.
Subsequently, their result was sharpened in [EHZ22] via a two-stage analysis
combining the two papers [VW19; GT20].

In this paper, we first show how to modify the interpolation method of [VW19]
to yield a genuine Rényi convergence guarantee for LMC under an LSI, thereby
yielding a stronger result than [GT20; EHZ22] with a shorter and more elegant
proof. We further extend this to the case when π is log-concave, but this technique
is unable to cover the setting of a weaker functional inequality and smoothness
condition. For this, we instead draw inspiration from the stochastic calculus-based
analysis of [DT12] (see also the similar argument in §5). At the heart of our proofs
is the introduction of new change-of-measure inequalities which intriguingly rely
on the very fact that the analysis is carried out in Rényi divergence (and not
any weaker metric). Thus, although the use of Rényi divergences introduces new
technical obstructions, it also provides the key tool for overcoming them.

■ 3.1.1 Contributions

Convergence of the diffusion under functional inequalities. Our first contribution is to
establish quantitative Rényi convergence bounds for the Langevin diffusion (3.1)
under the following functional inequalities: (1) the Lata la–Oleszkiewicz inequal-
ities (LOI) [LO00], which interpolate between the Poincaré and log-Sobolev in-
equalities (Theorem 3.2.2), and the modified log-Sobolev inequality (MLSI) used
in [EH21] (Theorem 3.2.3). LOI and MLSI have relative merits, and they capture
the tail behavior of the potential, providing an accurate characterization of the
speed of convergence for both the diffusion as well as the LMC algorithm.

Improved guarantees for LMC under an LSI or log-concavity. As our second principal
contribution (Theorem 3.3.1), we provide an elegant proof that under an LSI, the
LMC algorithm (with appropriate step size) achieves ε2 error in Rényi divergence

in Õ(d/ε2) iterations. This improves upon past works in several respects. First,
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in the LSI case, a Rényi convergence guarantee for LMC was previously unknown;
thus, our work strengthens [VW19] by proving convergence in a stronger metric
(Rényi divergence rather than KL divergence). Second, even when the target π
is strongly log-concave, our proof is both sharper and significantly shorter than
the prior works [GT20; EHZ22] on Rényi convergence; moreover, our guarantee
for fixed step size LMC does not degrade if the number of iterations is taken too
large. As a corollary, we resolve an open question of [VW19] on the size of the
“Rényi bias” in this setting (see Corollary 3.3.2).

With additional effort, we are able to extend the techniques to the case when
π is (weakly) log-concave, and we obtain a guarantee with explicit dependence
on the Poincaré constant of π (however, our guarantee is no longer stable); see
Theorem 3.3.3. Our result is the state-of-the-art guarantee for LMC for sampling
from isotropic log-concave targets.

Convergence of LMC under a functional inequality and weak smoothness. Our main
contribution is to provide sampling guarantees assuming that the potential has a
Hölder-continuous gradient of exponent s ∈ (0, 1] and that π either satisfies LOI
(Theorem 3.3.4) or MLSI (Theorem 3.3.6). As noted previously, these assumptions
are considerably more general than what are usually considered in the sampling
literature and do not require dissipativity. In particular, Theorem 3.3.4 completes
the program of [VW19] by establishing the first sampling guarantees for LMC
under a Poincaré inequality and a weak smoothness condition.

Generically, our final rate is Õ(d(2/α) (1+1/s)−1/s/ε2/s), where s is the Hölder
continuity exponent of ∇V and α captures the growth of the potential at infinity.
We give a number of illustrative examples in §3.4 and show that our results improve
upon the rates given in [EH21].

■ 3.1.2 Notation and organization

Throughout the chapter, π ∝ exp(−V ) denotes the target distribution on Rd; the
function V : Rd → R is referred to as the “potential”. We abuse notation by
identifying a measure with its density (w.r.t. Lebesgue measure on Rd). We write
a ≲ b and a = O(b) to indicate that a ≤ Cb for a universal constant C > 0;

also, we use Õ(·) as a shorthand for O(·) logO(1)(·). Similar remarks apply to the

notations ≳, Ω, Ω̃, and ≍, Θ, Θ̃.
The chapter is organized as follows. In §3.2, we begin by reviewing functional

inequalities and their implications for the continuous-time convergence of the
diffusion (3.1) in Rényi divergence. We then state our main theorems on the LMC
algorithm in Section 3.3, and illustrate them with examples in §3.4. We give a
technical exposition of our proof techniques in §3.5 and fill in the details in §3.6.
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We conclude in §3.7 with a discussion of future directions of research.

■ 3.2 Functional inequalities and continuous-time convergence

Our focus in this section is the convergence of the continuous-time Langevin
diffusion (3.1) under various functional inequalities. Throughout the paper, we
use Rényi divergences as measures of distance between two probability laws. The
Rényi divergence of order q ∈ (1,∞) of µ from π is defined to be

Rq(µ ∥ π) :=
1

q − 1
ln
∥∥∥dµ

dπ

∥∥∥q
Lq(π)

,

where Rq(µ ∥ π) is understood to be +∞ if µ ̸≪ π. See §2.2.3 for background on
these divergences.

■ 3.2.1 Poincaré and log-Sobolev inequalities

In the context of sampling, the most well-studied functional inequalities are the
Poincaré inequality (PI) and the log-Sobolev inequality (LSI); see §2.2 for back-
ground. We recall the basic definitions here. We say that π satisfies a PI with
constant CPI if, for all smooth functions f : Rd → R, it holds that

varπ(f) ≤ CPI Eπ[∥∇f∥2] . (PI)

Similarly, we say that π satisfies an LSI with constant CLSI if for all smooth
f : Rd → R,

entπ(f 2) ≤ 2CLSI Eπ[∥∇f∥2] , (LSI)

where entπ(f 2) := Eπ[f 2 ln(f 2/Eπ(f 2))]. By a linearization argument, an LSI
implies a PI with the same constant.

These functional inequalities are classically related to the ergodicity properties
of the Langevin diffusion (3.1). Indeed, if πt denotes the law of the diffusion at
time t, then a PI is equivalent to

χ2(πt ∥ π) ≤ exp
(
− 2t

CPI

)
χ2(π0 ∥ π) , for all t ≥ 0 ,

whereas an LSI is equivalent to

KL(πt ∥ π) ≤ exp
(
− 2t

CLSI

)
KL(π0 ∥ π) , for all t ≥ 0 .
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Functional inequalities are particularly useful for high-dimensional non-log-concave
sampling because they are preserved under a variety of common operations (see
§2.2). This flexibility is key for capturing a wide variety of non-log-concave settings
encountered in practice.

Before stating the convergence results, we recall from §2.2.3 that

max
{

2 ∥µ− π∥2TV, ln
(
1 +

1

2CPI
W 2

2 (µ, π)
)
, KL(µ ∥ π)

}
≤ R2(µ ∥ π) .

Note that in the Poincaré case, a T2 transportation inequality does not necessarily
hold, so a KL guarantee does not imply a matching W2 guarantee; by working
with Rényi divergences, we are able to provide a unified guarantee for all of these
metrics simultaneously.

Improving upon the prior result of [CLL19], [VW19] showed that these inequal-
ities also imply Rényi convergence for the diffusion.

Theorem 3.2.1 ([VW19, Theorems 3 and 5]). Let q ≥ 2, and let πt denote the
law of the continuous-time Langevin diffusion (3.1) at time t.

1. If π satisfies (LSI), then

∂tRq(πt ∥ π) ≤ − 2

qCLSI
Rq(πt ∥ π) .

2. If π satisfies (PI), then

∂tRq(πt ∥ π) ≤ − 2

qCPI
×
{

1 , if Rq(πt ∥ π) ≥ 1 ,

Rq(πt ∥ π) , if Rq(πt ∥ π) ≤ 1 .

The above result states that under LSI, the Rényi divergence decays expo-
nentially fast whereas under PI, dissipation can be explained in two phases; an
initial phase of slow decay followed by exponential convergence. Thus, to obtain
Rq(πT ∥ π) ≤ ε2, it suffices to have

1. T ≥ Ω
(
qCLSI ln

Rq(π0 ∥ π)

ε2

)
and 2. T ≥ Ω

(
qCPI

(
Rq(π0 ∥ π) + ln

1

ε

))
under LSI and PI respectively.

■ 3.2.2 Lata la–Oleszkiewicz inequalities

In order to interpolate between the Poincaré and log-Sobolev cases, we con-
sider a family of functional inequalities known as Lata la–Oleszkiewicz inequalities
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(LOI) [LO00]. We say that π satisfies an LOI of order α ∈ [1, 2] and constant
CLOI(α) if for all smooth f : Rd → R,

sup
p∈(1,2)

Eπ(f 2)− Eπ(fp)2/p

(2− p)2 (1−1/α)
≤ CLOI(α) Eπ[∥∇f∥2] . (LOI)

An LOI of order 1 is equivalent to a PI, and an LOI of order 2 is equivalent to an
LSI. More generally, an LOI of order α captures measures whose potentials “have
tail growth α”; indeed, two notable examples of distributions satisfying the LOI of
order α are π(x) ∝ exp(−∑d

i=1|xi|α) and π(x) ∝ exp(−∥x∥α) [LO00; Bar01]. The
LOI is well-studied because it captures intermediate forms of concentration and is
related to a number of other important inequalities, such as Sobolev inequalities;
we refer readers to [LO00; Bar01; BR03; Cha04; Bou+05; Wan05; BCR06; BCR07;
CGG07; Goz10].

As our first result in this section, we extend Theorem 3.2.1 to cover the LOI
case. Our proof, which uses as an intermediary the super Poincaré inequality
introduced in [Wan00], is deferred to §3.6.1.

Theorem 3.2.2. Let q ≥ 2, and let πt denote the law of the continuous-time
Langevin diffusion (3.1) at time t. Suppose that π satisfies (LOI) with order α.
Then, it holds that

∂tRq(πt ∥ π) ≤ − 1

68qCLOI(α)
×

{
Rq(πt ∥ π)2−2/α , if Rq(πt ∥ π) ≥ 1 ,

Rq(πt ∥ π) , if Rq(πt ∥ π) ≤ 1 .

The above theorem can be used to obtain Rq(πT ∥ π) ≤ ε2 whenever

T ≥ Ω
(
qCLOI(α)

(Rq(µ0 ∥ π)2/α−1 − 1

2/α− 1
+ ln

1

ε

))
;

we refer to Lemma 3.6.16 for details. We also remark that Theorem 3.2.2 reduces
to Theorem 3.2.1 in the edge cases α = 2 (LSI) and α = 1 (PI) up to an absolute
constant. For α ∈ (1, 2), the initial phase of convergence interpolates between the
slow decay induced by PI and the exponential decay under LSI.

■ 3.2.3 Modified log-Sobolev inequalities

In addition, we also consider the modified log-Sobolev inequality (MLSI) used
in [EH21]. The MLSI of order α0 ∈ [−1, 2] states that for all f : Rd → R with
Eπ(f 2) = 1,

entπ(f 2) ≤ 2CMLSI inf
p≥2

{
Eπ[∥∇f∥2]1−δ(p) m̃p

(
(1 + f 2) π

)δ(p)}
, (MLSI)
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where δ(p) and m̃p(µ) for a measure µ (not necessarily a probability measure) are
given as

δ(p) :=
2− α0

p+ 2− 2α0

, m̃p(µ) :=

∫
(1 + ∥·∥2)p/2 dµ .

The inequality (MLSI) is a careful refinement of [TV00], and provides convergence
guarantees for both the Langevin diffusion and LMC under various tail growth
conditions [EH21]. It is similar to log-Nash inequalities [BZ99; Zeg01], yet the
main focus of the latter is infinite-dimensional semigroups. We consider (MLSI)
as used in [EH21] since other MLSI-type results are stated by absorbing various
dimension-dependent constants into CMLSI, and thus they cannot provide sharp
rates for LMC.

For technical reasons, we also pair this assumption with a concentration prop-
erty of the target: for some m ≥ 0 and α ∈ [0, 1],

π{∥·∥ ≥ m + λ} ≤ 2 exp
{
−
( λ

Ctail

)α1
}
, for all λ ≥ 0 . (α1-tail)

The parameters α0 and α1 are analogous to the parameter α in the LOI; we refer
to [EH21] and the examples in §3.4 for further discussion.

Similarly to Theorem 3.2.2, we can prove a quantitative continuous-time con-
vergence rate for the Langevin diffusion (3.1) under (MLSI) and (α1-tail). The
proof is deferred to §3.6.5.

Theorem 3.2.3. Suppose that π satisfies the conditions (MLSI) and (α1-tail), and
assume that ε−1,m, CMLSI ≥ 1 and that m, Ctail,R2q(π0 ∥ π) ≤ dO(1). Let (πt)t≥0
denote the law of the continuous-time Langevin diffusion (3.1). Then, it holds
that Rq(πT ∥ π) ≤ ε2 for

T ≥ Ω
(
qC2

MLSI

(
m + qCtailR2q(π0 ∥ π)1/α1

)
2−α0 polylog

dRq(π0 ∥ π)

ε

)
.

We remark that when α0 = α1 = α, the dependence on the Rényi divergence
at initialization in Theorems 3.2.2 and 3.2.3 match up to a logarithmic factor, and
hence LOI and MSLI provide similar results in continuous time. However, as we
discuss in Section 3.4, MLSI is useful for treating certain examples in which the
LOI constant CLOI(α) may be dimension-dependent whereas CMLSI is not.

■ 3.3 Main results on Langevin Monte Carlo

In this section, we present our main results on the Rényi convergence of LMC.
Denoting the step size with h > 0, the LMC algorithm is defined by the iteration

X(k+1)h = Xkh − h∇V (Xkh) +
√

2h ξk , k ∈ N , (LMC)
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where (ξk)k∈N is a sequence of i.i.d. standard Gaussian variables. Here, the index-
ing of the LMC iterates is chosen so that the iterate Xkh is comparable to the
continuous-time diffusion (3.1) at time kh. We let µkh denote the law of Xkh.

Our first result deals with the LSI and gradient Lipschitz case.

Theorem 3.3.1. Assume that π satisfies (LSI) and that ∇V is L-Lipschitz; as-
sume for simplicity that CLSI, L ≥ 1 and q ≥ 3. Let µNh denote the N-th iterate
of LMC with step size h satisfying 0 < h < 1/(192q2CLSIL

2). Then, for all N ≥ N0,
it holds that

Rq(µNh ∥ π) ≤ exp
(
−(N −N0)h

4CLSI

)
R2(µ0 ∥ π) + Õ(dhqCLSIL

2) ,

where N0 = ⌈2CLSI

h
ln(q − 1)⌉. In particular, for h = Θ̃( ε2

dqCLSIL2 min(1, d
qε2

)),

Rq(µNh ∥ π) ≤ ε2 , for all N ≥ Ω̃
(dqC2

LSIL
2 logR2(µ0 ∥ π)

ε2
max

{
1,
qε2

d

})
.

The comparison of Theorem 3.3.1 with [VW19; GT20; EHZ22] is summarized
as Table 3.1. Since our guarantee is stable with respect to the number of iterations
N , we can let N →∞ and obtain an estimate on the asymptotic bias of (LMC)
in Rényi divergence; this answers an open question of [VW19].

Corollary 3.3.2. Assume that π satisfies (LSI) and that ∇V is L-Lipschitz;

assume for simplicity that CLSI, L ≥ 1. Let µ
(h)
∞ denote the stationary distribution

of LMC with step size h satisfying 0 < h < 1/(192q2CLSIL
2). Then,

Rq(µ
(h)
∞ ∥ π) ≤ Õ(dhqCLSIL

2) .

Source Assumption Metric Complexity Stable?

[VW19] (LSI) KL (q = 1) dC2
LSIL

2/ε2 ✓

[GT20] C−1SC -SLC Rényi dq2C4
SCL

4/ε4 ✗

[EHZ22] C−1SC -SLC Rényi dq4C4
SCL

4/ε2 ✗

Theorem 3.3.1 (LSI) Rényi dqC2
LSIL

2/ε2 ✓

Table 3.1: We compare the guarantee of Theorem 3.3.1 with prior results, omitting
polylogarithmic factors. “SLC” refers to “strongly log-concave”, and the last column
refers to whether the bound is stable as the number of iterations of LMC tends to
infinity. The complexity bound in the last row is stated for moderate values of q; when
q ≫ d/ε2, then the dependence on q becomes Õ(q2).

Extending the techniques of Theorem 3.3.1, we next give a result for the
log-concave (which implies (PI)) and gradient Lipschitz case.
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Theorem 3.3.3. Assume that π is log-concave (and hence satisfies (PI)) and that
∇V is L-Lipschitz. Assume that V is minimized at 0. Let µNh denote the N-th
iterate of LMC with step size h satisfying h = Θ̃( ε2

dq2CPIL2 min{1, 1
qε2
, dCPI

ε2L
}) and

initialized at µ0 = normal(0, L−1Id). Then,

Rq(µNh ∥ π) ≤ ε2 after N = Θ̃
(d2q3C2

PIL
2

ε2
max

{
1, qε2,

ε2L

dCPI

})
iterations .

In Table 3.2, we compare Theorem 3.3.3 with the prior works [DMM19;
Dwi+19; Che+20a; DKR22]. Compared to these results, Theorem 3.3.3 is only

beaten by the result for modified MALA (for which our result reads Õ(d2/ε2)

whereas the result for modified MALA is Õ(d2/ε3/2)). Moreover, our result is
given in the strongest metric (Rényi divergence). However, better results for the
log-concave case will be obtained in §4 and §6.

Source Algorithm Metric Complexity

[DMM19] averaged LMC
√

KL d2/ε4

[Dwi+19; Che+20a] modified MALA TV d2/ε3/2

[DKR22] modified LMC W1 d2/ε4

[DKR22] modified LMC W2 d2/ε6

[DKR22] modified ULMC W1 d2/ε3

[DKR22] modified ULMC W2 d2/ε5

Theorem 3.3.3 LMC
√

Rényi d2/ε2

Table 3.2: We compare guarantees for sampling from an isotropic log-concave distribu-
tion with CPI, L = O(1). MALA refers to the Metropolis-adjusted Langevin algorithm,
whereas ULMC refers to the underdamped Langevin Monte Carlo algorithm.

Subsequently, we consider the general case of an LOI. We also assume weak
smoothness for some s ∈ (0, 1] and L > 0:

∥∇V (x)−∇V (y)∥ ≤ L ∥x− y∥s for all x, y ∈ Rd . (s-Hölder)

We note that the LO order α and the Hölder exponent s need to satisfy s+ 1 ≥ α.

Theorem 3.3.4. Assume that the potential satisfies ∇V (0) = 0, (LOI) of order
α, and (s-Hölder). For simplicity, assume that ε−1,m, CLOI(α), L,R2(µ0 ∥ π̂) ≥ 1
and q ≥ 2; here, m :=

∫
∥·∥ dπ and π̂ is a slightly modified version of π which

is introduced in the analysis (§3.6.4). Then, LMC with an appropriate step size
(given in (3.16)) satisfies Rq(µNh ∥ π) ≤ ε2 after

N = Θ̃s

(dq1+2/sC
1+1/s
LOI(α)L

2/sR2q−1(µ0 ∥ π)(2/α−1) (1+1/s)

ε2/s
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× max
{

1, q1/sε2/s,
ms

d
,
R2(µ0 ∥ π̂)s/2

d

})
iterations. Here, Θ̃s(·) hides polylogarithmic factors and constants depending only
on s.

We now make a few remarks to simplify the rate. First, although initialization
is more subtle in the non-log-concave case, it is reasonable to suppose that the
quantities R2(µ0 ∥ π̂), R2q−1(µ0 ∥ π) are Õ(d); we defer a detailed discussion of
initialization to §3.6.6. Next, it is also reasonable to assume3 m = O(d), in
which case the third term in the maximum will never dominate. Focusing on
the dependence on the dimension and target accuracy, we therefore obtain the
simplified rate Õ(d(2/α) (1+1/s)−1/s/ε2/s); in particular, in the smooth (s = 1) case,

the rate is Õ(d4/α−1/ε2). Regarding prior works which handle a wide variety
of growth rates and smoothness conditions for the potential, the closest to the
present work is [EH21], which obtains a rate of Õ(d(2/α+1{α=1}) (1+1/s)−1/ε2/s) for
potentials of tail growth α satisfying (s-Hölder); note that our rate is strictly
better as soon as s < 1 and avoids the jump in the rate at α = 1. We emphasize,
however, that despite the superficial similarity with [EH21], our result is the first
one proven under a purely functional analytic condition on the target (together
with weak smoothness).

Remark 3.3.5. The case α = 1 yields the bound Õ(d2+1/sq1+2/sC
1+1/s
PI L2/s/ε2/s)

for LMC under the Poincaré inequality and weak smoothness. In the case α = 2
and s = 1 (LSI and smooth case), the rate reduces to Õ(dq3C2

LSIL
2/ε), which

recovers the guarantee of Theorem 3.3.1 up to the dependence on q.

When the LOI constant CLOI(α) is dimension-dependent, Theorem 3.3.4 may
not give the sharpest rates. We therefore complement Theorem 3.3.4 with a result
assuming (MLSI).

Theorem 3.3.6. Assume that the potential satisfies ∇V (0) = 0, (MLSI) of or-
der α0, (α1-tail), and (s-Hölder). For simplicity, we also consider the regime
ε−1,m, CMLSI, Ctail, L,R2(µ0 ∥ π̂) ≥ 1, q ≥ 2, and m, Ctail,R2(π0 ∥ π) ≤ dO(1);
here, π̂ is a slightly modified version of π which is introduced in the analysis
(§3.6.4). Then, LMC with appropriately chosen step size (given in (3.18)) satisfies
Rq(µNh ∥ π) ≤ ε2 after

N = Θ̃
(dR2q(µ0 ∥ π)(2−α0) (1+1/s)/α1

ε2/s

3This holds for, e.g., the potentials V (x) = ∥x∥α for all α ∈ [1, 2].
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×max
{

1, ε2/s,
ms

d
,
R2(µ0 ∥ π̂)s/2

d
,
( m

R2q(µ0 ∥ π)1/α1

)
(2−α0)/s

})
iterations. Here, the Θ̃(·) notation hides polylogarithmic factors as well as con-
stants depending on α0, α1, q, s, CMLSI, Ctail, and L; a more precise statement is
given in §3.6.5.

For potentials of tail growth α ∈ (1, 2], we can suppose that (MLSI) and (α1-tail)
are satisfied with α0 = α1 = α, where we take m = O(d1/α). Also, assuming

R2(µ0 ∥ π̂),R2q(µ0 ∥ π) = O(d), the rate is then Õ(d(2/α) (1+1/s)−1/s/ε2/s) as before.
As discussed in the next section, the case α = 1 is special and (MLSI) may not
hold with α0 = α.

Remark 3.3.7. A number of recent works [DMM19; Cha+20; NDC21; LC22;
Leh22] consider non-smooth and mixed-smooth potentials. By incorporating Gaus-
sian smoothing, it seems possible to extend our techniques to cover these settings,
but we do not pursue this direction here.

■ 3.4 Illustrative examples

In this section, we illustrate our results on simple examples and compare our
guarantees with prior work.

Example 3.4.1 (tail growth α ∈ (1, 2]). Consider the target πα(x) ∝ exp(−∥x∥α)
for α ∈ (1, 2], which satisfies (LOI) of order α and (s-Hölder) with s = α − 1.
Since πα satisfies (PI) with CPI = Θ(d2/α−1) [Bob03], then Theorem 3.3.4 does
not yield a good result. Previously, [EH21] showed that πα satisfies (MLSI) of

order α, obtaining the complexity Õ(d(3−α)/(α−1)/ε2/(α−1)) to achieve ε2-accuracy
in KL divergence for this target. From Theorem 3.3.6, we have improved this rate

to Õ((d/ε2)
1/(α−1)

) in Rényi divergence. Since (MLSI) is stable under bounded
perturbations, the same rate holds for appropriately perturbed potentials such as
V (x) = ∥x∥α + cos ∥x∥.

Due to the use of the weighted CKP inequality [BV05], their KL bound yields

Õ(d(5−α)/(α−1)/ε2α/(α−1)) complexity to reach ε accuracy in the Wα metric. On
the other hand, Theorem 3.3.6 together with the Poincaré inequality yields the
complexity Õ(d2/(α (α−1))/ε2/(α−1)) to obtain ε accuracy in the W2 metric. Hence,
we have both improved the rate in Wα and proven a new guarantee in W2 which
previously could not be reached at all. ♢
Example 3.4.2 (tail growth α ∈ (1, 2] for smoothed potential). Consider the

target πα(x) ∝ exp(−(1 + ∥x∥2)α/2), which satisfies (LOI) of order α and (s-Hölder)
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with s = 1 (i.e., ∇V is Lipschitz). Previously, [EH21] obtained the complexity

Õ(d(4−α)/α/ε2) in KL divergence and Õ(d(4+α)/α/ε2α) in Wα. From Theorem 3.3.6,

we have obtained the rate Õ(d(4−α)/α/ε2) in Rényi divergence and Õ(d(6−2α)/α/ε2)
in W2. As before, this rate is stable under suitable perturbations of the potential.

♢
Example 3.4.3 (tail growth α = 1 for smoothed potential). The case of α = 1 is
worth considering separately for comparison purposes. Consider the target π1(x) ∝
exp(−

√
1 + ∥x∥2), which satisfies (s-Hölder) with s = 1 (i.e., ∇V is Lipschitz).

Previously, [EH21] showed that π1 satisfies (MLSI) with α0 = −O( 1
log d

) and

CMLSI = O(log d); also, π1 satisfies (α1-tail) with α1 = 1. Using this, they obtained

the complexity Õ(d5/ε2) in KL divergence, whereas Theorem 3.3.6 implies the
same rate in Rényi divergence. We also remark that their rate only holds for
sufficiently small perturbations (e.g., their analysis does not cover the potential
V (x) = ∥x∥ + cos ∥x∥) due to the need to preserve a dissipativity assumption,
whereas our result has no such requirement. This highlights a benefit of working
without dissipativity conditions.

Here, Theorem 3.3.3 applies to π1 with CPI = O(d) [Bob03] and yields a rate of

Õ(d4/ε2) in Rényi divergence; in contrast, [DMM19] yields a rate of Õ(d3/ε4) in
KL divergence (started from a distribution with W 2

2 (µ0, π1) = O(d2)) for averaged

LMC, and [Dwi+19; Che+20a] yields a rate of Õ(d3.5/ε1.5) in ∥·∥TV for modified
MALA, although none of these rates is stable under perturbation. ♢
Example 3.4.4 (tail growth α ∈ [1, 2] for smoothed product potential). For
x ∈ Rd, let ⟨x⟩i :=

√
1 + x2i . Consider the target πα(x) ∝ exp(−∥⟨x⟩∥αα), which

satisfies (LOI) of order α [see LO00] and (s-Hölder) with s = 1 (i.e., ∇V is

Lipschitz). The result of [EH21] implies a complexity of Õ(d(4−α)/α/ε2) in KL

divergence and Õ(d(4+α)/α/ε2α) inWα for α ∈ (1, 2], and Õ(d5/ε2) in KL divergence

when α = 1. From Theorem 3.3.4, we have obtained the rate Õ(d(4−α)/α/ε2) in
Rényi divergence and hence also W2 for all α ∈ [1, 2]; in particular, there is no
jump in the rate at α = 1. ♢
Example 3.4.5 (LSI case with weakly smooth potential). We also compare the
results when α = 2 and s ∈ (0, 1]. In this case, [Cha+20] obtained the rate

Õ(d(2+s)/s/ε2/s) in ∥·∥TV for strongly log-concave distributions, whereas [EH21]

obtained the rate Õ((d/ε2)
1/s

) in KL divergence for perturbations of strongly

log-concave distributions. In contrast, Theorem 3.3.4 yields the rate Õ(d/ε2/s)
in Rényi divergence under (LSI). An example of such a potential is given by
V (x) = 1

2
∥x∥2 + cos(∥x∥1+s). ♢
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■ 3.5 Technical overview

■ 3.5.1 Adapting the interpolation method to Rényi divergences

In the proof of Theorem 3.3.1, we follow the interpolation method of [VW19].
Namely, we introduce the following interpolation of (LMC): for t ∈ [kh, (k + 1)h],

Xt = Xkh − (t− kh)∇V (Xkh) +
√

2 (Bt −Bkh) , (3.2)

where (Bt)t≥0 is a standard Brownian motion, and let µt denote the law of Xt.
Then, [VW19] derives the following differential inequality for the KL divergence:

∂tKL(µt ∥ π) ≤ −3

4
× 4Eπ[∥∇√ρt∥2]︸ ︷︷ ︸

Fisher information

+E[∥∇V (Xt)−∇V (Xkh)∥2]︸ ︷︷ ︸
discretization error

, (3.3)

where we write ρt := dµt
dπ

. This inequality is an analogue of the celebrated de
Bruijn identity from information theory for the interpolated process. Assuming
that π satisfies (LSI) and that ∇V is L-Lipschitz, the Fisher information upper
bounds the KL divergence and the discretization error is shown to be of order
O(dh2L2); this then yields a convergence guarantee in KL divergence.

The analogous differential inequality for the Rényi divergence is

∂tRq(µt ∥ π) ≤ − 3

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )︸ ︷︷ ︸
Rényi Fisher information

+ q
E[ρq−1t (Xt) ∥∇V (Xt)−∇V (Xkh)∥2]

Eπ(ρqt )︸ ︷︷ ︸
discretization error

.

(3.4)

(See the proof of [EHZ22, Lemma 6]; to make the chapter more self-contained, we
also provide a derivation in Proposition 3.6.2.) Note that the q = 1 case of the
above inequality formally corresponds to (3.3). Next, as shown in [VW19, Lemma
5], the Rényi Fisher information indeed upper bounds the Rényi divergence under
an LSI. However, the discretization term is now far trickier to control.

Write ψt := ρq−1t /Eπ(ρqt ). Observing that Eψt(Xt) = 1, the discretization
term can be written as an expectation under a change of measure:

discretization error = q Ẽ[∥∇V (Xt)−∇V (Xkh)∥2] ,

where Ẽ is the expectation under the measure P̃ defined via dP̃
dP = ψt(Xt). Also,

using the Lipschitzness of ∇V , we obtain

∥∇V (Xt)−∇V (Xkh)∥2 ≤ 2h2L2 ∥∇V (Xkh)∥2 + 4L2 ∥Bt −Bkh∥2 .
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Hence, our task is to bound the expectation of these two terms under a complicated
change of measure.

Towards that end, consider first the Brownian motion term. Using the Donsker–
Varadhan variational principle, for any random variable X,

ẼX ≤ KL(P̃ ∥ P) + lnE expX .

Applying this to X = c (∥Bt −Bkh∥ − E∥Bt −Bkh∥)2 for a constant c > 0 to be
chosen later, we can bound

Ẽ[∥Bt −Bkh∥2] ≤ 2E[∥Bt −Bkh∥2] +
2

c
ẼX

≤ 2E[∥Bt −Bkh∥2]

+
2

c

{
KL(P̃ ∥ P) + lnE exp

(
c (∥Bt −Bkh∥ − E∥Bt −Bkh∥)2

)}
. (3.5)

Note that the first and third terms in the right-hand side of the above expression
are expectations under the original measure P, and can therefore be controlled;
to ensure that the third term is bounded, we can take c ≍ 1/h. For the second
term, a surprising calculation involving a judicious application of the LSI for π
(see (3.8), (3.9), and (3.10)) shows that it is bounded by h times the Rényi Fisher
information, and can therefore be absorbed into the first term of the differential
inequality (3.4) for h sufficiently small.

The expectation of the drift term ∥∇V (Xkh)∥2 under the change of measure
can also be handled via similar methods, but this can be bypassed via a duality
principle for the Fisher information; see Lemma 3.6.3. We also remark that
näıvely, this proof incurs a cubic dependence on q, but this can be sharpened via
an argument based on hypercontractivity (Proposition 3.6.4).

In the above proof outline, the LSI for π plays a crucial role in the arguments.
In Theorem 3.3.3, we show that the method can be somewhat extended to the case
when π does not satisfy an LSI, but is instead assumed to be (weakly) log-concave.
In this case, we show that with an appropriate Gaussian initialization, the law µkh
of the iterate Xkh of (LMC) satisfies an LSI, albeit with a constant which grows
with the number of iterations (Lemma 3.6.5). In turn, this fact together with a
suitable modification of the preceding proof strategy also allows us to obtain a
convergence guarantee in this case (see §3.6.3 for details).

■ 3.5.2 Controlling discretization error via Girsanov’s theorem

In the general case of a weaker functional inequality and smoothness condition,
the preceding arguments do not apply. Instead, we start with the weak triangle
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inequality for the Rényi divergence (when q ≥ 2; see Lemma 2.2.23):

Rq(µT ∥ π) ≲ R2q(µT ∥ πT ) + R2q−1(πT ∥ π) .

Here, (µt)t≥0 is the law of the interpolated process (3.2), whereas (πt)t≥0 is the
law of the continuous-time Langevin diffusion (3.1) initialized at a draw from µ0.
The second term is handled via the continuous-time convergence results, either
under the LOI (Theorem 3.2.2) or under the MLSI (Theorem 3.2.3), and the crux
of the proof is to control the first term (the discretization error).

The discretization error R2q(µT ∥ πT ) was controlled in the prior works [GT20;
EHZ22] via the adaptive composition theorem, albeit under stronger assump-
tions (strong convexity/dissipativity). Briefly, this theorem controls the Rényi
divergence between the paths of the interpolated and original (continuous-time)
processes by summing up the contribution to the Rényi divergence in each in-
finitesimal time step. In turn, due to the Brownian motion driving the SDEs, this
reduces to a computation of the Rényi divergence between Gaussians. Making
this approach rigorous, however, requires first applying it to the discrete-time algo-
rithm and then performing a cumbersome limiting argument. Here, we streamline
this technique by instead invoking Girsanov’s theorem from stochastic calculus.

First, the data-processing inequality (Lemma 2.2.19) implies that R2q(µT ∥
πT ) ≤ R2q(PT ∥QT ), where PT and QT are measures on path space representing
the laws of the trajectories (on the interval [0, T ]) of the interpolated and diffusion
processes respectively. Next, Girsanov’s theorem provides a closed-form formula
for the Radon–Nikodym derivative dPT

dQT
, which leads to the inequality

R2q(PT ∥QT ) ≤ 1

2 (2q − 1)
lnE exp

(
4q2

∫ T

0

∥∇V (Zt)−∇V (Z⌊t/h⌋h)∥2 dt
)
,

where (Zt)t≥0 is the continuous-time Langevin diffusion (3.1). The use of Gir-
sanov’s theorem for deriving quantitative estimates on the discretization error in
this manner was likely first introduced in [DT12] for the KL divergence. However,
to the best our knowledge, this work is the first to adapt the Girsanov technique
to provide a complete Rényi convergence result for LMC.

Controlling the discretization error over an interval [0, h] corresponding to a
single iteration of LMC is straightforward using the tools of stochastic calculus
(see also the calculation in §5). Extending this to the full time interval [0, T ] is
more challenging; indeed, if we bound the discretization error on [h, 2h] condi-
tional on (Zt)t∈[0,h], then the resulting bound depends on ∥Zh∥2, which prevents
us from straightforwardly iterating the one-step discretization bound. To ad-
dress this, we instead control intermediate error terms conditioned on the event
Eδ,T := maxk∈N, kh≤T ∥Zkh∥ ≤ Rδ,T , and Rδ,T is chosen so that P(Eδ,T ) ≥ 1 − δ.
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Subsequently, we can use Lemma 3.6.10 to remove the conditioning, and hence
providing a bound on R2q(PT ∥ QT ) if Rδ,T does not grow too fast in 1/δ; in

particular, it is required that Rδ,T ≲
√

log(1/δ).4

The requirement on Rδ,T is equivalent to requiring that for each t ∈ [0, T ], the
random variable Zt has sub-Gaussian tails. Observe however that the stationary
distribution π may not have sub-Gaussian tails under our assumption of an LOI
(indeed, in the Poincaré case, π may only have subexponential tails). Nevertheless,
if the initialization µ0 has sub-Gaussian tails, then for each t ∈ [0, T ] it may still
be the case that πt has sub-Gaussian tails. This turns out to be true, but it is
quite non-trivial to prove without any dissipativity conditions on the potential V ,
and therefore constitutes our primary technical challenge.

To overcome this challenge, we introduce a novel technique based on compari-
son of the diffusion (3.1) with an auxiliary Langevin diffusion (π̂t)t≥0 corresponding
to a modified stationary distribution π̂. The distribution π̂ is constructed to have
sub-Gaussian tails. To transfer the sub-Gaussianity of π̂ to πt, we apply the
following change of measure inequality: for probability measures µ and ν, and
any event E ⊆ Rd,

µ(E) = ν(E) +

∫
1E

(dµ

dν
− 1

)
dν ≤ ν(E) +

√
χ2(µ ∥ ν) ν(E) ,

where the last inequality is the Cauchy–Schwarz inequality. This simple inequality
states that in order to control the probability of an event E under a measure µ in
terms of its probability under ν, it suffices to control the chi-squared divergence
between µ and ν. Applying this to our context, we can establish sub-Gaussian tail
bounds for πt if we can control the Rényi divergences R2(πt ∥ π̂t) and R2(π̂t ∥ π̂);
the former is again controlled via Girsanov’s theorem. We stress that the auxiliary
process (π̂t)t≥0 is introduced only for analysis purposes and does not affect the
implementation of the algorithm.

The details of this strategy are carried out in Section 3.6.4.

■ 3.6 Proofs

■ 3.6.1 Proof of Theorem 3.2.2

In this section, we prove Theorem 3.2.2 on the Rényi convergence of the continuous-
time Langevin diffusion (3.1) under an LOI. Using capacity inequalities as an
intermediary, [BCR06; Goz10] established the equivalence of LOI with other
functional inequalities such as modified Sobolev inequalities. For our purposes,

4See, however, §6 for an alternative approach.
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it is instead convenient to work with super Poincaré inequalities, which were
introduced in [Wan00].

We say that π satisfies a super Poincaré inequality with function β : R+ → R+

if for all smooth f : Rd → R,

Eπ(f 2) ≤ β(s)Eπ[∥∇f∥2] + s (Eπ|f |)2 for all s ≥ 1 . (3.6)

For α ∈ [1, 2], define the function βα : R+ → R+ via

βα(s) :=
96CLOI(α)

ln(e + s)2−2/α
.

Then, it is known that (LOI) with order α implies a super Poincaré inequality
with function βα [see Goz10, Remark 5.16]. The following proof is inspired by the
proof of [VW19, Theorem 5].

Proof of Theorem 3.2.2. From [VW19, Lemma 6], we have

∂tRq(πt ∥ π) = −4

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
,

where ρt := dπt
dπ

. Applying the super Poincaré inequality (3.6) with f = ρ
q/2
t and

β = βα yields

Eπ[∥∇(ρ
q/2
t )∥2] ≥ 1

βα(s)
Eπ(ρqt )−

s

βα(s)
{Eπ(ρ

q/2
t )}2

=
1

βα(s)
exp{(q − 1)Rq(πt ∥ π)} − s

βα(s)
exp{(q − 2)Rq/2(πt ∥ π)} .

Using the fact that Rq/2 ≤ Rq, we can further lower bound this by

Eπ[∥∇(ρ
q/2
t )∥2] ≥ exp{(q − 1)Rq(πt ∥ π)}

βα(s)

(
1− s exp{−Rq(πt ∥ π)}

)
=

Eπ(ρqt )

βα(s)

(
1− s exp{−Rq(πt ∥ π)}

)
.

We now distinguish two cases. If Rq(πt ∥ π) ≥ 1, then we choose s =
1
2

exp{Rq(πt ∥ π)}, yielding

∂tRq(πt ∥ π) ≤ − 2

qβα(s)
= − ln(e + 1

2
expRq(πt ∥ π))

2−2/α

48qCLOI(α)
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≤ − 1

68qCLOI(α)
Rq(πt ∥ π)2−2/α .

Otherwise, if Rq(πt ∥ π) ≤ 1, then we choose s = 1, yielding

∂tRq(πt ∥ π) ≤ − 4

qβα(1)

(
1− exp{−Rq(πt ∥ π)}

)
≤ − 2

qβα(1)
Rq(πt ∥ π)

≤ − 1

68qCLOI(α)
Rq(πt ∥ π) ,

where we used the elementary inequality 1− exp(−x) ≥ x/2 for x ∈ [0, 1].

■ 3.6.2 Proof of Theorem 3.3.1

Throughout this section, recall the notation ρt := dµt
dπ

and ψt := ρq−1t /Eπ(ρqt ).
We begin by proving the differential inequality (3.4). Although this has ap-

peared in the previous works [VW19; EHZ22], we include the proofs for the sake
of completeness.

Proposition 3.6.1. Let (µt)t≥0 denote the law of the interpolation (3.2) of LMC.
Then, for t ∈ [kh, (k + 1)h],

∂tµt = div
({
∇ ln

dµt
dπ

+ E[∇V (Xkh)−∇V (Xt) | Xt = ·]
}
µt
)
.

Proof. For s, t ∈ R+, let µt|s(· | Xs) denote the conditional law of Xt given Xs, and
let µs,t denote the joint law of (Xs, Xt). Conditioned on Xkh, the Fokker–Planck
equation for the interpolation (3.2) takes the form

∂tµt|kh(· | Xkh) = ∆µt|kh(· | Xkh) + div
(
∇V (Xkh)µt|kh(· | Xkh)

)
.

Taking the expectation over Xkh yields

∂tµt = ∆µt + div(∇V µt) +

∫
div

(
{∇V (xkh)−∇V (·)}µt|kh(· | xkh)

)
dµkh(xkh)

= div
(
∇ ln

dµt
dπ

µt
)

+ div
((∫

{∇V (xkh)−∇V (·)} dµkh|t(xkh | ·)
)
µt(·)

)
= div

(
∇ ln

dµt
dπ

µt
)

+ div
(
{E[∇V (Xkh) | Xt = ·]−∇V }µt

)
.

Combining the two terms yields the result.
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Proposition 3.6.2. Let (µt)t≥0 denote the law of the interpolation (3.2) of LMC.

Also, let ρt := dµt
dπ

and ψt := ρq−1t /Eπ(ρqt ). Then, for t ∈ [kh, (k + 1)h],

∂tRq(µt ∥ π) ≤ −3

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
+ q E[ψt(Xt) ∥∇V (Xt)−∇V (Xkh)∥2] .

Proof. For brevity, in this proof we write ∆t := E[∇V (Xkh) | Xt = ·] − ∇V .
Elementary calculus together with Proposition 3.6.1 yields

∂tRq(µt ∥ π) =
q

(q − 1)Eπ(ρqt )

∫ (dµt
dπ

)
q−1 ∂tµt

=
q

(q − 1)Eπ(ρqt )

∫
ρq−1t div({∇ ln ρt + ∆t}µt)

= − q

(q − 1)Eπ(ρqt )

∫
⟨∇(ρq−1t ),∇ ln ρt + ∆t⟩ dµt

= − 1

Eπ(ρqt )

{4

q
Eπ[∥∇(ρ

q/2
t )∥2] + 2Eµt [ρ

q/2−1
t ⟨∇(ρ

q/2
t ),∆t⟩]

}
.

For the second term, Young’s inequality implies

− Eµt [ρ
q/2−1
t ⟨∇(ρ

q/2
t ),∆t⟩]

= −
∫∫

ρ
q/2−1
t (xt) ⟨∇(ρ

q/2
t )(xt),∇V (xkh)−∇V (xt)⟩µkh|t(dxkh | xt)µt(dxt)

= −
∫∫

ρ
q/2−1
t (xt) ⟨∇(ρ

q/2
t )(xt),∇V (xkh)−∇V (xt)⟩µkh,t(dxkh, dxt)

= −E[ρ
q/2−1
t (Xt) ⟨∇(ρ

q/2
t )(Xt),∇V (Xkh)−∇V (Xt)⟩]

≤ 1

2q
Eπ[∥∇(ρ

q/2
t )∥2] +

q

2
E[ρq−1t (Xt) ∥∇V (Xkh)−∇V (Xt)∥2] .

Substituting this into the previous expression completes the proof.

Next, we formulate a lemma to control the expectation of ∥∇V ∥2 under a
change of measure. Although this is not strictly necessary for the proof, it stream-
lines the argument.

Lemma 3.6.3. Assume that ∇V is L-Lipschitz. For any probability measure µ,
we have

Eµ[∥∇V ∥2] ≤ 4Eπ
[∥∥∇√dµ

dπ

∥∥2]
+ 2dL = Eµ

[∥∥∇ ln
dµ

dπ

∥∥2]
+ 2dL .
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Proof. Let L denote the infinitesimal generator of the Langevin diffusion (3.1),
i.e., L f = ∆f − ⟨∇V,∇f⟩. Observe that L V = ∆V − ∥∇V ∥2. Applying
integration by parts and recalling that Eπ L f = 0 for any f ,

Eµ[∥∇V ∥2] = −Eµ L V + Eµ ∆V ≤ −
∫

L V
(dµ

dπ
− 1

)
dπ + dL

=

∫ 〈
∇V,∇dµ

dπ

〉
dπ + dL

= 2

∫ 〈√dµ

dπ
∇V,∇

√
dµ

dπ

〉
dπ + dL

≤ 1

2
Eµ[∥∇V ∥2] + 2Eπ

[∥∥∇√dµ

dπ

∥∥2]
+ dL .

Rearrange this inequality to obtain the desired result.

We are now ready to give the proof of Theorem 3.3.1. In order to emphasize
the main ideas, we first present a proof which incurs a suboptimal dependence on
q and explain how to sharpen the argument afterwards.

Proof of Theorem 3.3.1. As encapsulated in the differential inequality of Proposi-
tion 3.6.2, the crux of the proof of Theorem 3.3.1 is to control the discretization
error term E[ψt(Xt) ∥∇V (Xt) − ∇V (Xkh)∥2] for t ∈ [kh, (k + 1)h]. Since ∇V
is L-Lipschitz, we have ∥∇V (Xt) − ∇V (Xkh)∥2 ≤ 2L2 (t− kh)2 ∥∇V (Xkh)∥2 +
4L2 ∥Bt − Bkh∥2. However, it is more convenient to have a bound in terms of
∥∇V (Xt)∥ rather than ∥∇V (Xkh)∥, so we use

∥∇V (Xkh)∥ ≤ ∥∇V (Xt)∥+ L ∥Xt −Xkh∥
≤ ∥∇V (Xt)∥+ hL ∥∇V (Xkh)∥+

√
2L ∥Bt −Bkh∥ .

If h ≤ 1/(3L), we can rearrange this inequality to obtain

∥∇V (Xkh)∥ ≤
3

2
∥∇V (Xt)∥+

3L√
2
∥Bt −Bkh∥ ,

so

∥∇V (Xt)−∇V (Xkh)∥2

≤ 9L2 (t− kh)2 ∥∇V (Xt)∥2 + (18h2L4 + 4L2) ∥Bt −Bkh∥2

≤ 9L2 (t− kh)2 ∥∇V (Xt)∥2 + 6L2 ∥Bt −Bkh∥2 .

We will control the two error terms in turn.
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For the first error term, applying Lemma 3.6.3 to the measure ψtµt yields

Eψtµt [∥∇V ∥2] ≤ Eµt
[
ψt

∥∥∇ ln
(
ψt

dµt
dπ

)∥∥2]
+ 2dL =

Eπ[ρqt ∥∇ ln(ρqt )∥2]
Eπ(ρqt )

+ 2dL

=
4Eπ[∥∇(ρ

q/2
t )∥2]

Eπ(ρqt )
+ 2dL .

Note the calculation

Eµt
[
ψt

∥∥∇ ln
(
ψt

dµt
dπ

)∥∥2]
=

4Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
, (3.7)

which will be used below as well.
For the second error term, we apply the Donsker–Varadhan variational princi-

ple as in (3.5).

E[ψt(Xt) ∥Bt −Bkh∥2]
≤ 2E[∥Bt −Bkh∥2]

+
2

c

{
KL(P̃ ∥ P) + lnE exp

(
c (∥Bt −Bkh∥ − E∥Bt −Bkh∥)2

)}
≤ 2d (t− kh) +

2

c

{
KL(P̃ ∥ P) + lnE exp

(
c (∥Bt −Bkh∥ − E∥Bt −Bkh∥)2

)}
,

where dP̃
dP = ψt(Xt). Due to Gaussian concentration, if we set c = 1

8 (t−kh) , then

E exp
(∥Bt −Bkh∥ − E∥Bt −Bkh∥)2

8 (t− kh)
≤ 2 ,

c.f. [BLM13, §2.3, Theorem 5.5]. Next, using the LSI for π, we compute

KL(P̃ ∥ P) = Eψtµt lnψt = Eψtµt ln
ρq−1t

Eµt(ρ
q−1
t )

=
q − 1

q
Eψtµt ln

ρqt

Eµt(ρ
q−1
t )

q/(q−1)

(3.8)

=
q − 1

q

{
Eψtµt ln

ρqt
Eµt(ρ

q−1
t )
− 1

q − 1
lnEµt(ρ

q−1
t )︸ ︷︷ ︸

≥0

}

≤ q − 1

q
KL(ψtµt ∥ π) (3.9)

≤ (q − 1)CLSI

2q
Eψtµt

[∥∥∇ ln(ψt
dµt
dπ

)∥∥2]
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=
2 (q − 1)CLSI

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
, (3.10)

where the last equality is (3.7). We have proved

E[ψt(Xt) ∥Bt −Bkh∥2]

≤ 2d (t− kh) +
32h (q − 1)CLSI

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
+ (16 ln 2) (t− kh)

≤ 14d (t− kh) + 32hCLSI
Eπ[∥∇(ρ

q/2
t )∥2]

Eπ(ρqt )
.

Finally, collecting together the error terms and applying Proposition 3.6.2, we
see that

∂tRq(µt ∥ π) ≤ −3

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
+ 9qL2 (t− kh)2

{4Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
+ 2dL

}
+ 6qL2

{
14d (t− kh) + 32hCLSI

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )

}
.

Assuming for simplicity that CLSI, L ≥ 1, then h ≤ 1/(192q2CLSIL
2) implies

∂tRq(µt ∥ π) ≤ −1

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
+ 18dqL3 (t− kh)2 + 84dqL2 (t− kh)

≤ − 1

2qCLSI
Rq(µt ∥ π) + 18dqL3 (t− kh)2 + 84dqL2 (t− kh) ,

where the last line uses the fact that π satisfies LSI [see VW19, Lemma 5]. This
then implies the differential inequality

∂t
{

exp
(t− kh

2qCLSI

)
Rq(µt ∥ π)

}
≤ exp

(t− kh
2qCLSI

)
{18dqL3 (t− kh)2 + 84dqL2 (t− kh)

}
≤ 19dqL3 (t− kh)2 + 85dqL2 (t− kh) .

Integrating this inequality over t ∈ [kh, (k + 1)h] yields the recursion

Rq(µ(k+1)h ∥ π) ≤ exp
(
− h

2qCLSI

)
Rq(µkh ∥ π) +

19

3
dh3qL3 +

85

2
dh2qL2

≤ exp
(
− h

2qCLSI

)
Rq(µkh ∥ π) + 43dh2qL2 .

Iterating this yields

Rq(µNh ∥ π) ≤ exp
(
− Nh

2qCLSI

)
Rq(µ0 ∥ π) + 86dhq2CLSIL

2,

which completes the proof.
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We now outline the hypercontractivity argument to improve the dependence
on q.

Proposition 3.6.4 (Hypercontractivity). Let (µt)t≥0 denote the law of the inter-
polation (3.2) of LMC. Also, let q(t) := 1 + (q0 − 1) exp t

2CLSI
for t ≥ 0, and write

ρt := dµt
dπ

, ψt := ρ
q(t)−1
t /Eπ(ρ

q(t)
t ). Then, for t ∈ [kh, (k + 1)h],

∂t

( 1

q(t)
ln

∫
ρ
q(t)
t dπ

)
≤ −2 (q(t)− 1)

q(t)2
Eπ[∥∇(ρ

q(t)/2
t )∥2]

Eπ(ρ
q(t)
t )

+ (q(t)− 1)E[ψt(Xt) ∥∇V (Xt)−∇V (Xkh)∥2] .

Proof. Using calculus together with Proposition 3.6.1, we compute the derivative
in time as in Proposition 3.6.2, only now taking into account the additional time-
dependent function q. Since the calculation is very similar to Proposition 3.6.2,
we only record the final result:

∂t

( 1

q(t)
ln

∫
ρ
q(t)
t dπ

)
= − 1

Eπ(ρ
q(t)
t )

∫
⟨∇(ρ

q(t)−1
t ),∇ ln ρt + ∆t⟩ dµt +

q̇(t) entπ(ρ
q(t)
t )

q(t)2 Eπ(ρ
q(t)
t )

≤ −3 (q(t)− 1)

q(t)2
Eπ[∥∇(ρ

q(t)/2
t )∥2]

Eπ(ρ
q(t)
t )

+ (q(t)− 1)E[ψt(Xt) ∥∇V (Xt)−∇V (Xkh)∥2] +
q̇(t) entπ(ρ

q(t)
t )

q(t)2 Eπ(ρ
q(t)
t )

,

where q̇ is the derivative of q, we write ∆t := E[∇V (Xkh) | Xt = ·]−∇V , and the
entropy functional is defined in §3.2. Applying (LSI),

q̇(t) entπ(ρ
q(t)
t )

q(t)2 Eπ(ρ
q(t)
t )

≤ 2q̇(t)CLSI Eπ[∥∇(ρ
q(t)/2
t )∥2]

q(t)2 Eπ(ρ
q(t)
t )

=
q(t)− 1

q(t)2
Eπ[∥∇(ρ

q(t)/2
t )∥2]

Eπ(ρ
q(t)
t )

where the last equality follows from our choice of q.

Proof of Theorem 3.3.1. Initial waiting phase. Let q̄ ≥ 3. We apply Propo-
sition 3.6.4 with q0 = 2 and for t ≤ N0h, where N0 = ⌈2CLSI

h
ln(q̄ − 1)⌉. As

in the earlier proof of Theorem 3.3.1, we take h ≤ 1/(192q2CLSIL
2); note that,

q̄ ≤ q(N0h) ≤ 2q̄. The bound on the error term from the previous proof implies

∂t

( 1

q(t)
ln

∫
ρ
q(t)
t dπ

)
≤ 18dq(t)L3 (t− kh)2 + 84dq(t)L2 (t− kh) .
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Integrating this over t ∈ [kh, (k + 1)h] yields

1

q((k + 1)h)
ln

∫
ρ
q((k+1)h)
(k+1)h dπ − 1

q(kh)
ln

∫
ρ
q(kh)
kh dπ ≤ 12dh3q̄L3 + 84dh2q̄L2

≤ 85dh2q̄L2 .

Iterating this yields

1

q(N0h)
ln

∫
ρ
q(N0h)
N0h

dπ − 1

2
ln

∫
ρ20 dπ ≤ 85dh2q̄L2N0 ≤ 170dhq̄CLSIL

2 ln q̄ .

Remainder of the convergence analysis. After shifting the time indices
and applying the preceding proof of Theorem 3.3.1 with q = 2,

Rq̄(µ(N+N0)h ∥ π) ≤ 3

2q̄
ln

∫
ρq̄(N+N0)h

dπ ≤ 3

4
R2(µNh ∥ π) + 255dhq̄CLSIL

2 ln q̄

≤ 3

4
exp

(
− Nh

4CLSI

)
R2(µ0 ∥ π) + 258dhCLSIL

2 + 255dhq̄CLSIL
2 ln q̄

≤ exp
(
− Nh

4CLSI

)
R2(µ0 ∥ π) + 513dhq̄CLSIL

2 ln q̄ .

This completes the proof.

■ 3.6.3 Proof of Theorem 3.3.3

To prove Theorem 3.3.3, we show that the iterates of LMC satisfy (LSI) with a
growing constant.

Lemma 3.6.5. Assume that V is convex and ∇V is L-Lipschitz. Let (µkh)k∈N
denote the law of the iterates of LMC initialized at µ0 = normal(0, L−1Id) and
run with step size h ≤ 1/L. Then, the LSI constant CLSI(µkh) of µkh satisfies
CLSI(µkh) ≤ L+ 2kh.

Proof. With the condition on the step size, id − h∇V is a contraction. Using
standard facts about the behavior of the log-Sobolev constant under contrac-
tions [BGL14, Proposition 5.4.3] and convolutions [see, e.g., Cha04], we obtain

CLSI(µ(k+1)h) ≤ CLSI

(
(id− h∇V )#µkh

)
+ 2h ≤ CLSI(µkh) + 2h .

The result follows via iteration.

We are now ready to prove Theorem 3.3.3, which builds upon the proof of
Theorem 3.3.1.
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Proof of Theorem 3.3.3. Using the differential inequality of Proposition 3.6.2, as-
suming h ≤ 1/(3L), we want to control the error term

E[ψt(Xt) ∥∇V (Xt)−∇V (Xkh)∥2]
≤ 9L2 (t− kh)2 E[ψt(Xt) ∥∇V (Xt)∥2] + 6L2 E[ψt(Xt) ∥Bt −Bkh∥2] ,

see the first proof of Theorem 3.3.1. For the first term, an application of
Lemma 3.6.3 again yields

E[ψt(Xt) ∥∇V (Xt)∥2] ≤
4Eπ[∥∇(ρ

q/2
t )∥2]

Eπ(ρqt )
+ 2dL .

For the second term, the Donsker–Varadhan variational principle (3.5) implies

E[ψt(Xt) ∥Bt −Bkh∥2] ≤ 2d (t− kh) + 16 (t− kh) {KL(P̃ ∥ P) + ln 2} .

Now comes a key difference in the proof: in Theorem 3.3.1, we bounded KL(P̃∥P) ≤
q−1
q

KL(ψtµt ∥ π) and applied the LSI for π. Here, we instead use KL(P̃ ∥ P) =

KL(ψtµt ∥ µt) and apply the LSI from Lemma 3.6.5 which worsens over time. We
thus obtain

KL(P̃ ∥ P) ≤ 2CLSI(µt)
Eπ[∥∇(ρ

q/2
t )∥2]

Eπ(ρqt )
≤ 2 (L+ 2 (k + 1)h)

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
.

Let N denote the total number of iterations that we run LMC. Collecting
together all of the error terms and using Proposition 3.6.2, we see that

∂tRq(µt ∥ π) ≤ −3

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
+ 9qL2 (t− kh)2

{4Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
+ 2dL

}
+ 6qL2

{
14d (t− kh) + 32h (L+ 2Nh)

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )

}
.

Assuming h ≤ 1
384qL

√
N

min{1,
√
N

qL2 }, it yields

∂tRq(µt ∥ π) ≤ −1

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
+ 18dqL3 (t− kh)2 + 84dqL2 (t− kh)

≤ − 1

qCPI
{1− exp(−Rq(µt ∥ π))}+ 18dqL3 (t− kh)2 + 84dqL2 (t− kh) ,

where the last inequality follows from [VW19, Lemma 17].
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We now split the analysis into two phases. In the first phase, we consider
t ≤ N0h, where N0 is the largest integer such that Rq(µN0h ∥ π) ≥ 1. Then,

∂tRq(µt ∥ π) ≤ − 1

2qCPI
+ 18dqL3 (t− kh)2 + 84dqL2 (t− kh) .

Integration yields

Rq(µ(k+1)h ∥ π)− Rq(µkh ∥ π) ≤ − h

2qCPI
+ 6dh3qL3 + 42dh2qL2

≤ − h

2qCPI
+ 43dh2qL2 .

If h ≤ 1
172dq2CPIL2 , then we deduce that Rq(µkh ∥π) ≤ Rq(µ0 ∥π)− kh

4qCPI
, and hence

that the first phase ends after at most N0 ≤ 4qCPIRq(µ0 ∥ π)/h iterations.
In the second phase, we consider t such that Rq(µt ∥ π) ≤ 1. Using 1 −

exp(−x) ≥ x/2 for x ∈ [0, 1], in this phase we have the inequality

∂tRq(µt ∥ π) ≤ − 1

2qCPI
Rq(µt ∥ π) + 18dqL3 (t− kh)2 + 84dqL2 (t− kh) .

As in the proof of Theorem 3.3.1, it implies

Rq(µNh ∥ π) ≤ exp
(
−(N −N0 − 1)h

2qCPI

)
Rq(µ(N0+1)h ∥ π) + 88dhq2CPIL

2

≤ exp
(
−(N −N0 − 1)h

2qCPI

)
+ 88dhq2CPIL

2 .

To make this at most ε, we take h ≤ ε
176dq2CPIL2 and N ≥ N0 + 1 + 2qCPI

h
ln(2/ε).

From Lemma 3.6.17, we see that Rq(µ0 ∥ π) = Õ(d), so that N = Θ̃(dqCPI

h
).

Substituting this into our earlier constraints on h, we see that if we take

h = Θ̃
( ε

dq2CPIL2
min

{
1,

1

qε
,
dCPI

εL

})
,

then the iteration complexity is

N = Θ̃
(d2q3C2

PIL
2

ε
max

{
1, qε,

εL

dCPI

})
.

This completes the proof.
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■ 3.6.4 Proof of Theorem 3.3.4

■ 3.6.4.1 Girsanov’s theorem and change of measure

As discussed in Section 3.5.2, we will use the Girsanov’s theorem, stated below in
a form which is convenient for our purposes.

Theorem 3.6.6 (Girsanov’s theorem, [Øks03, Theorem 8.6.8]). Consider stochas-
tic processes (xt)t≥0, (bPt )t≥0, (bQt )t≥0 adapted to the same filtration. Let PT and

QT be probability measures on the path space C([0, T ];Rd) and (Xt)t≥0 evolves
according to

dXt = bPt dt+
√

2 dBP
t under PT ,

dXt = bQt dt+
√

2 dBQ
t under QT ,

where BP is a PT -Brownian motion and BQ is a QT -Brownian motion. Assume
that Novikov’s condition

EQT exp
(1

4

∫ T

0

∥bPt − bQt ∥2 dt
)
<∞

holds. Then,

dPT
dQT

= exp
( 1√

2

∫ T

0

⟨bPt − bQt , dBQ
t ⟩ −

1

4

∫ T

0

∥bPt − bQt ∥2 dt
)
.

Remark 3.6.7. In our applications of Girsanov’s theorem, although we do not
check Novikov’s condition explicitly, the validity of Novikov’s condition follows
from the proof.

Actually, we only need the following corollary.

Corollary 3.6.8. For any event E and q ≥ 1,

EQT
[( dPT

dQT

)
q
1E

]
≤

√
E
[
exp

(
q2

∫ T

0

∥bPt − bQt ∥2 dt
)
1E

]
,

provided that Novikov’s condition holds:

EQT exp
(
q2

∫ T

0

∥bPt − bQt ∥2 dt
)
<∞ .
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Proof. Applying the Cauchy–Schwarz inequality,

EQT
[( dPT

dQT

)
q
1E

]
= EQT

[
exp

( q√
2

∫ T

0

⟨bPt − bQt , dBQ
t ⟩ −

q

4

∫ T

0

∥bPt − bQt ∥2 dt
)
1E

]
≤

√
EQT

[
exp

((
q2 − q

2

) ∫ T

0

∥bPt − bQt ∥2 dt
)
1E

]
×

√
EQT exp

(√
2q

∫ T

0

⟨bPt − bQt , dBQ
t ⟩ − q2

∫ T

0

∥bPt − bQt ∥2 dt
)

︸ ︷︷ ︸
=1

≤
√

EQT
[
exp

(
q2

∫ T

0

∥bPt − bQt ∥2 dt
)
1E

]
,

where we used Itô’s lemma to show that the underlined term equals 1; this step
requires checking that the exponential local martingale is a bona fide martingale,
which is implied by Novikov’s condition.

Next, we state and prove the change of measure principle described in §3.5.2.
This lemma will be invoked repeatedly in the main arguments.

Lemma 3.6.9 (Change of measure). Let µ, ν be probability measures and let E
be any event. Then,

µ(E) ≤ ν(E) +
√
χ2(µ ∥ ν) ν(E) .

In particular, if µ and ν are probability measures on Rd and

ν{∥·∥ ≥ R0 + η} ≤ C exp(−cη2) for all η ≥ 0 ,

where C ≥ 1, then

µ
{
∥·∥ ≥ R0 +

√
1

c
R2(µ ∥ ν) + η

}
≤ 2C exp

(
−cη

2

2

)
for all η ≥ 0 .

Proof.

µ(E) = ν(E) +

∫
1E

(dµ

dν
− 1

)
dν ≤ ν(E) +

√
χ2(µ ∥ ν) ν(E) ,

where the last inequality is the Cauchy–Schwarz inequality.
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For the second statement, applying the change of measure principle to E =
{∥·∥ ≥ R0 + η̄} yields

µ{∥·∥ ≥ R0 + η̄} ≤ C exp(−cη̄2) +
√
C exp

{
−
(
cη̄2 − R2(µ ∥ ν)

)}
.

Now take η̄ =
√

1
c
R2(µ ∥ ν) + η.

Finally, we use the following lemma used to remove the conditioning on events.

Lemma 3.6.10 ([GT20, Lemma 14]). Let Y > 0 be a random variable. Assume
that for all 0 < δ < 1/2 there exists an event Eδ with probability at least 1− δ such
that E[Y 2 | Eδ] ≤ v

δξ
for some ξ < 1. Then, EY ≤ 4

√
v.

■ 3.6.4.2 Sub-Gaussianity of the Langevin diffusion

In this section, we introduce a modified distribution: for γ,R > 0,

π̂ ∝ exp(−V̂ ) , V̂ (x) := V (x) +
γ

2
(∥x∥ −R)2+ . (3.11)

Here, (∥x∥ −R)2+ is interpreted as max{∥x∥ −R, 0}2. Although π̂ and V̂ depend
on the parameters γ and R, we will suppress this in the notation for simplicity.
Note that by construction, V = V̂ on the ball B(0, R) of radius R centered at the
origin. Also, the probability measure π̂ has sub-Gaussian tails. We record this
and other useful facts below.

Lemma 3.6.11 (properties of the modified potential). Let π̂ and V̂ be defined as
in (3.11). Assume that ∇V (0) = 0 and that ∇V satisfies (s-Hölder). Then, the
following assertions hold.

1. (sub-Gaussian tail bound) Assume that R is chosen so that π(B(0, R)) ≥ 1/2.
Then, for all η ≥ 0,

π̂{∥·∥ ≥ R + η} ≤ 2 exp
(
−γη

2

2

)
.

2. (gradient growth) The gradient ∇V̂ satisfies

∥∇V̂ (x)∥ ≤ L+ (L+ γ) ∥x∥ .

Proof. 1. We can write∫
exp

(γ
2

(∥·∥ −R)2+
)

dπ̂ =

∫
exp(−V )∫
exp(−V̂ )

.
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Next, we bound∫
exp(−V̂ )∫
exp(−V )

=

∫
exp

(
−γ

2
(∥·∥ −R)2+

)
dπ ≥ π

(
B(0, R)

)
≥ 1

2

by our assumption on R. The sub-Gaussian tail bound follows from Markov’s
inequality via

π̂{∥·∥ −R ≥ η} ≤ π̂
{

exp
(γ

2
(∥·∥ −R)2+

)
≥ exp

γη2

2

}
≤ 2 exp

(
−γη

2

2

)
.

2. First, note that ∥∇V (x)∥ ≤ L ∥x∥s ≤ L (1 + ∥x∥), using ∇V (0) = 0
and (s-Hölder). Then,

∥∇V̂ (x)∥ ≤ ∥∇V (x)∥+ γ (∥x∥ −R)+ ≤ L+ (L+ γ) ∥x∥ .

Throughout this section, we will assume that R ≥ max{1, 2m}, where m :=∫
∥·∥ dπ, so that the sub-Gaussian tail bound in Lemma 3.6.11 is valid.

We now begin transferring the sub-Gaussianity of π̂ to πt. First, we establish
sub-Gaussian tail bounds for π̂t, where (π̂t)t≥0 is the law of the continuous-time
Langevin diffusion

dẐt = −∇V̂ (Ẑt) dt+
√

2 dBt (3.12)

with potential V̂ , initialized at X̂0 ∼ µ0.

Lemma 3.6.12. Let (ẑt)t≥0 denote the modified diffusion (3.12) with potential

V̂ . Assume that h ≤ 1/(2 (L+ γ)) and R ≥ max{1, 2m}. Then, for all δ ∈ (0, 1),
with probability at least 1− δ,

sup
t∈[0,Nh]

∥Ẑt∥ ≤ R + 4h (L+ γ)R +

√
8

γ
R2(µ0 ∥ π̂) +

√(
96dh+

32

γ

)
ln

8N

δ
.

Proof. Apply the change of measure principle (Lemma 3.6.9) together with the
sub-Gaussian tail bound in Lemma 3.6.11 to see that with probability at least
1− δ,

∥Ẑkh∥ ≤ R +

√
2

γ
R2(π̂t ∥ π̂) +

√
4

γ
ln

4

δ
.
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Since the Rényi divergence is decreasing along the diffusion (3.12), then R2(π̂t ∥
π̂) ≤ R2(µ0 ∥ π̂). Therefore, a union bound implies that with probability at least
1− δ,

max
k=0,1,...,N−1

∥Ẑkh∥ ≤ R +

√
2

γ
R2(µ0 ∥ π̂) +

√
4

γ
ln

4N

δ
. (3.13)

Next, for t ≤ h,

∥Ẑkh+t − Ẑkh∥ ≤
∫ t

0

∥∇V̂ (Ẑkh+r)∥ dr +
√

2 ∥Bkh+t −Bkh∥

≤ hL+ (L+ γ)

∫ t

0

∥Ẑkh+r∥ dr +
√

2 ∥Bkh+t −Bkh∥

≤ hL+ (L+ γ)
(
h ∥Ẑkh∥+

∫ t

0

∥Ẑkh+r − Ẑkh∥ dr
)

+
√

2 ∥Bkh+t −Bkh∥ ,

where we used Lemma 3.6.11. Grönwall’s inequality implies

sup
t∈[0,h]

∥Ẑkh+t − Ẑkh∥

≤
(
hL+ h (L+ γ) ∥Ẑkh∥+

√
2 sup
t∈[0,h]

∥Bkh+t −Bkh∥
)

exp
(
h (L+ γ)

)
≤ 2hL+ 2h (L+ γ) ∥Ẑkh∥+

√
8 sup
t∈[0,h]

∥Bkh+t −Bkh∥

provided h ≤ 1/(2 (L+ γ)). Now, a union bound shows that

P
{

sup
t∈[0,Nh]

∥Ẑt∥ ≥ η
}

≤ P
{

max
k=0,1,...,N−1

∥Ẑkh∥ ≥ R′
}

+
N−1∑
k=0

P
{

sup
t∈[0,h]

∥Ẑkh+t − Ẑkh∥ ≥ η −R′, max
k=0,1,...,N−1

∥Ẑkh∥ ≤ R′
}

≤ P
{

max
k=0,1,...,N−1

∥Ẑkh∥ ≥ R′
}

+
N−1∑
k=0

P
{√

8 sup
t∈[0,h]

∥Bkh+t −Bkh∥ ≥ η −R′ − 2hL− 2h (L+ γ)R′
}
.

Taking R′ = R+
√

2
γ
R2(µ0 ∥ π̂)+

√
4
γ

ln 8N
δ

and applying a standard bound on the

tail probability of Brownian motion (Lemma 3.6.21) shows that with probability
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at least 1− δ, if R ≥ 1,

sup
t∈[0,Nh]

∥Ẑt∥ ≤ R′ + 2hL+ 2h (L+ γ)R′ +

√
48dh ln

6N

δ

≤ R + 4h (L+ γ)R +

√
8

γ
R2(µ0 ∥ π̂) +

√(
96dh+

32

γ

)
ln

8N

δ

after simplifying some terms.

Next, we control the Rényi divergence between πt and π̂t, which ultimately
allows us to transfer the sub-Gaussianity to πt.

Proposition 3.6.13. Let T := Nh. Let QT , Q̂T be the measures on path space
corresponding to the original diffusion (3.1) and the modified diffusion (3.12)
respectively, both initialized at µ0. Assume that h ≤ 1

3
min{ 1

L+γ
, T
d
} and γ ≤ 1

3072T
.

Also, suppose that R ≥ max{1, 2m} and R2(µ0 ∥ π̂) ≥ 1. Then,

R2(QT ∥ Q̂T ) ≤ h (L+ γ)2R2

d
+ 5R2(µ0 ∥ π̂) ln(8N) .

Proof. For all 0 < δ < 1/2, let Eδ denote the event that the conclusion of
Lemma 3.6.12 holds, i.e.,

Eδ :=
{

sup
t∈[0,Nh]

∥Ẑt∥ ≤ Rδ

}
with

Rδ := R + 4h (L+ γ)R +

√
8

γ
R2(µ0 ∥ π̂) +

√(
96dh+

32

γ

)
ln

8N

δ
.

Then, we know that P(Eδ) ≥ 1− δ. Applying Girsanov’s theorem in the form of
Corollary 3.6.8,

lnE
[(dQT

dQ̂T

)
4
1Eδ

]
≤ 1

2
lnE

[
exp

(
16

∫ T

0

∥∇V (ẑt)−∇V̂ (ẑt)∥2 dt
)
1Eδ

]
=

1

2
lnE

[
exp

(
16γ2

∫ T

0

(∥ẑt∥ −R)2+ dt
)
1Eδ

]
≤

(
384γ2h2 (L+ γ)2R2 + 192γ R2(µ0 ∥ π̂) + (2304γ2dh+ 768γ) ln

8N

δ

)
T .
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In order to apply Lemma 3.6.10 and remove the conditioning, we require the
condition 2304γ2dhT + 768γT < 1. This can be achieved by taking γ ≤ 1

3072T
and

h ≤ T
3d

. Then, Lemma 3.6.10 implies

R2(QT ∥ Q̂T ) = lnE
[(dQT

dQ̂T

)
2
]

≤ ln 8 +
(
192γ2h2 (L+ γ)2R2 + 96γ R2(µ0 ∥ π̂)

+ (1152γ2dh+ 384γ) ln(8N)
)
T

≤ ln 8 +
h2 (L+ γ)2R2

T
+ R2(µ0 ∥ π̂) +

dh ln(8N)

T
+ ln(8N)

≤ h (L+ γ)2R2

d
+ 5R2(µ0 ∥ π̂) ln(8N) ,

where we have combined terms using R2(µ0∥π̂) ≥ 1 to simplify the final bound.

Proposition 3.6.14. Let (Zt)t≥0 denote the continuous-time diffusion (3.1) ini-

tialized at µ0. Assume that h ≤ 1
3

min{ 1
L+T−1 ,

T
d
} and m,R2(µ0 ∥ π̂) ≥ 1. Then,

for all δ ∈ (0, 1/2), with probability at least 1− δ,

max
k=0,1,...,N−1

∥Zkh∥ ≤ 2m + 490
√
TR2(µ0 ∥ π̂) ln(8N)

+
230h1/2m (L+ T−1)T 1/2

d1/2
+ 160

√
T ln

1

δ
,

where we write T := Nh.

Proof. Recall from the proof of Lemma 3.6.12 that with probability at least 1− δ,

max
k=0,1,...,N−1

∥Ẑkh∥ ≤ R +

√
2

γ
R2(µ0 ∥ π̂) +

√
4

γ
ln

4N

δ

(see (3.13)). Equivalently,

P
{

max
k=0,1,...,N−1

∥Ẑkh∥ ≥ R +

√
2

γ
R2(µ0 ∥ π̂) + η

}
≤ 4N exp

(
−γη

2

4

)
.

Applying the change of measure principle (Lemma 3.6.9) again to QT and Q̂T with
the choice γ = 1

3072T
and R = 2m reveals that for all δ ∈ (0, 1/2), with probability

at least 1− δ,

max
k=0,1,...,N−1

∥Zkh∥ ≤ R +

√
2

γ
R2(µ0 ∥ π̂) +

√
4

γ
R2(QT ∥ Q̂T ) +

√
8

γ
ln

8N

δ
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≤ 2m + 490
√
TR2(µ0 ∥ π̂) ln(8N)

+
230h1/2m (L+ T−1)T 1/2

d1/2
+ 160

√
T ln

1

δ
,

after simplifying the bound.

■ 3.6.4.3 Bounding the discretization error

In this section, we prove our main bound on the discretization error.

Proposition 3.6.15. Let (µt)t≥0 denote the law of the interpolated process (3.2)
and let (πt)t≥0 denote the law of the continuous-time Langevin diffusion (3.1),
both initialized at µ0. Assume that ∇V satisfies ∇V (0) = 0 and (s-Hölder). For
simplicity, assume that ε−1,m, L, T,R2(µ0 ∥ π̂) ≥ 1 and q ≥ 2. If the step size h
satisfies

h ≤ Õs

( ε1/s

dq1/sL2/sT 1/s
min

{
1,

1

q1/sε1/s
,
d

ms
,

d

R2(µ0 ∥ π̂)s/2

})
,

where the notation Õs hides constants depending on s as well as polylogarithmic
factors, then for T := Nh,

Rq(µT ∥ πT ) ≤ ε .

Proof. Let P , Q denote the measures on path space corresponding to the inter-
polated process (3.2) and the continuous-time diffusion (3.1) respectively, both
initialized at µ0. Also, let

Gt :=
1√
2

∫ r

0

⟨∇V (Zr)−∇V (Z⌊r/h⌋h), dBr⟩

− 1

4

∫ r

0

∥∇V (Zr)−∇V (Z⌊r/h⌋h)∥2 dr ,

where (Zt)t≥0 is the continuous-time diffusion (3.1). By applying Girsanov’s
theorem (Theorem 3.6.6) and Itô’s formula, we obtain

EQT
[( dPT

dQT

)
q
]
− 1 = E exp(qGT )− 1

=
q (q − 1)

4
E
∫ T

0

exp(qGt) ∥∇V (Zt)−∇V (Z⌊t/h⌋h)∥2 dt

≤ q2

4

∫ T

0

√
E[exp(2qGt)]E[∥∇V (Zt)−∇V (Z⌊t/h⌋h)∥4] dt .

(3.14)
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We bound the two expectations in turn. From Corollary 3.6.8 and (s-Hölder),

E exp(2qGt) ≤
√

E exp
(

4q2
∫ t

0

∥∇V (Zr)−∇V (Z⌊r/h⌋h)∥2 dr
)

≤
√

E exp
(

4q2L2

∫ t

0

∥Zr − Z⌊r/h⌋h∥2s dr
)

and we control this term by conditioning on the event

Eδ,kh :=
{

max
j=0,1,...,k−1

∥Zjh∥ ≤ Rδ

}
,

where

Rδ := 2m + 490
√
TR2(µ0 ∥ π̂) ln(8N) +

230h1/2m (L+ T−1)T 1/2

d1/2
+ 160

√
T ln

1

δ
.

By Proposition 3.6.14, we know that P(Eδ,kh) ≥ 1− δ.
One step error. We first consider the error over an interval [0, h] conditionally

on Z0, corresponding to a single step of the LMC algorithm. This step requires
bounding the exponential moment of supt∈[0,h] ∥Zt − Z0∥2s, which is a slightly
tedious exercise in stochastic calculus; hence, we postpone the calculation to

§3.6.7. We quote the final result here: assuming that h ≲ 1/(dsq2L2)
1/(1+s)

,
Lemma 3.6.22 implies

lnE exp
(

8q2L2

∫ h

0

∥Zt − Z0∥2s dt
)
≤ lnE exp

(
8hq2L2 sup

t∈[0,h]
∥Zt − Z0∥2s

)
≲ h2s+1q2L2s+2 (1 + ∥Z0∥2s

2

) + dshs+1q2L2 .

Iterating the bound. Let (Ft)t≥0 denote the filtration and introduce the

shorthand notation Ht :=
∫ t
0
∥xr − x⌊r/h⌋h∥2s dr. By conditioning on F(N−1)h, we

can apply the one step bound to derive the bound

lnE[exp{8q2L2HNh}1Eδ,Nh ]

≤ lnE
[
exp

{
8q2L2H(N−1)h

+O
(
h2s+1q2L2s+2 (1 + ∥Z(N−1)h∥2s

2

) + dshs+1q2L2
)}

1Eδ,Nh
]

≤ lnE[exp{8q2L2H(N−1)h}1Eδ,(N−1)h
]

+O
(
h2s+1q2L2s+2 (1 +R2s2

δ ) + dshs+1q2L2
)
.
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Iterating this recursion yields

lnE[exp{8q2L2HNh}1Eδ,Nh ] ≲ h2sq2L2s+2R2s2

δ T + dshsq2L2T .

where we recall T := Nh. In order to apply Lemma 3.6.10 to remove the condi-
tioning, we require the step size to satisfy h ≲s 1/(q1/sL(s+1)/sT (s2+1)/(2s)), where
the notation ≲s hides a constant depending only on s. Applying the lemma,

lnE exp{4q2L2HNh}
≲ 1 + dshsq2L2T

+ h2sq2L2s+2T

×
(
m +

√
TR2(µ0 ∥ π̂) ln(8N) +

h1/2m (L+ T−1)T 1/2

d1/2

)2s2

.

We pause here to give a remark which may clarify the proof. The +1 term
above arises for two reasons. First, Lemma 3.6.10 requires a bound on the
conditional expectation E[exp{8q2L2HNh} | Eδ,Nh] whereas we have bounded
E[exp{8q2L2HNh}1Eδ,Nh ]; passing from the latter to the former incurs a factor of
2 (for δ ≤ 1/2). Second, the conclusion of Lemma 3.6.10 also contributes a factor
of 4. This shows that the application of Lemma 3.6.10 inherently adds a constant
to the bound on the logarithm of the expectation. This also explains why, at
the beginning of this proof in (3.14), we first applied Itô’s formula to exp(qGT )
rather than applying Lemma 3.6.10 to E exp(qGT ) directly. If we had done the
latter, then it would not be possible to make the Rényi divergence Rq(PT ∥ QT )
arbitrarily small with an appropriate choice of h.

We now choose h in order to make E exp{4q2L2HNh} ≲ 1. This is accomplished
by taking

h ≤ Õs

( 1

dq2/sL2/sT 1/s
min

{
1,

d

ms
,

d

R2(µ0 ∥ π̂)s/2
,
d(2s+2)/(s+2)

m2s/(s+2)

})
. (3.15)

The last term in the minimum can also be eliminated from consideration; indeed,
if d(2s+2)/(s+2)/m2s/(s+2) ≥ 1, then it is not active in the minimum. Otherwise,
raising this expression to the power (s+ 2)/2 ≥ 1,

d(2s+2)/(s+2)

m2s/(s+2)
≥ ds+1

ms
≥ d

ms
.

Controlling the remaining term. Next, we must bound the difference
E[∥∇V (Zt)−∇V (Zkh)∥4] for t ∈ [kh, (k+1)h]. Although this can also be handled
directly via stochastic calculus, we will deduce the bound from Lemma 3.6.22 to
avoid repeating work. This yields

E[exp(λ ∥Zt − Zkh∥2s) | Zkh] ≲ 1 ,
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provided that λ is chosen as

λ ≍ 1

dshs
∧ 1

h2sL2s (1 + ∥Zkh∥2s2)
.

In turn, it implies the tail bound

P{∥Zt − Zkh∥4s ≥ η | Zkh} ≲ exp(−λ√η)

which is integrated to yield

√
E[∥∇V (Zt)−∇V (Zkh)∥4] ≤ L2

√
E[∥Zt − Zkh∥4s] ≲ L2

√
E

1

λ2

≲ dshsL2 + h2sL2s+2
√

1 + E[∥Zkh∥4s2 ] .

Integrate the sub-Gaussian tail bound from Proposition 3.6.14 to obtain√
1 + E[∥Zkh∥4s2 ] ≤ Õ

(
m2s2 + T s

2

R2(µ0 ∥ π̂)s
2

+
hs

2
m2s2L2s2T s

2

ds2

)
.

Finishing the proof. Combining together the previous steps, we have proven

EQT
[( dPT

dQT

)
q
]
− 1

≤ Õ
(
dshsq2L2T

+ h2sq2L2s+2T
(
m2s2 + T s

2

R2(µ0 ∥ π̂)s
2

+
hs

2
m2s2L2s2T s

2

ds2
))
.

The step size condition from (3.15) makes the right-hand side of the above expres-
sion ≲ 1. Taking logarithms,

Rq(PT ∥QT )

≤ Õ
(
dshsqL2T + h2sqL2s+2T

(
m2s2 + T s

2

R2(µ0 ∥ π̂)s
2

+
hs

2
m2s2L2s2T s

2

ds2
))
.

We now choose h to make the Rényi divergence at most ε2. By similar reasoning
as before, it suffices to take

h ≤ Õs

( ε2/s

dq1/sL2/sT 1/s
min

{
1,

d

ms
,

d

R2(µ0 ∥ π̂)s/2

})
.

This completes the proof.
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■ 3.6.4.4 Finishing the proof

Finally, we use Theorem 3.2.2 on the continuous-time convergence of the Langevin
diffusion (3.1) in Rényi divergence under an LOI. Together with our discretization
bound, it will imply Theorem 3.3.4.

Lemma 3.6.16. Let (πt)t≥0 denote the law of the continuous-time diffusion (3.1)
initialized at µ0, and assume that π satisfies (LOI) with order α. If

T ≥ 68qCLOI(α)

(Rq(µ0 ∥ π)2/α−1 − 1

2/α− 1
+ ln

1

ε2

)
,

we obtain Rq(πT ∥ π) ≤ ε2.

Proof. Recall from Theorem 3.2.2 that

∂tRq(πt ∥ π) ≤ − 1

68qCLOI(α)
×
{
Rq(πt ∥ π)2−2/α , if Rq(πt ∥ π) ≥ 1 ,

Rq(πt ∥ π) , if Rq(πt ∥ π) ≤ 1 .

In general, if R : R+ → R+ satisfies the ODE R′ = −CRβ for some β ∈ (0, 1),
then a calculation shows that

R(t) = {R(0)1−β − C (1− β) t}1/(1−β) .

Thus, if α < 2, we obtain Rq(πT0 ∥ π) ≤ 1 at time

T0 =
68qCLOI(α)

2/α− 1
{Rq(µ0 ∥ π)2/α−1 − 1} .

Observe that as α → 2, then T0 → 68qCLOI(2) lnRq(µ0 ∥ π) which recovers the
continuous-time convergence under (LSI). Then, at time

T = T0 + 68qCLOI(α) ln
1

ε2

we obtain Rq(πT ∥ π) ≤ ε2.

Proof of Theorem 3.3.4. Let (µt)t≥0 denote the marginal law of the interpolated
process (3.2) and let (πt)t≥0 denote the law of the continuous-time Langevin
diffusion (3.1), both initialized at µ0. By the weak triangle inequality (when
q ≥ 2; Lemma 2.2.23), we can bound

Rq(µNh ∥ π) ≲ R2q(µNh ∥ πNh) + R2q−1(πNh ∥ π) .
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For T := Nh, we can make the second term at most ε2/2 if we choose

T = Θ̃
(
qCLOI(α) R2q−1(µ0 ∥ π)2/α−1

)
by Lemma 3.6.16. Then, by Proposition 3.6.15, we can make the first term at
most ε2/2 taking

h = Θ̃s

( ε2/s

dq2/sC
1/s
LOI(α)L

2/sR2q−1(µ0 ∥ π)(2/α−1)/s
(3.16)

×min
{

1,
1

q1/sε2/s
,
d

ms
,

d

R2(µ0 ∥ π̂)s/2

})
. (3.17)

Then, the total number of iterations of LMC is

N =
T

h
= Θ̃s

(dq1+2/sC
1+1/s
LOI(α)L

2/sR2q−1(µ0 ∥ π)(2/α−1) (1+1/s)

ε2/s

× max
{

1, q1/sε2/s,
ms

d
,
R2(µ0 ∥ π̂)s/2

d

})
.

This completes the proof.

■ 3.6.5 Proof of Theorems 3.2.3 and 3.3.6

We first prove the continuous-time convergence for the Langevin diffusion (3.1)
under (MLSI) and (α1-tail).

Proof of Theorem 3.2.3. From [VW19, Lemma 6], we have

∂tRq(πt ∥ π) = −4

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
,

where ρt := dπt
dπ

. Following the calculations of [VW19, Lemma 5] and apply-
ing (MLSI) to f 2 = ρqt/Eπ(ρqt ),

4

q

Eπ[∥∇(ρ
q/2
t )∥2]

Eπ(ρqt )
≥ 4

q

( entπ(ρqt )

2CMLSI Eπ(ρqt ) m̃p((1 + ρqt/Eπ(ρqt ))π)
δ(p)

)1/(1−δ(p))

≥ 1

qC2
MLSI m̃p((1 + ρqt )π)

δ(p)/(1−δ(p))

(entπ(ρqt )

Eπ(ρqt )

)1/(1−δ(p))
≥ 1

qC2
MLSI m̃p((1 + ρqt )π)

δ(p)/(1−δ(p)) Rq(πt ∥ π)1/(1−δ(p))
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≥ ε2δ(p)/(1−δ(p))

qC2
MLSI m̃p((1 + ρqt ) π)

δ(p)/(1−δ(p)) Rq(πt ∥ π)

as long as Rq(πt ∥ π) ≥ ε2. Next, we bound the moments. It is a standard

exercise [see Ver18, Exercise 2.7.3] to show that (α1-tail) implies m̃p(π)
1/p ≲

m + Ctail p
1/α1 . Also, by a slight modification of the change of measure principle

(Lemma 3.6.9), we can show that m̃p(ρ
q
tπ)

1/p ≲ m+CtailR2(ρ
q
tπ ∥ π)1/α1+Ctail p

1/α1 ,
and that R2(ρ

q
tπ ∥ π) ≲ qR2q(πt ∥ π) ≤ qR2q(π0 ∥ π). Therefore,

m̃p

(
(1 + ρqt ) π

)δ(p)/(1−δ(p)) ≤ m̃p(π)
δ(p)/(1−δ(p))

+ m̃p(ρ
q
tπ)

δ(p)/(1−δ(p))

≲ {m + qCtailR2q(π0 ∥ π)1/α1 + Ctail p
1/α1}(2−α0) (1+α0/(p−α0))

.

Using the assumption that m, Ctail,R2q(π0 ∥ π) ≤ dO(1), for p ≳ log d,

m̃p

(
(1 + ρqt ) π

)δ(p)/(1−δ(p))
≲ {m + qCtail R2q(π0 ∥ π)1/α1 + Ctail p

1/α1}2−α0

.

Together, it implies that Rq(πT ∥ π) ≤ ε2 whenever

T ≥ Ω
(qC2

MLSI

ε4δ(p)
{m + qCtailR2q(π0 ∥ π)1/α1 + Ctail p

1/α1}2−α0

ln
Rq(π0 ∥ π)

ε2

)
.

Next, choosing p ≍ ln(d/ε2), we obtain ε4δ(p) ≳ 1, so that

T ≥ Ω
(
qC2

MLSI {m + qCtailR2q(π0 ∥ π)1/α1 + Ctail ln(d/ε2)
1/α1}

2−α0

ln
Rq(π0 ∥ π)

ε2

)
,

completing the proof.

With the continuous-time result in hand, it is now straightforward to combine
it with the discretization result (Proposition 3.6.15) from the previous section.

Proof of Theorem 3.3.6. Let (µt)t≥0 denote the marginal law of the interpolated
process (3.2) and let (πt)t≥0 denote the law of the continuous-time Langevin
diffusion (3.1), both initialized at µ0. By the weak triangle inequality (when
q ≥ 2; Lemma 2.2.23), we can bound

Rq(µNh ∥ π) ≲ R2q(µNh ∥ πNh) + R2q−1(πNh ∥ π) .

For T := Nh, we can make the second term at most ε2/2 if we choose

T = Θ̃(qC2
MLSI {m + qCtailR2q(µ0 ∥ π)1/α1}2−α0

)
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by Theorem 3.2.3. Then, by Proposition 3.6.15, we can make the first term at
most ε2/2 taking

h = Θ̃s

( ε2/s

dq(4−α0)/sC
2/s
MLSIC

(2−α0)/s
tail L2/sR2q(µ0 ∥ π)(2−α0)/(α1s)

×min
{

1,
1

q1/sε2/s
,
d

ms
,

d

R2(µ0 ∥ π̂)s/2
,
(R2q(µ0 ∥ π)1/α1

m

)
(2−α0)/s

})
.

(3.18)

Then, the total number of iterations of LMC is

N =
T

h

= Θ̃s

(dq(1+(3−α0) (1+s))/sC
2 (1+1/s)
MLSI C

(2−α0) (1+1/s)
tail L2/sR2q(µ0 ∥ π)(2−α0) (1+1/s)/α1

ε2/s

×max
{

1, q1/sε2/s,
ms

d
,
R2(µ0 ∥ π̂)s/2

d
,
( m

R2q(µ0 ∥ π)1/α1

)
(2−α0)/s

})
.

This completes the proof.

■ 3.6.6 Initialization

In this section, we give bounds on the Rényi divergence at initialization. We begin
with the convex case.

Lemma 3.6.17. Suppose that V is convex with V (0) = 0 and ∇V (0) = 0, and as-
sume that ∇V is L-Lipschitz. Let m :=

∫
∥·∥ dπ. Then, for µ0 = normal(0, L−1Id),

R∞(µ0 ∥ π) ≤ 2 +
d

2
ln(2m2L) .

Proof. We can write

sup
µ0

π
= sup

x∈Rd
exp

{
V (x)− L

2
∥x∥2

} ∫
exp(−V )∫

exp(−V − δ ∥·∥2)

∫
exp(−V − δ ∥·∥2)

(2π/L)d/2

(3.19)

for some δ > 0 to be chosen later. We bound the three ratios in turn. First,

exp
{
V (x)− L

2
∥x∥2

}
≤ 1
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using V (x) ≤ L ∥x∥2/2. Next,∫
exp(−V − δ ∥·∥2)∫

exp(−V )
=

∫
exp(−δ ∥·∥2) dπ ≥ exp(−4δm2) π{∥·∥ ≤ 2m}

≥ 1

2
exp(−4δm2)

by Markov’s inequality. Finally, since V ≥ 0,∫
exp(−V − δ ∥·∥2)

(2π/L)d/2
≤

∫
exp(−δ ∥·∥2)
(2π/L)d/2

=
( L

2δ

)
d/2 .

Taking δ = 1/(4m2), we obtain

R∞(µ0 ∥ π) = ln sup
µ0

π
≤ 2 +

d

2
ln(2m2L) ,

which is O(d), up to a logarithmic factor.

We next extend this result to the general case.

Lemma 3.6.18. Suppose that ∇V (0) = 0 and that ∇V satisfies (s-Hölder) with
constant L > 0. Let m :=

∫
∥·∥ dπ. Then, for µ0 = normal(0, (2L)−1Id),

R∞(µ0 ∥ π) ≤ 2 + L+ V (0)−minV +
d

2
ln(4m2L) .

Proof. We consider the same decomposition as in (3.19). First, for some λ ∈ [0, 1],
we have

|V (x)− V (0)| = |⟨∇V (λx), x⟩| ≤ ∥∇V (λx)−∇V (0)∥ ∥x∥ ≤ L ∥x∥1+s .

Therefore,

exp{V (x)− L ∥x∥2} ≤ exp{V (x)− V (0) + V (0)− L ∥x∥2}
≤ exp{V (0) + L ∥x∥1+s − L ∥x∥2} ≤ exp{V (0) + L}

using t1+s ≤ 1 + t2 for all t ≥ 0. Next,∫
exp(−V − δ ∥·∥2)∫

exp(−V )
≥ 1

2
exp(−4δm2)

as before. Lastly,∫
exp(−V − δ ∥·∥2)

(π/L)d/2
≤ exp(−minV )

∫
exp(−δ ∥·∥2)

(π/L)d/2
= exp(−minV )

(L
δ

)
d/2 .
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This yields

R∞(µ0 ∥ π) = ln sup
µ0

π
≤ 2 + L+ V (0)−minV +

d

2
ln(4m2L) ,

with the choice δ = 1/(4m2).

In order to obtain an initialization with R∞(µ0∥π) = Õ(d), the lemma requires
finding a stationary point x ∈ Rd such that the optimality gap V (x)−minV is
not too large, i.e., of order O(d). Since ∇V satisfies (s-Hölder), it suffices to find a
stationary point which lies in a ball of radius O(d1/(1+s)) centered at the minimizer
of V . Based on this result, it seems reasonable to assume that the initialization
typically satisfies R∞(µ0 ∥ π) = Õ(d).

Actually, in the setting of Theorem 3.3.4, we also need a bound on the Rényi
divergence R2(µ0 ∥ π̂), where π̂ is a slight modification of π (see Section 3.6.4).
The following lemma is proven just as in Lemma 3.6.18, so the proof is omitted.

Lemma 3.6.19. Suppose that ∇V (0) = 0 and that ∇V satisfies (s-Hölder) with
constant L > 0. For some γ > 0, let V̂ (x) := V (x) + γ

2
(∥x∥ −R)2+, and let

π̂ ∝ exp(−V̂ ). Also, let m̂ :=
∫
∥·∥ dπ̂. Then, for µ0 = normal(0, (2L+ γ)−1Id),

R∞(µ0 ∥ π̂) ≤ 2 + L+
γ

2
+ V (0)−minV +

d

2
ln(4m̂2L) .

From the tail bound in Lemma 3.6.11, we can deduce an upper bound for m̂
as follows

m̂ =

∫ ∞
0

π̂(∥ · ∥ ≥ t) dt

=

∫ R

0

π̂(∥ · ∥ ≥ t) dt+

∫ ∞
0

π̂(∥ · ∥ ≥ R + η) dη

≤ R +

∫ ∞
0

2 exp
(
−γη

2

2

)
dη

≲ R +

√
1

γ
.

In Proposition 3.6.14, we eventually take γ roughly of order 1/d ≲ γ ≲ 1, and

R ≲ m. Hence, if L+V (0)−minV = Õ(d) and m ≤ dO(1), then R∞(µ0∥π̂) = Õ(d).

■ 3.6.7 Additional technical lemmas

In this section, we collect together technical lemmas which appear in the proofs
of §3.6.4. The proofs rely on standard arguments from stochastic calculus.

We first present a bound on the moment generating function of the supremum
of a one-dimensional Brownian motion using the reflection principle.
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Lemma 3.6.20. Let (Bs)s≥0 be a standard one-dimensional Brownian motion.

For h, λ > 0, such that λ < 1
2h

the following holds:

E exp
(
λ sup
s∈[0,h]

|Bs|2
)
≤ 1 + 2hλ

1− 2hλ
.

Proof. The reflection principle [KS91, Proposition 6.19, 2.2.6] states that for every
t > 0, it holds that

P
(

sup
s∈[0,h]

Bs > t
)

= 2P(Bh > t) .

As a result, we have that

P
(

sup
s∈[0,h]

|Bs|2 > t
)

= P
(

sup
s∈[0,h]

|Bs| >
√
t
)

≤ P
(

sup
s∈[0,h]

Bs >
√
t
)

+ P
(

inf
s∈[0,h]

Bs < −
√
t
)

= 4P(Bh >
√
t) ≤ 2 exp

(
− t

2h

)
.

Thus,

E exp
(
λ sup
s∈[0,h]

|Bs|2
)

= 1 + λ

∫ ∞
0

exp(λt)P
(

sup
s∈[0,h]

|Bs|2 > t
)

dt

≤ 1 + 2λ

∫ ∞
0

exp
(
−1− 2hλ

2h
t
)

dt = 1 +
4hλ

1− 2hλ
.

Lemma 3.6.21. Let (Bt)t≥0 be a standard Brownian motion in Rd. Then, if
λ ≥ 0 and h ≤ 1/(4λ),

E exp
(
λ sup
t∈[0,h]

∥Bt∥2
)
≤ exp(6dhλ) .

In particular, for all η ≥ 0,

P
{

sup
t∈[0,h]

∥Bt∥ ≥ η
}
≤ 3 exp

(
− η2

6dh

)
.

Next, for s ∈ (0, 1) and 0 ≤ λ < 1/(12dh)s,

E exp
(
λ sup
t∈[0,h]

∥Bt∥2s
)
≤ exp(144dshsλ) .
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Proof. The first statement follows from Lemma 3.6.20, and the second follows
from the first by taking λ = 1/(6dh) and applying Markov’s inequality.

We now turn towards the proof of the third statement. Using the tail bound

P
{

sup
t∈[0,h]

∥Bt∥2s ≥ η
}
≤ 3 exp

(
−η

1/s

6dh

)
we now bound E exp(λ supt∈[0,h] ∥Bt∥2s).

E exp
(
λ sup
t∈[0,h]

∥Bt∥2s
)

= 1 + λ

∫ ∞
0

exp(λη)P
{

sup
t∈[0,h]

∥Bt∥2s ≥ η
}

dη

≤ 1 + 3λ

∫ ∞
0

exp
(
λη − η1/s

6dh

)
dη .

Split the integral into whether or not η ≥ (12dhλ)s/(1−s). For the first part,

λ

∫ (12dhλ)s/(1−s)

0

exp(λη) dη ≤ (12dh)s/(1−s)λ1/(1−s) exp{(12dh)s/(1−s)λ1/(1−s)}

≤ 3 (12dh)s/(1−s)λ1/(1−s)

provided that λ ≤ 1/(12dh)s. For the second part, using the change of variables
τ = η1/s/(12dh),

λ

∫ ∞
(12dhλ)s/(1−s)

exp
(
λη − η1/s

6dh

)
dη ≤ λ

∫ ∞
(12dhλ)s/(1−s)

exp
(
− η1/s

12dh

)
dη

≤ (12dh)ssλ

∫ ∞
0

exp(−τ)

τ 1−s
dτ

= (12dh)ssλΓ(s) = (12dh)sλΓ(1 + s)

≤ (12dh)sλ ,

where we used Gautschi’s inequality to obtain Γ(1 + s) ≤ 1. We have proven

E exp
(
λ sup
t∈[0,h]

∥Bt∥2s
)
≤ 1 + 9 (12dh)s/(1−s)λ1/(1−s) + 3 (12dh)sλ ≤ 1 + 144dshsλ ,

which implies the result.

Lemma 3.6.22. Let (Zt)t≥0 denote the continuous-time Langevin diffusion (3.1)
started at Z0, and assume that the gradient ∇V of the potential satisfies ∇V (0) = 0
and (s-Hölder). Also, assume that h ≤ 1/(6L) and λ ≤ 1/(96dshs). Then,

E exp
(
λ sup
t∈[0,h]

∥Zt − Z0∥2s
)
≤ exp{8h2sL2s (1 + ∥Z0∥2s

2

)λ+ 1152dshsλ} .
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Proof. Let f(t) := supr∈[0,t] ∥Zr − Z0∥2. Then, for 0 ≤ t ≤ h, since ∥∇V (x)∥ ≤
L ∥x∥s,

∥Zt − Z0∥2 =
∥∥∥−∫ t

0

∇V (Zr) dr +
√

2Bt

∥∥∥2

≤ 2t

∫ t

0

∥∇V (Zr)∥2 dr + 4 ∥Bt∥2

≤ 4t

∫ t

0

∥∇V (Zr)−∇V (Z0)∥2 dr + 4t2 ∥∇V (Z0)∥2 + 4 ∥Bt∥2

≤ 4tL2

∫ t

0

∥Zr − Z0∥2s dr + 4t2L2 ∥Z0∥2s + 4 ∥Bt∥2

≤ 4tL2

∫ t

0

∥Zr − Z0∥2 dr + 4t2L2 (1 + ∥Z0∥2s) + 4 ∥Bt∥2 ,

which yields

f(t) ≤ 4t2L2 (1 + ∥Z0∥2s) + 4 sup
r∈[0,t]

∥Br∥2 + 4tL2

∫ t

0

f(r) dr .

Grönwall’s inequality yields

f(h) ≤
(
4h2L2 (1 + ∥Z0∥2s) + 4 sup

r∈[0,h]
∥Br∥2

)
exp(2h2L2)

≤ 8h2L2 (1 + ∥Z0∥2s) + 8 sup
r∈[0,h]

∥Br∥2

using h ≤ 1/(6L). It also yields

sup
t∈[0,h]

∥Zt − Z0∥2s ≤ 8h2sL2s (1 + ∥Z0∥2s
2

) + 8 sup
r∈[0,h]

∥Br∥2s .

The result now follows from Lemma 3.6.21.

■ 3.7 Conclusion

In this work, we have given a suite of sampling guarantees for the LMC algorithm
which assume only that a functional inequality and a smoothness condition hold.
In particular, no such guarantees were previously known beyond the LSI case
considered in [VW19]. Consequently, we have resolved the open questions of
estimating the Rényi bias of LMC (Corollary 3.3.2) and establishing quantitative
convergence guarantees for LMC under a Poincaré inequality. Our results and
techniques are also of interest because they work with a stronger metric (namely,
Rényi divergence) than what is usually considered in the sampling literature.

To conclude, we list a few directions for future research.
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• It is not clear how sharp our bounds are, and it is worth investigating whether
our techniques can be improved.

• As discussed in the introduction, obtaining guarantees in Rényi divergence is
useful for applications to differential privacy, as well as for obtaining warm
starts for high-accuracy algorithms. Hence, we ask whether Rényi conver-
gence guarantees can be proved for more sophisticated algorithms, such as
randomized midpoint discretizations [SL19; HBE20].

In follow-up work [Zha+23] with Matthew Zhang, Mufan (Bill) Li, Krishnaku-
mar Balasubramanian, and Murat A. Erdogdu, I have also extended the techniques
in this chapter to study the underdamped Langevin Monte Carlo (ULMC) algo-
rithm. The strongly log-concave case of these results will be presented in §6, where
it will be applied to provide a warm start for the Metropolis-adjusted Langevin
algorithm (MALA).





Chapter 4

Analysis of the proximal sampler

In the previous chapter, we obtained new sampling guarantees for LMC under
isoperimetry, albeit at the expense of somewhat involved calculations. Moreover,
there are notable weaknesses of the LMC algorithm itself. For instance, it is
biased : its stationary distribution for positive step size h > 0 does not equal the
desired target π, and consequently the step size must be chosen appropriately
small to control the size of this bias.

To overcome these issues, we ask the following question: since LMC can be
interpreted as a discretization of the Wasserstein gradient flow for the KL diver-
gence, are there better methods of implementing this flow? In this chapter, we
study the proximal sampler algorithm of [TP18; LST21c] based on a novel inter-
pretation as an alternating iteration of Brownian motion forward and backward
in time. It leads to new convergence bounds which then translate into improved
sampling guarantees under isoperimetry, with simpler proofs than §3.

This chapter is based on [Che+22b], joint with Yongxin Chen, Adil Salim, and
Andre Wibisono.

■ 4.1 Introduction

We again study the problem of sampling from a target density πX ∝ exp(−V ) on
Rd, which enjoys surprising and deep connections with the field of optimization.
Indeed, the standard Langevin algorithm can be viewed as a gradient flow of the
Kullback–Leibler (KL) divergence on the space of probability measures equipped
with the geometry of optimal transport (see §2.2), a perspective which has led
to new analyses [DMM19; SR20] and algorithms [Per16; Zha+20; DL21; Ma+21]
inspired by the theory of convex optimization.

Among the algorithms in the optimization toolkit, we focus on proximal
methods. Classically, proximal methods are used to minimize composite ob-
jectives of the form f + g, where g is smooth and convex and f is non-smooth
but simple enough to allow for evaluation of the proximal map proxf : y 7→

103
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arg minx∈Rd{f(x)+ 1
2h
∥x−y∥2}. However, the setting of our investigation is more

closely related to the minimization of a non-composite objective f , for which the
proximal method is known as the proximal point algorithm [Mar70; Roc76].

As a natural first step towards developing a proximal point algorithm for
sampling, one can combine the proximal map with the standard Langevin algo-
rithm, leading to the proximal Langevin algorithm. This algorithm was introduced
in [Per16] and analyzed in the papers [Ber18; Wib19; SR20]. Although these results
are encouraging, the analogy between optimization methods and Langevin-based
algorithms is imperfect because the discretization of the latter leads to asymptotic
bias, a feature which is typically not present in optimization (see [Wib18] for a
thorough discussion).

Remarkably, a new proximal algorithm for sampling was proposed recently
in [LST21c] which overcomes this issue via a novel Gibbs sampling approach.
Briefly, the proximal sampler is a sampling algorithm which assumes access to
samples from an oracle distribution, known as the restricted Gaussian oracle
(RGO); the RGO is a sampling analogue of the proximal map from optimization.
Under this assumption, as well as the additional assumption that the target πX

is strongly log-concave, [LST21c] proved that the proximal sampler converges
exponentially fast to πX in total variation distance. In their paper, the proximal
sampler was used as a reduction framework to improve the condition number
dependence of other sampling algorithms. Indeed, the RGO is a better condi-
tioned distribution than the target distribution, so that implementing the RGO is
easier than solving the original sampling task. In turn, the reduction framework
allowed them to establish improved complexity results for a variety of structured
log-concave sampling problems. We review the proximal sampler and its imple-
mentability in §4.2.2.

Our contributions. Prior to our work, the convergence of the proximal sampler
was only known in the case when πX ∝ exp(−V ) is strongly log-concave. In this
chapter, we greatly expand the classes of targets to which the proximal sampler
is applicable by providing new convergence guarantees.

First, we consider the case when V is weakly convex. We show that after k
iterations, the proximal sampler outputs a distribution whose KL divergence to the
target is O(1/k). Our proof is analogous to, and is inspired by, the corresponding
guarantee for minimizing a weakly convex function (in particular, the O(1/k) rate
matches the optimization result).

Next, we assume that πX satisfies a functional inequality, e.g., a Poincaré
inequality or a log-Sobolev inequality. Such functional inequalities have been
employed in the sampling literature as tractable settings for non-log-concave
sampling; see [VW19] and §3. For these distributions, we show that the proximal
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sampler converges to the target in Rényi divergence (or any other weaker metric,
such as KL divergence) with a rate that matches the known convergence rates for
the continuous-time Langevin diffusion under the same assumptions.

In each of these settings, if we additionally assume that ∇V is Lipschitz, then
the RGO is implementable, as it becomes a smooth strongly log-concave distribu-
tion. Hence, we obtain new sampling guarantees for gradient Lipschitz potentials
when the target is weakly log-concave or satisfies a functional inequality. In all
cases, our results are stronger than known results in the literature. Subsequent
works have also considered implementability of the RGO under weaker smoothness
conditions [GLL22; LC22; LC23].

Finally, we clarify the connection between the proximal sampler and the prox-
imal point algorithm in optimization in the following ways: (1) We show that
convergence proofs for the proximal sampler can be translated to yield conver-
gence proofs for the proximal point algorithm. As a consequence, we obtain a new
convergence guarantee for the proximal point method under a gradient domination
condition with optimal rate, which is (to the best of our knowledge) a new result.
(2) We show that the RGO can be interpreted as a proximal mapping on the
Wasserstein space.

Other related work. Sampling algorithms which are conceptually similar or di-
rectly related to the proximal sampler have been previously proposed in the
literature [GC11; Mar+16; TP18; VPD22]. The RGO has also been considered
as an adjoint of the heat semigroup in [KP21], which was then used in the recent
breakthrough on the KLS conjecture in [KL22]. After the first version of our
work appeared online, our result under LSI (Theorem 4.3.3) was recovered via the
framework of localization schemes in [CE22].

Organization. The rest of the chapter is organized as follows. We begin with
background on the proximal sampler in §4.2. We then give our main results in
§4.3. In particular, we state our new convergence guarantees for the proximal
sampler in §4.3.1, and we give applications of our results in §4.3.2. We then
describe the connections between the proximal sampler and the proximal point
method in §4.3.3. All proofs are given in §4.4.

Finally, we conclude and list open directions in §4.6.

■ 4.2 Background and notation

■ 4.2.1 Divergences between probability measures

Throughout the paper, we abuse notation by identifying a probability measure
with its density w.r.t. Lebesgue measure.
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We recall the following divergences between probability measures, see §2.2.3
for further background. For a probability measure ρ ≪ π, we define the KL
divergence, the chi-squared divergence, and the Rényi divergence of order q ≥ 1
respectively via

KL(ρ ∥ π) :=

∫
ρ log

ρ

π
, χ2(ρ ∥ π) :=

∫
ρ2

π
− 1 , Rq(ρ ∥ π) :=

1

q − 1
log

∫
ρq

πq−1
,

with R1 = KL. We recall that for 1 ≤ q ≤ q′ < ∞, we have the monotonicity
property Rq ≤ Rq′ , and that R2 = ln(1 + χ2).

We also define the 2-Wasserstein distance between ρ and π to be

W 2
2 (ρ, π) := inf

γ∈C(ρ,π)

∫
∥x− y∥2 dγ(x, y) ,

where C(ρ, π) is the set of couplings of ρ and π, i.e., joint distributions on Rd×Rd

whose marginals are ρ and π.

■ 4.2.2 The proximal sampler

Our goal is to sample from a target probability distribution πX on Rd with density
πX ∝ exp(−V ) and finite second moment, where V : Rd → R is the potential.

Following [LST21c], we define the joint target distribution π on Rd ×Rd with
(Lebesgue) density

π(x, y) ∝ exp
(
−V (x)− 1

2h
∥x− y∥2

)
,

where h > 0 is the step size of the algorithm.
Observe that the X-marginal of π is equal to the original target distribution

πX , whereas the conditional distribution of Y given X is Gaussian: πY |X(· | x) =
normal(x, hI). Therefore, the Y -marginal is the convolution of πX with a Gaussian,
πY = πX ∗ normal(0, hI). The perspective that we adopt in our proofs is that πY

is obtained by evolving πX along the heat flow for time h.
The conditional distribution of X given Y is the “regularized” distribution

πX|Y (x | y) ∝x exp
(
−V (x)− 1

2h
∥x− y∥2

)
.

The restricted Gaussian oracle (RGO) is defined as an oracle that, given
y ∈ Rd, outputs a random variable distributed according to πX|Y (· | y). We also
write πX|Y (· | y) = πX|Y=y.
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Proximal sampler: The proximal sampler is initialized at a point X0 ∈ Rd and
performs Gibbs sampling on the joint target π. That is, the proximal sampler
iterates the following two steps:

1. From Xk, sample Yk | Xk ∼ πY |X(· | Xk) = normal(Xk, hI).

2. From Xk, sample Xk+1 | Yk ∼ πX|Y (· | Yk).

The first step consists in sampling a Gaussian random variable centered at Xk,
and is therefore easy to implement. The second step calls the RGO at the point
Yk and requires a suitable implementation, as we discuss below.

As is well-known from the theory of Gibbs sampling, the iterates (Xk, Yk)k∈N
form a reversible Markov chain with stationary distribution π. That is, the
proximal sampler is an unbiased sampling algorithm, unlike algorithms based on
discretizations of stochastic processes such as the unadjusted Langevin algorithm.
This is because the proximal sampler is an idealized algorithm in which we assume
exact access to the RGO. For our applications, we implement the RGO via
rejection sampling; see §4.3.2 for details and §4.3.4 for an explicit example in the
Gaussian case. We develop faster implementations for the RGO in §6.

■ 4.3 Results for the proximal sampler

■ 4.3.1 New convergence results for the proximal sampler

In this section, we describe our new convergence results for the proximal sampler
under various assumptions, beginning with the strongly log-concave and weakly
log-concave cases, and then proceeding to targets satisfying functional inequalities
which allow for non-log-concavity.

■ 4.3.1.1 Strong log-concavity

We start by recalling the W2 contraction result from [LST21c]1 for the proximal
sampler under strong log-concavity.

Theorem 4.3.1 ([LST21b, Lemma 2]). Assume that πX ∝ exp(−V ) is α-strongly
log-concave (i.e., V is α-strongly convex), where α ≥ 0. For any h > 0 and for
any two initial distributions ρX0 , ρ̄X0 , after k iterations of the proximal sampler
with step size h, the respective distributions ρXk , ρ̄Xk satisfy the bound

W2(ρ
X
k , ρ̄

X
k ) ≤ W2(ρ

X
0 , ρ̄

X
0 )

(1 + αh)k
. (4.1)

1See the arXiv version [LST21b] for the proof.
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Although this result was stated in [LST21b] as a convergence result rather
than a contraction, the latter is implicit in the proof. From the proof of [LST21b],
one can also read off a convergence guarantee in KL divergence, although this will
be a corollary of our result in §4.3.1.3.

We revisit Theorem 4.3.1 in §4.4.2 and provide a proof which more closely
resembles a classical convergence proof of the proximal point algorithm. We use
Wasserstein subdifferential calculus.

We note that this is the sampling analogue of the classical fact that the proximal
map for an α-strongly convex function with step size h is a 1

1+αh
-contraction. In

§4.5.1, we give a new proof of this fact about the proximal point method by
translating the proof of [LST21b] into optimization.

■ 4.3.1.2 Log-concavity

The preceding result does not yield convergence when α = 0. We provide a
new convergence guarantee for the weakly convex case which mirrors a Lyapunov
analysis of gradient flows for convex functions.

Theorem 4.3.2. Assume that πX ∝ exp(−V ) is log-concave (i.e., V is convex).
For the k-th iterate ρXk of the proximal sampler,

KL(ρXk ∥ πX) ≤ W 2
2 (ρX0 , π

X)

kh
.

Proof. §4.4.3.

■ 4.3.1.3 Log-Sobolev inequality

Recall from §2.2 that a probability distribution π satisfies the log-Sobolev inequal-
ity (LSI) with constant 1/α > 0 (1/α-LSI) if for any probability distribution ρ,
the following inequality holds:

KL(ρ ∥ π) ≤ 1

2α
FI(ρ ∥ π) . (4.2)

Here FI(ρ ∥ π) is the Fisher information of ρ w.r.t. π. Recall that strong log-
concavity implies LSI, and that LSI is equivalent to the gradient domination
condition for relative entropy KL(· ∥ π); see also §4.3.3.1.

Theorem 4.3.3. Assume that πX ∝ exp(−V ) satisfies 1/α-LSI. For any h > 0
and any initial distribution ρX0 , the k-th iterate ρXk of the proximal sampler with
step size h satisfies

KL(ρXk ∥ πX) ≤ KL(ρX0 ∥ πX)

(1 + αh)2k
. (4.3)
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Furthermore, for all q ≥ 1:

Rq(ρ
X
k ∥ πX) ≤ Rq(ρ

X
0 ∥ πX)

(1 + αh)2k/q
. (4.4)

Proof. §4.4.4.

■ 4.3.1.4 Poincaré inequality

Recall from §2.2 that a probability distribution π satisfies the Poincaré inequality
(PI) with constant 1/α > 0 (1/α-PI) if for any smooth compactly supported
function ψ : Rd → R, the following inequality holds:

varπ(ψ) ≤ 1

α
Eπ[∥∇ψ∥2] . (4.5)

Recall also that 1/α-LSI implies 1/α-PI.

Theorem 4.3.4. Assume πX ∝ exp(−V ) satisfies 1/α-PI. For any h > 0 and
any initial distribution ρX0 , the k-th iterate ρXk of the proximal sampler with step
size h satisfies

χ2(ρXk ∥ πX) ≤ χ2(ρX0 ∥ πX)

(1 + αh)2k
. (4.6)

Furthermore, for all q ≥ 2, if we set

c0 :=
q

2 ln(1 + αh)

(
Rq(ρ

X
0 ∥ πX)− 1

)
,

then

Rq(ρ
X
k ∥ πX) ≤

Rq(ρ
X
0 ∥ πX)− 2k ln(1+αh)

q
, if k ≤ c0 ,

1/(1 + αh)2(k−k0)/q , if k ≥ ⌈c0⌉ .
(4.7)

Proof. §4.4.5.

■ 4.3.1.5 Lata la–Oleszkiewicz inequality

We next consider a family of functional inequalities which interpolate between PI
and LSI. A probability distribution π satisfies the Lata la–Oleszkiewicz inequality
(LOI) of order r ∈ [1, 2] and constant 1/α > 0 ((r, 1/α)-LOI) if for any smooth
bounded function ψ : Rd → R+, the following inequality holds:

sup
p∈(1,2)

varp,π(ψ)

(2− p)2 (1−1/r)
:= sup

p∈(1,2)

Eπ[ψ2]− Eπ[ψp]2/p

(2− p)2 (1−1/r)
≤ 1

α
Eπ[∥∇ψ∥2] .
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This inequality was introduced in [LO00], and sampling guarantees for the Lan-
gevin algorithm under LOI were given in §3. The LOI for r = 1 is equivalent to
PI and the LOI for r = 2 is equivalent to LSI, up to absolute constants. Generally
speaking, (r, α)-LOI captures targets π ∝ exp(−V ) such that the tails of V grow
as ∥·∥r at infinity.

Theorem 4.3.5. Assume πX ∝ exp(−V ) satisfies (r, 1/α)-LOI with r ∈ [1, 2).
For any h > 0, q ≥ 2, and any initial distribution ρX0 , the k-th iterate ρXk of the
proximal sampler with step size h satisfies

Rq(ρ
X
k ∥ πX) ≤


(
Rq(ρ

X
0 ∥ πX)

2/r−1 − (2/r−1) k ln(1+αh)
68q

)r/(2−r)
, if k ≤ c0 ,

1/(1 + αh)(k−⌈c0⌉)/(68q) , if k ≥ ⌈c0⌉ ,
(4.8)

where

c0 :=
68q

(2/r − 1) ln(1 + αh)

(
Rq(ρ

X
0 ∥ πX)

2/r−1 − 1
)
.

(For r = 2, we can instead use Theorem 4.3.3.)

Proof. §4.4.6.

To interpret the result, suppose that Rq(ρ
X
0 ∥ πX) = O(d) at initialization and

that h ≪ 1/α. Then, the theorem states that after an initial waiting period of
⌈c0⌉ = O(d2/r−1/h) iterations, in which the Rényi divergence decays to O(1), the
Rényi divergence decays exponentially thereafter. This interpolates between a
waiting time of O(d/h) under PI (r = 1; Theorem 4.3.4) and a waiting time of
O((log d)/h) under LSI (r = 2; Theorem 4.3.3).

■ 4.3.2 Applications of the convergence results

We start with a corollary of Theorem 4.3.2. Suppose that f is β-smooth, i.e., ∇f
is β-Lipschitz. Then, provided 1

h
≥ β, the RGO πX|Y is strongly-log-concave, with

condition number (1 + βh)/(1 − βh) ≤ O(1). We can implement the RGO via
rejection sampling.

Rejection sampling: Given a target distribution π̃ ∝ exp(−Ṽ ), where Ṽ is α̃-
strongly convex, perform the following steps.

1. Compute the minimizer x⋆ of Ṽ .

2. Repeat until acceptance: draw a random variable Z ∼ N (x⋆, α̃−1I) and
accept it with probability exp(−Ṽ (Z) + Ṽ (x⋆) + α̃

2
∥Z − x⋆∥2).
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The resulting sample is distributed according to π̃, and one can show that the
expected number of iterations of the algorithm is bounded by κ̃d/2 with κ̃ := β̃/α̃
and β̃ is the smoothness of Ṽ ; see, e.g., §4.4.7.

We apply this to Ṽ given by Ṽ (x) = V (x) + 1
2h
∥x − y∥2. The algorithm

above requires exact minimization of Ṽ , which we assume for simplicity (since it
is well-known how to efficiently minimize a strongly convex and smooth function).
With the choice h ≍ 1

βd
, the expected number of iterations is O(1). Combining

this implementation of the RGO with Theorem 4.3.2, we obtain:

Corollary 4.3.6. Suppose πX ∝ exp(−V ) where V is convex and β-smooth. Take
h ≍ 1

βd
and implement the RGO with rejection sampling as described above. Then,

the proximal sampler outputs ρXk with KL(ρXk ∥ πX) ≤ ε2 and the expected number
of calls to an oracle for V is O(βdW 2

2 (ρX0 , π
X)/ε2).

More precisely, our algorithm requires access to an oracle of V which can
evaluate V and compute the proximity operator for V .

We now compare this rate with others in the literature. Let m2 denote the
second moment of πX . For example, m2 = O(d) for a product measure, and
m2 = O(d2) when V (x) =

√
1 + ∥x∥2. It is reasonable to assume that the

Poincaré constant α of πX is O(m2/d) and that W 2
2 (ρX0 , π

X) = O(m2). With
these simplifications, our complexity is O(βdm2/ε

2); averaged LMC achieves

Õ(βdm2/ε
4) [DMM19]; MALA achieves Õ(β3/2d1/2m

3/2
2 /ε3/2) albeit in the TV

distance [Dwi+19; Che+20a]; and LMC achieves Õ(β2m2
2/ε

2) in the stronger
Rényi metric (§3). Since all these complexity results also hold in terms of the
total variation distance, our result is arguably the best one for this setting (at
least, if dimension dependence is the primary consideration).

Similarly, implementing the RGO with rejection sampling in Theorem 4.3.5
yields the following corollary:

Corollary 4.3.7. Suppose πX ∝ exp(−V ) where V is β-smooth and πX satisfies
(r, 1/α)-LOI. Take h ≍ 1

βd
and implement the RGO with rejection sampling as

described above. Then, the proximal sampler outputs ρXk with Rq(ρ
X
k ∥ πX) ≤ ε2

and the expected number of calls to an oracle for V is

Õ
(βdq
α

(
Rq(ρ

X
0 ∥ πX)

2/r−1 ∨ log
1

ε

))
.

Even for the special case of a Poincaré inequality and smoothness, the first
sampling guarantee under these assumptions is the one in §3. Let us write κ̂ := β/α
for the “condition number” and assume Rq(ρ

X
0 ∥ πX) = O(d) (see, e.g., §3.6.6).

Then, our complexity is Õ(κ̂dq (d2/r−1 ∨ log(1/ε))), whereas Theorem 3.3.4 gives
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a complexity bound for LMC of order Õ(κ̂2d4/r−1q3/ε2). We note that our result
is the first high-accuracy guarantee for this setting (i.e., the complexity depends
polylogarithmically on ε). Moreover, even in the low-accuracy regime ε ≍ 1, our

complexity of Õ(κ̂d2/rq) is always better (e.g., in the Poincaré case r = 1, our

rate is Õ(κ̂d2q) whereas Theorem 3.3.4 yields Õ(κ̂2d3q3)), although we note that
Theorem 3.3.4 handles the more general weakly smooth case.

Surprisingly, the same strategy of rejection sampling also applies to non-smooth
potentials. In [LC22], it was shown that when the above rejection sampling is
applied to Ṽ (x) = V (x) + 1

2h
∥x − y∥2 with V being a convex and M -Lipschitz

function, if h ≤ 1/(16M2d), the expected number of iterations of the algorithm is
bounded above by 2. Moreover, the result is insensitive to the inexactness of the
minimizer of Ṽ [LC22]. Combining it with Theorem 4.3.2 and Theorem 4.3.4 we
establish another corollary:

Corollary 4.3.8. Suppose πX ∝ exp(−V ) where V is convex and M-Lipschitz.
Take h ≍ 1

M2d
and implement the RGO with rejection sampling as described above.

1. Applying Theorem 4.3.2, we deduce that the proximal sampler outputs ρXk
with KL(ρXk ∥ πX) ≤ ε2 and the expected number of calls to an oracle for V is
O(M2dW 2

2 (ρX0 , π
X)/ε2).

2. Applying Theorem 4.3.4 (using the fact that log-concave measures satisfy 1/α-
PI for some α > 0), we deduce that the proximal sampler outputs ρXk with
Rq(ρ

X
k ∥ πX) ≤ ε2 and the expected number of calls to an oracle for V is

O(M
2dq
α

(Rq(ρ
X
0 ∥ πX) ∨ log(1/ε))).

We make the same simplifications as above to compare the rates. Our com-
plexity (from the second part of Corollary 4.3.8) is O(M2m2 (d ∨ log(1/ε))),
whereas [DMM19] achieves O(M2m2/ε

4) in KL divergence and [LC22] achieves

Õ(M2dm2/ε) in total variation distance. In particular, when m2 = O(d), our
result is substantially better.

We summarize the ways in which the proximal sampler improves upon the
standard discretized Langevin algorithm.

1. Under weaker assumptions on the target πX , such as a Poincaré inequality,
the analysis of the Langevin algorithm is affected in two ways: first, the
continuous-time convergence of the diffusion is slower; and second, the dis-
cretization analysis becomes much more challenging. In contrast, although
the ideal proximal sampler also converges more slowly under weaker assump-
tions, the second issue is no longer present. In particular, regardless of the
isoperimetric assumption on πX , as soon as ∇V is Lipschitz we can imple-
ment the RGO via rejection sampling, yielding a simple analysis with strong
convergence guarantees.
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2. Related to the first point, it is currently not known how to perform a dis-
cretization analysis of the Langevin algorithm with linear dependence on the
condition number κ̂ = β

α
under 1/α-LSI or 1/α-PI. Our results therefore

constitute the first O(κ̂) guarantees for such distributions.

3. When implemented via rejection sampling, the proximal sampler provides
a new approach to obtaining high-accuracy guarantees for sampling (i.e.,
complexity guarantees with dependence polylog(1/ε) on the accuracy ε). The
simplicity of the analysis makes it an attractive alternative to Metropolis–
Hastings algorithms, whose analysis is often involved.

4. Finally, we mention that when the RGO is implemented via the Metropolized
random walk [Dwi+19], the resulting algorithm only uses zeroth-order queries
to f , which is crucial for certain applications (e.g., Bayesian inverse problems).

■ 4.3.3 On the relation between the proximal sampler and the proximal

point algorithm

The proximal sampler is motivated by the proximal point method in optimization.
Recall that in optimization, the proximal point method for minimizing f is the
iteration of the proximal mapping

proxhf (y) := arg min
x∈Rd

{
f(x) +

1

2h
∥x− y∥2

}
(4.9)

with some step size h > 0. Formally, using the analogy between optimization and
sampling (in optimization, wish to minimize f ; in sampling we wish to sample
from exp(−V )); the RGO can be viewed as the sampling analogue of the proximal
mapping in which we sample from a regularized version of the target π.

In this section, we establish a more precise correspondence between the prox-
imal sampler algorithm (for sampling from exp(−V )) and the proximal point
method (for minimizing f).

■ 4.3.3.1 Convergence under LSI/PL

We recall that LSI for π ∝ exp(−V ) is equivalent to the statement that the
relative entropy KL(· ∥ π) satisfies the gradient domination condition (or the
Polyak– Lojasiewicz (PL) inequality) in the Wasserstein metric [OV00]. Thus, in
the optimization setting, the analogous assumption to LSI is that f satisfies PL.

We recall f satisfies the PL inequality with constant 1/α > 0 (1/α-PL) if for
all x ∈ Rd,

∥∇f(x)∥2 ≥ 2α (f(x)− f ⋆) ,
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where f ∗ = inf f . The PL inequality allows for mild non-convexity of f , yet still
implies exponential convergence of gradient flow or proximal point method for
minimizing f ; see for example [KNS16].

In light of our convergence guarantee for the proximal sampler under LSI in
Theorem 4.3.3, it is natural to ask whether there is an analogous result for the
proximal point method under PL. We answer this affirmatively via the following
theorem. We note that a less careful proof of the argument gives the suboptimal
contraction factor 1

1+αh
; to the best of our knowledge, we are not aware of another

reference which obtains the optimal contraction factor under PL [AB09].2

Theorem 4.3.9. Suppose that f : Rd → (−∞,+∞] is differentiable and satisfies
1/α-PL and let x′ ∈ proxhf (x). Also, write f ⋆ = inf f . Then, it holds that

f(x′)− f ⋆ ≤ 1

(1 + αh)2
{f(x)− f ⋆} .

Proof. §4.5.2.

■ 4.3.3.2 RGO as a proximal operator on Wasserstein space

Consider y ∈ Rd. Noting that πX|Y=y(dx) ∝x exp(− 1
2h
∥x − y∥2) πX(dx) and

using [AGS08, Remark 9.4.2] we have

KL(ρX ∥ πX) = KL(ρX ∥ πX|Y=y)−
∫

1

2h
∥x− y∥2 dρX(x) + C(y) ,

where C(y) is a constant depending only on y. Using arg minKL(· ∥ πX|Y=y) =
πX|Y=y, the RGO can be expressed as

πX|Y=y = arg min
ρX∈P2(Rd)

{
KL(ρX ∥ πX) +

1

2h

∫
∥x− y∥2 dρX(x)

}
= arg min

ρX∈P2(Rd)

{
KL(ρX ∥ πX) +

1

2h
W 2

2 (ρX , δy)
}
.

(4.10)

Thus, by replacing the Euclidean distance by the Wasserstein distance, πX|Y=y =
proxhKL(·∥πX)(δy). We use this fact in §4.4.2 to provide a new proof of the con-
traction of the proximal sampler under strong log-concavity (Theorem 4.3.1).
The proximal operator over the Wasserstein space is also known as the JKO
scheme [JKO98], and hence the proximal sampler can be viewed as a method of
implementing the proximal discretization of the Wasserstein gradient flow while

2The optimality of our bound can be obtained by considering f(x) = α
2 ∥x∥2.
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having access only to a “restricted” proximal operator (we are only able to evaluate
the proximal operator on Dirac measures δy for y ∈ Rd).

See [Che+22b] for an alternative interpretation of the proximal sampler as an
entropically-regularized JKO scheme.

■ 4.3.4 Example: Gaussian case

Suppose that the target distribution is normal(0,Σ), i.e., V (x) = 1
2
⟨x,Σ−1x⟩. In

this case we can compute the iterations of the proximal sampler explicitly.
If we initialize the proximal sampler at

ρX0 = normal(m0,Σ0) ,

then some calculations show that

ρYk = normal(mk,Σk + hI) ,

ρXk+1 = normal(mk+1,Σk+1) ,

where3

mk+1 := Σ (Σ + hI)−1mk ,

Σk+1 := Σ (Σ + hI)−1 (Σk + hI) (Σ + hI)−1 Σ + hΣ (Σ + hI)−1 .

Specializing to the case where Σ = I, h = 1, and we initialize at normal(0, σ2
0I),

we obtain

|σ2
k − 1| = |σ

2
0 − 1|
4k

. (4.11)

In particular, the contraction factor 1
(1+αh)2

in Theorem 4.3.3 is sharp.

■ 4.4 Proofs for the proximal sampler

■ 4.4.1 Techniques

At a high level, our proofs proceed by considering the change in KL divergence
or Rényi divergence when we apply the following two operations to the law ρXk
of the iterate and the target πX : (1) we simultaneously evolve the two measures

3We can also notice that mk+1 = proxhV (mk), i.e., the means of the distributions follow the
proximal point algorithm for V . Moreover, mk → 0 = argminV which is the mean of the target
distribution.
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along the heat flow for time h, and then (2) we apply the RGO to the resulting
measures.

For the first step, we formulate a remarkably general lemma in §4.4.1.1 which
shows that the computation of the time derivative of any ϕ-divergence along the
simultaneous heat flow is similar (in a precise sense) to the analogous computation
when studying the continuous-time Langevin diffusion. It is this property that
allows us to apply functional inequalities which are usually used for the Langevin
diffusion, such as the Poincaré and log-Sobolev inequalities, in order to study the
convergence of the proximal sampler.

In the second step, we are applying the same operation (of sampling from the
RGO) to each measure, so the data-processing inequality implies that the KL
divergence or Rényi divergence can only decrease. Combined with the previous
step, it is sufficient to prove a convergence guarantee for the proximal sampler;
however, the rate turns out to be suboptimal. In order to recover the optimal rate,
we introduce an argument based on the Doob h-transform (described in §4.4.1.2)
to obtain contraction in the second step as well, using the backward version of
our general lemma (see §4.4.1.3). We summarize our technique in §4.4.1.4.

■ 4.4.1.1 Lemma on the simultaneous heat flow

Let Φπ be a ϕ-divergence for some convex function ϕ, i.e.

Φπ(ρ) := Eπ
[
ϕ
(ρ
π

)]
.

We assume that ϕ is regular enough to justify the interchange of differentiation
and integration and to perform integration by parts; this is satisfied for all of our
applications.

We will use the following result in each forward step of the proximal sampler.
This is a generalization of [VW19, Lemma 16].

Lemma 4.4.1. Let (µXt )t≥0 be the law of the continuous-time Langevin diffusion

with target distribution πX , and define the dissipation functional DπX via the time
derivative of ΦπX along the diffusion:

DπX (µXt ) := −∂tΦπX (µXt ) = EµXt
〈
∇
(
ϕ′ ◦ µ

X
t

πX
)
,∇ log

µXt
πX

〉
.

If (ρXQt)t≥0 and (πXQt)t≥0 evolve according to the simultaneous heat flow,

∂tρ
XQt =

1

2
∆(ρXQt) , ∂tπ

XQt =
1

2
∆(πXQt) ,

then

∂tΦπXQt(ρ
XQt) = −1

2
DπXQt(ρ

XQt) .
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Proof. On one hand, we know that (µXt )t≥0 satisfies the Fokker–Planck equation

∂tµ
X
t = div

(
µXt ∇ ln

µXt
πX

)
so that

∂tΦπX (µXt ) =

∫
ϕ′
(µXt
πX

)
∂tµ

X
t =

∫
ϕ′
(µXt
πX

)
div

(
µXt ∇ ln

µXt
πX

)
= −

∫ 〈
∇
[
ϕ′
(µXt
πX

)]
,∇ ln

µXt
πX

〉
µXt .

On the other hand, writing ρXt := ρXQt and πXt := πXQt for brevity, along the
simultaneous heat flow we compute

2 ∂tΦπXt
(ρXt ) = 2

∫
ϕ′
(ρXt
πXt

) (
∂tρ

X
t −

ρXt
πXt

∂tπ
X
t

)
+ 2

∫
ϕ
(ρXt
πXt

)
∂tπ

X
t

=

∫
ϕ′
(ρXt
πXt

) (
div(ρXt ∇ ln ρXt )− ρXt

πXt
div(πXt ∇ lnπXt )

)
+

∫
ϕ
(ρXt
πXt

)
div(πXt ∇ ln πXt )

= −
∫ 〈
∇
[
ϕ′
(ρXt
πXt

)]
,∇ ln ρXt

〉
ρXt

+

∫ 〈
∇
[
ϕ′
(ρXt
πXt

) ρXt
πXt

]
,∇ ln πXt

〉
πXt

−
∫ 〈
∇
[
ϕ
(ρXt
πXt

)]
,∇ ln πXt

〉
πXt

= −
∫ 〈
∇
[
ϕ′
(ρXt
πXt

)]
,∇ ln

ρXt
πXt

〉
ρXt +

∫ 〈
∇ρ

X
t

πXt
,∇ ln πXt

〉
ϕ′
(ρXt
πXt

)
πXt

−
∫ 〈
∇ρ

X
t

πXt
,∇ lnπXt

〉
ϕ′
(ρXt
πXt

)
πXt

= −DπXt
(ρXt ) .

Remark 4.4.2. A similar statement holds if we replace the ϕ-divergence Φπ

with any function ψ ◦ Φπ of the ϕ-divergence. This allows us to cover the Rényi
divergence introduced in §4.2.

■ 4.4.1.2 Doob’s h-transform

Doob’s h-transform is a useful method to analyze the properties of a diffusion
process conditioned on its value at some terminal time point. Consider a general
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diffusion process modeled by the stochastic differential equation (SDE)

dZt = b(t, Zt) dt+ σ(t, Zt) dBt , Z0 ∼ µ0 , (4.12)

where (Bt)t≥0 denotes a standard Wiener process. Assume that b(t, z) and σ(t, z)
are piecewise continuous with respect to t and Lipschitz continuous with respect
to z so that the above SDE (4.12) has a unique solution. The Doob h-transform
characterizes the process conditional on its terminal value ZT , summarized in the
following lemma [SS19].

Lemma 4.4.3. Let (Ẑt)0≤t≤T be the process (4.12) conditioned to satisfy ZT = z.
Then, the process satisfies the following SDE backwards in time:

dẐt = [b(t, Ẑt)− σ(t, Ẑt)σ(t, Ẑt)
T∇ lnµt(Ẑt)] dt+ σ(t, Ẑt) dBt ,

where µt is the marginal distribution of Zt in (4.12) and the SDE is started with
ẐT = z.

Equivalently, if we define the SDE

dẐ←t = [−b(T − t, Ẑ←t ) + σ(T − t, Ẑ←t )σ(T − t, Ẑ←t )T∇ lnµT−t(Ẑ
←
t )] dt

+ σ(T − t, Ẑ←t ) dBt ,
(4.13)

started at Ẑ←0 = z, then at time T the law of Ẑ←T is the conditional distribution
of Z0 given ZT = z.

■ 4.4.1.3 Lemma on the simultaneous backward heat flow

We present the following backward version of Lemma 4.4.1, which we use in
each backward step of the proximal sampler. We assume the same set up as in
Lemma 4.4.1. Namely, let Φπ(ρ) = Eπ[ϕ( ρ

π
)] be a ϕ-divergence for some convex

function ϕ, i.e.,

Φπ(ρ) := Eπ
[
ϕ
(ρ
π

)]
and let

Dπ(ρ) = Eρ
〈
∇
(
ϕ′ ◦ ρ

π

)
,∇ ln

ρ

π

〉
so that Dπ is the dissipation of Φπ along the Langevin dynamics with target π.

Lemma 4.4.4. Let πX be a probability distribution and let π be a joint density for
(X, Y ) with Y obtained from X by running the heat flow for time h. Let πX|Y be
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the conditional distribution of X given Y under π, and let πY denote the marginal
distribution of Y . Then, for each t ∈ [0, h], there exists a channel Q←t that maps
probability measures to probability measures, with the following properties: (1) Q←0
is the identity channel; (2) Q←h maps a probability measure ρY to the the measure
ρYQ←h (x) =

∫
πX|Y (x | y) ρY (dy); (3) for every t, πYQ←t = π ∗ normal(0, (h− t)I);

and (4) for every ρY ,

∂tΦπY Q←t
(ρYQ←t ) = −1

2
DπY Q←t

(ρYQ←t ) .

The channel is obtained from the Doob h-transform. To give intuition for the
construction, consider the process dZt = dBt started at Z0 ∼ πX , i.e., Brownian
motion initialized from πX . Then, the joint target distribution π of the proximal
sampler can be expressed as π = law(Z0, Zh), and consequently we have πX|Y=y =
law(Z0 | Zh = y). If we define the time reversal Z←t = Zh−t, then we can also
express this as πX|Y=y = law(Z←h | Z←0 = y); moreover, the reversed process
(Z←t )t∈[0,h] satisfies the SDE given in Lemma 4.4.3. Hence, we can take µQ←t :=
law(Z←h | Z←0 ∼ µ) and use calculus in order to prove the result.

Proof. Let πt := πX ∗ normal(0, tI). We define Q←t as follows: given ρY , we set
ρYQ←t to be the law at time t of the SDE

dẐ←t = ∇ ln πh−t(Ẑ
←
t ) dt+ dBt , (4.14)

started at Ẑ←0 ∼ ρY . According to Lemma 4.4.3 applied to the Brownian motion
process (started at πX), the channels (Q←t )0≤t≤h satisfy properties (1), (2), and

(3). It remains to verify (4). In the proof, we write π←t := πYQ←t and ρ←t := ρYQ←t
for brevity. Note that πh−t = π←t by construction, and we have the Fokker–Planck
equations:

∂tπ
←
t = − div(π←t ∇ lnπ←t ) +

1

2
∆π←t = −1

2
∆π←t ,

∂tρ
←
t = − div(ρ←t ∇ ln π←t ) +

1

2
∆ρ←t = div

(
ρ←t ∇ ln

ρ←t
π←t

)
− 1

2
∆ρ←t .

Hence,

2 ∂tΦπ←t
(ρ←t ) = 2

∫
ϕ′
(ρ←t
π←t

) (
∂tρ
←
t −

ρ←t
π←t

∂tπ
←
t

)
+ 2

∫
ϕ
(ρ←t
π←t

)
∂tπ
←
t

=

∫
ϕ′
(ρ←t
π←t

) (
2 div

(
ρ←t ∇ ln

ρ←t
π←t

)
−∆ρ←t +

ρ←t
π←t

∆π←t

)
−

∫
ϕ
(ρ←t
π←t

)
∆π←t
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= 2

∫
ϕ′
(ρ←t
π←t

)
div

(
ρ←t ∇ ln

ρ←t
π←t

)
−

∫
ϕ′
(ρ←t
π←t

) (
∆ρ←t −

ρ←t
π←t

∆π←t

)
+

∫
ϕ
(ρ←t
π←t

)
∆π←t︸ ︷︷ ︸

=−Dπ←t (ρ←t ) by Lemma 4.4.1

= −2

∫ 〈
∇
[
ϕ′
(ρ←t
π←t

)]
,∇ ln

ρ←t
π←t

〉
ρ←t +Dπ←t

(ρ←t )

= −2Dπ←t
(ρ←t ) +Dπ←t

(ρ←t ) = −Dπ←t
(ρ←t ) .

■ 4.4.1.4 General strategy of the proofs

Suppose that we want to understand the change in the ϕ-divergence ΦπX (ρX1 ) after
one iteration of the proximal sampler, compared to the ϕ divergence ΦπX (ρX0 ) at
initialization. We split the analysis into two steps.

1. Forward step: In the first step, we draw Y0 | X0 ∼ normal(X0, hI).

This creates a joint distribution ρ0 with the correct conditionals: ρ
Y |X
0 = πY |X .

Therefore, the ϕ-divergence of the joint distribution is equal to the initial
ϕ-divergence of the X-marginal: Φπ(ρ0) = ΦπX (ρX0 ).

Consider the Y -marginal Y0 ∼ ρY0 . Observe that ρY0 = ρX0 ∗ normal(0, hI)
is the output ρY0 = ρ̃h of the heat flow ∂tρ̃t = 1

2
∆ρ̃t at time t = h starting

from ρ̃0 = ρX0 . We denote this by ρY0 = ρX0 Qh, where (Qt)t≥0 denotes the

heat semigroup. Similarly, we write the Y -marginal of the target as πY =
πX ∗ normal(0, hI) = πXQh.

In particular, (ρX0 Qt)t≥0 and (πXQt)t≥0 evolve following the simultaneous
heat flow.

By Lemma 4.4.1, along the simultaneous heat flow,

∂tΦπXQt(ρ
X
0 Qt) = −1

2
DπXQt(ρ

X
0 Qt)

where D·(·) denotes the dissipation functional for the ϕ-divergence along the
Langevin dynamics. Hence, a lower bound on DπXQt(ρ

X
0 Qt) leads to an upper

bound on

ΦπY (ρY0 )− ΦπX (ρX0 ) = ΦπXQh(ρX0 Qh)− ΦπX (ρX0 ) .

2. Backward step: In the second step, we draw X1 | Y0 ∼ πX|Y=Y0 .
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This time, we consider the backward heat flow and apply Lemma 4.4.4, which
yields the Doob channels (Q←t )0≤t≤h with ρX1 = ρY0 Q

←
h and πX = πYQ←h .

Lemma 4.4.4 implies that

∂tΦπY Q←t
(ρY0 Q

←
t ) = −1

2
DπY Q←t

(ρY0 Q
←
t ) .

Observe that this is almost symmetric with the forward step! In particular,
a lower bound on DπY Q←t

(ρY0 Q
←
t ) leads to an upper bound on

ΦπX (ρX1 )− ΦπY (ρY0 ) = ΦπY Q←h
(ρY0 Q

←
h )− ΦπY (ρY0 ) .

Combining the two steps allows us to understand each iteration of the proximal
sampler algorithm.

■ 4.4.2 Convergence under strong log-concavity

Suppose that A is a set-valued mapping on Rd which is strongly monotone, in the
sense that

⟨A(x)− A(y), x− y⟩ ≥ α ∥x− y∥2 for all x, y ∈ Rd .

Suppose that x′ ∈ x − hA(x′) and y′ ∈ y − hA(y′). Then, by expanding out
the square, one can easily show that ∥x′ − y′∥2 ≤ 1

(1+αh)2
∥x− y∥2. In particular,

by applying this to the subdifferential A = ∂f , where f is α-strongly convex,
one immediately obtains the fact that the proximal point algorithm is a 1

1+αh
-

contraction. In this section, we translate this proof to the sampling setting.
Recall from (4.10) that πX|Y=y = proxhF (δy), where F = KL(· ∥ πX) is α-

geodesically strongly strongly convex [AGS08, Equation 10.1.8]. Then, from the
first-order optimality conditions on Wasserstein space [see AGS08, Lemma 10.1.2],
we have

0 ∈ ∂F (πX|Y=y) +
1

h
(id− y) , πX|Y=y-a.s., (4.15)

where ∂F denotes the Wasserstein subdifferential of F .

Proof of Theorem 4.3.1. First, let y, ȳ ∈ Rd. Then, from (4.15):

id ∈ y − h ∂F (πX|Y=y) , πX|Y=y-a.s. (4.16)

id ∈ ȳ − h ∂F (πX|Y=ȳ) , πX|Y=ȳ-a.s. (4.17)

Let T be the optimal transport map from πX|Y=y to πX|Y=ȳ. We rewrite (4.17) as

T ∈ ȳ − h ∂F (πX|Y=ȳ) ◦ T , πX|Y=y-a.s. (4.18)
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We now abuse notation and write ∂F (πX|Y=y) for an element of the subdiffer-
ential. Then, using (4.16) and (4.18), πX|Y=y-a.s.,

∥T − id∥2 = ∥ȳ − y∥2 − 2h ⟨∂F (πX|Y=ȳ) ◦ T − ∂F (πX|Y=y), T − id⟩
− h2 ∥∂F (πX|Y=ȳ) ◦ T − ∂F (πX|Y=y)∥2 .

Integrating with respect to πX|Y=y, and using the geodesic strong convexity of
F [AGS08, Equation 10.1.8],

W 2
2 (πX|Y=y, πX|Y=ȳ)

≤ ∥y − ȳ∥2 − 2αhW 2
2 (πX|Y=y, πX|Y=ȳ)− α2h2W 2

2 (πX|Y=y, πX|Y=ȳ) .

Therefore,

W 2
2 (πX|Y=y, πX|Y=ȳ) ≤ 1

(1 + αh)2
∥y − ȳ∥2 .

The rest of the argument is concluded as in [LST21b, Lemma 2]. We provide
the details here for completeness. First, along the proximal sampler, we have
W2(ρ

Y
0 , ρ̄

Y
0 ) ≤ W2(ρ

X
0 , ρ̄

X
0 ) because the heat flow is a Wasserstein contraction (see

§4.4.1.4 for the notation). Next, let γ denote an optimal coupling of ρY0 and ρ̄Y0 ,
and for all y, y ∈ Rd let γy,ȳ denote an optimal coupling of πX|Y=y and πX|Y=ȳ.
We check that the measure γ̂(dx, dx̄) := γ(dy, dȳ) γy,ȳ(dx, dx̄) is a valid coupling
of ρX1 and ρ̄X1 . To check that, for instance, the first marginal of γ̂ is ρX1 , we take
a bounded measurable function ψ : Rd → R and calculate∫

ψ(x) γ̂(dx, dx̄) =

∫∫
ψ(x) γ(dy, dȳ) γy,ȳ(dx, dx̄)

=

∫∫
ψ(x) γ(dy, dȳ) πX|Y=y(dx)

=

∫∫
ψ(x) ρY0 (dy) πX|Y=y(dx) =

∫
ψ(x) ρX1 (dx) ,

and similarly the second marginal of γ̂ is ρ̄X1 . Therefore,

W 2
2 (ρX1 , ρ̄

X
1 ) ≤

∫
∥x− x̄∥2 γ̂(dx, dx̄) =

∫∫
∥x− x̄∥2 γ(dy, dȳ) γy,ȳ(dx, dx̄)

=

∫
W 2

2 (πX|Y=y, πX|Y=ȳ) γ(dy, dȳ)

≤ 1

(1 + αh)2

∫
∥y − ȳ∥2 γ(dy, dȳ) =

1

(1 + αh)2
W 2

2 (ρY0 , ρ̄
Y
0 ) ,

which completes the proof.



Sec. 4.4. Proofs for the proximal sampler 123

■ 4.4.3 Convergence under log-concavity

For a probability distribution ρ with smooth relative density ρ
π
, the Fisher infor-

mation of ρ with respect to π is

FI(ρ ∥ π) :=

∫
ρ
∥∥∥∇ log

ρ

π

∥∥∥2

= Eπ
[π
ρ

∥∥∥∇ρ
π

∥∥∥2]
. (4.19)

Recall that Fisher information is the dissipation of KL divergence along the
Langevin dynamics.

Proof of Theorem 4.3.2. We follow the strategy and notation of §4.4.1.4.

1. Forward step: By log-concavity of πXQt (since log-concavity is preserved
by convolution [SW14]), the convexity of KL(· ∥ πXQt) along Wasserstein
geodesics [AGS08, Theorem 9.4.11] yields the inequality

0 = KL(πXQt ∥ πXQt)

≥ KL(ρX0 Qt ∥ πXQt) + E(Xt,Yt)∼OPT(ρX0 Qt,π
XQt)

〈
∇ log

ρX0 Qt

πXQt

(Xt), Yt −Xt

〉
where OPT(·, ·) is used to denote the optimal transport plan. Hence,

EρX0 Qt
[∥∥∇ log

ρX0 Qt

πXQt

∥∥2]
︸ ︷︷ ︸

=FI(ρX0 Qt∥πXQt)

W 2
2 (ρX0 Qt, π

XQt) ≥ KL(ρX0 Qt ∥ πXQt)
2
. (4.20)

So, by Lemma 4.4.1 and (4.20),

∂t KL(ρX0 Qt ∥ πXQt) = −1

2
FI(ρX0 Qt ∥ πXQt) ≤ −

1

2

KL(ρX0 Qt ∥ πXQt)
2

W 2
2 (ρX0 Qt, πXQt)

.

Also, observe that t 7→ W 2
2 (ρX0 Qt, π

XQt) is decreasing because the heat flow
is a W2 contraction (which can be proven directly quite easily). Solving this
differential inequality yields

1

KL(ρY0 ∥ πY )
=

1

KL(ρX0 Qh ∥ πXQh)
≥ 1

KL(ρX0 ∥ πX)
+

h

2W 2
2 (ρX0 , π

X)
.

2. Backward step: By Lemma 4.4.4 and (4.20),

∂t KL(ρY0 Q
←
t ∥ πYQ←t ) = −1

2
FI(ρY0 Q

←
t ∥ πYQ←t ) ≤ −1

2

KL(ρY0 Q
←
t ∥ πYQ←t )

2

W 2
2 (ρY0 Q

←
t , π

YQ←t )
.
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By (4.13), the channels (Q←t )t≥0 can be modeled by the diffusion

dZt = ∇ lnπh−t(Zt) dt+ dBt.

Since ln πh−t is concave, with a standard coupling argument, one can show
that t 7→ W2(ρ

Y
0 Q
←
t , π

YQ←t ) is decreasing. Hence,

W2(ρ
Y
0 Q
←
t , π

YQ←t ) ≤ W2(ρ
Y
0 Q
←
0 , π

YQ←0 ) = W2(ρ
Y
0 , π

Y ) ≤ W2(ρ
X
0 , π

X) .

Therefore, we deduce that

1

KL(ρX1 ∥ πX)
=

1

KL(ρY0 Q
←
h ∥ πYQ←h )

≥ 1

KL(ρY0 ∥ πY )
+

h

2W 2
2 (ρX0 , π

X)
.

Finally, we iterate this inequality and recall that W 2
2 (ρXk , π

X) ≤ W 2
2 (ρX0 , π

X)
for all k ∈ N (see Theorem 4.3.1 for α = 0). It quickly yields

1

KL(ρXk ∥ πX)
≥ 1

KL(ρX0 ∥ πX)
+

kh

W 2
2 (ρX0 , π

X)

or

KL(ρXk ∥ πX) ≤ KL(ρX0 ∥ πX)

1 + khKL(ρX0 ∥ πX)/W 2
2 (ρX0 , π

X)
≤ W 2

2 (ρX0 , π
X)

kh
.

The above proof can be compared to the O(1/t) convergence of the objective
gap for the gradient flow t 7→ xt of a convex function f : Rd → R, which follows
from differentiating the Lyapunov function t 7→ 2t {f(xt) − f(x⋆)} + ∥xt − x⋆∥2,
where x⋆ = arg min f .

■ 4.4.4 Convergence under LSI

We recall the following definitions. For a probability distribution ρ with smooth
relative density ρ

π
, the Rényi information of ρ with respect to π of order q ≥ 1 is

FIq(ρ ∥ π) := q
Eπ

[(
π
ρ

)q−2 ∥∥∇ ρ
π

∥∥2]
Eπ

[(
π
ρ

)q] .

Note that FI1 = FI, where FI is the Fisher information (4.19). Recall that by
definition, π satisfies 1/α-LSI if for all ρ, FI(ρ ∥ π) ≥ 2αKL(ρ ∥ π). One can show
this also implies for all q ≥ 1:

FIq(ρ ∥ π) ≥ 2α

q
Rq(ρ ∥ π) , (4.21)
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see [VW19, Lemma 5]. Just as Fisher information is the dissipation of KL diver-
gence along the Langevin dynamics, Rényi information is the dissipation of Rényi
divergence along the Langevin dynamics.

Proof of Theorem 4.3.3. We will prove the following one-step improvement lemma
for Rényi divergence of order q ≥ 1: For any initial distribution ρX0 , after one
iteration of the proximal sampler with step size h > 0, the resulting distribution
ρX1 satisfies

Rq(ρ
X
1 ∥ πX) ≤ Rq(ρ

X
0 ∥ πX)

(1 + αh)2/q
. (4.22)

Iterating this lemma for k iterations yields the desired convergence rate in the
theorem. The result for KL divergence is the special case q = 1.

We follow the strategy and notation of §4.4.1.4.

1. Forward step: By Lemma 4.4.1, along the simultaneous heat flow,

∂tRq(ρ
X
0 Qt ∥ πXQt) = −1

2
FIq(ρ

X
0 Qt ∥ πXQt) ≤ −

αt
q
Rq(ρ

X
0 Qt ∥ πXQt)

where by (4.21), the last inequality holds if πXQt is 1/αt-LSI. Since πX

satisfies 1/α-LSI by assumption, recall that πXQt = πX∗normal(0, tI) satisfies

1/αt-LSI with αt = ( 1
α

+ t)
−1

= α
1+αt

. Integrating, we get

Rq(ρ
X
0 Qt ∥ πXQt) ≤ exp(−At)Rq(ρ

X
0 ∥ πX)

where At = 1
q

∫ t
0
αs ds = 1

q

∫ t
0

α
1+αs

ds = 1
q

ln(1 + αt). Therefore, after the
forward step,

Rq(ρ
Y
0 ∥ πY ) = Rq(ρ

X
0 Qh ∥ πXQh) ≤

Rq(ρ
X
0 ∥ πX)

(1 + αh)1/q
.

2. Backward step: By Lemma 4.4.4, along the simultaneous backwards heat
flow, it holds that

∂tRq(ρ
Y
0 Q
←
t ∥ πYQ←t ) = −1

2
FIq(ρ

Y
0 Q
←
t ∥ πYQ←t )

≤ −αh−t
q

Rq(ρ
Y
0 Q
←
t ∥ πYQ←t )

where the last inequality holds since πYQ←t = π∗normal(0, (h−t)I) is 1/αh−t-
LSI. Therefore, just as in the forward step, integration yields

Rq(ρ
X
1 ∥ πX) = Rq(ρ

Y
0 Q
←
h ∥ πYQ←h ) ≤ Rq(ρ

Y
0 ∥ πY )

(1 + αh)1/q
.

Combining the two steps above yields the desired contraction rate in (4.22).
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■ 4.4.5 Convergence under PI

The dissipation of the chi-squared divergence along the Langevin dynamics is

FIχ2(ρ ∥ π) := 2Eπ
[∥∥∥∇ρ

π

∥∥∥2]
.

Proof of Theorem 4.3.4. We follow the strategy and notation of §4.4.1.4.

1. Forward step: Along the simultaneous heat flow, Lemma 4.4.1 yields

∂tχ
2(ρX0 Qt ∥ πXQt) = −1

2
FIχ2(ρX0 Qt ∥ πXQt) ,

∂tRq(ρ
X
0 Qt ∥ πXQt) = −1

2
FIq(ρ

X
0 Qt ∥ πXQt) .

Since πX satisfies 1/α-PI, then πXQt satisfies 1/αt-PI with αt = α
1+αt

. Ap-
plying this yields

∂tχ
2(ρX0 Qt ∥ πXQt) = −1

2
FIχ2(ρX0 Qt ∥ πXQt) ≤ −αt χ2(ρX0 Qt ∥ πXQt)

and therefore

χ2(ρY0 ∥ πY ) = χ2(ρX0 Qh ∥ πXQh) ≤
χ2(ρX0 ∥ πX)

1 + αh

upon integration.

Next, from [VW19, Lemma 17], 1/αt-PI implies

∂tRq(ρ
X
0 Qt ∥ πXQt) = −1

2
FIq(ρ

X
0 Qt ∥ πXQt)

≤ −2αt
q
{1− exp(−Rq(ρ

X
0 Qt ∥ πXQt))} .

We split into two cases. If Rq(ρ
X
0 ∥πX) ≥ 1, then as long as Rq(ρ

X
0 Qt∥πXQt) ≥

1 we can use the inequality 1− exp(−x) ≥ 1
2

for x ≥ 1, so that

∂tRq(ρ
X
0 Qt ∥ πXQt) ≤ −

αt
q
.

Integrating, we obtain

Rq(ρ
Y
0 ∥ πY ) = Rq(ρ

X
0 Qh ∥ πXQh) ≤

(
Rq(ρ

X
0 ∥ πX)− ln(1 + αh)

q

)
∨ 1 .
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In the second case, if Rq(ρ
X
0 ∥ πX) ≤ 1, then we use 1 − exp(−x) ≥ x

2
for

x ∈ [0, 1] to obtain

∂tRq(ρ
X
0 Qt ∥ πXQt) ≤ −

αt
q
Rq(ρ

X
0 Qt ∥ πXQt) .

Integrating,

Rq(ρ
Y
0 ∥ πY ) = Rq(ρ

X
0 Qh ∥ πXQh) ≤

Rq(ρ
X
0 ∥ πX)

(1 + αh)1/q
.

2. Backward step: Along the simultaneous backward heat flow, Lemma 4.4.4
next yields

∂tχ
2(ρY0 Q

←
t ∥ πYQ←t ) = −1

2
FIχ2(ρY0 Q

←
t ∥ πYQ←t ) ,

∂tRq(ρ
Y
0 Q
←
t ∥ πYQ←t ) = −1

2
FIq(ρ

Y
0 Q
←
t ∥ πYQ←t ) .

Using entirely analogous arguments as in the forward step, we obtain

χ2(ρX1 ∥ πX) = χ2(ρY0 Q
←
h ∥ πYQ←h ) ≤ χ2(ρY0 ∥ πY )

1 + αh

for the chi-squared divergence,

Rq(ρ
X
1 ∥ πX) = Rq(ρ

Y
0 Q
←
h ∥ πYQ←h ) ≤

(
Rq(ρ

Y
0 ∥ πY )− ln(1 + αh)

q

)
∨ 1

for the Rényi divergence if Rq(ρ
Y
0 ∥ πY ) ≥ 1, and

Rq(ρ
X
1 ∥ πX) = Rq(ρ

Y
0 Q
←
h ∥ πYQ←h ) ≤ Rq(ρ

Y
0 ∥ πY )

(1 + αh)1/q

if Rq(ρ
Y
0 ∥ πY ) ≤ 1.

■ 4.4.6 Convergence under LOI

Before giving the convergence proof under LOI, we recall the following property
of the behavior of LOI under convolution.

Lemma 4.4.5. Suppose that µ0 satisfies (r, 1/α0)-LOI and µ1 satisfies (r, 1/α1)-
LOI. Then, µ0 ∗ µ1 satisfies (r, 1/α0 + 1/α1)-LOI.
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Proof. Let X0 ∼ µ0 and X1 ∼ µ1 be independent. Then, we can write

varp,µ0∗µ1(ψ) = E[Φ(ψp(X0 +X1))]− Φ(E[ψp(X0 +X1)])

where Φ(x) := x2/p. One can then deduce the conclusion of the lemma easily from
the subadditivity of the Φ-entropy [BLM13, Theorem 14.1].

Proof of Theorem 4.3.5. We follow the strategy and notation of §4.4.1.4.

1. Forward step: Along the simultaneous heat flow, Lemma 4.4.1 yields

∂tRq(ρ
X
0 Qt ∥ πXQt) = −1

2
FIq(ρ

X
0 Qt ∥ πXQt) .

Since πX satisfies (r, 1/α)-LOI and N (0, tI) satisfies (r′, t)-LOI for any r′ ∈
[1, 2] [see LO00, Corollary 1], then by Lemma 4.4.5, πXQt satisfies (r, 1/αt)-
LOI with αt = α

1+αt
.

Next, from Theorem 3.2.2, (r, 1/αt)-LOI implies

∂tRq(ρ
X
0 Qt ∥ πXQt) = −1

2
FIq(ρ

X
0 Qt ∥ πXQt)

≤ − αt
136q

{
Rq(ρ

X
0 Qt ∥ πXQt)

2−2/r
, Rq(ρ

X
0 Qt ∥ πXQt) ≥ 1 ,

Rq(ρ
X
0 Qt ∥ πXQt) , Rq(ρ

X
0 Qt ∥ πXQt) ≤ 1 .

We split into two cases. If Rq(ρ
X
0 ∥πX) ≥ 1, then as long as Rq(ρ

X
0 Qt∥πXQt) ≥

1, we have

∂tRq(ρ
X
0 Qt ∥ πXQt)

2/r−1
=

(2

r
− 1

) ∂tRq(ρ
X
0 Qt ∥ πXQt)

Rq(ρX0 Qt ∥ πXQt)
2−2/r

≤ − αt
136q

(2

r
− 1

)
and therefore

Rq(ρ
Y
0 ∥ πY )

2/r−1
= Rq(ρ

X
0 Qh ∥ πXQh)

2/r−1

≤
(
Rq(ρ

X
0 ∥ πX)

2/r−1 − (2/r − 1) ln(1 + αh)

136q

)
∨ 1 .

In the second case, if Rq(ρ
X
0 ∥ πX) ≤ 1, then

∂tRq(ρ
X
0 Qt ∥ πXQt) ≤ −

αt
136q

Rq(ρ
X
0 Qt ∥ πXQt) .

Integrating,

Rq(ρ
Y
0 ∥ πY ) = Rq(ρ

X
0 Qh ∥ πXQh) ≤

Rq(ρ
X
0 ∥ πX)

(1 + αh)1/(136q)
.
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2. Backward step: Along the simultaneous backward heat flow, Lemma 4.4.4
next yields

∂tRq(ρ
Y
0 Q
←
t ∥ πYQ←t ) = −1

2
FIq(ρ

Y
0 Q
←
t ∥ πYQ←t ) .

Using entirely analogous arguments as in the forward step, we obtain

Rq(ρ
X
1 ∥ πX)

2/r−1
= Rq(ρ

Y
0 Q
←
h ∥ πYQ←h )

2/r−1

≤
(
Rq(ρ

Y
0 ∥ πY )

2/r−1 − (2/r − 1) ln(1 + αh)

136q

)
∨ 1

if Rq(ρ
Y
0 ∥ πY ) ≥ 1, and

Rq(ρ
X
1 | πX) = Rq(ρ

Y
0 Q
←
h ∥ πYQ←h ) ≤ Rq(ρ

Y
0 ∥ πY )

(1 + αh)1/(136q)

if Rq(ρ
Y
0 ∥ πY ) ≤ 1.

■ 4.4.7 Rejection sampling implementation of the RGO

The following result on rejection sampling is standard, and we include it for the
sake of completeness.

Theorem 4.4.6. Suppose we have query access to the unnormalized target p̃ = pZp
supported on X , and that we have an upper envelope q̃ ≥ p̃. Let q denote the
corresponding normalized probability distribution and write Zq for the normalizing
constant, i.e., q̃ = qZq. Then, rejection sampling with acceptance probability p̃/q̃
outputs a point distributed according to p, and the number of samples drawn from
q until a sample is accepted follows a geometric distribution with mean Zq/Zp.

Proof. Since q̃ is an upper envelope for p̃, then p̃(X)/q̃(X) ≤ 1 is a valid acceptance
probability. Clearly, the number of rejections follows a geometric distribution. The
probability of accepting a sample is given by

P(accept) =

∫
X

p̃(x)

q̃(x)
q(dx) =

Zp
Zq

∫
X

p(dx) =
Zp
Zq

.

Let X1, X2, X3, . . . be a sequence of i.i.d. samples from q and let U1, U2, U3, . . .
be i.i.d. uniform[0, 1]. Let A ⊆ X be a measurable set, and let X be the output
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of the rejection sampling algorithm. Partitioning by the number of rejections, we
may write

P(X ∈ A) =
∞∑
n=0

P
(
Xn+1 ∈ A, Ui >

p̃(Xi)

q̃(Xi)
∀ i ∈ [n], Un+1 ≤

p̃(Xn+1)

q̃(Xn+1)

)
=
∞∑
n=0

P
(
Xn+1 ∈ A, Un+1 ≤

p̃(Xn+1)

q̃(Xn+1)

)
P
(
U1 >

p̃(X1)

q̃(X1)

)n
=
∞∑
n=0

(∫
A

p̃(x)

q̃(x)
q(dx)

)(∫
X

(
1− p̃(x)

q̃(x)

)
q(dx)

)n
= p(A)

Zp
Zq

∞∑
n=0

(
1− Zp

Zq

)n
= p(A) .

■ 4.5 Optimization proofs inspired by the proximal sampler

■ 4.5.1 Alternative proof of the contractivity of the proximal map

The following theorem is well-known in optimization.

Theorem 4.5.1. Let f : Rd → R be α-strongly convex and differentiable. Then,
the proximal mapping

proxhf (y) := arg min
x∈Rd

{
f(x) +

1

2h
∥x− y∥2

}
is a 1

1+αh
-contraction.

Here, we give a new proof of the theorem which translates the convergence
proof of the proximal sampler in [LST21b] to optimization.

We recall that α-strong convexity implies the 1/α-PL inequality (or gradient
domination inequality)

∥∇f(x)∥2 ≥ 2α {f(x)−min f} for all x ∈ Rd ,

which in turn implies the 1/α-quadratic growth inequality

f(x)−min f ≥ α

2
∥x− x⋆∥2 for all x ∈ Rd ,

with x⋆ = arg min f , see [OV00; BB18].
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Proof of Theorem 4.5.1. Let fx(z) := f(z) + 1
2h
∥x− z∥2, and define fy similarly.

Then, by definition,

x′ := proxhf (x) = arg min fx ,

y′ := proxhf (y) = arg min fy .

Since fx is (α + 1
h
)-strongly convex, then by applying the quadratic growth and

PL inequalities,

∥x′ − y′∥2 ≤ 2

α + 1/h
{fx(y′)− fx(x′)} ≤

1

(α + 1/h)2
∥∇fx(y′)∥2

=
1

(α + 1/h)2
∥∥∇f(y′) +

1

h
(y′ − x)

∥∥2

=
1

(α + 1/h)2
∥∥−1

h
(y′ − y) +

1

h
(y′ − x)

∥∥2
=

1

(1 + αh)2
∥x− y∥2

where the last line uses the optimality condition ∇f(y′) + 1
h

(y′ − y) = 0 from the
definition of y′.

By comparing with the proof of [LST21b, Lemma 2], we see that fy is analogous
to KL(· ∥ πX|Y=y) for the proximal sampler.

At first glance, it may appear that the proof above only requires a PL inequality,
and not strong convexity. However, this is not the case, as it in fact requires that
fy satisfies 1/(α+1/h)-PL for all y ∈ Rd, which does not follow from (for example)
the assumption that f satisfies 1/α-PL.

■ 4.5.2 Optimal contraction factor for the proximal point method under PL

Our proof uses the Hopf–Lax semigroup, guided by the following intuition. There is
an analogy between the standard algebra (+,×) and the tropical algebra (inf,+);
see, e.g., [Bac+92, Section 9.4] or [ABS21, Lecture 16]. The following table
describes these analogies.

(+,×) (inf,+)
convolution inf-convolution

Fourier transform convex conjugate
diffusion gradient flow

heat equation Hamilton–Jacobi equation
heat semigroup Hopf–Lax semigroup

As described in §4.4.1.4, our proofs for the proximal sampler involve computing
the time derivative of t 7→ KL(ρX0 Qt ∥ πXQt) where (πXQt)t≥0, (ρX0 Qt)t≥0 are
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simultaneously evolving according to the heat flow. In what follows, we will
consider the time derivative of t 7→ ft(xt), where ft is the Moreau envelope of f .

Proof of Theorem 4.3.9. Let us define, for t > 0,

ft,x(z) := f(z) +
1

2t
∥z − x∥2 , xt := arg min ft,x . (4.23)

Then xt = proxtf(x) and x 7→ ft,x(x) is the Moreau envelope of f . Recall the
optimality condition

∇f(xt) +
1

t
(xt − x) = 0 .

The Moreau envelope satisfies the Hamilton–Jacobi equation

∂tft,x(xt) = ⟨∇ft,x(xt)︸ ︷︷ ︸
=0

, ẋt⟩ −
1

2t2
∥xt − x∥2 .

Using the PL inequality,

∂tft,x(xt) = − α

2t (1 + αt)
∥xt − x∥2 −

1

2t2 (1 + αt)
∥xt − x∥2

= − α

2t (1 + αt)
∥xt − x∥2 −

1

2 (1 + αt)
∥∇f(xt)∥2

≤ − α

2t (1 + αt)
∥xt − x∥2 −

α

1 + αt
{f(xt)− f ⋆}

which yields

∂t{ft,x(xt)− f ⋆} ≤ −
α

1 + αt
{ft,x(xt)− f ⋆} .

Integrating this yields4

fh,x(xh)− f ⋆ ≤ {f(x)− f ⋆} exp
(
−
∫ h

0

α

1 + αt
dt
)

=
1

1 + αh
{f(x)− f ⋆} .

Hence,

1

1 + αh
{f(x)− f ⋆} ≥ f(x′)− f ⋆ +

1

2h
∥x′ − x∥2 = f(x′)− f ⋆ +

h

2
∥∇f(x′)∥2

≥ f(x′)− f ⋆ + αh {f(x′)− f ⋆} = (1 + αh) {f(x′)− f ⋆} .
This completes the proof.

4Denote by (QHL
t )t≥0 the Hopf–Lax semigroup defined by QHL

t f(x) = ft,x(xt). One can

check that QHL
t f(x⋆) = f(x⋆) where x⋆ = argmin f . So, we can rewrite this inequality as

QHL
t f(x)−QHL

t f(x⋆) ≤ 1
(1+αt) {f(x)− f(x⋆)}.
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■ 4.6 Conclusion

In this chapter, we have studied in detail the proximal sampler of [TP18; LST21c].
In particular, we have given new convergence proofs under weaker assumptions
than what were previously considered, allowing for a much wider class of distri-
butions beyond log-concavity. In some cases, our proofs are inspired by convex
optimization; in others, they show a remarkable parallel with the continuous-time
theory of the Langevin diffusion under isoperimetry. Additionally, we have drawn
more precise links between the proximal sampler and the proximal point method
in optimization.

We conclude by listing a few directions for future study.

1. Is there an extension of the theory we have developed to the problem of
sampling from composite potentials πX ∝ exp(−f − g)?

2. Is there an accelerated version of the proximal sampler?

Additionally, since the complexity of the proximal sampler hinges on the
complexity of the subroutine used to implement the RGO, this represents a
potential avenue towards better sampling guarantees. In this chapter, we have only
considered a simple rejection sampling implementation for the RGO. In the next
two chapters, we shall develop a faster implementation based on the Metropolis-
adjusted Langevin algorithm, which ultimately leads to improved complexities
over the ones obtained in this chapter by a factor of

√
d. In the concurrent and

independent work [FYC23], similar improvements were obtained via approximate
rejection sampling implementations of the RGO.





Chapter 5

Analysis of MALA
from a warm start

In §4, we studied the proximal sampler which is an unbiased sampling algorithm
(with perfect implementation of the RGO) and hence leads to high-accuracy
sampling guarantees. Another method for designing unbiased samplers is to add
a Metropolis–Hastings filter step; when applied to LMC, it yields the Metropolis-
adjusted Langevin algorithm (MALA). In the strongly log-concave case, the results
of §4 match the existing complexity guarantees for MALA [Dwi+19; Che+20a;

LST20]; in particular, the dimension dependence of both algorithms scale as Õ(d).

In this chapter, we break the Õ(d) barrier by showing that the dimension

dependence of MALA improves to Õ(
√
d) under a warm start ; moreover, we show

via lower bounds that for MALA, this rate is tight. The question of algorithmically
obtaining a warm start for MALA to take advantage of this faster rate will be
addressed in §6.

This chapter is based on [Che+21b], joint with Chen Lu, Kwangjun Ahn,
Xiang Cheng, Thibaut Le Gouic, and Philippe Rigollet.

■ 5.1 Introduction

The class of Metropolis–Hastings (MH) adjusted algorithms [Met+53; Has70],
which includes the Metropolized random walk (MRW) algorithm, the Metropolis-
adjusted Langevin algorithm (MALA), and Metropolized Hamiltonian Monte
Carlo (MHMC), is particularly popular for sampling in practice. As such, their
convergence properties are of central theoretical and practical interest. More
specifically, with the ever-growing size of sample spaces, a precise characterization
of how dimension affects convergence rates is a necessary step to develop a better
understanding and, ultimately, practical guidelines for this suite of algorithms. In
this chapter, we address this pressing question by characterizing the dimension
dependence of MALA over a natural class of distributions from a warm start.

135
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Formally, we consider the task of sampling from a target distribution π sup-
ported on Rd, with density π(x) ∝ exp(−V (x)), where V : Rd → R is a strongly
convex and smooth potential. Here, [RGG97] initiated the study of dimension
dependence of MRW by means of an asymptotic framework: namely, when π is
a product distribution, a scaling limit exists for MRW as the dimension tends to
infinity with a dimension-dependent step size h ≈ d−1, thereby suggesting that the
number of steps needed for MRW to reach stationarity is on the order of d. Sub-
sequently, [RR98] [see also PST12] extended the scaling limit approach to MALA,
suggesting that the dimension dependence for MALA is d1/3 for sufficiently regular
potentials and step size h ≈ d−1/3. Beyond its theoretical beauty, this result has
had a tremendous practical impact by guiding the choice of step size for MALA
even for distributions far beyond the scope of their seminal paper. Understanding
the applicability of this result, and ultimately the optimal rate of convergence of
MALA, requires a careful inspection of the framework laid out in [RR98]. It turns
out that it is rather limited in several aspects. Perhaps most notably, it requires
π to be a product distribution, which excludes distributions with complex depen-
dence structures that are now routinely encountered in high-dimensional statistics.
Moreover, it applies only to potentials V with higher-order regularity; this is not a
mere technical artefact since the limit acceptance probability of MALA as d→∞
involves the third derivative of V . Finally, the asymptotic nature of the scaling
limit result only suggests dimension dependence in the asymptotic limit as d→∞,
so it potentially washes away important effects that may arise for finite d.

Thus it is natural to investigate the rate of convergence of MALA from a
perspective that is now customary in the machine learning and optimization
literature: by establishing non-asymptotic rates of convergence that hold uniformly
over natural classes of target distributions which go beyond product distributions.
We begin with the simplest and most natural setting and ask:

What is the optimal dimension dependence of the mixing time of MALA
uniformly over the class of α-strongly convex and β-smooth potentials?

Interestingly, and somewhat surprisingly, we show that while the rate d1/3

originally established by [RR98] is indeed optimal for some product distributions
such as the standard Gaussian, it is not optimal uniformly over the class of smooth
and strongly convex potentials of interest in this work. In fact, for any choice
of d, we exhibit a product distribution with infinitely differentiable potential on
which MALA requires a stepsize much smaller than d−1/3, thus resulting in a
worse mixing time. This construction confirms the limitations of the scaling limit
approach to establishing optimal dimension dependence.

Related work. The non-asymptotic performance of sampling algorithms uni-
formly over the class of smooth and strongly convex potentials has been the object
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of intense research activity recently. For example, [Dwi+19; Che+20a] show that
on this class of potentials, MRW can draw samples with at most ε2 error in
chi-squared divergence with Õ(d log 1

ε
) steps, thereby providing a non-asymptotic

affirmation of the scaling limit of [RGG97]. However, far less is known about op-
timal rates for MALA. The current best result for MALA on the class of smooth
and strongly convex potentials is the paper [LST20], which proves a complexity of

Õ(d log 1
ε
) steps to achieve ε2 error in chi-squared divergence. They also raise the

question of whether there is a gap between the complexities of MRW and MALA.
The paper [MV19] took a direct aim at improving the dimension dependence of

mixing time bounds for MALA. They succeeded in obtaining a bound of Õ(d2/3)
albeit at the cost of stringent hypotheses. More specifically, they assume bounds
on the third and fourth derivatives of the potential V ; when these bounds are
O(1) (which is true for the standard Gaussian) then their mixing time is Õ(d2/3);
see the discussion in [Che+20a].

Our contributions. In this work, we show that the mixing time in chi-squared
divergence for MALA on the class of smooth and strongly convex potentials with
a warm start is Θ̃(d1/2). Our result consists of two parts: an upper bound on the
mixing time which improves to optimality prior results such as [Dwi+19; Che+20a;
LST20], as well as the construction of smooth and strongly convex potentials on
which the mixing time of MALA is no better than d1/2.

In order to prove our upper bound on the mixing time, we introduce new
techniques based on the characterization of the Metropolis filter as a projection
of the Markov transition kernel in expected L1 distance [BD01]. Our techniques
effectively reduce the problem of bounding the mixing time to controlling the dis-
cretization error between the continuous-time and discretized Langevin processes,
which has been extensively studied in the sampling literature. We do not aim to
give a comprehensive bibliography here, but we note that our discretization analy-
sis is closest to the papers [DT12; Dal17b], as well as the Girsanov argument of §3.
In this way, our upper bound has the potential to connect the vast literature on
discretization of SDEs with the more difficult analysis of Metropolized algorithms,
although it is likely that further innovations are necessary before the study of the
latter is completely reduced to the former.

Notation. We use the symbol x to denote a d-dimensional vector, and the
plain symbol x to denote a scalar variable. We abuse notation by identifying
measures with their densities (w.r.t. Lebesgue measure); thus, for instance, π
represents the stationary distribution (a measure), and the notation π(x) refers
to the corresponding density evaluated at x.
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■ 5.2 Preliminaries

■ 5.2.1 Assumptions

We consider the problem of sampling from a distribution π supported on Rd.
The density of the distribution is given by π(x) ∝ exp(−V (x)), and we refer to
V : Rd → R as the potential. Throughout the paper, we will assume that V is
twice continuously differentiable, α-strongly convex, and β-smooth, meaning

αId ⪯ ∇2V (x) ⪯ βId , ∀x ∈ Rd .

We denote by κ := β/α the condition number. For the sake of normalization, we
assume that V (0) = minV = 0, so that ∇V (0) = 0.

■ 5.2.2 Metropolis-adjusted Langevin algorithm (MALA)

Before stating our main results, we give some background on MALA and tools for
establishing convergence rates of Markov chains.

Given a step size h > 0, MALA produces a sequence (Xn)n≥0 of random points

in Rd as follows. First, MALA is initialized at X0 ∼ µ0. Then, for n ≥ 0, repeat
the following two-step procedure:

1. Proposal step: sample Y n+1 ∼ Q(Xn, ·), where

Q(x, ·) :=
1

(4πh)d/2
exp

(
−∥ · − x + h∇V (x)∥2

4h

)
.

This proposal density corresponds to one step of the unadjusted Langevin
algorithm.

2. Accept-reject step: set

Xn+1 =

{
Y n+1 with probability A(Xn,Y n+1)

Xn with probability 1− A(Xn,Y n+1)

where the acceptance probability is given by

A(x,y) := 1 ∧ a(x,y) , a(x,y) :=
π(y)Q(y,x)

π(x)Q(x,y)
. (5.1)

It is well-known that MALA outputs a sequence of random variables (Xn)n≥0
that forms a reversible Markov chain with stationary distribution π and Markov
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transition kernel given by

T (x, dy) = [1− A(x)] δx(dy) +Q(x, dy)A(x,y) ,

A(x) =

∫
Q(x,y)A(x,y) dy ≥ 0 .

(5.2)

For the rest of the chapter, it is important to note that A, Q, etc. depend on the
step size h.

There are many choices to measure proximity of the MALA output with the
target distribution (see §2.2.3). In this work, we focus on the total variation
distance (TV), the Kullback–Leibler divergence (KL), the chi-squared divergence
(χ2), and the 2-Wasserstein distance (W2). Given a measure of discrepancy d
between probability measures, we define the mixing time, with initial distribution
µ0, as follows:

τmix(ε, µ0; d) := inf{n ∈ N : X0 ∼ µ0, d(µn, π) ≤ ε} .
Extensions to other discrepancies, such as the p-Wasserstein distance for p ≤ 2 or
the Hellinger distance, are straightforward and omitted for brevity.

The mixing time of a Markov chain is governed by its spectral gap, which we
now introduce. To that end, recall that the Dirichlet form associated with the
MALA kernel T is the quadratic form

E(f, g) = Eπ[f (id− T ) g] , f, g ∈ L2(π) ,

where (Tg)(x) :=
∫
g(y)T (x, dy). The spectral gap is defined as

λ := inf
{E(f, f)

var f
: f ∈ L2(π), var f > 0

}
. (λ)

Since it is often difficult to control the spectral gap directly, it is also convenient
to introduce the conductance, defined as

C := inf
{∫

S
T (x, Sc) π(dx)

π(S)
: S ⊆ Rd, π(S) ≤ 1

2

}
. (C)

By Cheeger’s inequality [LS88], it holds that

C2 ≲ λ ≲ C . (5.3)

Actually, in order for the mixing time results we invoke to be valid, we must
instead consider the 1

2
-lazy version of the chain, in which each proposal is discarded

with probability 1
2
. Since this only affects the mixing time bounds by a factor of

2, we henceforth ignore this distinction.
The Metropolis-adjusted Langevin algorithm (MALA) has been studied for

nearly three decades since [Bes+95], especially within an asymptotic framework;
see, e.g., the influential work of [RR98].
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■ 5.3 The Gaussian case

As our work is motivated by the diffusion scaling limit of [RR98], which predicts
a d1/3 mixing time for MALA, it is natural to begin our investigations by asking
whether this is indeed the correct order of the mixing time in the simplest possible
setting: namely, when π is the standard Gaussian distribution. Our first contribu-
tion is to establish that it is indeed the case even for finite d. We formulate here
an informal result and postpone a more detailed statement together with a proof
to §5.8. Though it is expected, this result appears to be new.

Theorem 5.3.1 (Informal). If the target distribution π is the standard Gaussian
distribution, then the mixing time of MALA under a warm start is Θ(d1/3), and
is achieved with step size h ≈ d−1/3.

The proof of this result is based on explicit calculations. While limited to
the Gaussian case, its inspection is instructive for potential extensions to other
distributions.

On the one hand, the upper bound on the mixing time relies on fine can-
cellations in the acceptance probability using the explicit form of the Gaussian
distribution, which is unavailable for more general potentials. In general, it is
difficult to control the acceptance probability directly, and this seems to be the
main obstacle to sharpening the mixing time bound in [Dwi+19]. This observation
motivates us to seek an indirect way of controlling the acceptance probability in
the next section.

On the other hand, while the Gaussian target distribution readily yields a lower
bound over the class of potentials with smooth and strongly convex potentials, it
turns out to be too loose to address the optimality of MALA. In §5.5, we show
that a tighter lower bound may be achieved using a carefully chosen perturbation
of the Gaussian distribution.

See also [LST21a], which proved that the mixing time is Θ̃(d1/2) if a warm
start is not available.

■ 5.4 Upper bound

In order to prove an upper bound on the mixing time of MALA, we assume that
we have access to a warm start. This is a common assumption which has been
employed in previous works on MALA, e.g., [Dwi+19; MV19; Che+20a].

Definition 5.4.1 (Warm start). We say that the initial distribution µ0 is M0-
warm with respect to π if for any Borel set E ⊆ Rd, it holds that µ0(E) ≤M0π(E).
When clear from the context, we simply say that an algorithm has a M0-warm start
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to indicate that it is initialized at an M0-warm distribution and omit reference to
the target distribution.

We now state our upper bound on the mixing time of MALA, which shows
that under a warm start the mixing time of MALA is Õ(

√
d).

Theorem 5.4.2. Fix ε > 0 and consider a target distribution π satisfying the
assumptions of §5.2.1. Then MALA with a M0-warm start and step size

h =
c

β

( 1

d1/2 log(κdM0/ε)
∧ 1

κ

)
for a sufficiently small absolute constant c > 0, has mixing time given by

τmix(ε, µ0; d) ≲
(
κd1/2 log

κdM0

ε
+ κ2

)
log

(M0

ε

)
for each of the distances

d ∈ {TV,
√
KL,

√
χ2,
√
αW2} .

The main properties of strongly log-concave distributions that we use in the
proof are summarized in Lemma 5.6.11. As long as π satisfies these properties,
the upper bound technique may be applied under weaker assumptions, e.g., a
log-Sobolev inequality. We do not pursue these extensions further in this paper.

We primarily work with the total variation distance to establish the above
upper bound on the mixing time and translate this result to the chi-squared diver-
gence by using M0-warmness of all the iterates of the MALA chain. In turn, this
result extends to the KL divergence using a standard comparison inequality [see,
e.g., Tsy09, §2] and ultimately to the Wasserstein distance using Talagrand’s
transport inequality for strongly log-concave distributions; see §2.2.3.

The quantity logM0 is important because it can introduce additional dimen-
sional factors under a feasible start [Dwi+19]. We address this issue in §6.

Since our upper bound proof may be of interest for analyzing other sampling
algorithms based on Metropolis–Hastings filters, we now proceed to give a technical
overview of the ideas involved in the upper bound. Throughout, we use the
notation Qx(·), Tx(·), etc. as a shorthand for the kernels Q(x, ·), T (x, ·), etc.

We begin by describing the approach of [Dwi+19], which will serve as a refer-
ence. The standard technique for bounding the conductance of geometric random
walks is the following lemma [see, e.g., LV18a, Lemma 13].

Lemma 5.4.3. Suppose that for all x,y ∈ Rd with ∥x − y∥ ≤ r, it holds that
∥Tx−Ty∥TV ≤ 3/4. Then, the conductance of the MALA chain satisfies C ≳

√
α r.
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In light of this lemma, [Dwi+19] considers the following decomposition:

∥Tx − Ty∥TV ≤ ∥Tx −Qx∥TV + ∥Qx −Qy∥TV + ∥Ty −Qy∥TV . (5.4)

The middle term is the TV distance between two Gaussian distributions, and
using Pinsker’s inequality it is straightforward to show that

∥Qx −Qy∥TV ≤
∥x− y∥√

2h
, provided h ≤ 2

β
,

see [Dwi+19, Lemma 3]. On the other hand, bounding the first and third terms in
the decomposition (5.4) requires carefully controlling the acceptance probability
of MALA. In [Dwi+19], the authors show that these terms can be controlled when
the step size is of order h ≈ 1/d. An application of Lemma 5.4.3 with r ≈

√
h

yields a conductance bound of C = Ω(1/
√
d) and in turn, a spectral gap bound of

λ = Ω(1/d) by Cheeger’s inequality (5.3). Overall, this approach yields a mixing
time bound of O(d).

In order to prove a stronger mixing time bound of Õ(
√
d), we must consider

much larger step sizes (of order h ≈ 1/
√
d), and in this regime, controlling the

acceptance probabilities by hand requires a daunting computational effort. In
fact, [RR98] already resort to a computer-aided proof to study the asymptotics of
the acceptance probability. Our first main idea is to use the well-known fact [BD01]
that for any proposal Q, the corresponding Metropolis-adjusted kernel T is the
closest Markov kernel to Q, among all reversible Markov kernels with stationary
distribution π.

Lemma 5.4.4. Let Q be an atomless proposal kernel, and let T be the kernel
obtained from Q by Metropolis adjustment (defined by (5.1) and (5.2)). Let Q̄ be
any kernel that is reversible with respect to π and has no atoms. Then, for x ∼ π,
it holds that

E∥Tx −Qx∥TV ≤ 2E∥Q̄x −Qx∥TV .

Proof. See §5.6.2.

We apply this result by comparing the MALA kernel T with the transition
kernel Q̄ of the continuous-time Langevin diffusion run for time h. In other
words, Q̄(x, ·) is the law of X̄h, where (X̄ t)t≥0 evolves according to the stochastic
differential equation

dX̄ t = −∇V (X̄ t) dt+
√

2 dBt , X̄0 = x , (5.5)
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and (Bt)t≥0 is a standard Brownian motion. Using standard stochastic calculus

arguments (see (5.11)), we show that E∥Q̄x − Qx∥TV = O(h
√
d) (see (5.11)).

This suggests that we can take the step size to be h ≍ 1/
√
d. However, since

the lemma only controls the first and third terms of the decomposition (5.4) in
expectation, it is not enough to yield a good lower bound on the conductance via
Lemma 5.4.3. To remedy this, we prove a new pointwise version of the projection
characterization of Metropolis adjustment.

Theorem 5.4.5. Let Q be an atomless proposal kernel, and let T be the kernel
obtained from Q by Metropolis adjustment (defined by (5.1) and (5.2)). Let Q̄ be
any kernel that is reversible with respect to π and has no atoms. Then, for every
x ∈ Rd,

∥Tx −Qx∥TV ≤ 2 ∥Q̄x −Qx∥TV +

∫
π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy . (5.6)

Consequently, for any convex increasing function Φ : R+ → R+ and x ∼ π,
y ∼ Q̄(x, ·),

EΦ(∥Tx −Qx∥TV) ≤ 1

2
EΦ(4 ∥Q̄x −Qx∥TV) +

1

2
EΦ

(
2
∣∣Q(x,y)

Q̄(x,y)
− 1

∣∣) . (5.7)

Proof. See §5.6.2.

Remark 5.4.6. If we take the expectation of (5.6) when x ∼ π, we obtain

E∥Tx −Qx∥TV ≤ 4E∥Q̄x −Qx∥TV ,

which qualitatively recovers Lemma 5.4.4.

The second inequality in Theorem 5.4.5 can be used in the usual way to
deduce concentration bounds for ∥Tx −Qx∥TV when x ∼ π. A key feature of this
approach is that both terms on the right-hand side of (5.7), in the case of MALA,
involve only quantities which measure the discrepancy between the continuous-
time Langevin kernel Q̄ and the discretized Langevin proposal Q. Therefore, to
control the quantity ∥Tx −Qx∥TV, it suffices to apply well-established techniques
for studying the discretization of SDEs.

Once we show that ∥Tx − Qx∥TV is controlled with high probability, we are
then able to apply a conductance argument, similar to Lemma 5.4.3, in order to
prove our mixing time bound. We give an in-depth overview of the proof and
provide proofs of technical details in §5.6.
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■ 5.5 Lower bound

It is a standard fact that the mixing time is governed by the inverse of the spectral
gap1. Hence, an upper bound on the spectral gap λ yields a lower bound on the
mixing time. In addition, we know from Cheeger inequality (5.3) that λ ≲ C,
where C denotes the conductance of the Markov chain. For these reasons, we
identify a lower bound on the mixing time with an upper bound on either the
conductance C or the spectral gap λ.

To complement our upper bound on the mixing time of MALA, we provide
a nearly matching lower bound, thereby settling the question of the dimension
dependence of MALA for log-smooth and strongly log-concave targets. To that
end, we exhibit a target distribution (in fact a family of distributions) such that
the MALA chain with step size h has exponentially small conductance whenever
h ≫ d−1/2. More precisely, fix η ∈ (0, 1/4) and define the adversarial target
distribution πη as a product distribution with potential Vη defined by

Vη(x) =
∥x∥2

2
− 1

2d2η

d∑
i=1

cos(dηxi) . (5.8)

It is not hard to see that Vη is 1/2-strongly convex and 3/2-smooth. To motivate
this choice, recall from [RR98, Theorem 1] that the acceptance probability of
MALA tends to a positive constant as d → ∞ whenever the second moment
of the third derivative of the potential is finite and the step size is chosen as
h = Θ(d−1/3). The choice Vη in (5.8) is an example of a smooth and strongly convex
potential where this condition is violated asymptotically, therefore suggesting that
h = Θ(d−1/3) is too large to prevent the acceptance probability to vanish for large
d. Our first result below indicates that h should be taken significantly smaller
than d−1/3; in fact nearly as small as d−1/2 when η ≈ 1/4.

In the following theorem, we set η = 1/4− δ, for some small δ > 0.

Theorem 5.5.1. Fix δ ∈ (0, 1/18), let η = 1/4 − δ, and let C denote the con-
ductance of the MALA chain with target distribution πη and step size h. Then,

C ≲ exp[−Ω(d4δ)] for any h ∈ [d−
1
2
+3δ, d−

1
3 ].

Note that as δ ↘ 0, the above theorem shows that MALA must take step sizes
which are (essentially) at most of order d−1/2.

1By definition, the spectral gap corresponds to the smallest eigenvalue of the Dirichlet form.
Hence, for an initial distribution µ0 that is correlated with the eigenfunction corresponding to
λ, it follows that τmix(ε, µ0;

√
χ2) = Ω̃(λ−1). See, e.g., [BGL14, §4] for a rigorous treatment of

spectral theory.
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The next result shows that the spectral gap of MALA is no better than h.
Together with our upper bound, it implies in particular that the choice h ≈ d−1/2

is the optimal step size for MALA for a target distribution πη and hence, cannot
be improved uniformly over the class of distributions with smooth and strongly
convex potentials.

Theorem 5.5.2. The spectral gap λ of MALA with target distribution πη and
step size 0 < h ≤ 1 satisfies λ ≲ h.

We give the proofs of these theorems in §5.7.

Remark 5.5.3. In fact, in our proof, we construct an event E with π(E) ≥ 1/2,

such that with step size h in the range [d−
1
2
+3δ, d−

1
3 ] the acceptance probability

starting at any point in E is exp[−Ω(d4δ)]. Note then that the initialization
µ0 = π(· | E) is M0-warm w.r.t. π with M0 = 2. Hence, our construction provides
a lower bound on the mixing time of MALA from a warm start.

■ 5.6 Proof of the upper bound

This section presents the proof of Theorem 5.4.2.

■ 5.6.1 High-level overview of the proof

The bulk of the proof controls the mixing time in total variation and we use results
from §5.6.7 to extend it to the other distances.

For the proof, it is technically convenient to work with a refinement of the
conductance known as the s-conductance: for 0 < s < 1/2, define

Cs := inf
{∫

S
T (x, Sc)π(dx)

π(S)− s
∣∣∣ S ⊆ Rd, s < π(S) ≤ 1

2

}
. (5.9)

A lower bound on the s-conductance translates into an upper bound on the
mixing time in total variation distance, via the following lemma.

Lemma 5.6.1 ([LS93, Corollary 1.6]). For any n ∈ N and 0 < s < 1/2, the
distribution of the n-th iterate µn of the MALA satisfies

∥µn − π∥TV ≤ Hs +
Hs

s
exp

(
−C2

sn

2

)
,

where Hs := sup{|µ0(A)− π(A)| : π(A) ≤ s}.

By Hölder’s inequality, we have Hs ≤M0s. It yields the following corollary.
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Corollary 5.6.2. Taking s = ε/(2M0), it follows that

∥µn − π∥TV ≤ ε provided that n ≥ 2

C2
s

ln
2M0

ε
.

Motivated by the standard conductance lemma (Lemma 5.4.3) and the decom-
position (5.4), in order to bound the s-conductance from below we will first bound
∥Tx −Qx∥TV, as in §5.4. The outline of the proof is as follows:

1. In §5.6.2, we prove the projection properties of MALA (Lemma 5.4.4 and
Theorem 5.4.5).

2. In §5.6.3, we use the projection property (Lemma 5.4.4) along with stochastic
calculus to bound the expectation E ∥Tx −Qx∥TV when x ∼ π.

3. In §5.6.4, we use the pointwise projection property, together with more
stochastic calculus computations, in order to prove a concentration inequality
for ∥Tx −Qx∥TV when x ∼ π.

4. In §5.6.5, we use the concentration bound of §5.6.4, together with ideas from
the proof of the standard conductance lemma (Lemma 5.4.3), in order to
lower bound the s-conductance. Together with Corollary 5.6.2, it yields the
mixing time bound of Theorem 5.4.2 in total variation distance.

5. Finally in §5.6.7, we explain how the mixing time bound in total variation
distance implies mixing time bounds in other distances between probability
measures.

■ 5.6.2 Proof of the projection properties

We start with a basic fact about MALA.

Proposition 5.6.3. Let Q be the proposal kernel and let T be the MALA kernel
with proposal Q. Then,

∥Tx −Qx∥TV =

∫
Rd\{x}

|T (x,y)−Q(x,y)| dy = 1−
∫
Rd
Q(x,y)A(x,y) dy.

Proof. First, since Tx has an atom at x and Qx does not, we have

∥Qx − Tx∥TV =
1

2

(
Tx({x}) +

∫
Rd\{x}

|T (x,y)−Q(x,y)| dy
)
.
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By the definition of the accept-reject step,

Tx({x}) = 1−
∫
Rd\{x}

T (x,y) dy = 1−
∫
Rd
Q(x,y)A(x,y) dy ,

whereas ∫
Rd\{x}

|T (x,y)−Q(x,y)| dy = 1−
∫
Rd
Q(x,y)A(x,y) dy .

The result follows.

We now prove the projection properties (Lemma 5.4.4 and Theorem 5.4.5).

Proof of Lemma 5.4.4. Since the kernel Q̄ corresponding to the continuous-time
Langevin diffusion is reversible with stationary distribution π, it follows from the
result of [BD01] that∫∫
(Rd×Rd)\∆

|T (x,y)−Q(x,y)| π(dx) dy ≤
∫∫

(Rd×Rd)\∆

|Q̄(x,y)−Q(x,y)|π(dx) dy ,

where ∆ = {(x,y) ∈ Rd × Rd : x = y}. Since Qx and Q̄x have no atoms, the
right-hand side is equal to 2Ex∼π∥Q̄x−Qx∥TV. On the other hand, the left-hand
side is equal to Ex∼π∥Tx −Qx∥TV due to Proposition 5.6.3.

Proof of Theorem 5.4.5. For any x, we have

∥Tx −Qx∥TV =

∫
{1− A(x,y)}Q(x,y) dy

=

∫ [
1−

(
1 ∧ π(y)Q(y,x)

π(x)Q(x,y)

)]
Q(x,y) dy

≤
∫ ∣∣∣1− π(y)Q(y,x)

π(x)Q(x,y)

∣∣∣Q(x,y) dy

≤
∫ ∣∣∣1− π(y) Q̄(y,x)

π(x)Q(x,y)

∣∣∣Q(x,y) dy +

∫
π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy .

Observe that the first term is given by∫ ∣∣∣1− π(y) Q̄(y,x)

π(x)Q(x,y)

∣∣∣Q(x,y) dy =

∫ ∣∣∣Q(x,y)− π(y) Q̄(y,x)

π(x)

∣∣∣ dy

= 2 ∥Qx − Q̄x∥TV ,
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where in the second identity, we used the reversibility of Q̄. This concludes the
proof of the first inequality.

We now deduce the second inequality from the first. Using monotonicity and
convexity of Φ respectively, we get,

EΦ(∥Tx −Qx∥TV) ≤ EΦ
(

2 ∥Q̄x −Qx∥TV +

∫
π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
)

≤ 1

2
EΦ(4 ∥Q̄x −Qx∥TV) +

1

2
EΦ

(
2

∫
π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
)
,

where we take expectation with respect to x ∼ π. Next, noting from stationarity
that

∫
π(y) Q̄(y,x) dy = π(x), we apply Jensen’s inequality to yield

EΦ
(

2

∫
π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
)

=

∫
Φ
(

2

∫
π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
)
π(x) dx

≤
∫∫

Φ
(
2
∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣) π(y) Q̄(y,x) dx dy

=

∫∫
Φ
(
2
∣∣Q(x,y)

Q̄(x,y)
− 1

∣∣) π(x) Q̄(x,y) dx dy ,

where we switched x and y in the notation of the last line.

■ 5.6.3 Expectation of the total variation

We now bound the expectation E∥Tx −Qx∥TV when x ∼ π using the projection
property (Lemma 5.4.4). Akin to prior work such as [DT12], our primary tool to
analyze the discretization of the Langevin diffusion is the Girsanov theorem from
stochastic calculus [see, e.g., SV06; Le 16, for classical treatments].

Lemma 5.6.4 (Girsanov theorem). Let Q̄x denote the probability measure on
path space induced by the solution (X̄ t)t∈[0,h] of the continuous-Langevin diffusion
SDE (5.5) started at x and run for time h > 0. Moreover, let Qx denote the
probability measure on path space induced by the solution of the following SDE
with constant drift

dX t = −∇V (x) dt+
√

2 dBt , X0 = x .
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Then, Qx is absolutely continuous with respect to Q̄x and has density given by
Radon–Nikodym derivative:

dQx

dQ̄x

(
(X̄ t)t∈[0,h]

)
= exp

[ 1√
2

∫ h

0

⟨∇V (X̄ t)−∇V (x), dBt⟩

− 1

4

∫ h

0

∥∇V (X̄ t)−∇V (x)∥2 dt
]
.

Proof. See the proof of Proposition 2 in [DT12].

In the following lemma, we use Lemma 5.6.12.

Lemma 5.6.5. Assume h ≲ 1/β. For any x ∈ Rd,

∥Q̄x −Qx∥TV ≲ βh
√
d+ β2h ∥x∥2 .

Proof. Let end denote the function that maps a continuous curve (yt)t∈[0,h] in Rd

to its endpoint: end((yt)t∈[0,h]) := yh. Then, it is clear that

Qx = end#Qx and Q̄x = end# Q̄x ,

where the notation f#µ denotes the pushforward of a measure µ under the mapping
f . On the one hand, it follows from the data processing inequality that

KL(Q̄x ∥Qx) = KL(end# Q̄x ∥ end#Qx) ≤ KL(Q̄x ∥Qx) .

On the other hand, the Girsanov theorem (in the form of Lemma 5.6.4) implies

KL(Q̄x ∥Qx) = −E ln
dQx

dQ̄x

(X̄ t) =
1

4

∫ h

0

E[∥∇V (X̄ t)−∇V (x)∥2] dt

≤ β2

4

∫ h

0

E[∥X̄ t − x∥2] dt ≲ β2h2 (d+ β2h ∥x∥2) ,

where we used the β-smoothness of V and Lemma 5.6.12. Now applying Pinsker’s
inequality, we obtain the desired inequality.

It follows from Lemma 5.6.5 that when x ∼ π, we get

E∥Q̄x −Qx∥TV ≲ βhE
√
d+ β2h ∥x∥2 ≤ βh

√
d+ β2hE[∥x∥2]

≤ βh
√

(1 + βκh) d ,
(5.10)

where we used the second moment bound of Lemma 2.2.13. Together with the
projection property (Lemma 5.4.4), it yields

E∥Tx −Qx∥TV ≤ 2E∥Q̄x −Qx∥TV ≲ βh
√

(1 + βκh) d . (5.11)

We conclude this section with a concentration inequality which we use later
in the argument.
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Lemma 5.6.6. Assume h ≲ 1/β and let x ∼ π. For any δ > 0, with probability
at least 1− δ,

∥Q̄x −Qx∥TV ≲ βh

√
d+ βκh

(
d+ log

1

δ

)
.

Proof. Let f(x) := βh
√
d+ β2h ∥x∥2. Then,

∥∇f(x)∥ =
β3h2 ∥x∥√
d+ β2h ∥x∥2

≤ β2h3/2 .

Thus, f(x) is β2h3/2-Lipschitz, and it follows from sub-Gaussian concentration
(Lemma 5.6.11) that with probability at least 1− δ,

f(x) ≤ E f(x) + β2h3/2
√

2

α
ln

1

δ
.

We have calculated E f(x) ≲ βh
√

(1 + βκh) d in (5.10), and the result now follows
from the pointwise bound in Lemma 5.6.5.

■ 5.6.4 Concentration of the total variation

Equation (5.11) provides a control the total variation distance between the MALA
kernel and the proposal in expectation. The main result of this section is an
extension of this result to a control with high probability captured in the following
proposition.

Proposition 5.6.7. Fix c0 > 0 and 0 < s < 1/2. Then, there exists a constant
c1 > 0, depending only on c0, such that with step size

h =
c1
β

( 1

d1/2 log(dκ/s)
∧ 1

κ

)
, (5.12)

the following holds with probability at least 1− c0s
√
αh,

∥Tx −Qx∥TV ≤
1

6
.

The idea of the proof is to use the pointwise projection of Theorem 5.4.5, and
to obtain high probability bounds for each of the two terms in (5.6). An upper
bound for the first term follows directly from Lemma 5.6.6. To control the second
term, we will first obtain a bound on its moments.
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Lemma 5.6.8. Let k ≥ 1 be any integer. Suppose that

h ≲
1

βd1/2k

(
1 ∧ d

1/6k1/3

κ1/3
∧ d

1/2k

κ

)
. (5.13)

Then, it holds that{
Ex∼π

[∣∣∣∫ π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
∣∣∣k]}1/k

≲ βh
√
k (
√
d+
√
k) .

The proof, given in §5.6.4.1, uses extensively tools from stochastic calculus.
We remark that the quantity in Lemma 5.6.8 can be interpreted as a bound on
the Rényi divergence between the discretized and continuous Langevin processes.
A similar result has appeared as [GT20, Corollary 11]; see also the Girsanov
argument of §3.

We are now in a position to prove Proposition 5.6.7.

Proof of Proposition 5.6.7. Assume that the step size h is small enough so that
Lemmas 5.6.6 and 5.6.8 both hold. More specifically, since the requirement of
Lemma 5.6.8 is more stringent than that of Lemma 5.6.6, so we can simply impose
that (5.13) holds.

From Lemma 5.6.6 with δ = c0s
√
αh/2, there exists a constant C1 > 0 such

that with probability at least 1− c0s
√
αh/2,

∥Q̄x −Qx∥TV ≤ C1βh

√
d+ βκh ln

2

c0s
√
αh

.

From Lemma 5.6.8 and Markov’s inequality, there exists a constant C2 > 0 such
that for any δ > 0, with probability at least 1− δ,∫

π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy ≤ C2βh
√
k (
√
d+
√
k) δ−1/k .

Taking k ∼ ln 2
c0s
√
αh

and δ = c0s
√
αh/2, we have δ−1/k = Θ(1) and hence∫

π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy ≤ C2βh

√
ln

2

c0s
√
αh

(√
d+

√
ln

2

c0s
√
αh

)
.

Combining these two inequalities with the pointwise projection property (Theo-
rem 5.4.5), it follows that with probability at least 1− c0s

√
αh,

∥Tx −Qx∥TV ≲ βh

√
d+ βκh ln

2

c0s
√
αh

+ βh

√
ln

2

c0s
√
αh

(√
d+

√
ln

2

c0s
√
αh

)
.

(5.14)
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If we choose the constant c1 > 0 small enough, then choosing the step size as
in (5.12) makes the both terms in the left-hand side of (5.14) less than 1/12. This
completes the proof of Proposition 5.6.7.

■ 5.6.4.1 Proof of Lemma 5.6.8

We now prove the moment upper bound (Lemma 5.6.8). Since
∫
π(y) Q̄(y,x) dy =

π(x), we can apply Jensen’s inequality to get∫
π(x)

∣∣∣∫ π(y) Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
∣∣∣k dx

≤
∫∫

π(y) Q̄(y,x)
∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣k dx dy

=

∫ (∫ ∣∣Q(x,y)

Q̄(x,y)
− 1

∣∣k Q̄(x, dy)
)
π(dx) ,

where we switched x and y in the last line. The inner integral equals the f -
divergence Df (Qx ∥ Q̄x), with f(x) := |x− 1|k. Recall the definitions of Q̄x and
Qx in Lemma 5.6.4. Hence we may apply the data processing inequality and
bound the above by

Fk :=

∫ (∫ ∣∣dQx

dQ̄x

− 1
∣∣k dQ̄x

)
π(dx) . (5.15)

Recall from Lemma 5.6.4 that

dQx

dQ̄x

(X̄) = expHh ,

where for t ≥ 0,

Ht :=
1√
2

∫ t

0

⟨∇V (X̄s)−∇V (x), dBs⟩ −
1

4

∫ t

0

∥∇V (X̄s)−∇V (x)∥2 ds .

Applying Itô’s formula to (Ht)t≥0 and the function exp, we deduce that

expHh − 1 =
1√
2

∫ h

0

(expHt) ⟨∇V (X̄ t)−∇V (x), dBt⟩ .

In what follows, Ēx denotes the expectation under Q̄x (the measure under which
X̄ is a continuous-time Langevin diffusion). Also, we will use the letter C to
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denote a numerical constant which may change from line to line. Based on the
upper bound (5.15) on the k-th moment, we wish to estimate

Fk = Ēx[|expHh − 1|k] =
1

2k/2
Ēx

[∣∣∣∫ h

0

(expHt) ⟨∇V (X̄ t)−∇V (x), dBt⟩
∣∣∣k]

≤ (Ck)k/2 Ēx

[∣∣∣∫ h

0

exp(2Ht) ∥∇V (X̄ t)−∇V (x)∥2 dt
∣∣∣k/2]

where the last line is the Burkholder–Davis–Gundy inequality with optimal con-
stants [Bur73; Dav76]. Together with the Cauchy–Schwarz inequality and Hölder’s
inequality, it yields

Fk ≤ (Cβ2k)
k/2

Ēx

[∣∣∣∫ h

0

exp(4Ht) dt
∣∣∣k/4 ∣∣∣∫ h

0

∥X̄ t − x∥4 dt
∣∣∣k/4]

≤ (Cβ2k)
k/2

√
Ēx

[∣∣∣∫ h

0

exp(4Ht) dt
∣∣∣k/2] Ēx

[∣∣∣∫ h

0

∥X̄ t − x∥4 dt
∣∣∣k/2]

≤ (Cβ2k)
k/2

hk/2−1

√(
Ēx

∫ h

0

exp(2kHt) dt
)

︸ ︷︷ ︸
A

√(
Ēx

∫ h

0

∥X̄ t − x∥2k dt
)

︸ ︷︷ ︸
B

.

We will control the two terms separately, starting with the first term A .

Lemma 5.6.9. Let 0 ≤ t ≤ h ≲ 1
βk

. Then,

ln Ēx exp(2kHt) ≲ β2h2k2 (β2h ∥x∥2 + d) .

Proof. Recall the following fact, which follows from Itô’s lemma [Le 16, Theorem
5.10]: for any adapted process (Zs)s≥0, we have

Ēx exp
(∫ t

0

⟨Zs, dBs⟩ −
1

2

∫ t

0

∥Zs∥2 ds
)

= 1 .

Together with the Cauchy–Schwarz inequality, it yields

Ēx exp(2kHt)

= Ēx exp
[√

2k

∫ t

0

⟨∇V (X̄s)−∇V (x), dBs⟩

− k

2

∫ t

0

∥∇V (X̄s)−∇V (x)∥2 ds
]
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= Ēx exp
[√

2k

∫ t

0

⟨∇V (X̄s)−∇V (x), dBs⟩

+
(
−4k2 + 4k2 − k

2

) ∫ t

0

∥∇V (X̄s)−∇V (x)∥2 ds
]

≤
√

Ēx exp
[
8k2

∫ t

0

∥∇V (X̄s)−∇V (x)∥2 ds
]

≤
√

Ēx exp
[
8β2k2

∫ t

0

∥X̄s − x∥2 ds
]
≤

√
Ēx exp

[
8β2hk2 sup

s∈[0,h]
∥X̄s − x∥2

]
.

In order to upper bound the above quantity, we apply Lemma 5.6.12 with λ :=
8β2hk2. In order to satisfy the preconditions of Lemma 5.6.12, we impose the
restriction h ≲ 1

βk
. Then, it follows that

ln Ēx exp(2kHt) ≲ β2h2k2 (β2h ∥x∥2 + d) .

This is our desired bound.

Hence, from Lemma 5.6.9, we obtain

A ≤
√
h exp

(
O(β4h3k2 ∥x∥2 + β2dh2k2)

)
.

Next, we estimate B . In fact, Lemma 5.6.12 together with standard moment
bounds under sub-exponential concentration (e.g., [Ver18, Proposition 2.7.1]) gives

Ēx sup
t∈[0,h]

∥X̄ t − x∥2k ≤ Ck (β2kh2k ∥x∥2k + dkhk + hkkk) ,

where C > 0 is a numerical constant. See Corollary 5.6.13 in §5.6.6.2 for details.
Hence, it holds that

B =

√∫ h

0

Ēx[∥X̄ t − x∥2k] dt ≤ Ckh1/2 (βkhk ∥x∥k + dk/2hk/2 + hk/2kk/2) .

Hence,

(5.15) ≤ (Cβ2k)
k/2
hk/2−1 × A × B

≤ (Cβ2k)
k/2
hk/2−1 × h1/2 exp

(
O(β4h3k2 ∥x∥2 + β2dh2k2)

)
× Ckh1/2 (βkhk ∥x∥k + dk/2hk/2 + hk/2kk/2)

≤ (Cβ2hk)
k/2

exp
(
O(β2dh2k2)

)
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× exp
(
O(β4h3k2 ∥x∥2)

)
(βkhk ∥x∥k + dk/2hk/2 + hk/2kk/2) .

Next, we take the expectation w.r.t. x ∼ π and use Cauchy–Schwarz:

Ex∼π Ēx[|expHh − 1|k]
≤ (Cβ2hk)

k/2
exp

(
O(β2dh2k2)

)
×

√
Ex∼π exp

(
O(β4h3k2 ∥x∥2)

)
Ex∼π[β2kh2k ∥x∥2k + dkhk + hkkk] .

For the two terms involving exponentials: the first will be bounded by a numerical
constant provided that h ≤ 1

Cβk
√
d
, and using concentration properties of π (see,

e.g., Lemma 5.6.11), the second will be bounded provided h ≤ α1/3

Cβ4/3d1/3k2/3
. Taking

this to be the case, the moment bounds in Lemma 5.6.11 now imply the bound

Ex∼π Ēx[|expHh − 1|k]
≤ (Cβ2hk)

k/2 × (α−k/2βkdk/2hk + α−k/2βkhkkk/2 + dk/2hk/2 + hk/2kk/2) .

Taking k-th roots,

(Ex∼π Ēx[|expHh − 1|k])1/k

≲ β
√
hk × (α−1/2βd1/2h+ α−1/2βhk1/2 + d1/2h1/2 + h1/2k1/2)

≲ βh
√
k (
√
d+
√
k) ,

provided that h ≤ α/β2. This concludes the proof.

■ 5.6.5 Conductance argument

In this section, we use the results from the previous sections in order to prove a
lower bound on the s-conductance. The argument is similar to the proof of the
standard conductance lemma (Lemma 5.4.3).

Towards the goal of applying the bound on the mixing time via s-conductance
given in Corollary 5.6.2, we take s := ε/(2M0), and we choose the step size as in
Proposition 5.6.7. Then, Proposition 5.6.7 guarantees the existence of an event E
with probability π(E) ≥ 1− c0s

√
αh such that

x ∈ E =⇒ ∥Tx −Qx∥TV ≤
1

6
.

Let S be a measurable subset of Rd with s ≤ π(S) ≤ 1/2. Define the following
subsets of Rd:

S1 :=
{
x ∈ S

∣∣ T (x, Sc) ≤ 1

4

}
, bad set 1
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S2 :=
{
x ∈ Sc

∣∣ T (x, S) ≤ 1

4

}
, bad set 2

S3 := (S1 ∪ S2)
c . good set

If π(S1) < π(S)/2 or π(S2) < π(Sc)/2, then we may conclude from reversibility
of the MALA kernel T that∫

S

T (x, Sc)π(dx) =
1

2

(∫
S

T (x, Sc)π(dx) +

∫
Sc

T (x, S) π(dx)
)

≥ 1

2
· π(S)

2
· 1

4
=
π(S)

16
.

Therefore, for the purpose of proving a lower bound on the s-conductance, we
may assume that π(S1) ∧ π(S2) ≥ π(S)/2.

Now we consider x ∈ E ∩ S1 and y ∈ E ∩ S2. From the definitions of S1 and
S2, it follows that

∥Tx − Ty∥TV ≥
1

2
.

Since x,y ∈ E, we also have

∥Tx −Qx∥TV ∧ ∥Ty −Qy∥TV ≤
1

6
.

Thus, using the decomposition (5.4),

1

2
≤ ∥Tx − Ty∥TV ≤ ∥Tx −Qx∥TV + ∥Qx −Qy∥TV + ∥Ty −Qy∥TV

≤ 1

6
+
∥x− y∥√

2h
+

1

6
,

where the middle term is controlled via

∥Qx −Qy∥TV ≤
∥x− y∥√

2h
, if h ≤ 2

β
,

see [Dwi+19, Lemma 3]. Hence, we obtain:

√
2h

6
≤ ∥x− y∥ ,

which implies that dist(E ∩ S1, E ∩ S2) ≥
√

2h/6 =: r. By the isoperimetric
inequality (see Lemma 5.6.11), there is an absolute constant c > 0 such that

π
(
((E ∩ S1)

r)
c \ (E ∩ S1)

)
≥ c
√

2

6

√
αhπ(E ∩ S1) .
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Since S1, S2, and S3 partition Rd, we see that the set on the left-hand side is
contained in E ∩ S2.

π(S3) + c0s
√
αh ≥ π(E ∩ S3) ≥

c
√

2

6

√
αhπ(E ∩ S1)

≥ c
√

2

6

√
αh {π(S1)− π(Ec)}

≥ c
√

2

6

√
αh

{π(S)

2
− π(Ec)

}
≥ c
√

2

12

√
αhπ(S) , (5.16)

where (5.16) follows since π(S)/2 ≥ s/2 ≥ 2c0s
√
αh ≥ 2π(Ec) provided that

4c20h ≤ 1/α.
Since π(S) ≥ s, it follows that, provided we choose c0 small enough (and thus,

the constant c1 in the step size (5.12) small enough), we obtain

π(S3) ≥
c
√

2

24

√
αhπ(S) .

From this,∫
S

T (x, Sc) π(dx) =
1

2

(∫
S

T (x, Sc) π(dx) +

∫
Sc

T (x, S)π(dx)
)

≥ 1

2
· 1

4
· π(S3) ≥

c
√

2

192

√
αhπ(S) .

Collecting the arguments, we obtain a lower bound on the s-conductance.

Proposition 5.6.10. If the step size h is chosen as (5.12) for a sufficiently small
constant c1, then the s-conductance of the MALA chain satisfies

Cs ≳
√
αh .

Together with the mixing time bound in Corollary 5.6.2, we have proven
Theorem 5.4.2.

■ 5.6.6 Auxiliary lemmas

■ 5.6.6.1 Standard facts about strongly log-concave measures

The following properties of strongly log-concave measures are well-known.
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Lemma 5.6.11. The α-strong convexity of V implies the following properties:

1. (moment and tail bounds) For x ∼ π, it holds that E[∥x∥2] ≤ d/α.

In fact, for all k ≥ 2,

E∥x∥k ≤ 3k (dk/2 + kk/2)

αk/2
.

Consequently, E exp(λ ∥x∥2) is bounded above by a universal constant, pro-
vided that 0 ≤ λ ≤ α/(40d).

2. (isoperimetry) For any S ⊆ Rd with π(A) ≤ 1/2, it holds that π(Sε \ S) ≳
ε
√
απ(S), where

Sε := {x ∈ Rd | ∃y ∈ S with ∥x− y∥ ≤ ε} .

3. (sub-Gaussian concentration) For any 1-Lipschitz function f : Rd → R and
δ > 0, with probability at least 1− δ it holds that

f(x)− Eπ f ≤
√

2

α
ln

1

δ
,

when x ∼ π.

Proof. The first statement is a simplification of [DKR22, Lemma 2]. For the
second statement, in fact strongly log-concave measures satisfy a stronger isoperi-
metric inequality (sometimes called a Gaussian isoperimetric inequality, or a
log-isoperimetric inequality in [Che+20a]); we refer to [BGL14, §8.5.2] and the
monograph [BH97] which explains the relationship between integral form of the
isoperimetric inequality employed here and the more traditional differential version.
Finally, for the third statement, see Lemma 2.2.9.

■ 5.6.6.2 Stochastic calculus results

Below, we also collect together some inequalities proven via stochastic calculus.
In what follows, (X̄ t)t≥0 is the Langevin diffusion (5.5), started at x.

We use the following lemma, which follows from the proof of Lemma 3.6.22.

Lemma 5.6.12. If (X̄ t)t≥0 denotes the continuous-time Langevin process (5.5)
started at x, then for all λ ≥ 0 and h ≲ 1/(β ∨ λ), we have

lnE exp
(
λ sup
t∈[0,h]

∥X̄ t − x∥2
)
≲ (β2h2 ∥x∥2 + dh)λ .

In particular, for t ≲ 1/β,

E[∥X̄ t − x∥2] ≲ β2t2 ∥x∥2 + dt .
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Corollary 5.6.13. Assume h ≲ 1/β. There exists a numerical constant C > 0
such that for all k ≥ 1,

E sup
t∈[0,h]

∥X̄ t − x∥2k ≤ Ck (β2kh2k ∥x∥2k + dkhk + hkkk).

Proof. In Lemma 5.6.12, take λ ≍ 1/h to yield

lnE exp
(
λ sup
t∈[0,h]

∥X̄ t − x∥2
)
≲ β2h ∥x∥2 + d .

The result now follows from standard moment bounds under sub-exponential
concentration [see, e.g., Ver18, Proposition 2.7.1].

Remark 5.6.14. Bounds such as the one in Corollary 5.6.13 are standard and
have appeared in the literature before, e.g., [Mou+22].

■ 5.6.7 From total variation to other distances

In this section, we deduce the mixing time results of Theorem 5.4.2 for the KL
divergence, the chi-squared divergence, and the 2-Wasserstein distance.

We begin with the following lemma which shows that the warmness parameter
(defined in Definition 5.4.1) is preserved by the iterations of MALA. In fact, this
is true for all reversible Markov chains and is a consequence of the data-processing
inequality (Lemma 2.2.19). We give a direct proof for completeness.

Lemma 5.6.15. Let (µn)n∈N denote the iterates of a Markov chain whose kernel
T is reversible with respect ot π, and assume that µ0 is M0-warm with respect to
π. Then, for all n ∈ N, the iterate µn is also M0-warm with respect to π.

Proof. The proof is by induction. For any y ∈ Rd,

µn+1(y)

π(y)
=

∫
µn(x)

π(y)
T (x,y) dx =

∫
µn(x)

π(x)

π(x)T (x,y)

π(y)
dx

≤M0

∫
T (y,x) dx = M0 ,

where we use the inductive assumption and the reversibility of T .

Under a warmness condition, the total variation distance controls the chi-
squared divergence.

Lemma 5.6.16. Let µ be M0-warm with respect to π. Then,

χ2(µ ∥ π) ≤ 2M0 ∥µ− π∥TV .
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Proof. From the definition of the chi-squared divergence,

χ2(µ ∥ π) =

∫ ∣∣µ
π
− 1

∣∣2 dπ ≤M0

∫ ∣∣µ
π
− 1

∣∣ dπ = 2M0 ∥µ− π∥TV .

Here we use the fact that pointwise, |µ/π − 1| ≤ max{1,M0 − 1} ≤M0.

It immediately implies the following result on mixing times.

Corollary 5.6.17. Fix ε > 0. Then, MALA initialized with a distribution µ0

which is M0-warm with respect to π satisfies the following mixing time bounds:

τmix(ε, µ0; d) ≤ τmix

( ε2

2M0

, µ0;TV
)

for each of the distances

d ∈
{√

KL,
√
χ2,

√
α

2
W2

}
.

Proof. The mixing time in the chi-squared distance is a straightforward conse-
quence of Lemmas 5.6.15 and 5.6.16. The result for the KL divergence now follows
since KL ≤ χ2 [Tsy09, Lemma 2.7]. Finally, for the result in 2-Wasserstein distance
we can use Talagrand’s transport inequality

α

2
W 2

2 (µ, π) ≤ KL(µ ∥ π) , for all probability measures µ≪ π ,

which is a consequence of the strong convexity of V [in fact it is a consequence of
the weaker assumption of a log-Sobolev inequality, see BGL14, Theorem 9.6.1].

Corollary 5.6.17 implies the remaining mixing time results in Theorem 5.4.2.

■ 5.7 Proof of the lower bound

This section presents the proofs of Theorems 5.5.1 and 5.5.2. The majority of
this section is devoted to the proof of the upper bound on the conductance when
h ≫ d−1/2 (Theorem 5.5.1). The proof of the upper bound on the spectral gap
(Theorem 5.5.2) is given in §5.7.3.
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■ 5.7.1 High-level overview of the proof

Recall that we take η = 1/4− δ, where δ > 0 is fixed throughout. As mentioned
in §5.5, we consider the potential

V (x) =
∥x∥2

2
− 1

2d2η

d∑
i=1

cos(dηxi) (5.17)

=: VG(x) + Vpert(x) . (5.18)

From the construction, it immediately follows that V is 1/2-strongly convex and
3/2-smooth.

We begin with some intuition for the above construction. At a high level, our
construction can be seen as a “perturbed” Gaussian distribution; VG is the poten-
tial corresponding to a standard Gaussian and Vpert corresponds to a perturbation.
Having this interpretation, we are interested in constructing a distribution (i) that
is significantly different from the standard Gaussian, yet (ii) the difference is not
noticed by each step of MALA.

(i) A quick calculation (see Lemma 5.7.8) shows that KL(normal(0, 1) ∥ π) =
O(d1−4η). So, we must take η ≤ 1/4 to ensure that π is significantly different
from the standard Gaussian.

(ii) On the other hand, Vpert is an oscillatory perturbation. Hence, MALA would
not see the contribution from Vpert as long as its movement due to the Langevin
proposal is at least as long as the length scale of the fluctuations of Vpert.

With this in mind, note that the fluctuations of Vpert is of order d−η, while
the movement of a single coordinate under the Langevin proposal is of order√
h (due to the Gaussian part). Hence, MALA would essentially ignore Vpert

as long as h≫ d−2η.

We formalize the above heuristic in the rest of this section.
To prove the upper bound on the conductance in Theorem 5.5.1, we use the

following proposition.

Proposition 5.7.1. Let E be an event such that π(E) ≥ 1/2. Then,

C ≤ 2 sup
x∈E

∫
Rd
Q(x,y)A(x,y) dy .

Proof. Let E0 be a subset of E with π(E0) = 1/2. From the definition of the
conductance (C),

C = inf
S⊆Rd

π(S)≤1/2

∫
S
T (x, Sc) π(dx)

π(S)
≤ 2

∫
E0

T (x, Ec
0) π(dx)
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≤ 2

∫
E0

(∫
Ec

0

Q(x,y)A(x,y) dy
)
π(x) dx

≤ 2

∫
E0

(∫
Rd
Q(x,y)A(x,y) dy

)
π(x) dx

≤ 2 sup
x∈E0

∫
Rd
Q(x,y)A(x,y) dy ≤ 2 sup

x∈E

∫
Rd
Q(x,y)A(x,y) dy .

From Proposition 5.7.1, it therefore suffices to show that there is an event
E ⊆ Rd with probability π(E) ≥ 1/2 such that

sup
x∈E

∫
Rd
Q(x,y)A(x,y) dy ≤ exp[−Ω(d4δ)]

By definition of the Metropolis–Hasting accept-reject step (5.1), we have

Q(x,y)A(x,y) = Q(x,y) min
{

1,
π(y)Q(y,x)

π(x)Q(x,y)

}
≤ π(y)Q(y,x)

π(x)

=
1

(4πh)d/2
exp

[
V (x)− V (y)− ∥y − x− h∇V (y)∥2

4h

]
. (5.19)

We substitute in the definition of our potential (5.17) and expand out the terms
in (5.19), grouping them according to whether they involve Vpert or not:

(5.19) =
1

(4πh)d/2
exp

[1

2
∥x∥2 − 1

2
∥y∥2 − 1

4h
∥(1− h)y − x∥2

]
(5.20)

× exp
[
Vpert(x)− Vpert(y)

+
1

2
⟨(1− h)y − x,∇Vpert(y)⟩ − h

4
∥∇Vpert(y)∥2

]
. (5.21)

Some algebra yields that (5.20) is equal to

(1 + h2

4πh

)d/2
exp

[
−1 + h2

4h

∥∥y − 1− h
1 + h2

x
∥∥2
]

︸ ︷︷ ︸
=:µx(y)

1

(1 + h2)d/2
exp

[ h2 ∥x∥2
2 (1 + h2)

]
.

The first term, which we denote by µx(y), is the probability density function of
the distribution normal( 1−h

1+h2
x, 2h

1+h2
Id) evaluated at y. Using this observation,
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the quantity
∫
Rd Q(x,y)A(x,y) dy is upper bounded by

exp
[
h2 ∥x∥2
2 (1+h2)

+ Vpert(x)
]

(1 + h2)d/2︸ ︷︷ ︸
1

× Ey∼µx exp
[
−Vpert(y) +

1

2
⟨(1− h)y − x,∇Vpert(y)⟩ − h

4
∥∇Vpert(y)∥2

]
︸ ︷︷ ︸

2

.

Having this upper bound, we will prove that there is a set E ⊆ Rd with
π(E) ≥ 1/2 such that the following bounds hold for all x ∈ E:

1. (Lemma 5.7.5)

1 ≤ exp
[
−1

8
d1−4η + o(d1−4η)

]
.

2. (Lemma 5.7.6)

2 ≤ exp
[ 1

16
d1−4η + o(d1−4η)

]
.

From these bounds and the preceding calculations, we have

sup
x∈E

∫
Q(x,y)A(x,y) dy ≤ exp

[
−1

8
d1−4η + o(d1−4η)

]
.

This completes the proof of Theorem 5.5.1.
The next section is devoted to proving the two main bounds (Lemmas 5.7.5

and 5.7.6).

■ 5.7.2 Proofs of technical statements

■ 5.7.2.1 Notation and technical lemmas

We use the following notation:
V1(x) := 1

2
x2 − 1

2
d−2η cos(dηx) ,

V (x) :=
∑d

i=1 V1(xi) = 1
2
∥x∥2 − 1

2
d−2η

∑d
i=1 cos(dηxi) ,

π1(x) ∝ exp(−V1(x)) ,

π(x) ∝ exp(−V (x)) .

(5.22)
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Thus, π1 is the marginal distribution of π. We first list useful technical lemmas
for proving Lemmas 5.7.5 and 5.7.6. First, the following trigonometric inequality
will be used several times.

Lemma 5.7.2. Let ξ ∼ normal(0, 1), let p be a polynomial, and let a, b ∈ R, γ > 0
be constants. Then, there exists C > 0 (depending on p, a, b, and γ) such that

|E[p(ξ) sin(a+ bdγξ)]| ≤ C

d
.

Proof. The key fact we use is that the characteristic function E[eitξ] of a Gaussian
is equal to exp(−1

2
t2). First consider the case p ≡ 1. Let im(·) denote the

imaginary part. Then, we have

E sin(a+ bdγξ) = E im exp
(
i (a+ bdγξ)

)
= im

(
exp(ia)E exp(ibdγξ)

)
= im

(
exp

(
ia− b2d2γ

2

))
= sin(a) exp

(
−b

2d2γ

2

)
.

It is then clear that the result holds for p = 1. Next, when p(x) = xℓ for some
ℓ ∈ N+,

E[ξℓ sin(a+ bdγξ)] = im
(
exp(ia)E[ξℓ exp(ibdγξ)]

)
= im

(
exp(ia) i−ℓ E

[ dℓ

dtℓ
exp(itξ)

∣∣∣
t=bdγ

])
= im

(
exp(ia) i−ℓ

dℓ

dtℓ
exp

(
−t

2

2

)∣∣∣
t=bdγ

)
.

Thus, it is clear that the lemma holds for this choice of p too. The case of a
general polynomial follows from linearity.

Clearly, the statement of the previous lemma can be substantially strengthened,
but this will not be necessary for the MALA lower bound.

Now we list some useful facts about the adversarial target distribution.

Lemma 5.7.3. Assume η < 1/4. The following hold for π1 and π defined
in (5.22):

(a) Let Z :=
∫
R exp(−V1(x)) dx be the one-dimensional normalizing constant.

Then, we have Z =
√

2π +O(d−4η).
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(b) Ex∼π1 [x2] ≤ 1 +O(d−4η). Consequently, Ex∼π[∥x∥2] ≤ d+O(d1−4η).

(c) Ex∼π1 [cos(dηx)] ≤ 1
4
d−2η +O(d−6η).

Proof. (a) Letting ξ ∼ normal(0, 1), then

Z −
√

2π =

∫
R

exp
(
−1

2
x2 +

1

2d2η
cos(dηx)

)
dx−

√
2π

=
√

2π

∫
R

exp
( 1

2d2η
cos(dηx)

) exp(−1
2
x2)√

2π
dx−

√
2π

=
√

2π

(
E exp

( 1

2d2η
cos(dηξ)

)
− 1

)
=

√
2π

2d2η
E cos(dηξ) +O(d−4η) .

By Lemma 5.7.2, we have |E cos(dηξ)| = O(d−1) = o(d−4η), since η < 1/4.
The proof of (a) then follows.

(b) Similarly, letting ξ ∼ normal(0, 1),

Ex∼π1 [x2] =

∫
x2

exp(−V1(x))

Z
dx

=

√
2π

Z
E
[
ξ2 exp

( 1

2d2η
cos(dηξ)

)]
=

(
1 +O(d−4η)

)
E
[
ξ2 exp

( 1

2d2η
cos(dηξ)

)]
.

By Taylor expansion,

E
[
ξ2 exp

( 1

2d2η
cos(dηξ)

)]
= 1 +

1

2d2η
E[ξ2 cos(dηξ)] +O(d−4η) .

Again by Lemma 5.7.2, the second term is O(d−(2η+1)) = o(d−6η). Hence, the
result follows.

(c) Similarly, it holds that

Ex∼π1 cos(dηx) =

√
2π

Z
E
[
cos(dηξ) exp

( 1

2d2η
cos(dηξ)

)]
=

(
1 +O(d−4η)

) [
E cos(dηξ) +

1

2d2η
E cos2(dηξ) +O(d−4η)

]
.
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By Lemma 5.7.2, the first term is E cos(dηξ) = o(d−4η). Next, the second
term can be written

1

2d2η
E cos2(dηξ) =

1

4d2η
+

1

4d2η
E cos(2dηξ) .

From Lemma 5.7.2, E cos(2dηξ) = o(d−4η). Therefore, the result follows.

Lemma 5.7.4. For x ∼ π, the following holds with probability at least 1− 1/(4d):

∥x∥∞ < 4
√

ln(8d) .

Proof. By symmetry, we just need to show that with probability at least 1−1/(8d),

max
i∈[d]

xi < 4
√

ln d .

Since V ′′1 ≥ 1/2, each |xi| will be stochastically dominated by |ξ|, where ξ ∼
normal(0, 2). Hence, if ξ1, . . . , ξd are i.i.d. copies of ξ, we just need to show that

max
i∈[d]

ξi < 4
√

ln d

with probability at least 1− 1/d. The standard argument based on the moment
generating function (e.g., [Han16, Lemma 5.1]) tells us that E[maxi∈[d] ξi] ≤ 2

√
ln d,

and Gaussian concentration (e.g., [Han16, Theorem 3.25]) implies

P
(
max
i∈[d]

ξi > Emax
i∈[d]

ξi + t
)
≤ exp

(
−t

2

4

)
.

Plug in t = 2
√

ln(8d) and we get the lemma as claimed.

Now let us state and prove the technical statements in order.

■ 5.7.2.2 Proof of Lemma 5.7.5

Lemma 5.7.5. Assume that 0 < h ≤ d−1/3. Then there exists an event E1 with
π(E1) ≥ 3/4 such that for x ∈ E1,

exp
[
h2 ∥x∥2
2 (1+h2)

+ Vpert(x)
]

(1 + h2)d/2
≤ exp

[
−1

8
d1−4η + o(d1−4η)

]
.
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Proof. We decompose the left-hand side as

exp
[
h2 ∥x∥2
2 (1+h2)

+ Vpert(x)
]

(1 + h2)d/2
=

1

(1 + h2)d/2
exp

[ h2 ∥x∥2
2 (1 + h2)

]
× exp[Vpert(x)]

and bound each term separately.
We begin with the first term. By Lemma 5.7.3(b), we know that the second

moment of π is d + O(d1−4η). Since π is 1/2-strongly log concave, a standard
concentration argument (see, e.g., Lemma 5.6.11) shows that there exists a subset
E ′1 with π(E ′1) ≥ 7/8 such that for x ∈ E ′1,

∥x∥2 ≤ d+O(d1−4η) +O(d1/2) .

Now, using the fact that ln(1 + x) ≥ x− x2/2 for x ≥ 0,

1

(1 + h2)d/2
exp

[ h2 ∥x∥2
2 (1 + h2)

]
≤ exp

[h2 (d+O(d1−4η) +O(d1/2))

2 (1 + h2)
− d

2
ln(1 + h2)

]
≤ exp

[h2 (d+O(d1−4η) +O(d1/2))

2 (1 + h2)
− dh2

2
+
dh4

4

]
= exp

[h2 (O(d1−4η) +O(d1/2))

2 (1 + h2)
− dh4

2 (1 + h2)
+
dh4

4

]
= exp

[h2 (O(d1−4η) +O(d1/2))

2 (1 + h2)
+
−dh4 + 2dh6

4 (1 + h2)

]
≤ exp[O(d1−4ηh2) +O(d1/2h2)] ,

where the last line follows since h2 ≤ 1/2. In order to show that the exponent
of the above term is o(d1−4η), we must check that d1/2h2 = o(d1−4η), which holds
if h = o(d1/4−2η) = o(d−1/4+2δ). This indeed follows from our assumption that
h ≤ d−1/3.

Next, we consider the second term. Recall from the calculation in the proof of
Lemma 5.7.3(c) that Ex∼π1 [cos(dηx)] ≤ 1

4
d−2η +O(d−6η). Hence, it follows that

Ex∼π[Vpert(x)] = − 1

2d2η

d∑
i=1

Exi∼π1 cos(dηxi) = −1

8
d1−4η +O(d1−8η) .

Since π is 1/2-strongly log-concave, another sub-Gaussian concentration argument
(Lemma 5.6.11) shows that there exists a subset E ′′1 with π(E ′′1 ) ≥ 7/8 such that
for x ∈ E ′′1 ,

exp[Vpert(x)] ≤ exp
[
−1

8
d1−4η +O(d1−8η) +O(d1/2−2η)

]
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≤ exp
[
−1

8
d1−4η + o(d1−4η)

]
,

since 1− 4η > 0 by the hypothesis.
Now taking E1 := E ′1 ∩ E ′′1 , the above calculations show that for x ∈ E1,

exp
[
h2 ∥x∥2
2 (1+h2)

+ Vpert(x)
]

(1 + h2)d/2
≤ exp

[
−1

8
d1−4η + o(d1−4η)

]
,

which completes the proof.

■ 5.7.2.3 Proof of Lemma 5.7.6

Lemma 5.7.6. Assume that h ∈ [d−
1
2
+3δ, d−

1
3 ]. Then there exists an event E2

with π(E2) ≥ 3/4 such that for x ∈ E2,

Ey∼µx exp
[
−Vpert(y) +

1

2
⟨(1− h)y − x,∇Vpert(y)⟩ − h

4
∥∇Vpert(y)∥2

]
≤ exp

[ 1

16
d1−4η + o(d1−4η)

]
.

Proof. Recall the definition Vpert(x) = −1
2
d−2η

∑d
i=1 cos(dηxi). Since Vpert is sepa-

rable, it suffices to consider the following quantity: for µxi := normal( 1−h
1+h2

xi,
2h

1+h2
),

max
i∈[d]

Eyi∼µxi exp
(cos(dηyi)

2d2η
+

((1− h) yi − xi) sin(dηyi)

4dη
− h sin2(dηyi)

16d2η

)
. (5.23)

Indeed, the lemma is proved as soon as we show

(5.23) ≤ exp
[ 1

16
d−4η + o(d−4η)

]
. (5.24)

For the proof, we will therefore work with a single coordinate; for simplicity of
notation, we will use the first coordinate.

To prove the inequality (5.24), let us first simplify the expression (5.23). Let-

ting ξ ∼ normal(0, 1), we can equivalently write y1 = 1−h
1+h2

x1 +
√

2h
1+h2

ξ. From

this, we get

(1− h) y1 − x1 = − 2h

1 + h2
x1 + (1− h)

√
2h

1 + h2
ξ .

Since our regime of interest is h = o(1), we simplify the notation by defining

h̄ :=
h

1 + h2
and h̃ :=

(1− h)2

1 + h2
h ,
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and treat them as being on the same order as h. Using these simplifying notations
and rearranging, we are left to consider

E exp
(cos(dηy1)

2d2η︸ ︷︷ ︸
=:∆1

− h sin2(dηy1)

16d2η︸ ︷︷ ︸
=:∆2

− 2h̄x1 sin(dηy1)

4dη︸ ︷︷ ︸
=:∆3

+

√
2h̃ξ sin(dηy1)

4dη︸ ︷︷ ︸
=:∆4

)
, (5.25)

where y1 = 1−h
1+h2

x1 +
√

2h
1+h2

ξ. Now we will estimate (5.25) by a Taylor expansion.

Throughout, we will assume ∥x∥∞ ≤ 4
√

ln(8d). By Lemma 5.7.4, this holds
on an event E2 of probability π(E2) ≥ 3/4. From this, we note the bounds

|∆1| = O(d−2η) , |∆2| = O(d−2ηh) , |∆3| = Õ(d−ηh) , |∆4| = Op(d
−η
√
h) .

Here, Op denotes probabilistic big-O notation. Using h = O(d−1/3) = o(d−4η/3),
we have

|∆1| = O(d−2η) ,

|∆2| = o(d−(3+1/3)η) ,

|∆3| = o(d−(2+1/3)η) ,

|∆4| = op(d
−(1+2/3)η) .

(5.26)

From, this, we see that the third- or higher-order terms in the Taylor expansion,
after taking the expectation, are o(d−5η). Indeed, the dominant term is the term
E[|∆4|3] = o(d−5η).

We also note that the common argument of the trigonometric terms is

dηy1 = dη
1− h
1 + h2

x1 + dη
√

2h

1 + h2
ξ ,

so the coefficient in front of ξ is of order dη
√
h = Ω(dδ/2) by the assumption h ≥

d−
1
2
+3δ. Thus, the trigonometric terms precisely fit into the setting of Lemma 5.7.2,

and we will apply Lemma 5.7.2 to estimate these terms.
Now let us estimate the terms of order one and two.

• First- and lower-order terms. We have

(≤ 1st order) = 1 + E∆1 − E∆2 − E∆3 + E∆4 .

By Lemma 5.7.2, we know E∆1 = O(d−1−2η) = o(d−6η). For E∆2, we have

−E∆2 = − h

32d2η
+

h

32d2η
E cos(2dηy1) = − h

32d2η
+ o(d−6η) ,
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where we use Lemma 5.7.2 again. For E∆3, we have

−E∆3 = −E
2h̄x1 sin(dηy1)

4dη
= Õ(d−(1+η)h) = o(d−5η) ,

where the last line is due to Lemmas 5.7.2 and 5.7.4. For E∆4, we have

E∆4 = E

√
2h̃ξ sin(dηy1)

4dη
= O(d−(1+η)

√
h) = o(d−5η) ,

where we use Lemma 5.7.2. Collecting together the terms, we have

(≤ 1st order) = 1− h

32d2η
+ o(d−5η) . (5.27)

• Second-order terms. For the reader’s convenience, we have organized the
terms which appear in the second-order Taylor expansion as Table 5.1.

O(d−2η) o(d−(3+1/3)η) o(d−(2+1/3)η) op(d
−(1+2/3)η)

O(d−2η) (5.28) o(d−4η) o(d−4η) (5.29)
o(d−(3+1/3)η) o(d−4η) o(d−4η) op(d

−4η)
o(d−(2+1/3)η) o(d−4η) op(d

−4η)
op(d

−(1+2/3)η) (5.30)

Table 5.1: Terms which appear in the second-order Taylor expansion. The rows and
columns are indexed by the terms ∆1, ∆2, ∆3, ∆4; refer to (5.26).

We now estimate the terms which are not covered by the table. Let us
estimate the remaining terms one by one. First, by Lemma 5.7.2,

1

2
E[∆2

1] = E
cos2(dηy1)

8d4η
=

1

16d4η
+ E

cos(2dηy1)

16d4η
=

1

16d4η
+ o(d−8η) . (5.28)

Next, by Lemma 5.7.2,

E[∆1∆4] = E
[√2h̃ξ

8d3η
cos(dηy1) sin(dηy1)

]
=

√
2h̃

16d3η
E[ξ sin(2dηy1)] = o(d−7η) .

(5.29)

Lastly, invoking Lemma 5.7.2 yet again,

1

2
E[∆2

4] = E
h̃ξ2 sin2(dηy1)

16d2η
= E

h̃ξ2

32d2η
− E

h̃ξ2 cos(2dηy1)

32d2η
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=
h̃

32d2η
+ o(d−6η) . (5.30)

Combining all together, we obtain,

(2nd order) =
1

16d4η
+

h̃

32d2η
+ o(d−4η) . (5.31)

Therefore, we combine (5.27) and (5.31) to conclude

(5.25) ≤ exp
[ 1

16
d−4η − h

32d2η
+

h̃

32d2η
+ o(d−4η)

]
= exp

[ 1

16
d−4η + o(d−4η)

]
,

where the last line follows from h̃− h = (1−h)2
1+h2

h− h ≤ 0. This implies (5.24), and
hence the proof is complete.

■ 5.7.3 Upper bound on the spectral gap

Note that when η < 1/4, the adversarial potential defined in (5.22) satisfies the
assumptions of the following theorem, as a consequence of our computation in
Lemma 5.7.3.

Theorem 5.7.7. Consider a potential V : Rd → R which is separable: V (x) =∑d
i=1 v(xi) for a function v : R→ R. Assume that:

• V is symmetric about the origin, and V (0) = minV .

• V is O(1)-smooth.

• For the distribution π1 ∝ exp(−v), we have Ex∼π1 [x2] ≍ 1.

Then, spectral gap of MALA with target distribution π ∝ exp(−V ) and step size
h ≤ 1 satisfies

λ ≲ h .

Proof. Consider the function f : Rd → R given by f(x) := x1. Since V is
symmetric about the origin, we have Eπ f = 0.

From the definition the spectral gap (λ),

λ ≤ Eπ[f (id− T ) f ]

Eπ[f 2]
≲ E

x∼π
y∼T (x,·)

[(x1 − y1)2] .
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Next, using the definition of the MALA kernel T , if ξ is a standard Gaussian
random variable, then

E
x∼π

y∼T (x,·)
[(x1 − y1)2] = E

x∼π
y∼Q(x,·)

[(x1 − y1)2 1proposal x→y is accepted]

≤ E
x∼π

y∼Q(x,·)
[(x1 − y1)2] = E

x∼π
[{hv′(x1)−

√
2hξ}2]

≤ 2h2 E
x∼π

[v′(x1)
2
] + 4hE[ξ2] ≲ h2 E

x∼π
[x21] + h ≲ h ,

by our assumptions. This completes the proof.

■ 5.7.4 Auxiliary lemmas

Lemma 5.7.8. Let γ := normal(0, Id) and let π be the adversarial target distribu-
tion defined in (5.22). Then,

KL(γ ∥ π) ≤ O(d1−4η) .

Proof. From the definition of the KL divergence, if ξ1, . . . , ξd are i.i.d. random
variables drawn according to γ, then

KL(γ ∥ π) =

∫
γ(x) ln

( Zd

(2π)d/2
expVpert(x)

)
dx

= d ln
Z√
2π
− 1

2d2η

d∑
i=1

E cos(dηξi) .

From our estimate of the normalizing constant in Lemma 5.7.3,

d ln
Z√
2π

= d ln
(
1 +O(d−4η)

)
= O(d1−4η) .

On the other hand, from the proof of Lemma 5.7.2,

− 1

2d2η

d∑
i=1

E cos(dηξi) = o(d1−4η) .

The result follows.

■ 5.8 Calculations for a Gaussian target distribution

In this section, we provide calculations for MALA when the target distribution π
is the standard Gaussian. Since MALA applied to the Gaussian distribution has
a scaling limit in the sense of [RR98], one would expect the mixing time of the
Gaussian distribution to be of order d1/3, and that is indeed what we show below.
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■ 5.8.1 Upper bound

First, we show that, under a warm start, the mixing time of MALA applied to
the standard Gaussian mixes at O(d1/3) rate.

Proposition 5.8.1. Let ε > 0, and let the target distribution π be the standard
Gaussian on Rd. For a step size h = cd−1/3, where c > 0 is a small constant, and
an initial distribution µ0 that is M0-warm with respect to π such that log M0

εh
=

O(d1/3), the mixing time of MALA satisfies

τmix(ε, µ0;TV) ≲ d1/3 log
(M0

ε

)
.

Using the results of §5.6.7, the mixing time bounds can then be extended to
the KL divergence, the chi-squared divergence, and the 2-Wasserstein distance.

The proof crucially relies on the fact that when h ≈ d−1/3, the acceptance
probability A(x) (see (5.2)) when x ∼ π is of order Ω(1) with high probability,
which is formalized below.

Lemma 5.8.2. Let π be the standard Gaussian. For h = c0d
−1/3, where c0 > 0

is sufficiently small, and x ∼ π, there exists c1 > 0 such that with probability at
least 1− 2 exp(−c1d1/3), it holds that A(x) ≥ 5/6.

Proof of Proposition 5.8.1. We sketch the proof, following the s-conductance mix-
ing time strategy outlined in §5.6.1. Let E := {x ∈ Rd | A(x) ≥ 5/6}.
Lemma 5.8.2 guarantees that π(E) ≥ 1 − 2 exp(−c1d1/3). By our assumption,
we have log(εh/M0) = Ω(d−1/3), so π(E) ≥ 1 − c′

√
hs for some constant c′ > 0,

where s := ε/(2M0). Moreover, on the event E we have (by Proposition 5.6.3)

∥Tx −Qx∥TV = 1− A(x) ≤ 1

6
.

The argument in the proof of Proposition 5.6.10 implies that the s-conductance,
defined in (5.9), is lower bounded by Cs ≳

√
h, and Corollary 5.6.2 gives the

desired mixing time bound.

Proof of Lemma 5.8.2. Let x ∼ π and y ∼ Q(x, ·). We will use c to denote univer-
sal constants, which can change from line to line. First note that by concentration
of the norm [Ver18, Theorem 3.1.1], we have that for all t > 0,

P
(∣∣ ∥x∥ − √d ∣∣ > t

)
≤ 2 exp(−ct2) .

As a result, the event

E1 :=
{∣∣ ∥x∥ − √d ∣∣ ≤ t1

}
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holds with probability at least 1− 2 exp(−ct21).
By the radial symmetry of the standard Gaussian, we can assume that the

only non-zero coordinate of x is the first coordinate: x = (x1, 0, . . . , 0). Given x,
we draw y by:

y = (1− h)x +
√

2h ξ, ξ ∼ N (0, Id) .

We can write ξ = (ξ1, ξ−1), where ξ1 ∼ N (0, 1), and ξ−1 ∼ N (0, Id−1). By
Gaussian concentration, the event

E2 := {|ξ1| ≤ t2}

holds with probability at least 1− 2 exp(−ct22), and the event

E3 :=
{∣∣ ∥ξ−1∥ − √d ∣∣ ≤ t3

}
hold with probability at least 1− 2 exp(−ct23). Define the quantities

ϵ1 := ∥x∥ −
√
d , ϵ2 := ξ1 , ϵ3 := ∥ξ−1∥ −

√
d .

Note that when π is the standard Gaussian, a brief calculation using the def-
inition (5.1) shows that a(x,y) = exp(h

4
(∥x∥2 − ∥y∥2)). Then, on the event

E1 ∩ E2 ∩ E3, we have that

h

4

∣∣ ∥x∥2 − ∥y∥2 ∣∣ =
h

4
|x21 − [(1− h)x1 +

√
2h ξ1]

2 − 2h ∥ξ−1∥2|

=
h

4
|(
√
d+ ϵ1)

2 − [(1− h) (
√
d+ ϵ1) +

√
2h ϵ2]

2 − 2h (
√
d+ ϵ3)

2|
= O(dh3 + d1/2h2t1 + h3/2d1/2t2 + d1/2h2t3) ,

assuming that t1 = O(d1/2). In fact, we take t1, t3 = d1/6. If we take t2 to be a
sufficiently large constant (and the dimension d is large), then we can ensure that
the event E2 ∩ E3 holds with probability at least 10/11. With these choices,

h

4

∣∣ ∥x∥2 − ∥y∥2 ∣∣ = O(dh3 + d2/3h2 + d1/2h3/2) .

Taking h ≤ c/d1/3 for a sufficiently small constant c > 0, we can ensure that
a(x,y) ≥ 11/12. Thus, on the event E1, we have

A(x) = E[A(x,y) | x] ≥ E[A(x,y)1E2∩E2 | x] ≥ 11

12
· 10

11
=

5

6
.

This completes the proof.
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■ 5.8.2 Lower bound

We show that when the step size is chosen as h≫ d−1/3, then the conductance of
the MALA chain with Gaussian target is exponentially small.

Proposition 5.8.3. For every θ < 1/3, if we take step size h = d−θ, then the
conductance of the MALA chain is exponentially small:

∃δ > 0 such that C ≲ exp[−Ω(dδ)] .

Proof. We want to upper bound the conductance, defined in (C). It suffices to
show that there exists an event E ⊆ Rd with π(E) ≥ 1/2 such that

sup
x∈E

∫
Q(x,y)A(x,y) dy = exp[−Ω(dδ)] ,

see Proposition 5.7.1. Specifically, we take E := {x ∈ Rd | ∥x∥ ≤
√
d}; note that

π(E) =
Γ(d

2
, 0)− Γ(d

2
, d
2
)

Γ(d
2
)

>
1

2
.

From the definition (5.1), we have A(x,y) = a(x,y) ∧ 1 ≤
√
a(x,y).2 Since

V (x) = 1
2
∥x∥2, a little algebra using the definition (5.1) shows that

a(x,y) = exp
(h

4
(∥x∥2 − ∥y∥2)

)
.

Further calculations show that∫
Rd
Q(x,y)A(x,y) dy ≤

∫
Rd
Q(x,y) a(x,y)1/2 dy

=

∫
Rd

1

(4πh)d/2
exp

(
− 1

4h
∥y − (1− h)x∥2

)
exp

(h
2

(∥x∥2 − ∥y∥2)
)

dy

=
1

(4πh)d/2

∫
Rd

exp
(
−1 + h2/2

4h

∥∥y − 1− h
1 + h2/2

x
∥∥2
)

dy

× exp
(h2 (1− h/4)

1 + h2/2
∥x∥2

)
= exp

(h2 (1− h/4)

4 (1 + h2/2)
∥x∥2 − d

2
ln
(
1 +

h2

2

))
.

2One can check that the simple bound A(x,y) ≤ a(x,y) is not enough for the proof to go
through. A similar argument to upper bound the acceptance probability is made in [HSV14].



176 CHAPTER 5. ANALYSIS OF MALA FROM A WARM START

For x ∈ E, we can bound this via∫
Rd
Q(x,y)A(x,y) dy ≤ exp

(h2 (1− h/4)d

4 (1 + h2/2)
− d

2
ln
(
1 +

h2

2

))
= exp

(
−h

3d

16

(
1 +O(h)

))
which completes the proof.

The next result shows that the spectral gap of the MALA chain is always
upper bounded by the step size. Together with the preceding result, it implies
that the mixing time of the MALA chain with Gaussian target is no better than
the claimed O(d1/3) rate.

Proposition 5.8.4. The spectral gap of MALA with Gaussian target distribution
and step size h satisfies

λ ≲ h .

Proof. This is a special case of Theorem 5.7.7.

■ 5.9 Conclusion

By establishing the sharp dimension dependence of MALA for smooth and strongly
convex potentials, our work parallels well-known trends in optimization [Bub15;
Nes18] and high-dimensional statistics [Tsy09; Wai19] which seek to characterize
the complexity of various learning tasks uniformly over a given function class. It
is an interesting open question to extend our results on MALA to other natural
function classes, such as smooth and weakly convex potentials, as well as to other
sampling algorithms.

We mention two further works on the complexity of MALA which were pub-
lished after the first version of this work appeared online. In [LST21a], Lee, Shen,
and Tian proved that from certain initializations with warm start parameter
M0 ∼ exp(d), the complexity of MALA is lower bounded by Ω̃(d). This shows
that the warm start dependence in our mixing time bound (Theorem 5.5.1) is
actually necessary. In [WSC22], Wu, Schmidler, and Chen refined our lower and

upper bounds, showing that the complexity of MALA from a warm start is Θ̃(κd).
To conclude, we list some specific directions that require further investigations.

Obtaining a warm start. The results mentioned above carry the message that
in order to obtain further improvements for the complexity of MALA, it is not
possible to further improve the upper bound analyses (e.g., by improving the
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dependence on the warm start parameter). Instead, the natural next step is to
algorithmically obtain a warm start for MALA in order to take advantage of the
faster rates that the warm start unlocks. This program will be carried out in §6.

Analysis of other Metropolis–Hastings chains. An interesting feature of
Theorem 5.4.2 is that the majority of the computations involve controlling the dis-
cretization error between the continuous-time and discretized Langevin processes,
leading to the hope that the vast literature on discretization of SDEs can be lever-
aged to obtain mixing time bounds for the corresponding Metropolis–Hastings
chains. However, a critical component of this program is the choice of a reversible
Markov diffusion to which the MALA kernel can be compared via the projection
property (Theorem 5.4.5). For example, consider the following two settings:

1. Under higher-order smoothness, the diffusion scaling limit of [RR98] suggests
that the mixing time of MALA should scale as d1/3, using step size h ≈ d−1/3.
Indeed, our computations in §5.8 confirm this prediction for a Gaussian target
distribution. However, in this regime, the discretized Langevin proposal is
too far from the continuous-time Langevin diffusion for our upper bound
strategy to succeed. Thus, in this example, the natural choice of reversible
Markov diffusion fails to yield the correct mixing time for MALA.

2. The underdamped Langevin SDE [Che+18b] is an example of a Markov diffu-
sion which is not reversible. We can consider adding a Metropolis adjustment
after a proposal which consists of one step of the discretized underdamped
Langevin process. It is not clear that our techniques apply to this example
because there does not appear to be a natural reversible Markov diffusion
with which to compare the resulting Metropolis-adjusted kernel.

Despite these obstacles, we believe that there is a wide variety of applications to
which our upper bound technique applies, which we leave for future research.





Chapter 6

Algorithmic warm starts for MALA

In §5, we showed that the dimension dependence of MALA improves from Θ̃(d)

to Θ̃(d1/2) under a warm start. In this chapter, we show how to obtain such a

warm start in Õ(d1/2) queries through a Rényi divergence analysis of underdamped
Langevin Monte Carlo (ULMC), thereby improving the dimension dependence

of high-accuracy log-concave sampling to Õ(d1/2). In turn, when combined with
the proximal sampler reduction of §4, it leads to new state-of-the-art sampling
guarantees under isoperimetry.

This chapter is based on [AC23], joint with Jason M. Altschuler.

■ 6.1 Introduction

We consider the problem of efficiently sampling from a high-dimensional proba-
bility distribution π on Rd. Due to the many important applications of sampling
throughout applied mathematics, engineering, and statistics, significant research
effort has been devoted to designing fast sampling algorithms and analyzing their
convergence rates. We refer to the book draft [Che23] for a recent exposition of
the extensive literature and its history.

Yet, despite several decades of progress, many fundamental theoretical ques-
tions remain open about the complexity of sampling. Arguably one of the foremost
questions in this field is:

What is the first-order query complexity for sampling from π?

Recall that a first-order query refers to accessing V (x) and ∇V (x) at a query
point x ∈ Rd, where V denotes the negative log-density of π ∝ exp(−V ) (up to an
additive normalization constant). This well-studied notion of a first-order query
is inspired on one hand by the fact that such queries do not require knowledge
of the normalization constant

∫
exp(−V ) and thus are readily available in many

practical applications, and on the other hand also inspired by the analogous and
influential theory of complexity for convex optimization [NY83].

179
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This problem of determining the query complexity for sampling has remained
open even for the canonical and seemingly simple class of strongly log-concave
and log-smooth (in brief, “well-conditioned”) distributions π, let alone in more
complicated settings. It is worth emphasizing that this state of affairs for sam-
pling is in sharp contrast to that for optimization—indeed, the analogous query
complexity questions for convex optimization were solved long ago in celebrated
results from the 1980s [NY83; Nes18].

Within the literature, it is of central interest to understand this complexity
question in the high-accuracy regime1, since classical high-accuracy samplers such
as the Metropolis-adjusted Langevin algorithm (MALA) and the Metropolized
Hamiltonian Monte Carlo algorithm (MHMC) remain the de facto gold standard
in practice. Yet the complexity for this high-accuracy setting has been particularly
difficult to pin down, as we explain shortly.

The purpose of this chapter is to develop faster high-accuracy samplers, and
in doing so move towards a better understanding of the first-order complexity
of sampling. For simplicity of exposition, let us presently assume that π is well-
conditioned, since by the proximal reduction framework [LST21c] (see §4), it is
known that improvements to the complexity of well-conditioned sampling lead
to improvements in more general settings such as when π is (non-strongly) log-
concave, or even non-log-concave but satisfies standard isoperimetric assumptions
such as the log-Sobolev or Poincaré inequality. (Indeed, our results improve upon
the state-of-the-art for all these settings.)

The gap between low-accuracy and high-accuracy samplers. A central motivation of
this chapter is the large gap between (our current understanding of) the complexity
of low-accuracy samplers and high-accuracy samplers. To explain this gap, let us
briefly provide relevant background on both classes of algorithms.

Low-accuracy samplers arise as discretizations of stochastic processes with
stationary distribution π, such as the Langevin diffusion [the sampling analog of
the gradient flow, see JKO98; Wib18] or the underdamped Langevin diffusion [the
sampling analog of the accelerated gradient flow, see Ma+21]. Once discretized,
however, the resulting discrete-time Markov chain is typically biased, i.e., its
stationary distribution is no longer equal to π. In order to control the size of the
bias, the step size of the algorithm is chosen to scale polynomially with ε, and hence
the overall running time scales polynomially with 1/ε. Despite this drawback,
the discretization analysis is by now well-understood, with state-of-the-art results

1Throughout, we use the standard terminology low accuracy to refer to complexity results
which scale polynomially in 1/ε, and the term high accuracy for results which scale polyloga-
rithmically in 1/ε; here, ε is the desired target accuracy. These two regimes require different
algorithms and analyses, as explained in the sequel.
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achieving a complexity of Õ(d1/3/ε2/3) [SL19; FLO21; BM22]; see [CLW21] for a
discussion of tightness.

High-accuracy samplers, in contrast, are typically designed in such a way that
there is no bias. This is achieved by, e.g., appending a Metropolis–Hastings filter
to each step (see §5.2.2 for background). Common examples of these algorithms
include MALA and MHMC, which are routinely deployed in large-scale applica-
tions and are the default implementations of sampling routines in many modern
software packages [GLG15; Aba+16b]. However, the filter which debiases the
algorithm also greatly complicates the analysis, and thus far the best complex-
ity result for these algorithms2 is Õ(d logO(1)(1/ε)) [Dwi+19; Che+20a; LST20].
Note that the dimension dependence of this result is substantially worse than
what is known in the low-accuracy regime and is at odds with the popularity of
high-accuracy samplers in practice.

The mystery of warm starts. A promising first step towards resolving this gap is
the result of §5, later refined in [WSC22]: when initialized from a warm start
(i.e., a measure µ0 with χ2(µ0 ∥ π) ≤ O(1)), the complexity of MALA improves

to Õ(d1/2 log2(1/ε)) since it can safely take much larger step sizes (of size d−1/2

rather than d−1). This raises the natural question: is the warm start condition
merely an artefact of the analyses? Rather surprisingly, it was shown in [LST21a]
that there exist bad initializations for MALA for which the dimension dependence
is at least Ω̃(d). Taken together, these results show that the complexity of MALA
fundamentally hinges on the warmness of its initialization.

The key question is thus: can such a warm start be obtained algorithmically?
Or more precisely:

Is there an algorithm which makes Õ(d1/2) queries to a first-order oracle for V
and outputs a measure µ0 with χ2(µ0 ∥ π) ≤ O(1)?

The requirement that the algorithm makes Õ(d1/2) queries is essential, else the cost
of obtaining the warm start dominates the subsequent cost of running MALA. Yet
this was the state of affairs—previously, the fastest algorithms took significantly
longer to produce a warm start than to actually use it, defeating the purpose
of the warm start. Resolving this discrepancy has been posed as an important
question in many papers, e.g., [LST21a; LW22; WSC22].

The main challenge for answering this warm start question is that the chi-
squared divergence is quite a strong performance metric. (We emphasize that
it is essential to obtain the warm start in the chi-squared divergence, or more
generally in a Rényi divergence Rq of order q > 1, rather than other common

2We discuss the result of [LW22] for the zigzag sampler further in §6.1.3.
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metrics such as total variation, Wasserstein, or KL divergence; see §6.1.2 for an
in-depth discussion.) The aforementioned results in the low-accuracy regime fall
short of achieving this goal, since they only hold in the Wasserstein metric (for
which standard coupling arguments are readily available). Despite significant
effort, the best known guarantee for producing a warm start—achieved by the
Langevin Monte Carlo (LMC) algorithm (see §3)—is far too costly as it requires

Õ(d) queries, which defeats the purpose of the warm start.
Towards this hope of algorithmic warm starts, [WSC22] made the promising

empirical observation that MALA mixes much faster if it is initialized at the output
of the underdamped Langevin Monte Carlo (ULMC) algorithm. However, they
left open the question of rigorously proving that this yields a warm start. While
it is widely believed that ULMC is substantially faster than LMC, the previous
best results for computing a warm start with ULMC had dimension dependence
Õ(d5/2) (implicit from [GT20]) or very recently Õ(d2) (implicit from [Zha+23]),
see the prior work section §6.1.3 for details. We emphasize that this dimension
dependence is not only a far cry from the elusive Õ(d1/2) goal, but moreover is
even worse than known results for the simpler LMC algorithm. Unfortunately, any
improvement to these ULMC warm start bounds appears to require overcoming
fundamental difficulties with studying hypocoercive differential equations which
remain unsolved today, despite being the focus of intensive research activity
within the PDE community since the work of Kolmogorov [Kol34]. For a further
discussion of these technical obstacles, see §6.1.2.

■ 6.1.1 Contributions

In this paper, we develop techniques which bypass longstanding challenges for
analyzing hypocoercive dynamics, thereby establishing the first Õ(d1/2) Rényi
mixing results for ULMC. This resolves the aforementioned warm start conjecture,
which has been raised in a number of prior works, e.g., [LST21a; LW22; WSC22].
As discussed above, this enables us to design significantly faster high-accuracy
samplers—both for the log-concave setting and far beyond. Finally, this also
closes the long line of work devoted to understanding the complexity of MALA
(see Table 6.1). We present our results in more detail below, and then discuss our
new techniques in §6.1.2.

Result 1: Algorithmic warm starts via ULMC. Our first main result is an improvement
of the state-of-the-art Rényi mixing bounds for ULMC from Õ(d2) to Õ(d1/2). This
resolves the warm start question in the affirmative. We remark that although
the warm start problem was stated above for χ2 convergence, our result actually
holds more generally for Rényi divergences Rq of any order q ≥ 1, and thus we
state it as such. (For the purpose of warm starts, it suffices to take q = 2 since
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Reference Complexity Algorithmically Achievable?
[Dwi+19] κd+ κ3/2d1/2 No, requires a warm start
[Che+20a] κd+ κ3/2d1/2 Yes
[LST20] κd Yes

Theorem 5.4.2 κd1/2 + κ2 No, requires a warm start
[WSC22] κd1/2 No, requires a warm start

Theorem 6.5.1 κd1/2 Yes (Theorem 6.4.1)

Table 6.1: This table summarizes the community’s progress towards non-asymptotic
complexity bounds for MALA; the asymptotic study of MALA is much more classical,
and dates back to at least [RR98]. The complexity bounds displayed are upper bounds;
for brevity, we hide logarithmic factors as well as the dependence on ε since all results
scale polylogarithmically in 1/ε. As discussed in the main text, Theorem 6.5.1 completes
our understanding of MALA due to matching lower bounds in [LST21a; WSC22] and
Theorem 5.5.1 in §5.

χ2 = exp(R2) − 1 is of constant size when R2 is.) Below, α and β denote the
strong convexity and smoothness bounds, and κ := β/α is the condition number.

Theorem 6.1.1 (Rényi guarantees for ULMC; informal version of Theorem 6.4.1).
Consider densities of the form π ∝ exp(−V ) on Rd, where αI ⪯ ∇2V ⪯ βI and
κ := β/α <∞. The ULMC algorithm outputs a measure µ satisfying Rq(µ ∥ π) ≤
ε2 using Õ(κ3/2d1/2q1/2/ε) first-order queries.

As we detail in §6.1.2, the main barrier to obtaining this result is that the un-
derdamped Langevin dynamics falls within a class of PDEs known as hypocoercive
equations, for which fundamental questions remain unresolved.

Result 2: Faster high-accuracy log-concave sampling. Theorem 6.1.1 provides the first
algorithm for computing warm starts that is not significantly slower than the use
of the warm start. This enables us to exploit, for the first time, the results of §5
and [WSC22] which improve the complexity of MALA from Õ(d) to Õ(d1/2) from
a warm start.3 By combining this with additional algorithmic tools for improving
the dependence on the condition number, we obtain our second main result, which
substantially advances the state-of-the-art for high-accuracy log-concave sampling.

3We remark that all of our results could replace MALA with the zigzag algorithm [LW22].
Indeed, the zigzag sampler has the same key issue as MALA: it requires a warm start in chi-
squared divergence for the known d1/2 mixing result to apply. However, we focus on MALA
because MALA’s robust empirical performance has made it a central focus of study in the
MCMC literature for nearly three decades [Bes+95].
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Theorem 6.1.2 (High-accuracy log-concave sampling; informal version of The-
orem 6.5.1). Consider the class of densities of the form π ∝ exp(−V ) on Rd,
where αI ⪯ ∇2V ⪯ βI and κ := β/α. There is an algorithm which out-
puts a sample with law µ satisfying d(µ, π) ≤ ε, for any performance metric
d ∈ {TV,

√
KL,

√
χ2,
√
αW2}, after making κd1/2 logO(1)(κd/ε) first-order queries.

The algorithmic warm start result of Theorem 6.1.1 confirms the aforemen-
tioned empirical conjecture of [WSC22] and provides the final missing piece in
our understanding of the complexity of MALA, closing the line of work developed
in [RR98; Dwi+19; Che+20a; LST20; Che+21b; LST21a; WSC22] (Table 6.1).
Indeed, due to matching lower bounds in [LST21a; WSC22], the complexities

Õ(κd) and Õ(κd1/2) with or without a warm start are known to be tight.
The complexity in Theorem 6.1.2 constitutes a natural barrier for high-accuracy

sampling. Indeed, regarding the dimension dependence, any further progress
beyond Õ(d1/2) would seem to require completely different algorithms—both for
obtaining a warm start and also for exploiting a warm start. For example, the
Õ(d1/2) complexity of MALA is unimprovable even under arbitrarily warm starts
(Theorem 5.5.1 and [WSC22]). And regarding the condition number dependence,

any further progress beyond Õ(κ) in the high-dimensional regime4 would constitute
a major breakthrough in the complexity of sampling since it is currently unknown
whether an acceleration phenomenon holds in the sampling context.

More broadly, our result provides evidence of the potential for designing faster
high-accuracy samplers by combining low-accuracy samplers for computing a
warm start, together with improved high-accuracy mixing from the warm start.
We believe that this research program may be crucial for future progress in high-
accuracy sampling, since faster mixing from a warm start seems likely to hold for
other Metropolized algorithms. See §6.9 for further discussion in this direction.

Result 3: Faster high-accuracy sampling beyond log-concavity. We recall that high-
accuracy log-concave sampling is the key to obtaining state-of-the-art complexity
results for a wide class of distributions beyond log-concavity. This is achieved by
using our faster log-concave sampler in Theorem 6.1.2 to improve the per-iteration
complexity of the proximal sampler (see §4). This approach is overviewed in the
techniques section §6.1.2, and leads to the following result.

Corollary 6.1.3 (Sampling from other classes of distributions; informal version
of results in §6.5.2). For each of the following classes of distributions, we obtain
complexity bounds which improve by a factor of d1/2 over the results of §4:

4Analogous to classical optimization results, there are sampling algorithms which achieve
logarithmic dependence on κ at the expense of larger polynomial dependence on d. The open
question mentioned here is really: can one improve the condition dependence beyond near-linear
while also maintaining comparable dimension dependence?
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• π is log-smooth and weakly log-concave.

• π is log-smooth and satisfies a log-Sobolev inequality.

• π is log-smooth and satisfies a Poincaré inequality.

The latter two assumptions of log-Sobolev and Poincaré—called functional
inequalities—capture strictly richer classes of target distributions than strong-
log-concavity. There are two major motivations for studying the complexity
of sampling in this setting. First, functional inequalities are quite flexible, as
they are preserved under common operations such as bounded perturbations and
Lipschitz mappings (for background, see §2.2). Consequently, they often capture
the breadth of settings encountered in practice, including non-log-concave settings.
Second, these functional inequalities classically imply convergence of diffusions
in continuous time, making them natural assumptions under which to study the
corresponding discretizations.

Despite the appeal of this program, proving sampling guarantees under func-
tional inequalities introduces a number of additional technical complications and
was only accomplished recently, starting with [VW19] and continued in [Wib19;
Ma+21; LE23] and §3. Our result continues this line of work, and in particular
highlights the use of high-accuracy samplers for well-conditioned distributions as a
powerful algorithmic tool for the broader problem of sampling under isoperimetry.

■ 6.1.2 Challenges and techniques

■ 6.1.2.1 Challenges for warm starts: Rényi divergence and hypocoercivity

Why Rényi? To explain what properties are needed for a warm start requires first
explaining why a warm start helps. Briefly, the complexity of MALA is governed
by the largest possible step size for which the algorithm still accepts a reasonable
fraction of the proposals (see §5.2.2 for background on MALA). The basic reason

why we might expect to improve the complexity of MALA from Õ(d) to Õ(d1/2)
is that at the stationary distribution π, the step size can be increased significantly
from d−1 to d−1/2 while keeping the acceptance probability high. More precisely,
with step size d−1/2, the acceptance probability is large from a typical point
from π; however, it can be exponentially small in regions that are atypical (i.e.,
exponentially rare under π). The existence of such regions implies that there are
“bottlenecks” in the state space which take exponentially long to traverse. The
role of a warm start initialization is to avoid such bottlenecks.

In other words, a key property that a warm start µ0 must satisfy is that if π
assigns exponentially small probability to an event, then so must µ0. Crucially,
this property does not hold if µ0 is only known to be close to π in common
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probability metrics such as total variation, Wasserstein, or KL divergence—but
this property does hold if µ0 is close to π in the chi-squared divergence, or more
generally any Rényi divergence Rq of order q > 1.5

The key to warm starts: low-accuracy algorithms. In the preceding discussion, taking
large step sizes from a non-warm initialization was problematic due to the rejec-
tions in the Metropolis–Hastings filter step. A natural idea, then, is to remove the
filter for the initial stage of the algorithm and later reinstate it when the law of
the iterate is closer to the target π. Since the proposal of MALA is just one step
of the LMC algorithm, this amounts to using LMC to procure the warm start.
More generally, we can consider using any low-accuracy sampler as our warm start
algorithm, and indeed, as we discuss next, it will be crucial to consider ULMC
instead of LMC in order to achieve the desired Õ(d1/2) dimension dependence.

At a high level, if we discretize a diffusion with step size h for continuous
time T , then the total number of iterations is N = T/h. In order to understand
the dimension dependence of the algorithm, one must therefore understand both
h and T . These two terms reflect two distinct aspects of mixing analysis: the
discretization bias and the convergence time.

The first part—the discretization bias—is now relatively well-understood (see
the prior work discussions in §6.1.3), even for the chi-squared divergence and
more general Rényi divergences. In particular, it is known that the Rényi bias
of LMC is controlled for step sizes h ≲ 1/(dT ), and the Rényi bias of ULMC
is controlled for step sizes h ≲ 1/

√
dT . (In fact, we streamline arguments in

the literature in order to provide a shorter and simpler proof of this in §6.7.3.)
Since the Langevin diffusion does not reach approximate stationarity until time
T ≥ Ω(log d), it follows that LMC requires at least N = T/h = Ω̃(d) iterations,
which is too slow for our purposes.

ULMC is more promising, as the discretization bounds lead to iteration com-
plexity bounds of N = T/h = d1/2T 3/2. However, in order to reach our warm

start goal of N = Õ(d1/2), this means that the convergence time T must be nearly

dimension-free, i.e., of size Õ(1).

Why are nearly dimension-free convergence rates possible in continuous time? Since the
Rényi divergence to π initially scales as Θ̃(d), in order to obtain nearly dimension-
free bounds on T , we require the diffusion to converge to stationarity in Rényi
divergence with an exponential rate. This is a strong property of the diffusion,
which we call hyperequilibration.

Hyperequilibration was not even known for the simpler (standard, overdamped)

5This is the same reason why differential privacy requires guarantees in Rényi diver-
gences [Mir17].
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Langevin diffusion (LD) until quite recently [CLL19; VW19]. While a spectral gap
for LD (or equivalently, a Poincaré inequality for π) classically implies exponential
decay of the chi-squared divergence, this is far weaker than hyperequilibration.
Indeed, hyperequilibration requires exponential decay of R2, which amounts to
doubly exponential decay of the chi-squared divergence, since R2 = log(χ2 + 1).
Under the stronger assumption of a log-Sobolev inequality for π, it is well-known
that the KL divergence decays exponentially fast, but it was unclear that the
same holds for the Rényi divergence which, as discussed above, is crucial for
warm starts. It was only through the inspired semigroup calculations of [CLL19;
VW19] that we now know this to be true, namely, a log-Sobolev inequality implies
hyperequilibration for LD.6

Recall, though, that the LD incurs too much discretization bias. To obtain
sufficient control over both the discretization bias and the convergence time,
we therefore need to establish hyperequilibration for the underdamped Langevin
diffusion (ULD). However, this question brings us to longstanding challenges from
the theory of hypocoercive PDEs.

Hypocoercivity: a fundamental barrier for underdamped analysis. To recap: for LD, we
have exponential decay of the chi-squared divergence under a Poincaré inequality,
exponential decay of the KL divergence under a log-Sobolev inequality, and finally
hyperequilibration under a log-Sobolev inequality. What, then, are the analogous
results for ULD? Since its introduction in the 1930s by Kolmogorov [Kol34], the
regularity and convergence of ULD have been the focus of intensive research. It
took nearly half a century to establish mixing [Tro77], and a further 30 years and
Villani’s “slightly miraculous-looking computations” [Vil09a, pg. 42] to prove ex-
ponential decay of the KL divergence under a log-Sobolev inequality. Establishing
hyperequilibration for ULD remains out of reach for existing techniques.

The reason for this sudden jump in difficulty from the overdamped to the
underdamped diffusions is due to a fundamental issue: the degeneracy of ULD.
In brief, whereas LD is driven by a full-dimensional Brownian motion, ULD is
driven by a degenerate one which is only added to a subset of the coordinates. For
sampling purposes, this degeneracy is a desirable feature as it leads to smoother
sample paths and smaller discretization error; however, this same degeneracy is
also the source of deep questions in PDE theory which have motivated research
in that field for nearly a century. The key challenge here is that the standard
tools of Markov semigroup theory—which provide the backbone of the analysis
for LD—completely break down for ULD. To address this difficulty, the theory

6This explains our choice of the terminology hyperequilibration: it is inspired by the analogy
to the classical property of hypercontractivity, which is equivalent to the logarithmic Sobolev
inequality (LSI) [Gro75].
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of hypocoercivity, inspired by Hörmander’s groundbreaking work on hypoelliptic-
ity [Hör67], was laid down by Villani in the monograph [Vil09a] as a principled
framework for the study of degenerate diffusions. However, this is still a relatively
nascent area of PDE and many important questions remain wide open; see the
prior work in §6.1.3 for further background.

In contrast, we note that it is well-known how to obtain fast rates of con-
vergence in the Wasserstein metric via standard coupling arguments. Conse-
quently, the state-of-the-art Õ(d1/2) guarantees for the ULMC algorithm hold in
the Wasserstein metric or the KL divergence [Che+18b; SL19; DR20; Ma+21;
Zha+23], whereas for Rényi divergence bounds, it was previously unknown how

to obtain rates which are better than even Õ(d2).

■ 6.1.2.2 Settling the warm start conjecture: regularization via privacy

Our approach to hyperequilibration. To settle the warm start conjecture, we adopt a
fundamentally different perspective. Namely, instead of trying to directly establish
hyperequilibration via hypocoercivity techniques, we ask whether it can be de-
duced from simpler Wasserstein coupling arguments. At the heart of this approach
is the fact that diffusions often enjoy strong regularizing properties, which allow for
bounding stronger metrics (e.g., Rényi) in terms of weaker ones (e.g., Wasserstein).
Such regularization results are typically established for continuous-time diffusions
via abstract calculus methods, such as the theory of Markov semigroups [BGL14].
However, as discussed above, these techniques do not extend to ULD due to the
fundamental issue of degeneracy.

Our key insight is to prove a regularization result for the discrete-time al-
gorithm directly. This is enabled by the fact that although the noise added to
each iteration of ULMC is nearly degenerate—and indeed degenerates as the step
size h ↘ 0, as it must because ULD is degenerate—this ULMC noise remains
non-degenerate for any positive step size h > 0. Hence, we can expect some mild
amount of regularization for ULMC, a fact that we establish for the first time. On
a technical level, we accomplish this via a more sophisticated version of techniques
from the differential privacy literature—namely, the shifted Rényi analysis—which
we describe next.

Rényi divergences with Orlicz–Wasserstein shifts. The regularization result we seek is
of the following form: if we initialize two copies of our process of interest at the
distributions µ0, ν0, and arrive at distributions µn, νn respectively at iteration
n, we wish to control Rq(µn ∥ νn) in terms of an initial Wasserstein distance
W (µ0, ν0). In our application, the process of interest—namely ULMC—is an
instance of what is sometimes called a “contractive noisy iteration” (CNI): an
algorithm that interleaves Lipschitz mappings with (Gaussian) noise convolution
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steps. This notion of a contractive noisy iteration is of broad interest as it
captures algorithms in differential privacy (e.g., noisy optimization algorithms)
and in sampling (e.g., discretizations of diffusions), and we therefore place our
results in a framework which encompasses these various use cases.

A generalization of the regularization result we seek is to prove that for a CNI,

Rq(µn ∥ νn) ≲ R(w)
q (µ0 ∥ ν0) + [error term depending on w] , (⋆)

where R
(w)
q is the shifted Rényi divergence, defined as

R(w)
q (µ ∥ ν) := inf

µ′ s.t. W (µ,µ′)≤w
Rq(µ

′ ∥ ν) ,

see §6.3 for details. Indeed, if we take w = W (µ0, ν0) in (⋆), then the term

R
(w)
q (µ0∥ν0) vanishes, and we will have controlled Rq(µn∥νn) in terms of W (µ0, ν0)

as desired. However, (⋆) is more general, as it allows for carefully tracking the
shift parameter w throughout. This proof technique, called shifted divergence
analysis, was first introduced in the context of differential privacy by [Fel+18] for
the purpose of establishing privacy amplification by iteration, and was recently
honed into a form amenable to sampling analyses in [AT22a; AT22b].

A subtle yet essential technical issue that arises in establishing (⋆) is: which
Wasserstein metric W do we use? All previous versions of (⋆) required the
W∞ metric, which is problematic for our setting as the W∞ metric is infinite
at initialization. Here, our main insight is to use a non-standard Wasserstein
metric, called the Orlicz–Wasserstein metric, based on the sub-Gaussian Orlicz
norm. As we discuss in Remark 6.3.9, this is exactly the right metric to use: in
fact, (⋆) cannot hold for any weaker metric (e.g., Wp for any finite p), and the
initialization bound cannot be finite for any stronger metric. We then show that
for Orlicz–Wasserstein shifts, (⋆) indeed holds, with the caveat that the order
of the shifted Rényi divergence on the right-hand side of (⋆) is increased. This
increase in the order also means that additional care is required when applying (⋆),
as the inequality cannot be iterated too many times, but we bypass this issue by
showing that it suffices to only exploit the regularization from a single step.

Finally, we note that our analysis answers the open question raised in [AT22b]
of how to use the shifted divergence technique in order to obtain sampling guar-
antees for discretized diffusions w.r.t. the true target distribution π, rather than
w.r.t. the biased limit of the algorithm.

■ 6.1.2.3 From warm starts to faster high-accuracy samplers

In light of the discussion thus far, combining our warm start result with the results
of §5 and [WSC22] immediately improves the dimension dependence of high-

accuracy log-concave sampling to Õ(d1/2). However, two further issues remain.
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First, thus far we have ignored the dependence on the condition number κ for
simplicity of exposition, but the combined approach of ULMC and MALA incurs
suboptimal dependence on κ, namely κ3/2 rather than κ. Second, the result
only holds for strongly log-concave targets. We address both of these issues
simultaneously by adding a third algorithmic building block: the proximal sampler.
Below, we briefly overview the proximal sampler and the final remaining technical
challenges in its application.

Algorithmic framework. The proximal sampler [TP18; LST21c] is a Gibbs sampling
method that can be viewed as the sampling analog of the proximal point method
from optimization (see §4 for further background). Each iteration requires sam-
pling from a regularized distribution called the restricted Gaussian oracle (RGO),
parametrized by y ∈ Rd:

πX|Y=y(x) ∝ exp
(
−V (x)− 1

2h
∥y − x∥2

)
.

If V is β-smooth, and the step size h is chosen as h ≍ 1
β
, one can check that πX|Y=y

is strongly log-concave and log-smooth with condition number O(1). Hence:

complexity of the
proximal sampler

= # outer loops ×
complexity of sampling from
O(1)-conditioned distributions

to high accuracy

The requirement of sampling from the RGO to high accuracy arises to avoid
accumulation of the errors from inexact implementation of the RGO.

So far, we have not made use of any assumptions on π beyond smoothness of V .
Additional assumptions on π, such as log-concavity, can then used to control the
number of outer loops. This program was carried out in §4, in which we studied
the outer loop complexity of the proximal sampler under a variety of assumptions
on the target π which, when combined with the implementation of the RGO via
existing high-accuracy samplers, yielded state-of-the-art complexity bounds for
sampling under those assumptions. Our faster high-accuracy log-concave sampler
provides a better implementation of the RGO, and hence we improve upon these
prior results by a factor of roughly d1/2 in each setting. Moreover, in the strongly
log-concave setting, the number of outer iterations of the proximal sampler is
shown to be Õ(κ) [LST21c], so using ULMC + MALA to implement the RGO
boosts the condition number dependence of the overall sampler to near-linear.
This resolves the two issues described above, but in doing so we must also develop
an inexact error analysis for the proximal sampler.
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Inexact error analysis. In order to apply the proximal reduction framework, we must
understand how the error from inexact implementation of the RGO propagates
into the final sampling error. This was carried out in [LST21c] for the TV distance
via a simple coupling argument, which amounts to a union bound over failure
events at each iteration. Similarly, it is straightforward to carry out the inexact
error analysis in the Wasserstein metric due to the availability of the triangle
inequality. However, to establish our guarantees in §6.5, which hold also in the
KL and χ2 metrics, we must perform an error analysis in χ2 (or equivalently, in
Rényi). This is also complicated by the fact while the outer loop of the proximal
sampler converges exponentially fast in the strongly log-concave setting, which
facilitates summing up the geometrically decaying errors from each iteration, the
convergence in the weakly log-concave setting does not have an exponential rate
and moreover uses a modified Lyapunov functional, changing the nature of the
error analysis. We remark that we did not encounter such issues in §4, since the
rejection sampling implementation of the RGO is exact. Therefore, we believe
that our inexact error analysis will also be useful for any future applications of
the proximal sampler.

We also remark that our application of the proximal sampler, and the ensuing
need for careful inexact error analysis, resembles the use of the (accelerated)
proximal point method in optimization, e.g., [Fro+15; LMH15].

■ 6.1.3 Related work

Low-accuracy sampling and Rényi guarantees. Rényi guarantees for sampling are
relatively recent. Indeed, [VW19] proved fast Rényi mixing for LD and LMC
to their respective stationary distributions, and this was translated into Rényi
sampling guarantees for LMC in [GT20; EHZ22] and §3, for the proximal sampler

in §4, and for ULMC in [GT20; Zha+23]. These lines of work have led to Õ(d)
dimension dependence for LMC and the proximal sampler, but for ULMC the
rates are much worse, namely Õ(d5/2) dependence [GT20] and only very recently

Õ(d2) dependence [Zha+23]. In Theorem 6.4.1, we obtain the first Õ(d1/2) rate
in Rényi divergence.

In contrast, there are many more works which break the Õ(d) barrier in the
Wasserstein metric: the randomized midpoint discretization of Langevin [HBE20],
unadjusted Hamiltonian Monte Carlo (HMC) [CV19], ULMC [Che+18b; DR20;
Mon21], and sophisticated discretizations of ULMC and HMC [SL19; FLO21;
BM22]. Among these algorithms, at present we only understand how to perform
Rényi discretization analysis for ULMC, but for ULMC it is the convergence of
the corresponding continuous-time diffusion which remains elusive.
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Underdamped Langevin, hypoellipticity, and hypocoercivity. The underdamped (or ki-
netic) Langevin diffusion has a rich history, dating back to Kolmogorov [Kol34].
The PDE governing the evolution of its marginal density is referred to as the
kinetic Fokker–Planck equation. Unlike the Langevin diffusion, which is driven
by a full-dimensional Brownian motion and for which regularity and convergence
fall within the purview of classical elliptic and parabolic PDE theory, the under-
damped Langevin diffusion is the canonical example of a degenerate diffusion for
which these and related questions remain active areas of research within PDE.
See §6.4.1 for background.

The question of regularity for these equations was largely solved by landmark
work of Hörmander [Hör67] in arguably one of the most influential breakthroughs
in PDE theory of the last century through the introduction of the theory of
hypoellipticity. In turn, it inspired Villani to coin the study of the convergence of
such equations hypocoercivity in his seminal monograph [Vil09a].

While convergence of this diffusion has been studied for nearly a century, early
convergence results were qualitative in nature. It took intensive developments in
the PDE community to get to a point where quantitative rates could be extracted,
beginning in the 1970s [Tro77]. We do not attempt to comprehensively survey
the extensive literature here. We refer to the monograph [Vil09a] for history; see
also, e.g., the papers [DMS09; Bau17; RS18] for more modern references. We
also mention the recent space-time Poincaré approach of [CLW20; Alb+21], which
is also directly inspired by Hörmander’s hypoelliptic theory. As we discuss in
§6.1.2, however, all of these approaches fall short of establishing the key property
of hyperequilibration.

MALA. MALA has been intensely studied over the past three decades since its
introduction in [Bes+95], in large part due to its strong practical performance—in
fact, it and its variants comprise the default implementations of sampling routines
in many modern software packages [GLG15; Aba+16b]. Many classical works
studied the geometric ergodicity and asymptotic properties of MALA. With
regards to the dimension dependence, particularly influential was the optimal
scaling result of [RR98], which showed that taking step size h ∝ d−1/3 leads to
a non-trivial diffusion limit for MALA as d→∞, at least for product measures
π satisfying strong regularity assumptions and when initialized at stationarity.
Modern analysis techniques have enabled an understanding of the non-asymptotic
complexity of, see [Dwi+19; Che+20a; LST20; LST21a; WSC22], §5, and Table 6.1
for a summary of the progress in this direction. Our work closes this line of work by
showing that the warm start rate of [WSC22], which is tight due to their matching
lower bound, is achievable. Moreover, our work provides theoretical justification
for the improved empirical performance of MALA after using a low-accuracy
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algorithm for warm starts, as observed in [WSC22].

Proximal sampler. The proximal sampler is an algorithmic framework introduced
in [TP18; LST21c]. In [LST21c], it was used as a mechanism for boosting the
condition number dependence of any high-accuracy log-concave sampler to near-
linear, which was then used to design samplers for composite and finite-sum
potentials. In §4, we showed that the proximal sampler reduces the problem of
sampling from distributions satisfying weak log-concavity or functional inequalities
to the problem of high-accuracy log-concave sampling. In this work, we exploit
both these properties of the proximal sampler (see §6.1.2).

We also mention that in recent work, the proximal sampler has been connected
to stochastic localization, leading to recent progress on the KLS conjecture [KP21;
CE22; KL22], as well as to diffusion models (see §17). There are also applications
to sampling from semi-smooth or non-smooth potentials [LC22; LC23], and to
differential privacy [GLL22; Gop+23a; Gop+23b].

Zigzag sampler. The zigzag sampler is an alternative high-accuracy sampler that
was recently proposed in [BFR19]. Instead of using a Metropolis–Hastings filter,
the zigzag sampler is a piecewise deterministic Markov process which can be
implemented without discretization bias. It was recently shown in [LW22] that

similarly to MALA, the zigzag sampler has a dimension dependence of Õ(d1/2)
from a warm start. Morever, in [LW22, Corollary 1.4], Lu and Wang show that
by using LMC with a large step size to warm start the algorithm, one obtains a
high-accuracy log-concave sampler with dimension dependence Õ(d4/5). Indeed,
the same strategy can be used with the warm start results of §5 and [WSC22] to

obtain complexities strictly better than Õ(d); however, it is clear that such an

approach can never reach the desired complexity of Õ(d1/2)—and in fact there is a

fundamental barrier even at Õ(d3/4) because it is bottlenecked by the discretization

bias of LMC. The goal of this chapter is achieving Õ(d1/2) complexity as this is this
a natural barrier for high-accuracy samplers given a warm start, and LMC cannot
work for this goal.7 In analogy to our use of MALA, our new complexity result
for ULMC (Theorem 6.4.1) can also be used to warm start the zigzag sampler,

leading to the same final complexity bound of Õ(κd1/2 logO(1)(1/ε)). This answers
the open questions in [LW22] regarding warm starting the zigzag sampler.

7With regards to dimension dependence, running LMC with step size h for 1/h steps yields a

distribution µ with logχ2(µ∥π) ≤ Õ(dh) (§3). By optimizing the step size h and combining this

with the best known complexity Õ(d1/2 log3/2 χ2(µ ∥ π)) of the zigzag sampler, one obtains the

final complexity Õ(d4/5) [LW22]. Even if the complexity of the zigzag sampler were improvable

to Õ(d1/2 logχ2(µ ∥ π)), the total complexity would still be at least 1/h+ d1/2 (dh) ≥ Ω̃(d3/4).
Thus d3/4 is a natural barrier for any warm start approach using LMC.
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Differential privacy and sampling. Sampling algorithms have been widely used in dif-
ferential privacy ever since the invention of the exponential mechanism [MT07]; for
an exposition of the surrounding history and applications, see the textbook [DR13].
Sampling-inspired analyses have also been recently used to prove privacy prop-
erties of optimization algorithms [CYS21; RBP22; YS22]. Most related to this
paper are connections in the other direction: the use of techniques from differential
privacy in order to analyze sampling. There are two lines of work in this direction.
One involves the technique of adaptive composition for Rényi divergences and
its use for establishing Rényi bias bounds for LMC and ULMC [GT20; EHZ22;
Zha+23]. The other involves the technique of privacy amplification by iteration
(PABI), which was originally used to bound the privacy loss of differentially pri-
vate optimization algorithms [Fel+18; Bal+19; ADC20; FKT20; SBD21; AT22a],
and its recent use for analyzing the mixing time of LMC to its biased stationary
distribution [AT22b]. In this chapter, we build upon this technique in several
key ways: we show how to improve mixing results for the biased distribution to
mixing results for the target distribution, we show how to use these ideas for
ULMC rather than LMC, and most importantly we overcome the key issue of
unboundedness by replacing W∞ shifts by Orlicz–Wasserstein shifts, see §6.1.2.

Simultaneous work. We also mention the concurrent paper [FYC23], which also

achieves Õ(d1/2) dimension dependence for high-accuracy log-concave sampling
via an approximate rejection sampling implementation of the RGO.

■ 6.1.4 Organization

We recall preliminaries in §6.2, especially regarding Rényi divergences. We iso-
late in §6.3 our key new technique involving Orlicz–Wasserstein shifted Rényi
divergences. We use this technique to obtain faster algorithmic warm starts in
§6.4, and then use these warm starts to develop faster high-accuracy samplers in
§6.5. We conclude in §6.9 by discussing several future research directions that are
motivated by our results.

■ 6.2 Preliminaries

Throughout, π ∝ exp(−V ) denotes the target density and V : Rd → R denotes
the potential. We assume V is twice continuously differentiable for simplicity. We
reserve the symbol N for the number of iterations that the Markov Chain Monte
Carlo algorithm is run, h for the discretization step size, and T = Nh for the total
elapsed time. We write P(Rd) to denote the space of probability distributions
over Rd, and we write P2(Rd) to denote the subset of P(Rd) with finite second



Sec. 6.3. Improved shifted divergence analysis 195

moment. All logarithms are natural.
For simplicity of exposition, we assume throughout that we have access to an

algorithm for generating independent standard Gaussian random variables. We
use the standard notation Õ(g) = g logO(1)(g) to suppress low-order terms. Note
that since our final results depend polynomially on the dimension d and condition
number κ, the Õ hides polylogarithmic factors in these terms—on the other hand,
since ε occurs only polylogarithmically in our high-accuracy results, we do not
hide the polylogarithmic factors in ε.

We say that f is α-strongly convex if ∇2f ⪰ αId, and that f is β-smooth if
∥∇2f∥op ≤ β. If f is convex, then f is β-smooth if and only if ∇2f ⪯ βId. We
always denote by κ the condition number κ := β/α. If π ∝ exp(−V ) where V is
α-strongly convex (resp. β-smooth), we say that π is α-strongly log-concave (resp.
β-log-smooth). All other notation is introduced in the main text.

We refer to §2.2.3 for the definition and basic properties of Rényi divergences.

■ 6.3 Improved shifted divergence analysis

In this section we isolate from our analysis a key new technique of independent
interest. As overviewed in §6.1.2, this technique is a strengthening of the “shifted
divergence” analysis, a.k.a., “privacy amplification by iteration” (PABI), in which
we crucially improve the∞-Wasserstein shift to an Orlicz–Wasserstein shift. This
enables obtaining Rényi divergence bounds on the mixing of any Markov chain
which interleaves Lipschitz mapping steps (e.g., gradient descent steps) and noise
convolution steps (e.g., adding a Gaussian). This notion captures a variety of
algorithms from the differential privacy and sampling communities, often called
“contractive noisy iterations”.

The main result of this section is formally stated as follows. This result makes
use of the Wasserstein metric Wψ2 that evaluates a coupling’s quality via the
sub-Gaussian Orlicz norm; see §6.3.1 for background on this notion.

Theorem 6.3.1 (Shifted Rényi divergence analysis). Consider two Markov chains
{µn}n≥0 and {µ′n}n≥0 with possibly different initialization, but with the same update
transitions

µn+1 = (µnPn) ∗ normal(0, σ2Id)

µ′n+1 = (µ′nPn) ∗ normal(0, σ2Id)

where Pn is a Markov transition kernel that is c-Lipschitz in the Wψ2 metric. Then
for any Rényi order q ≥ 1,

Rq(µN ∥ µ′N) ≤ c2N
qW 2

ψ2
(µ0, µ

′
0)

2σ2
, (6.1)
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so long as N ≥ log1/c

(√
q (q−1)Wψ2

(µ0,µ′0)

σ
√
2

)
.

We remark that unlike previous versions of the shifted divergence technique,
Theorem 6.3.1 requires a restriction on the number of iterations N .8 But this
restriction is mild due to the logarithmic dependence. In fact, it is equivalent to
requiring the upper bound in (6.1) to be at most 1/(q − 1).

The rest of this section is devoted to proving Theorem 6.3.1. In §6.3.1 we
define a new Lyapunov function, and in §6.3.2 we use it to prove Theorem 6.3.1.

■ 6.3.1 Shifted Rényi divergence using Orlicz–Wasserstein shifts

Key to our proof of Theorem 6.3.1 is a new Lyapunov function for tracking how
indistinguishable the Markov chains become as they evolve. This new Lyapunov
function is a shifted Rényi divergence, but unlike the standard shifted divergence
technique, here we measure the shift using an “Orlicz–Wasserstein metric” rather
than W∞.

We begin by recalling the definition of a sub-Gaussian Orlicz norm. For
shorthand, we drop the adjective “sub-Gaussian” as this is the only Orlicz norm
considered in this paper. For further background on Orlicz norms, we refer the
reader to, e.g., the textbooks [RR91; Ver18], and we mention that the standard
significance of this particular (sub-Gaussian) Orlicz norm is that a random variable
is sub-Gaussian if and only if this norm is finite [Ver18, Example 2.7.13].

Definition 6.3.2 (Orlicz norm). The Orlicz norm of a random variable X is

∥X∥ψ2
:= inf

{
λ > 0 : Eψ2

(∥X∥
λ

)
≤ 1

}
,

where the function ψ2 : R→ R is defined as ψ2(x) := exp(x2)− 1.

Our proof of Theorem 6.3.1 uses the Orlicz norm for defining an optimal
transport metric between probability distributions.

Definition 6.3.3 (Orlicz–Wasserstein metric). The Orlicz–Wasserstein metric
between distributions µ, ν is

Wψ2(µ, ν) := inf
X∼µ
Y∼ν

∥X − Y ∥ψ2 ,

where the infimum is taken over all pairs of jointly defined random variables (X, Y )
with X ∼ µ and Y ∼ ν.

8This restriction comes from the fact that with this new Orlicz–Wasserstein shifted Rényi
divergence, the new shift-reduction lemma (Lemma 6.3.7) does not apply to arbitrarily large
shifts.
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Note that since the Orlicz norm satisfies the triangle inequality, the standard
gluing lemma from classical optimal transport theory shows that Wψ2 is indeed
a metric; see, e.g., [Vil09b, §6]. The Orlicz–Wasserstein metric has also been
considered in prior works [Stu11; Kel17; GHN23], but to our knowledge our work
constitutes the first use of this metric for sampling analysis.

Remark 6.3.4 (Comparison to Wp). Let Wp denote the standard p-Wasserstein
metric on Rd. Then

1√
p
Wp ≲ Wψ2 ≤

1√
log 2

W∞ .

The first inequality is because a finite Orlicz norm implies sub-Gaussianity with
a related bound on the concentration parameter, which implies related moment
bounds; and the second inequality is because an ess sup bound implies compact
support, which implies sub-Gaussianity by Hoeffding’s lemma. Proofs of these
bounds are provided in §6.6.1. We also note that the reverse inequalities do not
hold, even if one weakens them by an arbitrarily large amount. For example,
for the first inequality, take µ = δ0 and ν the Laplace distribution with density
ν(x) = 1

2
exp(−|x|) on R; then, Wp(µ, ν) is finite for any 1 ≤ p < ∞, but

Wψ2(µ, ν) =∞. And for the second inequality, take µ = δ0 and ν = N (0, 1); then
Wψ2(µ, ν) is finite but W∞(µ, ν) =∞.

Definition 6.3.5 (Orlicz–Wasserstein shifted Rényi divergence). For any Rényi
order q ≥ 1 and shift w ≥ 0, the Wψ2-shifted Rényi divergence between probability
distributions µ and ν is defined as

R(w)
q (µ ∥ ν) := inf

µ′ s.t. Wψ2
(µ,µ′)≤w

Rq(µ
′ ∥ ν) .

■ 6.3.2 Proof of Theorem 6.3.1

Here we describe how the standard shifted divergence analysis is modified when
using shifts in Wψ2 rather than W∞, and how this modified argument leads to a
proof of Theorem 6.3.1.

The shifted divergence technique—in both its original form and the new form
here—is built upon two key lemmas. These two lemmas track how the shifted
Rényi divergence evolves when both distributions are either (1) pushed forward
through a Lipschitz map; or (2) convolved with Gaussian noise. These two lemmas
are called the “contraction-reduction lemma9” and the “shift-reduction lemma”.

9Although we use this name to be consistent with the previous literature on the shifted
divergence technique, we note that this map need not be a contraction, i.e., the Lipschitz
constant can be greater than 1.
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The contraction-reduction lemma is the simpler of these two lemmas, and
extends unchanged—in terms of both statement and proof—when the standard
W∞ shift is replaced by our proposed Wψ2 shift. For completeness, we provide a
brief proof.

Lemma 6.3.6 (New contraction-reduction lemma, for Orlicz–Wasserstein shifted
Rényi). For any Rényi order q ≥ 1, any shift w ≥ 0, any Markov transition kernel
P that is Wψ2-Lipschitz with parameter c, and any distributions µ, ν ∈ P(Rd),

R(w)
q (µP ∥ νP ) ≤ R(w/c)

q (µ ∥ ν) .

Proof. Let µ′ be the surrogate for µ in R
(w/c)
q (µ ∥ ν). Then by definition, we have

Wψ2(µ, µ
′) ≤ w/c and Rq (µ′ ∥ ν) = R

(w/c)
q (µ ∥ ν). Thus

R(w)
q (µP ∥ νP ) ≤ Rq(µ

′P ∥ νP ) ≤ Rq(µ
′ ∥ ν) = R(w/c)

q (µ ∥ ν) ,

where the first step is because Wψ2(µP, µ
′P ) ≤ cWψ2(µ, µ

′) ≤ c (w/c) = w by
Lipschitzness of P ; the second step is by the data-processing inequality for Rényi
divergences (Lemma 2.2.19); and the third step is by construction of µ′.

The shift-reduction lemma, however, requires substantial modification.

Lemma 6.3.7 (New shift-reduction lemma, for Orlicz–Wasserstein shifted Rényi).
For any Rényi order q ≥ 1, any noise variance σ2 > 0, any initial shift w ≥ 0,
any shift increase δ ≤ σ/

√
(2q − 1) (q − 1), and any distributions µ, ν ∈ P(Rd),

R(w)
q

(
µ ∗ normal(0, σ2Id)

∥∥ ν ∗ normal(0, σ2Id)
)

≤ R
(w+δ)
2q−1 (µ ∥ ν) +

(2q − 1) δ2

2σ2
log 2 .

Proof. Case 1: initial shift w = 0. For shorthand, let γ denote normal(0, σ2Id). We
bound the Rényi divergence between law(X + Z) and law(Y + Z), where X ∼ µ,

Y ∼ ν, and Z ∼ γ. Let µ′ be the surrogate for R
(δ)
2q−1(µ∥ν), so that R

(δ)
2q−1(µ∥ν) =

R2q−1(µ
′ ∥ ν) and Wψ2(µ, µ

′) ≤ δ. Let X ′ ∼ µ′ be optimally coupled with X ∼ µ
with respect to the Orlicz–Wasserstein metric Wψ2(µ, µ

′) so that∫∫
ψ2

(∥x− x′∥
δ

)
pX,X′(dx, dx

′) ≤ 1 , (6.2)

where here and henceforth we write pη as shorthand for the law of a random
variable η.
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Note that X + Z and Y + Z are the result of the same function applied to
the tuples (X ′, X −X ′+Z) and (Y, Z) respectively. Thus, by the data-processing
inequality for Rényi divergences (Lemma 2.2.19),

Rq(µ ∗ γ ∥ ν ∗ γ) = Rq

(
law(X + Z)

∥∥ law(Y + Z)
)

≤ Rq

(
law(X ′, X −X ′ + Z)

∥∥ law(Y, Z)
)
.

By expanding the definition of Rényi divergence and applying Hölder’s inequality,
we bound this by

· · · = 1

q − 1
log

∫∫ (pX′,X−X′+Z(x′, z)

pY,Z(x′, z)

)q−1
pX′,X−X′+Z(dx′, dz)

=
1

q − 1
log

∫∫ (pX′(x′)
pY (x′)

pX−X′+Z|X′=x′(z)

pZ|Y=x′(z)

)q−1
pX−X′+Z|X′=x′(dz) pX′(dx

′)

=
1

q − 1
log

∫∫ (µ′(x′)
ν(x′)

pX−X′+Z|X′=x′(z)

γ(z)

)q−1
pX−X′+Z|X′=x′(dz)µ′(dx′)

≤ 1

2 (q − 1)
log

∫ (µ′(x′)
ν(x′)

)2 (q−1)
µ′(dx′)︸ ︷︷ ︸

1

+
1

2 (q − 1)
log

∫∫ (pX−X′+Z|X′=x′(z)

γ(z)

)2 (q−1)
pX−X′+Z|X′=x′(dz)µ′(dx′)︸ ︷︷ ︸

2

.

By definition of Rényi divergence and then the construction of µ′, the first
term 1 simplifies to

1 = R2q−1(µ
′ ∥ ν) = R

(δ)
2q−1(µ ∥ ν) .

Writing γz := normal(z, σ2Id), the second term 2 can be bounded as

2 =
1

2 (q − 1)
log

∫
exp

(
2 (q − 1)R2q−1(pX−X′+Z|X′=x′ ∥ γ)

)
µ′(dx′)

≤ 1

2 (q − 1)
log

∫∫
exp

(
2 (q − 1)R2q−1(px−x′+Z ∥ γ)

)
pX,X′(dx, dx

′)

=
1

2 (q − 1)
log

∫∫
exp

(
2 (q − 1)R2q−1(γx−x′ ∥ γ)

)
pX,X′(dx, dx

′)

=
1

2 (q − 1)
log

∫∫
exp

((q − 1) (2q − 1) ∥x− x′∥2
σ2

)
pX,X′(dx, dx

′)
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≤ δ2 (2q − 1)

2σ2
log

∫∫
exp

( ∥x− x′∥2
δ2

)
pX,X′(dx, dx

′)

≤ δ2 (2q − 1)

2σ2
log 2 .

Above, the first step is by definition of the Rényi divergence; the second step is
by noting that pX−X′+Z|X′=x′ =

∫
px−x′+Z pX|X′(dx | x′) and using convexity of

f -divergences (Lemma 2.2.22); the fourth step is by the closed-form expression for
the Rényi divergence between Gaussians (Lemma 2.2.21); the fifth step is by the
assumption that ρ := δ2 (q − 1) (2q − 1)/σ2 ≤ 1, which enables us to use Jensen’s
inequality to bound E[Rρ] ≤ E[R]ρ where R := exp(∥X −X ′∥2/δ2); and the final
step is by the property (6.2) of the coupling (X,X ′). Combining these bounds on

1 and 2 completes the proof for case 1.

Case 2: initial shift w > 0. Let µ′ denote the surrogate for R
(w+δ)
2q−1 (µ ∥ ν), so

that R
(w+δ)
2q−1 (µ ∥ ν) = R2q−1(µ

′ ∥ ν) and Wψ2(µ, µ
′) ≤ w + δ. Let X ′ ∼ µ′ be

optimally coupled with X ∼ µ with respect to the Orlicz–Wasserstein metric
Wψ2(µ, µ

′) so that ∥X −X ′∥ψ2 = Wψ2(µ, µ
′) ≤ w + δ. Decompose

X ′ = τ X + (1− τ)X ′︸ ︷︷ ︸
X′1

+ τ (X ′ −X)︸ ︷︷ ︸
X′2

,

where τ := δ/(w + δ). Then

R(w)
q (µ ∗ γ ∥ ν ∗ γ) ≤ Rq(pX′1 ∗ γ ∥ ν ∗ γ)

≤ R(δ)
q (pX′1 ∥ ν) +

δ2 (2q − 1)

2σ2
log 2

≤ R2q−1(µ
′ ∥ ν) +

δ2 (2q − 1)

2σ2
log 2

= R
(w+δ)
2q−1 (µ ∥ ν) +

δ2 (2q − 1)

2σ2
log 2 .

Above, the first step is by using pX′1 ∗ γ as a surrogate for µ ∗ γ, since

Wψ2(µ ∗ γ, pX′1 ∗ γ) ≤ Wψ2(µ, pX′1) ≤ ∥X −X
′
1∥ψ2

= (1− τ) ∥X −X ′∥ψ2 ≤ (1− τ) (w + δ) = w .

The second step is by using the result from case 1; the third step is by using µ′ as a
surrogate for pX′1 , since Wψ2(µ

′, pX′1) ≤ ∥X ′−X ′1∥ψ2 = ∥X ′2∥ψ2 = τ ∥X −X ′∥ψ2 ≤
τ (w + δ) = δ; and the final step is by construction of µ′.
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Remark 6.3.8. Lemma 6.3.7 can be generalized to

R(w)
q

(
µ ∗ normal(0, σ2Id)

∥∥ ν ∗ normal(0, σ2Id)
)

≤ R
(w+δ)
(q+λ−1)/λ(µ ∥ ν) +

(q − λ) δ2

2 (1− λ)σ2
log 2

(6.3)

for any λ ∈ [0, 1] and any δ ≤ (1 − λ)σ
√

2
(q−1) (q−λ) . Choosing λ = 1/2 recovers

Lemma 6.3.7. Different choices of λ enable trading off the increase in the Rényi
order in the first term against the penalty in the second term. The proof of this
generalized bound is identical except for one change: replace the Cauchy–Schwarz

inequality in the proof with Hölder’s inequality
∫
fg ≤ (

∫
|f |1/λ)

λ
(
∫
|g|1/(1−λ))1−λ.

We conjecture that (6.3) is tight in that for any input parameters q, σ2, w,
there exist distributions µ, ν such that this bound holds with equality when it is
optimized over the knobs δ, λ. Details on this conjecture are provided in §6.6.2.

Remark 6.3.9 (Failure of shift reduction for weaker notions of shift). The Orlicz–
Wasserstein metric is the “right” metric to use for the shifted Rényi analysis in
the sense that (1) Lemma 6.3.7 holds with this Orlicz–Wasserstein shifted Rényi
divergence; and (2) the Orlicz–Wasserstein distance at initialization is bounded
for sampling algorithms (shown in Lemma 6.4.7).

In contrast, (2) fails for all previous versions of the shifted Rényi divergence
analysis, since they use W∞ shifts. And (1) fails for other natural candidates of the
Wasserstein metric for which the initialization distance is bounded. This includes
the Wp metric for any finite p, as well as the Orlicz–Wasserstein metric for any
Orlicz norm that is weaker than sub-Gaussian. See §6.6.3 for details. Finally, we
remark that this discussion is tailored to the fact that we are analyzing Markov
chains with Gaussian noise; if for example, this were replaced by Laplacian noise,
then the right notion of shift would be the Orlicz–Wasserstein metric with the
sub-exponential Orlicz norm, and our techniques would extend straightforwardly.

We now use Lemmas 6.3.6 and 6.3.7 to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. Let δ = cN Wψ2(µ0, µ
′
0). By using, in order: the defini-

tion of the Markov chain update, Lemma 6.3.7 (in the form of Remark 6.3.8 with
λ = 0), and then Lemma 6.3.6, we obtain

Rq(µN ∥ µ′N)

= Rq

(
(µN−1PN−1) ∗ normal(0, σ2Id)

∥∥ (µ′N−1PN−1) ∗ normal(0, σ2Id)
)

≤ R(δ)
∞ (µN−1PN−1 ∥ µ′N−1PN−1) +

qδ2

2σ2
log 2
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≤ R(δ/c)
∞ (µN−1 ∥ µ′N−1) +

qδ2

2σ2
log 2 .

Note that the use of Lemma 6.3.7 is valid since δ ≤ σ
√

2
q (q−1) by the assumption

on N .
It suffices to show that the Rényi term in the above display vanishes. To this

end, let Qn denote the transition kernel for the n-th step of the Markov chain,
i.e., ρQn = (ρPn) ∗ normal(0, σ2Id). Clearly Qn is Wψ2-Lipschitz with parameter c
since Wψ2(ρQn, ρ

′Qn) ≤ Wψ2(ρPn, ρ
′Pn) ≤ cWψ2(ρ, ρ

′) for any distributions ρ, ρ′.
Thus we may apply Lemma 6.3.7 N − 1 times to argue that

R(δ/c)
∞ (µN−1 ∥ µ′N−1) = R(δ/c)

∞ (µ0Q
N−1 ∥ µ′0QN−1)

≤ R(δ/cN )
∞ (µ0 ∥ µ′0)

= R
(Wψ2

(µ0,µ′0))
∞ (µ0 ∥ µ′0)

≤ R∞(µ′0 ∥ µ′0)
= 0 .

Here, the third step is by the choice of δ, and the fourth step is by definition of
R∞. The proof is complete by combining the above displays.

■ 6.4 Low-accuracy sampling with O(
√
d) complexity

The main result of the section is the first Rényi convergence guarantee for log-
concave sampling that requires a number of first-order queries that scales in the
dimension d only as

√
d. This improves over the state-of-the-art which has d2

scaling. This result is formally stated as follows.

Theorem 6.4.1 (Low accuracy sampling with O(
√
d) complexity). Suppose that

π ∝ exp(−V ) where V is α-strongly-convex and β-smooth, and let 0 < ε ≲ 1√
q
.

There is a randomized algorithm that, given knowledge of the minimizer of V and
access to

N = Õ
(κ3/2d1/2q1/2

ε

)
gradient queries for V , outputs a random point in Rd with µ satisfying

Rq(µ ∥ π) ≤ ε2 .

Remark 6.4.2 (Extension to arbitrary initialization). The algorithm in Theo-
rem 6.4.1 initializes at the Dirac distribution δx∗. This is reasonable because the
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cost of using gradient descent to compute x∗ approximately, using the same first-
order oracle access, is dominated by the cost of subsequently running the sampling
algorithm. If the algorithm is initialized at some other point x, the runtime only
increases by a logarithmic factor of logWψ2(δx, π), which is lower order unless x

is exponentially far from x∗, since Wψ2(δx, π) ≲
√
d/α+∥x−x∗∥ by Lemma 6.4.7

and the triangle inequality.

While the results of [Che+18b; DR20; Ma+21; Zha+23] have also shown

iteration complexities that scale in the dimension d as Õ(d1/2), a key difference is
that these results do not hold for Rényi divergences. In particular, past work has
only proven weaker mixing results in the Wasserstein metric or the KL divergence.
As discussed in the introduction, Wasserstein and KL guarantees are insufficient
for the purpose of warm-starting high-accuracy sampling algorithms—for this, it
is essential to have guarantees in the more stringent Rényi divergence. (Note that
Wasserstein bounds are weaker than KL bounds by Talagrand’s T2 inequality,
and moreover KL bounds are weaker than Rényi bounds by monotonicity of
Rényi divergences.) See §6.1.2 for a detailed discussion of this and of the many
longstanding technical difficulties involved with establishing Rényi guarantees.

The algorithm we use is underdamped Langevin Monte Carlo (ULMC) with
certain parameters (stated explicitly in the proof in §6.4.3). Background on this
algorithm is recalled in §6.4.1. At a high level, the proof of Theorem 6.4.1 uses the
weak triangle inequality for Rényi divergences to decompose the sampling error
of ULMC into the following two terms, both measured in Rényi divergence:

1. The “bias” error between the stationary distribution of ULMC and the target
distribution π.

2. The “discrete mixing” error of ULMC to its biased stationary distribution.

The bias error (1) is readily handled by recent results such as [GT20; Zha+23].
Bounding the discrete mixing error (2) is the key technical challenge; see §6.1.2
for a detailed discussion of the technical obstacles related to this, and the con-
nections to open problems about hypocoercivity in the PDE literature. The key
contribution of this section is to bound this quantity in Theorem 6.4.4 below. To
do this, we use the new shifted divergence technique developed in §6.3.

The section is organized as follows. In §6.4.1 we recall relevant background
about ULMC, in §6.4.2 we bound the discrete mixing error of ULMC, and in §6.4.3
we use this to prove Theorem 6.4.1. Remark about notation in this section: the
ULMC algorithm studied naturally operates on the augmented Hamiltonian state
space R2d, so in this section we use boldface to denote probability distributions on
R2d from non-boldfaced distributions on Rd. For example, we write π to denote
the target distribution π ⊗ normal(0, Id) in this augmented space.
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■ 6.4.1 Background on underdamped Langevin Monte Carlo

The exposition in this subsection is based on the corresponding section in [Che23];
we refer the interested reader there for further details.

Underdamped Langevin diffusion. Studied since the work of Kolmogorov in the
1930s [Kol34], the underdamped Langevin diffusion—sometimes also called the
kinetic Langevin diffusion—is the solution to the stochastic differential equation

dXt = Yt dt ,

dYt = −∇V (Xt) dt− γYt dt+
√

2γ dBt ,
(6.4)

where (Bt)t≥0 is a standard d-dimensional Brownian motion. Analogous to the
classical theory of convex optimization, here the auxiliary state variable Yt has the
physical interpretation of momentum, and the linking parameter γ has the physical
interpretation of friction. A related interpretation of the underdamped Langevin
diffusion is as a variant of the idealized Hamiltonian Monte Carlo algorithm, in
which the momentum is refreshed continuously rather than periodically. The
stationary distribution for this SDE is the joint distribution

π(x, y) ∝ exp
(
−V (x)− 1

2
∥y∥2

)
. (6.5)

In this section, we slightly abuse notation by using the boldface π to distinguish
this joint distribution on R2d from the target distribution π ∝ exp(−V ) on Rd; of
course the latter is the x-marginalization of the former.

A major obstacle for analyzing the convergence of the underdamped Langevin
diffusion is that this process exhibits hypocoercive dynamics, i.e., the standard
Markov semigroup approach based on isoperimetric inequalities does not work. It
is a longstanding question in PDE theory to develop general tools for establishing
fast convergence of hypocoercive dynamics; see §6.1.2. We bypass these issues by
instead developing tools for analyzing a discrete-time version of this diffusion.

Underdamped Langevin Monte Carlo. There are several ways to discretize the un-
derdamped Langevin diffusion. Perhaps the simplest way is the Euler–Maruyama
discretization, as is standard for defining (unadjusted) Langevin Monte Carlo.
However, for these underdamped Langevin dynamics, there is a better discretiza-
tion which dates back at least to 1980 [EB80], namely:

dXt = Yt dt

dYt = −∇V (Xnh) dt− γYt dt+
√

2γ dBt ,

for t ∈ [nh, (n+ 1)h]. This process is called underdamped Langevin Monte Carlo
(ULMC) or kinetic Langevin Monte Carlo; we use the former term in this chapter.
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The point of this discretization is that since the gradient is refreshed periodically
rather than continuously, the SDE is linear within these periods, and thus can
be integrated exactly in closed form (see, e.g., [Che+18b, Appendix A]). This
is called an “exponential integrator” in the lingo of numerical analysis, and is
formalized in the following lemma.

Lemma 6.4.3 (Explicit Gaussian law for ULMC iterates). Conditioned on the pre-
vious iterate (Xnh, Ynh), the law of (X(n+1)h, Y(n+1)h) is the Gaussian distribution
normal(F (Xnh, Ynh),Σ⊗ Id) where

F (x, y) :=
(
x+ γ−1 (1− a) y − γ−1 (h− γ−1 (1− a))∇V (x),

ay − γ−1 (1− a)∇V (x)
)

and

Σ :=

[ 2
γ

(h− 2
γ

(1− a) + 1
2γ

(1− a2)) 1
γ

(1− 2a+ a2)
1
γ

(1− 2a+ a2) 1− a2
]
.

Above, we use the notational shorthand a := exp(−γh).

In the rest of this section, we write P := P h,γ to denote the Markov transi-
tion kernel on R2d that corresponds to an iteration of ULMC. We suppress the
dependence of P on the parameters h and γ for simplicity of notation.

■ 6.4.2 Discrete mixing of underdamped Langevin Monte Carlo

Theorem 6.4.4 (Discrete mixing of ULMC). Suppose that π ∝ exp(−V ) where
V is α-strongly-convex and β-smooth. Let P denote the Markov transition kernel
for ULMC when run with friction parameter γ =

√
2β and step size h ≲ 1/(κ

√
β).

Then, for any target accuracy 0 < ε ≤
√

log 2
q−1 , any Rényi order q ≥ 1, and any

two initial distributions µ0,µ
′
0 ∈ P(R2d),

Rq(µ0P
N ∥ µ′

0P
N) ≤ ε2 ,

if the number of ULMC iterations is

N ≳

√
β

αh
log

(qW 2
ψ2

(M#µ0,M#µ
′
0)

β1/2 ε2 h3

)
,

where M is the linear map defined in (6.6).
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We remark that in a typical use case of this discrete mixing result, µ0 is
initialized at a product distribution of the form µ0⊗normal(0, Id), and is compared
to the target distribution µ′

0 = π = π ⊗ normal(0, Id). In this setting, the Orlicz–
Wasserstein metric in the upper bound can be simplified toWψ2(M#µ0,M#µ

′
0) ≤

2Wψ2(µ0, π).
To prove Theorem 6.4.4, we appeal to our shifted divergence technique devel-

oped in §6.3. This requires analyzing the ULMC iterates in a twisted norm, since
an iteration of the ULMC algorithm (or more precisely, the mean-shifting function
F defined in Lemma 6.4.3) is not contractive w.r.t. the standard Euclidean norm.
This twisted norm is the Euclidean norm after the change of coordinates

(u, v) :=M(x, y) :=
(
x, x+

2

γ
y
)
. (6.6)

In these new coordinates, the mean of the next iterate of ULMC started at (u, v)
is F̄ (u, v), where F̄ = M◦ F ◦M−1. Since M−1(u, v) = (u, γ

2
(v − u)), we can

explicitly write

F̄ (u, v) =
(
u+

1− a
2

(v − u)− h− γ−1 (1− a)

γ
∇V (u),

u+
1 + a

2
(v − u)− h+ γ−1 (1− a)

γ
∇V (u)

)
.

(6.7)

By Lemma 6.4.3, conditioned on (Unh, Vnh), the law of (U(n+1)h, V(n+1)h) is the
Gaussian distribution normal(F̄ (Unh, Vnh), Σ̄⊗ Id) where

Σ̄ =MΣMT . (6.8)

We make use of the following two helper lemmas about the dynamics of ULMC
in this twisted norm. The first helper lemma shows that the ULMC algorithm
sends two iterates to Gaussians with means that are closer in the twisted norm
than the original iterates. Since the two Gaussians have the same covariance
Σ̄⊗ Id, this implies that the ULMC Markov transition kernel P is contractive in
Wψ2 , which will allow us to use our new shifted divergence technique from §6.3.
This lemma first appeared in the recent paper [Zha+23]; for completeness, a proof
is provided in §6.7.1.

Lemma 6.4.5 (Contractivity of ULMC in the twisted norm). Suppose that π ∝
exp(−V ) where V is α-strongly-convex and β-smooth. For step size h ≲ 1 and
friction parameter γ =

√
2β, the function F̄ : R2d → R2d defined in (6.7) is a

contraction with
∥F̄∥Lip ≤ 1− α√

2β
h+O(βh2) .
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The second helper lemma estimates the noise of ULMC in this twisted norm.
The proof is an explicit computation and is provided in §6.7.2.

Lemma 6.4.6 (Noise of ULMC in the twisted norm). Suppose that h ≲ 1/γ.
Then the matrix Σ̄ defined in (6.8) satisfies

λmin(Σ̄) =
γh3

6

(
1−O(γh)

)
.

Armed with Lemmas 6.4.5 and 6.4.6, we are now ready to prove Theorem 6.4.4.

Proof of Theorem 6.4.4. We let {µn}n≥0 and {µ′
n}n≥0 denote the two processes

µn = µ0P
n and µ′

n = µ′
0P

n obtained by running ULMC from initialization
distributions µ0 and µ′

0, respectively. Define twisted processes {νn}n≥0 and
{ν′

n}n≥0 by νn =M#µn and ν′
n =M#µ

′
n, whereM is the change-of-coordinates

matrix defined in (6.6). Since M is invertible, applying the data-processing
inequality for Rényi divergences (Lemma 2.2.19) in both directions implies

Rq(µN ∥ µ′
N ) = Rq(νN ∥ ν′

N ) .

We now show that the latter term is at most ε2. For shorthand, define
λ := λmin(Σ̄) and define Q to be the Markov operator given by νQ = F̄#ν ∗
normal(0, Σ̄⊗ Id − λI2d). Then by Lemma 6.4.3 and a change of measure, the law
of νn+1 is

F̄#νn ∗ normal(0, Σ̄⊗ Id) = νnQ ∗ normal(0, λI2d) .

Similarly, the law of ν′
n+1 is

F̄#ν
′
n ∗ normal(0, Σ̄⊗ Id) = ν′

nQ ∗ normal(0, λI2d) .

Thus, letting c denote the Lipschitz constant of the Markov operator Q w.r.t. the
Wψ2 metric, we may invoke10 the new shifted divergence result (Theorem 6.3.1)
to bound

Rq(νN ∥ ν′
N ) ≤ c2N

q

2λ
W 2
ψ2

(ν0,ν
′
0) . (6.9)

We now use the two helper lemmas to quantify the various terms in (6.9).
First, by a simple coupling argument and then an application of Lemma 6.4.5,
the Markov operator Q is Wψ2-contractive with parameter c, where

c ≤ ∥F̄∥Lip ≤ exp
(
−Ω

( αh√
β

))
.

10The application of this result requires the number of iterations N to be large enough that the
right hand side of (6.9), later set to ε2, is at most (log 2)/(q− 1). But this holds by assumption.
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Second, because ULMC is run with step size h ≲ 1/γ, Lemma 6.4.6 implies

λ = Ω
(√

β h3
)
.

Therefore, by combining the above displays, we conclude that

Rq(µN ∥µ′
N ) = Rq(νN ∥ν′

N ) ≲ exp

(
−Ω

( αh√
β
N
)) q√

β h3
W 2
ψ2

(M#µ0,M#µ
′
0) .

Setting this bound to ε2 and solving for N completes the proof.

■ 6.4.3 Warm start with underdamped Langevin Monte Carlo

We begin by bounding the distance to the target at initialization. We emphasize
that this initialization is not a warm start. Indeed, this initialization is even
weaker than what is typically called a “feasible start” in the literature (namely
normal(x∗, β−1Id)), and moreover can be further relaxed to an arbitrary initial-
ization x0 so long as the distance between x0 and the mode x∗ of the target
distribution is sub-exponentially large (since our final bound depends only loga-
rithmically on this distance).

Lemma 6.4.7 (Orlicz–Wasserstein distance at initialization). Suppose that π ∝
exp(−V ) where V is α-strongly convex. Let x∗ denote the minimizer of V . Then

Wψ2(δx∗ , π) ≤ 6
√
d/α .

Proof. Let X ∼ π and define Y := ∥X − x∗∥. By definition of the Orlicz–
Wasserstein metric,

Wψ2(δx∗ , π) = ∥X − x∗∥ψ2 = ∥Y ∥ψ2 = inf

{
λ > 0 : E exp

(Y 2

λ2

)
≤ 2

}
.

By the elementary inequality (a+ b)2 ≤ 2 (a2 + b2), we can bound

Y 2 = (Y − EY + EY )2 ≤ 2E[Y ]2 + 2 (Y − EY )2 .

Thus

E exp
(Y 2

λ2

)
≤ exp

(2E[Y ]2

λ2

)
· E exp

(2 (Y − EY )2

λ2

)
.

For the first term, use the basic inequality E[Y ]2 ≤ E[Y 2] and a standard second-
moment-type bound for strongly log-concave distributions (Lemma 2.2.13) to
obtain

exp
(2E[Y ]2

λ2

)
≤ exp

( 2d

αλ2

)
.
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For the second term, we use sub-Gaussian concentration. Specifically, combining
the log-Sobolev inequality on π with the fact that Y = ∥X − x∗∥ is a 1-Lipschitz
function of X ∼ π, it follows that Y − EY is sub-Gaussian with variance proxy
1/α (Lemma 2.2.9). Therefore, by a standard moment generating function bound
for the square of a sub-Gaussian random variable (see, e.g., [BLM13, §2.3]),

E exp
(2 (Y − EY )2

λ2

)
≤ 216/(αλ2) ,

for any λ2 ≥ 16/α. By combining the above displays and setting λ =
√

32d/α,
we conclude that

E exp
(Y 2

λ2

)
≤ exp

( 2d

αλ2
+

16 log 2

αλ2

)
≤ exp(log 2) = 2 .

Therefore this choice of λ is an upper bound on Wψ2(δx∗ , π).

The second lemma uses Girsanov’s theorem to bound the bias of ULMC.
Here, we build upon recent advances in the literature on Rényi discretization of
stochastic processes. Beginning with the works [GT20; EHZ22] and culminating in
the results of §3, it is now understood that the Girsanov discretization technique
leads to bias bounds for LMC in Rényi divergence matching prior results which
only held for weaker divergences, and yet remains flexible enough to cover varying
assumptions. The recent paper [Zha+23] extends this technique for ULMC. Since
the results of [Zha+23] hold under more general assumptions at the expense of a
more involved analysis, and in the interest of keeping our derivations more self-
contained, in §6.7.3 we simplify and streamline the Girsanov argument of [Zha+23]
for our setting of interest. In order to clarify where the d1/2 comes from, we write
the final bound in terms of the total elapsed continuous time T = Nh rather than
the number of iterations N .

Lemma 6.4.8 (Bias of ULMC). Suppose that V is α-strongly-convex and β-
smooth. Let π(x, y) ∝ exp(−V (x)− 1

2
∥y∥2), and let P denote the Markov transi-

tion kernel corresponding to an iteration of ULMC with friction parameter γ ≍ √β
and step size h ≲ 1

β3/4d1/2q (T logN)1/2
, where N is the total number of iterations and

T = Nh is the total elapsed time. Then,

Rq(πP
N ∥ π) ≲ β3/2dh2qT .

Proof of Theorem 6.4.1. Consider the following algorithm: run ULMC for N itera-
tions from initialization µ0 = δx∗⊗normal(0, Id) to obtain an iterate (X, Y ) ∈ R2d,
and then output X. We show that for a certain setting of the ULMC parameters,
this algorithm satisfies the guarantees of the theorem.
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To this end, given a joint distribution ν ∈ P(R2d) ∼= P(Rd×Rd), let (Πx)#ν ∈
P(Rd) denote the marginal on the first d coordinates, where Πx : R2d → Rd

maps (x, y) 7→ x. Then in particular, the law of the algorithm’s output is µ :=
(Πx)#(µ0P

N), and the target distribution is π = (Πx)#π. Thus by the data-
processing inequality for Rényi divergences (Lemma 2.2.19), the sampling error
of the algorithm is bounded by

Rq(µ ∥ π) ≤ Rq(µ0P
N ∥ π) .

By the weak triangle inequality for Rényi divergence (Lemma 2.2.23), we can
further bound this by

Rq(µ0P
N ∥ π) ≤ q − 1/2

q − 1
R2q(µ0P

N ∥ πP n) + R2q−1(πP
N ∥ π) . (6.10)

The coefficient (q−1/2)/(q−1) can be crudely bounded by 2, say, since it suffices
to bound the Rényi divergence error for q ≥ 3/2 (indeed, monotonicity of Rényi
divergences in the order q then implies the same bound for q < 3/2).

Now, by combining our discrete mixing result for ULMC (Theorem 6.4.4), our
initialization bound (Lemma 6.4.7), and the ULMC bias bound (Lemma 6.4.8),
we conclude that

Rq(µ0P
N ∥ π) ≤ ε2 , (6.11)

if ULMC is run with friction parameter γ, step size h, and iteration complexity
N that satisfy:

γ =
√

2β and h ≲
ε

β3/4d1/2q1/2T 1/2
and N ≳

√
β

αh
log

( dq

αβ1/2ε2h3

)
.

By recalling that T := Nh, solving for these choices of parameters, and omitting
logarithmic factors, we conclude that it suffices to run ULMC with the following
choices of parameters:

γ =
√

2β and h = Θ̃
( εα1/2

βd1/2q1/2

)
and N = Θ̃

(κ3/2d1/2q1/2
ε

)
.

■ 6.5 High-accuracy sampling with O(
√
d) complexity

Establishing fast mixing results for MALA is a longstanding problem. As detailed
in §6.1, recent breakthroughs have made it clear that the key barrier for fast
mixing of MALA is the question of warm starts. In this section, we use the faster
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low-accuracy sampling result developed in §6.4 to efficiently warm start MALA.
This leads to the fastest known high-accuracy sampling algorithms not only in
strongly log-concave settings (details in §6.5.1), but also in weakly-log-concave and
isoperimetric, non-log-concave settings (details in §6.5.2), for which we improve
over state-of-the-art query complexity results by a factor of

√
d.

■ 6.5.1 Strongly-log-concave setting

Here we improve the query complexity for high-accuracy sampling from a strongly
log-concave target distribution to Õ(κd1/2 polylog(1/ε)). This result is formally
stated as follows.

Theorem 6.5.1 (Faster high-accuracy sampler for well-conditioned targets). Sup-
pose that π ∝ exp(−V ) where V is α-strongly-convex and β-smooth. There is an
algorithm with randomized runtime that, given knowledge of the minimizer of V
and access to N first-order queries for V , outputs a random point in Rd with law
µ satisfying d(µ ∥ π) ≤ ε for any of the following metrics:

d ∈ {TV,
√
KL,

√
χ2,
√
αW2} .

Moreover, for any δ ∈ (0, 1) with probability at least 1− δ, the number of queries
made satisfies

N ≤ Õ
(
κd1/2 log4 max

{1

ε
, log

1

δ

})
.

In analogy to the familiar concept from algorithm design for deterministic
problems [Cor+09], the algorithm in Theorem 6.5.1 may be called a “Las Vegas”
algorithm because it has a randomized runtime which is small with high probability.
The fact that this runtime is randomized is not an issue in practice because the
iteration complexity depends on a quantity that is efficiently estimable during the
execution of the algorithm.

In the rest of this subsection, we overview the algorithm in Theorem 6.5.1
and its analysis; see §6.8 for full technical details. This algorithm combines
three algorithms as building blocks: ULMC, MALA, and the proximal sampler
algorithm. Let us explain this by building up to the full complexity in two steps—
both because this will motivate why all three algorithmic components are needed,
and also because this is how our analysis actually proceeds.

Weak version of Theorem 6.5.1 (full details in §6.8.1). First, consider the following
simplified version of the algorithm in Theorem 6.5.1 which is only comprised of two
algorithmic components: run ULMC, and then use this as a warm start for MALA.
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In order to argue that this two-phase algorithm mixes rapidly, we crucially use
our result from §6.4 to guarantee that ULMC mixes to constant Rényi divergence
error in a number of iterations that scales in the dimension d as Õ(d1/2) rather

than Õ(d). This allows us to provide an algorithm for warm-starting MALA which
is not significantly slower than MALA is when initialized from a warm start. In
other words, this lets us exploit, for the first time, the results of §5 and [WSC22]

which show that the mixing time of MALA scales in the dimension as Õ(d1/2)

rather than Õ(d) when it is initialized at a warm start rather than a feasible start.
We recall that such an improvement cannot be obtained without the warm start,
due to the lower bound of [LST21a]. This leads to a final runtime of roughly

Õ(κ3/2d1/2 + κd1/2 polylog(1/ε)); a formal statement is given in Theorem 6.8.1.
However, while this simple combination of ULMC and MALA achieves the

desired dependence on the dimension d, it leads to a suboptimal dependence
on the condition number κ, namely Õ(κ3/2) rather than Õ(κ). This worsened
dependence in κ arises from the state-of-the-art bounds on the discretization of
ULMC [Zha+23]. For full details on this weak version of Theorem 6.5.1, see §6.8.1.

The full version of Theorem 6.5.1 (full details in §6.8.2). In order to improve the
condition number dependence of the weak version of Theorem 6.5.1, we require an
extra algorithmic component: the recently proposed proximal sampler algorithm.
See §4 for background on this proximal sampler algorithm. Briefly, this algorithm
reduces the problem of sampling a strongly log-concave distribution with condition
number κ, to the the problem of sampling Õ(κ) related strongly log-concave
distributions each with constant condition number. The upshot is that the latter
can be accomplished in the desired Õ(κd1/2 polylog(1/ε)) runtime by using the
weak version of the algorithm since each sampling subproblem is well-conditioned.

Mixing in Rényi divergence. While the main conceptual innovation here is the high-
level strategy of combining these three algorithmic building blocks, we remark that
an additional technical obstacle for proving Theorem 6.5.1 is showing mixing in
more stringent notions of distance than TV. See the discussion in §6.1.2. Indeed,
while our new ULMC result proves fast mixing in Rényi divergence, existing results
on MALA and its combination with the proximal sampler are limited to TV. We
boost this mixing in TV to Rényi divergences (and thus all the other desired
metrics by standard comparison inequalities) using two additional ideas.

The first improves mixing bounds for the proximal sampler from TV to Rényi
divergence. To do this, we control the propagation of error when each step of the
proximal sampler algorithm is performed approximately in Rényi divergence. As
we show, this is readily accomplished by appealing to the “strong composition
rule” of Rényi divergences from the differential privacy literature.
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The second improves mixing bounds for MALA from TV to Rényi divergence.
We accomplish this by further exploiting the fact that MALA is warm started
in Rényi divergence. Note that this means we use the Rényi warm start in two
ways: first to show that MALA mixes fast in TV, which is what we can conclude
from the above argument and appealing to §5 and [WSC22]; and second, to boost
the TV bound at the final iterate to a more stringent bound. We isolate this
TV-to-Rényi boosting technique in the following simple lemma as it may be of
independent interest: indeed, since it uses the TV mixing bound in an entirely
black-box way, this lemma may be useful for establishing Rényi mixing of other
warm-started algorithms. This lemma improves upon Lemma 5.6.16 because that
result required a warm-start in R∞ which is currently unavailable algorithmically,
whereas this lemma here only requires the weaker condition of a warm start in a
Rényi divergence of finite order (stated here with q = 3 for simplicity).

Lemma 6.5.2 (Boosting TV to Rényi mixing given Rényi warm start). Let P
be a Markov transition kerrnel which has stationary distribution π. Consider
running P from any initialization distribution for N steps to obtain a distribution
µN := µ0P

N . Then

χ2(µN ∥ π) ≤
√

TV(µN , π) ·
(
exp(2R3(µ0 ∥ π)) + 1

)
.

See §4 and §5 for background on the proximal sampler and MALA, respec-
tively; and see §6.8.1 and §6.8.2 for proofs of the weak version and full version of
Theorem 6.5.1, respectively.

■ 6.5.2 Extensions to weakly-log-concave and non-log-concave settings

Our faster algorithm for sampling from well-conditioned targets (Theorem 6.5.1)
yields faster samplers for a variety of other settings, due essentially to the re-
ductions in §4. We present here several such extensions that concern target
distributions which satisfy isoperimetric inequalities, which is quite flexible in
the sense that this allows for non-log-concavity and also is preserved under, e.g.,
bounded perturbations and Lipschitz mappings. See §2.2 for background on these
isoperimetric inequalities.

A comment on notation for these isoperimetric settings: we still use the con-
dition number κ to denote the ratio κ = β/α, but now α denotes the (inverse)
parameter of an isoperimetric bound, rather than the parameter for strong con-
vexity. The motivation behind this notation is that α-strong-convexity implies the
log-Sobolev inequality with parameter 1/α, which in turn implies the Poincaré
inequality with parameter 1/α (see Lemma 2.2.8).
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In this section, for simplicity of exposition, in addition to the first-order oracle
for V we also assume access to a prox oracle which can compute the proximal
operator for V with step size h = 1

2β
, namely for any y ∈ Rd the oracle returns

return proxhV (y) := arg minx∈Rd{V (x) + 1
2h
∥y − x∥2}. Note that for this choice

of step size, computing the proximal operator is a strongly convex and smooth
optimization problem with condition number O(1), so this can be done with off-
the-shelf optimization methods such as gradient descent. We emphasize, however,
that this assumption is only made to ease the presentation of the results, and
more detailed results without this assumption are provided in [AC23].

Theorem 6.5.3 (Faster high-accuracy sampling from LSI targets). Suppose that
π ∝ exp(−V ) satisfies 1/α-LSI and that V is β-smooth. There is an algorithm
that, given access to a first-order + prox oracle for V and initialized at µ0, outputs
a random point with law µ satisfying d(µ ∥π) ≤ ε for any of the following metrics:

d ∈ {TV,
√
KL,

√
χ2,
√
αW2} ,

using at most

N = Õ

(
κd1/2 log

(R2(µ0 ∥ π)

ε2

)
log3

(1

ε

))
queries .

Theorem 6.5.4 (Faster high-accuracy sampling from PI targets). Suppose that
π ∝ exp(−V ) satisfies 1/α-PI and that V is β-smooth. There is an algorithm
that, given access to a first-order + prox oracle for V and initialized at µ0, outputs
a random point with law µ satisfying d(µ ∥π) ≤ ε for any of the following metrics:

d ∈ {TV,
√
KL,

√
χ2,
√
αW2} ,

using at most

N ≤ Õ

(
κd1/2 log

(χ2(µ0 ∥ π)

ε2

))
queries .

Remark 6.5.5 (Extensions to Lata la–Oleszkiewicz targets). Just as in §4, we
could also obtain a result for distributions satisfying a Lata la–Oleszkiewicz inequal-
ity, which interpolates between PI and LSI. In this setting, we again improve over
the previous state-of-the-art bounds by a factor of d1/2. However, for the sake
of brevity, we omit this extension as it is conceptually similar but requires more
involved technical details.

These results are the direct analogs of the complexity results in Corollary 4.3.7,
but here with a dimension dependence that is improved by a factor of d1/2.
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We mention another consequence of our improved high-accuracy sampler for
the strongly-log-concave setting. Namely, via the same proximal reduction frame-
work, this gives the following alternative complexity bound for target distributions
which are (non-strongly) log-concave, sometimes called weakly-log-concave. This
bound is a direct analog of Corollary 4.3.6, but here with a dimension dependence
that is also improved by a factor of d1/2. Note that this theorem is a low-accuracy
guarantee; one can also obtain high-accuracy samplers from our results in this log-
concave setting by using the fact that log-concavity implies a Poincaré inequality,
albeit with a function-dependent constant [KLS95], and then appealing to Theo-
rem 6.5.4. The resulting low-accuracy and high-accuracy results are incomparable
in the sense that each can dominate in different settings—but in any case, our
theorems for both settings yield improvements by a factor of d1/2.

Theorem 6.5.6 (Faster low-accuracy sampling from log-concave targets). Suppose
that π ∝ exp(−V ), where V is convex and β-smooth. There is an algorithm that,
given access to a first-order + prox oracle for V and initialized at µ0, outputs a
random point in Rd with law µ satisfying KL(µ ∥ π) ≤ ε2, using at most

N ≤ Õ

(
βd1/2W 2

2 (µ0, π)

ε2

)
queries .

Proofs for the results in this section are provided in §6.8. At a high level,
the proof of all these results use the same reduction to the problem of sampling
from well-conditioned distributions. This reduction is based on the proximal
sampler of §4 and lets us apply our improved sampler for the well-conditioned case
(Theorem 6.5.1). In each case, however, we must track the propagation of error
due to the inexact implementation of the backwards step of the proximal sampler,
which was not previously done in any work except for in the TV distance.

In [AC23], we provide more explicit, albeit more complicated, statements of
these results to address the following two points. (1) The above results depend
on the initialization (through W2(µ0, π), R2(µ0 ∥ π), or χ2(µ0 ∥ π)) and it may be
unclear how large these quantities are in a given application. (2) We assumed
that the algorithm has access to a stronger oracle than just a first-order oracle
for V , namely, we also assumed access to a prox oracle for hV with h = 1

2β
. We

address (1) by explicitly bounding these initialization quantities in terms of other,
more easily computable problem parameters, and we address (2) by removing the
assumption of a prox oracle.
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■ 6.6 Deferred details for §6.3

■ 6.6.1 Proof for Remark 6.3.4

Here, we prove the inequality in Remark 6.3.4, repeated here for convenience:

1√
p
Wp ≲ Wψ2 ≤

1√
log 2

W∞ . (6.12)

Bounding Wp by Wψ2 . By [Ver18, Proposition 2.5.2], if (X, Y ) is an optimal cou-
pling of µ and ν for the Wψ2 distance, then

Wp(µ, ν) ≤ E[∥X − Y ∥p]1/p ≲ √p ∥X − Y ∥ψ2 = Wψ2(µ, ν) .

Bounding Wψ2 by W∞. Observe that for any random variable Z, if we denote
∥Z∥∞ := ess sup ∥Z∥, then we can bound

E
[
ψ2

( Z

∥Z∥∞/
√

log 2

)]
= E

[
exp

( ∥Z∥2
∥Z∥2∞

· log 2
)
− 1

]
≤ exp(log 2)− 1 = 1 ,

and therefore ∥Z∥ψ2 ≤ ∥Z∥∞/
√

log 2 by the definition of the Orlicz norm. Now,
applying this bound to the random variable Z = X − Y , we conclude that

Wψ2(µ, ν) = inf
(X,Y )∈C(µ,ν)

∥X − Y ∥ψ2 ≤
1√

log 2
inf

(X,Y )∈C(µ,ν)
∥X − Y ∥∞

=
1√

log 2
W∞(µ, ν) .

■ 6.6.2 Remarks on tightness of Lemma 6.3.7

Here we remark that, conditional on the following plausible conjecture, the gener-
alized version of Lemma 6.3.7 (as stated in Remark 6.3.8) is tight. This conjecture
states that the shifted Rényi divergence between two isotropic Gaussians with
same covariance is achieved by a deterministic shift. Understanding this simple
case could be more broadly helpful for understanding tightness of other inequalities
and analyses using the shifted Rényi divergence.

Conjecture 6.6.1. For any Rényi order q ≥ 1, noise variance σ2 > 0, shift
w ≥ 0, and mean x ∈ Rd,

R(w)
q

(
normal(x, σ2Id)

∥∥ normal(0, σ2Id)
)

= Rq

(
normal(cx, σ2Id)

∥∥ normal(0, σ2Id)
)

=
c2q ∥x∥2

2σ2
,

where c := max(0, 1− w√log 2/∥x∥).
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Of course, the conjecture here is the first equality (the second equality is
just the closed-form expression for the Rényi divergence between Gaussians in
Lemma 2.2.21). The direction “≤” is clear because normal(cx, σ2Id) satisfies

Wψ2

(
normal(x, σ2Id), normal(cx, σ2Id)

)
≤ ∥x− cx∥ψ2 =

1− c√
log 2

∥x∥ ≤ w ,

and therefore is feasible for the optimization problem defining the shifted Rényi
divergence. The direction “≥” is the one requiring justification.

In the rest of this subsection, we show the claimed tightness assuming Con-
jecture 6.6.1. Fix any Rényi order q ≥ 1, noise variance σ2 > 0, and initial shift
w ≥ 0. Consider distributions µ = δae1 and ν = δ0, where a > w

√
log 2. We claim

that the bound in Remark 6.3.8 holds with equality when its parameters δ, λ are
optimized; that is,

R(w)
q

(
µ ∗ normal(0, σ2Id)

∣∣ ν ∗ normal(0, σ2Id)
)

= inf
δ>0, λ∈[0,1]

[
R

(w+δ)
(q+λ−1)/λ(µ ∥ ν) +

(q − λ) δ2

2 (1− λ)σ2
log 2

]
.

(6.13)

To this end, supposing Conjecture 6.6.1 holds, the left hand side of (6.13) is
equal to

R(w)
q

(
normal(ae1, σ

2Id)
∥∥ normal(0, σ2Id)

)
= Rq

(
normal((a− w

√
log 2) e1, σ

2Id)
∥∥ normal(0, σ2Id)

)
=
q (a− w√log 2)

2

2σ2
.

On the other hand, note that R
(w+δ)
(q+λ−1)/λ(µ∥ν) is equal to 0 if a ≤ (w+δ)

√
log 2,

and otherwise is equal to∞. This means that the optimal value of δ is a/
√

log 2−w.
Thus the right hand side of (6.13) simplifies to

inf
λ∈[0,1]

(q − λ) (a− w√log 2)
2

2 (1− λ)σ2
=
q (a− w√log 2)

2

2σ2
,

where the final step is because the optimal value of λ is at λ = 0. We conclude
that the left- and right-hand sides of (6.13) indeed match, as desired.

■ 6.6.3 Proof for Remark 6.3.9

Here we provide details for why Lemma 6.3.7 fails if the shifted Rényi divergence
is defined using the Wp metric for any p finite, or alternatively with the Orlicz–
Wasserstein metric with any Orlicz norm that is weaker than sub-Gaussian (i.e.,
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with Orlicz function ψb(x) := exp(xb)− 1 for b < 2). Specifically, for any of these
Wasserstein metrics W , we claim that if µ is the distribution on R with density
proportional to exp(−| · |a) for an appropriate constant a < 2, and ν = δ0, then:

(i) W (µ, ν) <∞.

(ii) Rq(µ ∗ normal(0, σ2) ∥ ν ∗ normal(0, σ2)) =∞.

This comprises a counterexample to Lemma 6.3.7 by taking w = 0 and δ = W (µ, ν)
and noting that if δ > σ/

√
(2q − 1)(q − 1), then we can simply dilate the space

(i.e., replace µ(x) by µb(x) ∝ µ(bx) for a sufficiently large b > 0) and repeat the
same argument.

Proof of (i). In the case that W = Wp, then Wp(µ, ν) is equal to the p-th norm
of µ, which is finite for any p <∞. In the case that W is an Orlicz–Wasserstein
norm with Orlicz norm weaker than sub-Gaussian, then W (µ, ν) is equal to the
Orlicz norm of ν, which is finite if we choose a = b.

Proof of (ii). Note that µ∗normal(0, σ2) is not sub-Gaussian, yet ν∗normal(0, σ2) =
normal(0, σ2) is sub-Gaussian. We may therefore appeal to the fact that the Rényi
divergence is infinite whenever the first argument is not sub-Gaussian, but the
second argument is. For a proof of this fact in the case that q = 2, see Lemma 3.6.9;
this proof readily extends to any finite q ∈ (1,∞) by replacing the Cauchy–Schwarz
inequality by Hölder’s inequality.

■ 6.7 Deferred details for §6.4

■ 6.7.1 Proof of Lemma 6.4.5

Compute the partial derivatives

∂uF̄ (u, v)u =
1 + a

2
Id −

h− γ−1 (1− a)

γ
∇2V (u) ,

∂uF̄ (u, v)v =
1− a

2
Id −

h+ γ−1 (1− a)

γ
∇2V (u) ,

∂vF̄ (u, v)u =
1− a

2
Id ,

∂vF̄ (u, v)v =
1 + a

2
Id .

Since 1
γ

(h− γ−1 (1− a)) = O(h2), we have

∥∇F̄ (u, v)∥op ≤
1

2

∥∥∥[(1 + a) Id (1− a) Id − b∇2V (u)
(1− a) Id (1 + a) Id

]
︸ ︷︷ ︸

=:A

∥∥∥
op

+O(βh2) ,
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where we use the notational shorthand b := 2
γ

(h+ γ−1 (1− a)).
To bound this operator norm, we compute:

AAT =

[
(1 + a)2 Id + ((1− a) Id − b∇2V (u))

2
2 (1− a2) Id − (1 + a) b∇2V (u)

2 (1− a2) Id − (1 + a) b∇2V (u) ((1− a)2 + (1 + a)2) Id

]
Since 1− a = O(γh) and b = O(h/γ), we can approximate AAT by the following
matrix B with error∥∥∥AAT − 2

[
(1 + a2) Id (1− a2) Id − b∇2V (u)

(1− a2) Id − b∇2V (u) (1 + a2) Id

]
︸ ︷︷ ︸

=:B

∥∥∥
op

= O
(β2h2

γ2
+ βh2

)
.

By a direct computation, the eigenvalues of B are 1 + a2± (1− a2− bλ), where λ
ranges over the eigenvalues of ∇2V (u). The strong-convexity and smoothness of
V implies that λ ∈ [α, β]. Thus

∥B∥op ≤ max{2a2 + βb, 2− αb} .

We note that

2a2 + βb = 2 exp(−2γh) +
2β (h+ γ−1 (1− exp(−γh)))

γ

= 2
(

1− 2γh+
2βh

γ
+O(γ2h2 + βh2)

)
.

In order for this to be strictly smaller than 2, we must take γ >
√
β. We choose

γ =
√

2β, whereby

∥B∥op ≤ 2 max
{

1− h
√

2β, 1− αh
√

2/β
}

+O(βh2)

= 2
(

1− αh
√

2/β
)

+O(βh2) .

We deduce that

∥AAT∥op ≤ 4
(

1− αh
√

2/β
)

+O(βh2)

and therefore

∥∇F̄ (u, v)∥op ≤
√

1− αh
√

2

β
+O(βh2) ≤ 1− α√

2β
h+O(βh2) .
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■ 6.7.2 Proof of Lemma 6.4.6

By definition of M and Σ,

Σ̄ =MΣMT =
1

γ2

[
2γh+ 4a− a2 − 3 2γh+ a2 − 1

2γh+ a2 − 1 2γh+ 5− a2 − 4a

]
.

The smallest eigenvalue of this matrix is

λmin(Σ̄) =
1

2

(
tr(Σ̄)−

√
tr(Σ̄)

2 − 4 det(Σ̄)
)

=
1

γ2

(
2γh+ 1− a2 −

√
17− 32a+ 14a2 + a4 − 4γh+ 4a2γh+ 4γ2h2

)
=
γh3

6

(
1− γh

2
+
γ2h2

240
− · · ·

)
.

Above, the first step is by the explicit formula for the eigenvalues of a 2×2 matrix;
the second step is by plugging in the entries of Σ̄ and simplifying; and the third
step is by performing a Taylor expansion in the variable γh.

■ 6.7.3 Proof of Lemma 6.4.8

We invoke the following result, which appears as Lemma 26 in [Zha+23].

Proposition 6.7.1 (Movement bound for underdamped Langevin). Let (Xt, Yt)t≥0
denote the continuous-time underdamped Langevin diffusion (6.4) with potential
V that is β-smooth and minimized at x∗. Assume that 0 < h ≲ 1√

β∨γ and

0 ≤ λ ≲ 1
γdh3

. Then, conditioned on (X0, Y0),

logE exp
(
λ sup
t∈[0,h]

∥Xt −X0∥2
)
≲

(
β2h4 ∥X0 − x⋆∥2 + h2 ∥Y0∥2 + γdh3

)
λ .

Proof. This result can be easily adapted from the proof of [Zha+23, Lemma
26], noting that in our situation the bound simplifies as we are assuming ∇V is
β-Lipschitz rather than merely Hölder continuous.

We let Π̂T , ΠT denote the path measures (i.e., probability measures over
C([0, T ];Rd)) for the discretized and continuous underdamped Langevin processes
respectively, both started at the stationary measure π. Girsanov’s theorem [Le
16, Theorem 5.22] yields

dΠ̂T

dΠT

= exp
N−1∑
k=0

( 1√
2γ

∫ (k+1)h

kh

⟨∇V (Xt)−∇V (Xkh), dBt⟩
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− 1

4γ

∫ (k+1)h

kh

∥∇V (Xt)−∇V (Xkh)∥2 dt
)

=: expMT ,

provided that Novikov’s condition (see [Le 16, Theorem 5.23]) holds:

EΠT
exp

N−1∑
k=0

1

4γ

∫ (k+1)h

kh

∥∇V (Xt)−∇V (Xkh)∥2 dt <∞ . (6.14)

Assuming for the moment that (6.14) is indeed verified, Itô’s formula yields

EΠT

[(dΠ̂T

dΠT

)q]− 1

=
q (q − 1)

4γ
EΠT

N−1∑
k=0

∫ (k+1)h

kh

exp(qMt) ∥∇V (Xt)−∇V (Xkh)∥2 dt

≤ q2

4γ

N−1∑
k=0

∫ (k+1)h

kh

√
EΠT

exp(2qMt) EΠT
[∥∇V (Xt)−∇V (Xkh)∥4] dt .

Bounding the first term. For t ∈ [kh, (k + 1)h], let ∆t := ∇V (Xt)−∇V (Xkh). By
the Cauchy–Schwarz inequality,

EΠT
exp(2qMt) ≤

√√√√EΠT
exp

N−1∑
k=0

∫ (k+1)h∧t

kh

(2
√

2 q√
γ
⟨∆s, dBs⟩ −

4q2

γ
∥∆s∥2 ds

)
︸ ︷︷ ︸

(†)

×

√√√√EΠT
exp

N−1∑
k=0

∫ (k+1)h∧t

kh

(4q2

γ
− q

γ

)
∥∆s∥2 ds .

We claim that the term marked (†) equals 1; this would follow if the quantity
inside the expectation is a martingale. In general, it is only a local martingale, but
it is a bona fide martingale provided that Novikov’s condition holds: it suffices if

EΠT
exp

N−1∑
k=0

4q2

γ

∫ (k+1)h

kh

∥∇V (Xt)−∇V (Xkh)∥2 dt <∞ . (6.15)

Note that this condition is stronger than (6.14).
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Towards this end, we bound, for a parameter p ≥ 1 to be chosen later,11

EΠT
exp

N−1∑
k=0

4q2

γ

∫ (k+1)h

kh

∥∇V (Xt)−∇V (Xkh)∥2 dt

≤ EΠT
exp

N−1∑
k=0

4β2q2

γ

∫ (k+1)h

kh

∥Xt −Xkh∥2 dt

≤ EΠT
exp max

k=0,1,...,N−1
sup

t∈[kh,(k+1)h]

4β2q2T

γ
∥Xt −Xkh∥2

≤
{
EΠT

exp max
k=0,1,...,N−1

sup
t∈[kh,(k+1)h]

4β2pq2T

γ
∥Xt −Xkh∥2

}1/p

≤ N1/p

{
max

k=0,1,...,N−1
EΠT

exp sup
t∈[kh,(k+1)h]

4β2pq2T

γ
∥Xt −Xkh∥2

}1/p

.

By conditioning on (Xkh, Ykh) and applying Proposition 6.7.1, this is bounded by

· · · ≤ N1/p

{
max

k=0,1,...,N−1
EΠT

exp

(
O
(β2pq2T

γ
(β2h4 ∥Xkh − x∗∥2

+ h2 ∥Ykh∥2 + γdh3)
))}1/p

provided that h ≲ 1
β2/3d1/3p1/3q2/3T 1/3 . We choose p ≍ logN so that N1/p ≍ 1. We

now need tail bounds for ∥Xkh − x∗∥ and ∥Ykh∥.
Using the argument in the proof of Lemma 6.4.7, for c > 0,

EΠT
exp(c ∥Xkh − x∗∥2)
≤ exp(2c EΠT

[∥Xkh − x∗∥2]) EΠT
exp

(
2c (∥Xkh − x∗∥ − EΠT

∥Xkh − x∗∥)2
)

≤ exp
(2cd

α

) (
EΠT

exp
(2 (∥Xkh − x∗∥ − EΠT

∥Xkh − x∗∥)2
36/α

))36c/α

≤ exp
(
O
(cd
α

))
provided that c ≤ α/36. Therefore,

EΠT
exp

(
O
(β4h4q2T logN

γ
∥Xkh − x∗∥2

))
≤ exp

(
O
(β4dh4q2T logN

αγ

))
11This argument avoids the use of the “conditioning lemma” from [GT20] (Lemma 23

in [Zha+23]).
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provided that h ≲ α1/4γ1/4

βq1/2 (T logN)1/4
.

The same argument applied to ∥Ykh∥ yields

EΠT
exp

(
O
(β2h2q2T logN

γ
∥Ykh∥2

))
≤ exp

(
O
(β2dh2q2T logN

γ

))
provided that h ≲ γ1/2

βq (T logN)1/2
.

If we put these bounds together and take γ ≍ √β, we deduce that if h ≲
γ1/2

βd1/3q (T logN)1/2
and T ≳

√
β
α

, then it holds that

EΠT
exp

N−1∑
k=0

4q2

γ

∫ (k+1)h

kh

∥∇V (Xt)−∇V (Xkh)∥2 dt

≤ exp
(
O(β3/2dh2q2T logN)

)
.

This verifies (6.14) and (6.15), and moreover shows that for h ≲ 1

β3/4d1/2q (T logN)1/2
,

sup
t∈[0,T ]

EΠT
exp(2qMt) ≲ 1 .

Bounding the second term. Next,√
EΠT

[∥∇V (Xt)−∇V (Xkh)∥4] ≤ β2
√

EΠT
[∥Xt −Xkh∥4] .

Applying Proposition 6.7.1 and the above tail estimates,

· · · ≲ β2 EΠT
[β2h4 ∥Xkh − x∗∥2 + h2 ∥Ykh∥2 + γdh3] ≲

β4dh4

α
+ β2dh2 + β2γdh3

≲ β2dh2 .

Concluding the proof of Lemma 6.4.8. In summary, we have shown

EΠT

[(dΠ̂T

dΠT

)q]− 1 ≲
β2dh2q2T

γ
.

Hence, by definition of the Rényi divergence, we conclude that

Rq(Π̂T ∥ΠT ) ≲
β2dh2qT

γ
.
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■ 6.8 Deferred details for §6.5

■ 6.8.1 Weak version of Theorem 6.5.1

Here, we show the following weaker version of Theorem 6.5.1 as it provides the
key building block to prove it. Like Theorem 6.5.1, this result here shows that
from a feasible start, the query complexity of high-accuracy sampling from a
strongly-log-concave distribution scales in the dimension d as Õ(d1/2) rather than

Õ(d). The difference from Theorem 6.5.1 is that the weaker result here has a

suboptimal dependence on the condition number κ, namely Õ(κ3/2) rather than

Õ(κ). This dependence will later be boosted using the proximal sampler in §6.8.2,
allowing us to prove the full Theorem 6.5.1.

Theorem 6.8.1 (Weak version of Theorem 6.5.1). Suppose that π ∝ exp(−V )
where V is α-strongly-convex and β-smooth. Let x∗ denote the minimizer of V .
For any sampling error ε > 0 and any initialization distribution δx0 ∈ P(Rd),
there is an algorithm that uses

N = Õ
(
κ3/2d1/2 log(∥x0 − x∗∥) + κd1/2 log3(1/ε)

)
first-order queries for V to output a random point in Rd with law µ satisfying
d(µ ∥ π) ≤ ε for any of the following metrics:

d ∈ {TV,
√
KL,

√
χ2,
√
αW2} .

Remark 6.8.2 (Handling other metrics). To prove convergence in the various
metrics, due to standard comparison inequalities it usually suffices to prove a
convergence result in the strongest metric, namely, the chi-squared divergence.
Indeed, convergence in the KL divergence follows from the monotonicity of Rényi
divergences (Lemma 2.2.20) and convergence in the TV distance follows from
Pinsker’s inequality. If π satisfies an LSI, then convergence in W2 follows from
Talagrand’s T2 inequality (Lemma 2.2.11); otherwise, if π only satisfies a PI,
then convergence in W2 follows from the quadratic transport-variance inequality
(Lemma 2.2.12).

The proof has three steps:

1. Run ULMC from this arbitrary initialization δx0 to obtain a R3 warm start
(which also implies a χ2 warm start).

2. Use the χ2 warm start to argue that MALA mixes rapidly in TV.
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3. Use the R3 warm start to argue that the TV mixing guarantee implies mix-
ing guarantees in χ2 (and therefore also the other desired metrics by Re-
mark 6.8.2).

Our main technical contribution here is the ability to implement step 1 in Õ(d1/2)
queries—this is an immediate application of our result on ULMC (Theorem 6.4.1).
Step 2 follows from the results in §5 and [WSC22], with only minor modification
as described below, and step 3 follows from the helper Lemma 6.5.2.

The rest of this Appendix section is organized as follows. Step 2 is described
in §6.8.1.1, step 3 is proved in §6.8.1.2, and then we combine these to prove
Theorem 6.8.1 in §6.8.1.3.

■ 6.8.1.1 Rapid mixing of MALA from a Rényi warm start

We first formally state the result in step 2, namely, that MALA mixes rapidly
in TV from a χ2 warm start. This is [WSC22, Theorem 1], except with a less
stringent assumption on the initialization µ0. Specifically, [WSC22, Theorem 1]
assumes that µ0 is an M -warm start with respect to the target π (or equivalently,
R∞(µ0 ∥ π) ≤ logM), whereas the following lemma only assumes that µ0 has
bounded χ2 (or equivalently, bounded R2) distance to π. This requires only very
minor modification to their analysis, but is essential for our purposes, since our
result in §6.4 can only produce warm starts in Rényi divergences of finite order.

Theorem 6.8.3 (Runtime of MALA from warm start; implicit from [WSC22]).
Let π ∝ exp(−V ) where V is α-strongly-convex and β-smooth. For any error
ε ∈ (0, 1), the 1/2-lazy MALA algorithm with appropriate step size requires

N = Õ
(
κd1/2 log3

(χ2(µ0 ∥ π)

ε2

))
first-order queries to V to output a random point in Rd whose law µN satisfies
TV(µN , π) ≤ ε.

Proof. We appeal to Lemma 5.6.1 and the Cauchy–Schwarz inequality

|µ0(A)− π(A)| =
∣∣∣∫ 1A

(dµ0

dπ
− 1

)
dπ

∣∣∣ ≤√∫
1A dπ ·

∫ (dµ0

dπ
− 1

)2

dπ

=
√
π(A)χ2(µ0 ∥ π) ,

which implies Hs ≤
√
s χ2(µ0 ∥ π) and hence

∥µN − π∥TV ≤
√
s χ2(µ0 ∥ π) +

√
χ2(µ0 ∥ π)

s
exp

(
−C2

sN

2

)
. (6.16)
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Thus the TV error is at most ε if we set s = ε2

4χ2(µ0∥π) and N = 2
C2
s

log(8χ
2(µ0∥π)
ε2

).

Plugging in the bound [WSC22, equation (39)] on Cs completes the proof.12

■ 6.8.1.2 Proof of Lemma 6.5.2

By the stationarity property of P and the data-processing inequality for Rényi
divergences (Lemma 2.2.19), we have R3(µn ∥ π) = R3(µ0P

n ∥ πP n) ≤ R3(µ0 ∥ π).
It now suffices to argue that the following inequality holds for any µ, π:

χ2(µ ∥ π) ≤
√

TV(µ, π) ·
(
exp(2R3(µ ∥ π)) + 1

)
. (6.17)

To prove (6.17), we use the Cauchy–Schwarz inequality to bound

χ2(µ ∥ π) =

∫ ∣∣∣dµ
dπ
− 1

∣∣∣2 dπ =

∫ ∣∣∣dµ
dπ
− 1

∣∣∣1/2 ∣∣∣dµ
dπ
− 1

∣∣∣3/2 dπ

≤
√∫ ∣∣∣dµ

dπ
− 1

∣∣∣ dπ ·
∫ ∣∣∣dµ

dπ
− 1

∣∣∣3 dπ .

The first integral is precisely TV(µ, π). The second integral can be bounded by∫ ∣∣∣dµ
dπ
− 1

∣∣∣3 dπ ≤
∫ ∣∣∣dµ

dπ

∣∣∣3 dπ + 1 = exp(2R3(µ ∥ π)) + 1 ,

where above, the first step is by the elementary inequality |a− 1|3 ≤ a3 + 1, which
holds for a ≥ 0; and the second inequality is by the definition of Rényi divergence.
This completes the proof of (6.17) and thus also the proof of the lemma.

■ 6.8.1.3 Proof of Theorem 6.8.1

By Theorem 6.4.1—or rather the extension in Remark 6.4.2—ULMC outputs a
distribution ν satisfying R3(ν ∥ π) ≤ log 2, say, using

Õ
(
κ3/2d1/2 log ∥x0 − x∗∥

)
gradient queries, where δx0 is its initial distribution. By monotonicity of Rényi
divergences (Lemma 2.2.20) and the identity between χ2 and R2 (Remark 2.2.18),
this guarantee implies χ2(ν ∥ π) = exp(R2(ν ∥ π))− 1 ≤ exp(R3(ν ∥ π))− 1 ≤ 1,
so ν is a warm start in χ2 divergence. Thus we may invoke Theorem 6.8.3 to
run MALA from initialization ν in order to produce a distribution µ satisfying
TV(µ, π) ≤ ε4/5, say, using

Õ
(
κd1/2 log3(1/ε)

)
12In fact, one can simply setM = 2χ2(µ0 ∥π)/ε in their final bounds to obtain Theorem 6.8.3.
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first-order queries. Now by Lemma 6.5.2, we can use the warm start property of
ν to boost the TV guarantee on MALA’s output µ to the following χ2 guarantee:

χ2(µ ∥ π) ≤
√

TV(µ, π) ·
(
exp(2R3(ν ∥ π)) + 1

)
≤ ε2 .

This implies the desired χ2 mixing bound. Mixing in the other metrics then follows
from Remark 6.8.2.

■ 6.8.2 Proof of Theorems 6.5.1 and 6.5.3

Here we prove our main results about faster high-accuracy sampling algorithms in
the setting that the target distribution π is strongly-log-concave (Theorem 6.5.1)
or satisfies a log-Sobolev inequality (Theorem 6.5.3). Since our analysis only
relies upon the LSI property, we are able to prove both theorems simultaneously.
(Indeed, recall that strong-log-concavity implies a log-Sobolev inequality by the
Bakry–Émery theorem, see the first part of Lemma 2.2.8). See §6.5.2 for a high-
level overview of the algorithm and analysis.

We begin with a helper lemma, which is similar to the Orlicz–Wasserstein
initialization bound for π in Lemma 6.4.7, but now generalized to the RGO
πX|Y=y ∝ exp(−V − 1

2h
∥ · −y∥2) that is used in the proximal sampler.

Lemma 6.8.4 (Orlicz–Wasserstein distance at initialization of RGO step). Sup-
pose that π ∝ exp(−V ) where V is β-smooth. Let x∗ denote the mode of π. Then
for any y ∈ Rd and any proximal step size h ≤ 1/(2β),

Wψ2(δy, π
X|Y=y) ≤ 9

√
dh+ 3βh ∥y − x∗∥ .

Proof. Let xy denote the mode of πX|Y=y. By the triangle inequality,

Wψ2(π
X|Y=y, δy) ≤ Wψ2(π

X|Y=y, δxy) +Wψ2(δxy , δy) .

The former term is bounded above by 9
√
dh by an application of Lemma 6.4.7

and the observation that πX|Y=y ∝ exp(−V − 1
2h
∥ · −y∥2) is strongly-log-concave

with parameter −β + 1
h
≥ 1

2h
. Next, we bound the latter term

Wψ2(δxy , δy) = ∥xy − y∥ψ2 =
∥xy − y∥√

log 2
.

Since xy is the mode of πX|Y=y, it is the minimizer of the convex log-density,
thus by first-order optimality conditions we have 0 = ∇V (xy) + 1

h
(xy − y). By

rearranging this identity, using the smoothness of V , and then using the triangle
inequality,

∥xy − y∥ = h ∥∇V (xy)−∇V (x∗)∥ ≤ βh ∥xy − x∗∥ ≤ βh
(
∥xy − y∥+ ∥y − x∗∥

)
.
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Now by the assumption on the step size, βh ≤ 1/2. Plugging this in and re-
arranging yields

∥xy − y∥ ≤ 2βh ∥y − x∗∥ .
Combining the above displays completes the proof.

Armed with this initialization lemma, we are now ready to prove the main
results of this section.

Proof of Theorems 6.5.1 and 6.5.3. Recall from the discussion at the beginning
of this subsection that it suffices to prove Theorem 6.5.3. Hence, in this proof
we assume that π is 1/α-LSI but do not necessarily assume that it is α-strongly-
log-concave. We prove the mixing time for the χ2 divergence, which suffices by
Remark 6.8.2.

First, suppose that the RGO in the proximal sampler algorithm is implemented
exactly. Let Xn and Yn denote the proximal sampler iterates at iteration n; and
let µXn and µYn denote their respective laws. Then after initializing at µX0 :=
normal(x∗, (2β)−1Id), the laws of the iterates are given by µYn = µXn ∗normal(0, hId),
and µXn+1 =

∫
πX|Y (· | y)µYn (dy). By analyzing the simultaneous heat flow, it was

shown in §4.3.3.1 that the forwards step of the proximal algorithm is a contraction
in Rényi divergence, in the sense that

Rq(µ
Y
n ∥ πY ) ≤ 1

(1 + αh)1/q
Rq(µ

X
n ∥ πX) . (6.18)

Now suppose that we have oracle access to an approximate RGO in the sense
that given any point y ∈ Rd, we can sample from a distribution π̃X|Y=y with

Rq(π̃
X|Y=y ∥ πX|Y=y) ≤ ε2RGO , (6.19)

using NRGO(y) first-order queries to V . Let X̃n, Ỹn denote the iterates with inexact
implementation of the RGO, and let µ̃Xn , µ̃Yn denote their laws respectively.

We can bound the error of a backwards step using this approximate RGO
as follows. Let Ỹn ∼ µ̃Yn , so that X̃n+1 is a sample from the approximate RGO

π̃X|Y=Ỹn . Then

Rq(µ̃
X
n+1 ∥ πX) ≤ Rq

(
law(X̃n+1, Ỹn)

∥∥ π
)

≤ Rq(µ̃
Y
n ∥ πY ) + sup

yn∈Rd
Rq(π̃

X|Y=yn ∥ πX|Y=yn)

≤ Rq(µ̃
Y
n ∥ πY ) + ε2RGO . (6.20)

Above, the first step is by the data-processing inequality for Rényi divergences
(Lemma 2.2.19); the second step is by the “strong composition rule” for Rényi
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differential privacy (this lemma has appeared in many equivalent forms, see,
e.g., [Aba+16a; DR16; Mir17]; here we apply the version from [AT22a, Lemma
2.9]); and the final step is by the guarantee (6.19) of the approximate RGO.

By combining the error bounds (6.18) and (6.20) for the forward step and
approximate backwards step of the proximal sampler, we conclude the bound

Rq(µ̃
X
n+1 ∥ πX) ≤ 1

(1 + αh)1/q
Rq(µ̃

X
n ∥ πX) + ε2RGO . (6.21)

Iterating this bound Nprox times gives the following Rényi divergence bound on
the mixing error of the proximal sampler when using this approximate RGO:

Rq(µ̃
X
Nprox
∥ πX

)
≤ 1

(1 + αh)Nprox/q
Rq(µ

X
0 ∥ πX) + ε2RGO

Nprox−1∑
n=0

1

(1 + αh)n/q
. (6.22)

This error is at most ε2 if we run the proximal sampler with step size h ≍ 1/β for

Nprox ≍ κq log
Rq(µ

X
0 ∥ πX)

ε2

iterations and perform each approximate RGO to accuracy

εRGO ≍
ε√
κq

. (6.23)

Henceforth, consider q = 2, so that R2 ≤ χ2 (see Remark 2.2.18). Observe
that if the step size h < 1/(2β), say, then the RGO is strongly-log-concave and
has condition number of size at most

β + 1/h

−β + 1/h
=

1 + βh

1− βh = Θ(1) .

We next consider the complexity of implementing the RGO. Assume that we
can compute the proximal operator for hV exactly, so we can compute the mode
x(Ỹn) of πX|Y=Ỹn and initialize at δx(Ỹn). By Theorem 6.8.1, we can implement

the approximate RGO π̃X|Y=Ỹn in the n-th iteration by using NRGO(Ỹn) first-order
queries, where

NRGO(Ỹn) = Õ
(
d1/2 log3

(Wψ2(δx(Ỹn), π
X|Y=Ỹn)

εRGO

))
. (6.24)

By Lemma 6.8.4, Wψ2(δx(Ỹn), π
X|Y=Ỹn) ≲

√
d/β. We conclude that the total

number of gradient queries required by this inexact proximal sampler algorithm is

N =

Nprox−1∑
n=0

NRGO(Ỹn) = Õ

(
κd1/2 log

(R2(µ
X
0 ∥ πX)

ε2

)
log3

(1

ε

))
. (6.25)
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To remove the assumption that we can exactly compute the proximal operator of
hV , we refer to [AC23].

■ 6.8.3 Proof of Theorem 6.5.4

We prove the χ2 mixing bound; the other desired mixing bounds then follow
immediately due to standard comparison inequalities (see Remark 6.8.2). We
consider the same inexact RGO algorithm as in the LSI setting (see §6.8.2). Under
the present Poincaré assumption, the forwards step of the proximal algorithm is
known to be a contraction in χ2—in direct analog to (6.18). Specifically, by
analyzing the simultaneous heat flow, it was shown in §4.4.5 that

χ2(µYn ∥ πY ) ≤ 1

1 + αh
χ2(µXn ∥ πX) . (6.26)

The bound (6.20) on the error of a backwards step of the proximal sampler using an
approximate RGO (6.19) remains unchanged (as it never uses the LSI assumption).
This Rényi bound is equivalent to the χ2 bound

χ2(µ̃Xn+1 ∥ πX) ≤ exp(ε2RGO)χ2(µ̃Yn ∥ πY ) , (6.27)

by using the relationship R2 = log(1 + χ2) between the chi-squared and Rényi
divergences (see Remark 2.2.18). By combining the above two displays, we obtain
the following convergence bound for one full step of the proximal sampler:

χ2(µ̃Xn+1 ∥ πX) ≤ exp
(
−Θ(αh)

)
χ2(µ̃Xn ∥ πX) , (6.28)

if we solve each approximate RGO to accuracy

εRGO ≲
√
αh ≍ 1√

κ
. (6.29)

By iterating this one-step bound (6.28), we conclude that the final mixing error
χ2(µ̃XNprox

∥ πX) of this inexact proximal sampler is at most ε2 if it is run for Nprox

iterations, where

Nprox ≍ κ log
(χ2(µX0 ∥ πX)

ε2

)
.

Now by the same argument as the LSI setting (see §6.8.2), by the choice of

the proximal step size h, the RGO π̃X|Y=Ỹn has condition number Θ(1), and thus
can be implemented using NRGO(Ỹn) gradient queries by Theorem 6.8.1, where
NRGO(Ỹn) is the quantity in (6.24). Therefore the total number of gradient queries
required by this inexact proximal sampler algorithm is

N =

Nprox−1∑
n=0

NRGO(Ỹn) = Õ

(
κd1/2 log

(χ2(µX0 ∥ πX)

ε2

))
. (6.30)
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■ 6.8.4 Proof of Theorem 6.5.6

The proof for the weakly log-concave case is similar to the proofs of Theo-
rems 6.5.1, 6.5.3, and 6.5.4, in that we carefully keep track of the error from
inexact implementation of the RGO, but the proof requires key modifications. It
was shown in §4.4.3 that along the simultaneous heat flow,

1

KL(µYn ∥ πY )
≥ 1

KL(µXn ∥ πX)
+

h

2W 2
2 (µXn , π

X)
. (6.31)

Let us assume that the RGO is implemented inexactly, so that for each y ∈ Rd

we sample from π̃X|Y=y satisfying

KL(π̃X|Y=y ∥ πX|Y=y) ≤ ε2RGO , W2(π̃
X|Y=y, πX|Y=y) ≤

√
2β εRGO . (6.32)

In fact, the second guarantee follows from the first together with Talagrand’s T2

inequality (see Lemma 2.2.11) if we choose step size h = 1
2β

, because the RGO is
then β-strongly log-concave.

By applying (6.20) for the proximal sampler with inexact RGO implementation,
convexity of the map x 7→ 1/x, and (6.31), we deduce that

1

KL(µ̃Xn+1 ∥ πX)
≥ 1

KL(µ̃Yn ∥ πY ) + ε2RGO
≥ 1

KL(µ̃Yn ∥ πY )
− ε2RGO

KL(µ̃Yn ∥ πY )2

≥ 1

KL(µ̃Xn ∥ πX)
+

h

2W 2
2 (µ̃Xn , π

X)
− ε2RGO

KL(µ̃Yn ∥ πY )2
. (6.33)

We now split into two cases. In the first case, suppose that KL(µ̃Yn ∥ πY ) ≤√
εRGO for some n = 0, 1, . . . , Nprox − 1. By repeatedly applying (6.20) and the

data-processing inequality (Lemma 2.2.19), we obtain

KL(µ̃XNprox
∥ πX) ≤ KL(µ̃YNprox−1 ∥ πY ) + ε2RGO

≤ KL(µ̃XNprox−1 ∥ πX) + ε2RGO ≤ · · ·
≤ KL(µ̃Yn ∥ πY ) +Nprox ε

2
RGO ≤

√
εRGO +Nprox ε

2
RGO .

For the other case, assume KL(µ̃Yn ∥πY ) ≥ √εRGO for all n = 0, 1, . . . , Nprox− 1.
Then, from (6.33), we have

1

KL(µ̃Xn+1 ∥ πX)
≥ 1

KL(µ̃Xn ∥ πX)
+

h

2W 2
2 (µ̃Xn , π

X)
− εRGO .

Iterating this,

1

KL(µ̃XNprox
∥ πX)

≥ 1

KL(µX0 ∥ πX)
+
h

2

Nprox−1∑
n=0

1

W 2
2 (µ̃Xn , π

X)
−Nprox εRGO .
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Moreover, from the second condition in (6.32), a standard coupling argument (see,
e.g., §4.4.2), and Wasserstein contractivity of the exact proximal sampler steps
under log-concavity (Theorem 4.3.1), we obtain

W2(µ̃
X
n+1, π

X) ≤ W2

(
µ̃Xn+1,

∫
πX|Y=y µ̃Yn (dy)

)
+W2

(∫
πX|Y=y µ̃Yn (dy), πX

)
≤

√
2β εRGO +W2(µ̃

Y
n , π

Y )

≤
√

2β εRGO +W2(µ̃
X
n , π

X) ≤ · · ·
≤

√
2β Nprox εRGO +W2(µ

X
0 , π

X) .

Therefore, we obtain

1

KL(µ̃XNprox
∥ πX)

≥ 1

KL(µX0 ∥ πX)
+

Nprox h

2 (W2(µX0 , π
X) +

√
2β Nprox εRGO)

2 −Nprox εRGO .

Let us assume that εRGO ≲ W2(µ
X
0 , π

X)/(
√
β Nprox) and εRGO ≲ h/W2(µ

X
0 , π

X).
This reads

1

KL(µ̃XNprox
∥ πX)

≥ 1

KL(µX0 ∥ πX)
+ Ω

( Nprox h

2W 2
2 (µX0 , π

X)

)
.

Upon rearranging this and taking h = 1
2β

, it implies

KL(µ̃XNprox
∥ πX) ≲

βW 2
2 (µX0 , π

X)

Nprox
.

Therefore, we obtain KL(µ̃XNprox
∥ πX) ≤ ε2 if we take

Nprox ≍
βW 2

2 (µX0 , π
X)

ε2
.

To summarize, after considering both cases, we obtain KL(µ̃XNprox
∥ πX) ≤ ε2 if

Nprox ≍
d+ βm2

ε2

and

εRGO ≲ min
{
ε4,

ε4

βW 2
2 (µX0 , π

X)
,

ε2

β3/2W2(µX0 , π
X)
,

1

βW2(µX0 , π
X)

}
.

By invoking Theorem 6.8.1, the total number of first-order queries is

N = Õ

(
βd1/2W 2

2 (µX0 , π
X)

ε2

)
.



Sec. 6.9. Conclusion 233

■ 6.9 Conclusion

Here we mention several interesting questions for future research that are inspired
by our results.

• Are warm starts essential for future progress in high-accuracy sam-
pling? Our work is the first to show the achievability of the faster rates
proven for high-accuracy samplers under a warm start assumption. We do
this by exhibiting an efficient algorithm for producing the warm start. We
believe that this general strategy may be important for future progress in
high-accuracy sampling. Indeed, the natural next candidate for improving
upon MALA is Metropolized Hamiltonian Monte Carlo [Nea11], or related
variants. For such Metropolized algorithms, we suspect that much of the
intuition from §6.1.2 remains true; namely, that the algorithm can benefit
from a more aggressive step size near stationarity. Hence, to extract the full
potential of these algorithms, it seems likely that we must again pursue the
dual plan of improving the rates under a warm start, and efficiently comput-
ing that warm start. Insofar as warm starts continue to play an important
role in sampling analysis, the Rényi analysis techniques that we developed in
§6.3 and §6.4 could prove useful for future progress in this direction.

• Can we leverage shifted divergence techniques for further advances
in differential privacy and beyond? Core to our results is an improved
version of the shifted Rényi divergence technique that uses Orlicz–Wasserstein
shifts rather than W∞ shifts. Since their introduction, shifted divergences
have been instrumental for advances in differentially private optimization
(see the prior work discussion in §6.1.3), and also very recently in the context
of sampling ([AT22b] and Theorem 6.4.1). We believe that we are only
scratching the surface of potential applications, extensions, and refinements
of this technique, and we are optimistic that a deeper understanding of our
Rényi analysis toolbox will have implications far beyond.





Chapter 7

Lower bound in one dimension

In the previous chapters, we have focused on obtaining upper bounds on the
complexity of sampling via algorithmic guarantees. However, a full understanding
of the query complexity also requires matching lower bounds, which have been
largely and conspicuously absent from the literature.

In this chapter, we establish the first tight lower bound of Ω(log log κ) on
the query complexity of sampling from the class of strongly log-concave and log-
smooth distributions with condition number κ in one dimension. Whereas existing
guarantees for MCMC-based algorithms scale polynomially in κ, we introduce a
novel rejection sampling algorithm that closes this doubly exponential gap.

This chapter is based on [Che+22d], joint with Patrik R. Gerber, Chen Lu,
Thibaut Le Gouic, and Philippe Rigollet.

■ 7.1 Introduction

The task of sampling from a target probability distribution known up to a normal-
izing constant is of fundamental importance in fields such as Bayesian statistics,
randomized algorithms, and online learning. Recently, there has been a resur-
gence of interest in sampling and its interplay with the more well-developed field
of optimization. On the one hand, the extensive optimization toolkit has inspired
the development of novel sampling algorithms [Ber18; Wib18; Zha+20; DL21;
LST21c]; on the other hand, the theory of optimization has motivated researchers
to provide quantitative and non-asymptotic convergence guarantees for sampling
methods, which depend on parameters that describe the problem complexity (e.g.,
the condition number and the dimension); see the previous chapters of this thesis.

Conspicuously absent from this interplay, however, are lower bounds for the
complexity of sampling, in analogy to the oracle lower bounds initiated in the
seminal work by Nemirovski and Yudin for optimization [NY83]. Besides charting
the fundamental limits of optimization, such lower bounds have been instrumental
in the development of faster algorithms, most notably Nesterov’s acceleration,

235
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which was “found mainly because the investigating of complexity enforced to
believe that such a method should exist” [Nem94, §10].

A canonical structured class of distributions is that of strongly log-concave
and log-smooth distributions on Rd, i.e., the class of distributions with a density
π ∝ exp(−V ), where the potential V : Rd → R is twice continuously differentiable,
α-strongly convex, and β-smooth. The relevant parameters of this class are the
dimension d, as well as the condition number κ := β/α, and we seek to understand
the number of queries to V (and its derivatives) necessary to generate a sample
close in total variation distance to π. We call a solution to this problem a general
sampling lower bound.

Related works. Despite several attempts at establishing query complexity lower
bounds for sampling, we are not aware of a general sampling lower bound. Whereas
sampling upper bounds are derived using techniques that are close to those em-
ployed in optimization [Dal17b; DMM19], it is unclear how to use lower bound
techniques for optimization [Nes18] to derive general sampling lower bounds. Note
that sampling upper bounds typically assume that the minimizer of V is known a
priori; thus, a direct reduction of the sampling task to apply existing optimization
lower bounds would likely capture the complexity of finding the mode of V rather
than the intrinsic difficulty of the sampling task itself. In lieu of a direct reduc-
tion, it is possible to envision, at least in principle, an approach which adapts the
optimization lower bound constructions to the sampling setting, but we are not
aware of any successful results in this direction.

Another family of approaches is based on information-theoretic ideas which
have been highly successful for developing a minimax theory of statistics [Le 86;
LY00; Tsy09]; however, prior works applying these ideas have largely focused on
various adjacent questions which do not imply a lower bound for the sampling
task itself. A notable example is the estimation of the normalizing constant
of a strongly log-concave distribution, for which a lower bound was established
in [GLL20]. However, this lower bound does not yield a general sampling lower
bound; in fact, the two problems differ in difficulty. Indeed, the randomized
midpoint discretization of the underdamped Langevin dynamics [SL19] obtains

samples in Õ(d1/3) queries, whereas the lower bound for estimating the normalizing

constant in [GLL20] grows as Ω̃(d). Another example is the paper [CBL22], which
studies sampling with access to stochastic gradient queries. However, the resulting
lower bound arises primarily out of the need to overcome the noise in the gradient
queries, and it again does not yield sampling lower bounds for our setting of
precise gradient queries.

To circumvent the difficulties in establishing general sampling lower bounds,
various works have focused on establishing lower bounds for specific and popular
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algorithms such as underdamped Langevin Monte Carlo (ULMC) [CLW21] and the
Metropolis-adjusted Langevin algorithm (MALA) [see §5 and LST21a; WSC22].
In particular, the latter results establish that the minimax query complexity for
MALA over the class of strongly log-concave and log-smooth distributions is Θ̃(κd)

from a “cold start” and Θ̃(κ
√
d) from a “warm start”.

A lower complexity bound in one dimension. Recall that for convex optimization,
there are two relevant regimes [see, e.g., Bub15]: (1) the low-dimensional regime, in
which algorithms such as the cutting plane method achieve the rate O(d log(1/ε))
(where ε is the accuracy parameter), and (2) the high-dimensional regime, in
which algorithms such as gradient descent achieve dimension-free rates at the cost
of inverse polynomial dependency on the accuracy. In this paper, we study the
low-dimensional regime for sampling; in particular, we consider d = 1.

We prove that for the class of α-strongly log-concave and β-log-smooth distri-
butions in one dimension (with mode at 0), any algorithm, which can produce a
sample that is at total variation distance at most 1

64
from the target distribution π

(uniformly over π belonging to the class), must make at least Ω(log log κ) queries
to V or any of its derivatives. To our knowledge, this is the first lower complexity
bound for this problem class.

Achievability of the lower bound. The lower bound of Ω(log log κ) is surprisingly
small, and existing guarantees for standard algorithms such as the Langevin
algorithm (or its variants), the Metropolis-adjusted Langevin algorithm, or Hamil-
tonian Monte Carlo, all have a dependence that scales polynomially with the
condition number κ [see for instance the comparison in SL19].

To provide an algorithm which matches the lower bound, we return to the
fundamental idea of rejection sampling, developed by John von Neumann and
Stan Ulam [Neu51; Eck87]. We develop an algorithm which uses O(log log κ)
queries in order to build a proposal distribution. Once the proposal distribution
is constructed, new samples which are ε-close to π in total variation distance can
be generated using O(log(1/ε)) additional queries per sample.

■ 7.2 Lower bound

We begin by formally defining the class of strongly log-concave and log-smooth
distributions in one dimension, which is the focus of this paper.

Definition 7.2.1. The class of univariate α-strongly log-concave and β-log-
smooth distributions, for constants 0 < α ≤ β, is the class of continuous dis-
tributions π supported on R, whose density is of the form π(x) = exp(−V (x)), for
a potential function V : R→ R ∪ {∞} which is twice continuously differentiable



238 CHAPTER 7. LOWER BOUND IN ONE DIMENSION

and satisfies

α ≤ V ′′(x) ≤ β , ∀x ∈ R . (7.1)

In addition, we always assume1 that the mode of the distribution is at 0, or
equivalently V ′(0) = 0.

We study the query complexity of sampling from this class. Formally, suppose
that the target distribution is π = exp(−V ). The sampling algorithm is allowed
to make queries to the following oracle: given a point x ∈ R, the oracle returns
some or all of (1) the evaluation of the potential V (x) + C up to a constant C,
which is unknown to the algorithm but does not change from query to query;
(2) the evaluation of the gradient V ′(x); or (3) the evaluation of the Hessian
V ′′(x). Depending on what information the oracle returns, it may be described as
providing 0th-, 1st-, or 2nd-order information. For instance, the Langevin algorithm
uses 1st-order information, whereas the Metropolis-adjusted Langevin algorithm
uses both 0th-order and 1st-order information. Our lower bound will in fact apply
to the strongest of these oracles, namely the one that returns all three pieces of
information (or more generally, any local oracle [NY83]).

We now state our lower bound.

Theorem 7.2.2. Consider the class P of univariate α-strongly log-concave and
β-log-smooth distributions as defined in Definition 7.2.1, and let κ := β/α denote
the condition number. Suppose that an algorithm satisfies the following guarantee:
for any p ∈ P, the algorithm makes n queries to the oracle providing 0th-, 1st-,
and 2nd-order information for π, and outputs a random variable whose law is at
most 1

64
away from π in total variation distance. Then, n ≳ log log κ.

We now give some intuition for the lower bound construction, and defer the
proof to §7.4. The strategy is to construct a family of distributions {π1, . . . , πm}
which forms a packing of the class P in total variation distance. Because the family
is well-separated, if an algorithm can accurately sample from each πi, it can also
identify πi. We construct the family {πi}mi=1 in such a way that identifying πi from
queries to local oracles requires at least Ω(logm) queries, e.g., via bisection.

With the strategy in place, we now describe motivation for the construction
of the family {πi}mi=1. Suppose that we have a distribution π ∝ exp(−V ) which
is rescaled to satisfy 1 ≤ V ′′ ≤ κ. The bound V ′′ ≥ 1 implies that a substantial
fraction of the mass of π is supported on the interval [−1, 1]. On the other hand,

1This localization assumption is common in the sampling literature; without some knowledge
of the mode (e.g., that the mode is contained in an interval) it is impossible to even find the
mode in the query model.
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the bound V ′′ ≤ κ allows for the density π to suddenly drop from ≈ 1 to nearly 0
over an interval of much smaller length, ≍ 1/

√
κ. Hence, as a first approximation,

we can imagine dividing the interval [−1, 1] into ≍ √κ bins, and thinking of each
πi as piecewise constant on each bin. While keeping the log-concavity constraint in
mind, for the purpose of this heuristic discussion we will consider the family {πi}mi=1

of m ≍ √κ distributions, where πi is the uniform distribution on [−i/√κ, i/√κ];
see Figure 7.1.

Figure 7.1: A family of uniform distributions.

However, this family is not well-separated in total variation distance. Indeed,
it can be checked that for i < j, in order for the total variation distance between
πi and πj to be appreciable, we require j ≥ 2i. This motivates us to consider the
subfamily {π2i , 1 ≤ i ≤ log2

√
κ}, of which there are O(log κ) elements. For this

subfamily, we can hope to reduce the task of sampling to that of identifying π2i
via queries, and binary search for this problem requires only O(log log κ) queries.
This is the basis for our somewhat unusual lower bound.

The uniform distributions involved in this informal discussion do not belong
to the class P , as they are neither strongly log-concave nor log-smooth. The main
technical challenge in our lower bound is to produce distributions which lie in
P but still behaves similarly to uniform distributions, in the sense of requiring
Ω(log log κ) oracle queries to identify a distribution via queries. We defer these
details to §7.4.

■ 7.3 Upper bound

In this section, we show that the Ω(log log κ) lower bound in the previous section
is achievable. Note that the existing guarantees for standard sampling algorithms
(c.f. the comparison in [SL19]) usually scale polynomially in the condition number
κ, so they are not optimal for our setting.

Moreover, the heuristic discussion of the lower bound construction motivates
choosing the query points according to a binary search strategy. In order to
implement this idea, we turn towards the classical idea of rejection sampling: first,
we make queries in order to construct a proposal distribution q. To generate
new samples from π, we repeatedly draw samples from q, and each sample is
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accepted with a carefully chosen acceptance probability (which can be computed
via additional queries to the oracle for the density up to normalization).

Algorithm 7.1 Envelope

Use binary search to find the first index i+ ∈ {0, 1, . . . , ⌈12 log2 κ⌉} with
V (2i+/

√
κ) ≥ 1

2
.

Use binary search to find the first index i− ∈ {0, 1, . . . , ⌈12 log2 κ⌉} with
V (−2i−/

√
κ) ≥ 1

2
.

Set x− := −2i−/
√
κ and x+ := 2i+/

√
κ.

return

q̃(x) :=


exp

[
− x− x−

2x−
− (x− x−)2

2

]
, x ≤ x− ,

1 , x− ≤ x ≤ x+ ,

exp
[
− x− x+

2x+
− (x− x+)2

2

]
, x ≥ x+ .

We give the high-level pseudocode for building an upper envelope in Algo-
rithm 7.1, and for generating new samples in Algorithm 7.2. Note that while
our lower bound applies to algorithms using 0th-, 1st-, and 2nd-order information,
our upper bound algorithm in fact only requires 0th-order information. We next
proceed to discuss details of the algorithms.

Algorithm 7.2 Sample

Normalize q̃ to form q.
while sample is not accepted do

Sample X ∼ q.
Accept X w.p. π̃(X)/q̃(X).

return X

Before implementing Algorithm 7.1, we first perform several preprocessing
steps. Recall that the mode of the distribution π is assumed to be at 0, and that
π ∝ exp(−V ). We also assume that 1 ≤ V ′′ ≤ κ. To reduce to this case, say we
start with α ≤ V ′′ ≤ β, and the bounds α, β are known. Then, observe that the
rescaled potential V̄ (x) := V (x/

√
α) satisfies 1 ≤ V̄ ′′ ≤ κ = β/α. Given access

to an oracle for V (up to additive constant), we can simulate an oracle to V̄ (up
to additive constant) and apply our algorithm to generate a sample X̄ from the
density π̄ ∝ exp(−V̄ ); it can be checked that X̄/

√
α is a sample from π. Finally,
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we assume that the oracle, when given a query point x, returns V (x), where V is
normalized to satisfy V (0) = 0; this is achieved by replacing the output V (x) of
the oracle by V (x)− V (0).

Implementing the first step of Algorithm 7.1 requires performing binary search
over an array of size O(log κ), which requires only O(log log κ) queries; similar
comments apply to the second step. We prove in §7.5 that the indices i− and
i+ always exist under our assumptions. We also prove in §7.5 that the output
q̃ of Algorithm 7.1 is an upper envelope for the oracle, i.e., q̃ ≥ exp(−V ). The
upper envelope q̃ constructed in Algorithm 7.1 is the input to Algorithm 7.2; see
Figure 7.2 for a visualization.

x

q̃(x)

0x− x+

Figure 7.2: The upper envelope q̃ constructed in Algorithm 7.1.

In Algorithm 7.2, we normalize q̃ to a probability distribution q, which requires
computing a one-dimensional integral for the normalizing constant:

∫
R q̃. Once

normalized, we must also be able to draw samples from the distribution q. These
steps can be implemented with low computational burden, but we do not dwell
on this point here because we are primarily interested in the query complexity in
this work. Note that the steps of normalizing q and drawing new samples from q
do not require additional queries to the oracle.

The framework of rejection sampling provides a flexible guarantee: if we desire
an exact sample from π, then we can continue drawing samples from q until one is
accepted, yielding an exact sample with a guarantee on the expected total number
of queries. On the other hand, if we are content with producing a sample whose
law is at a fixed distance ε away from π in total variation distance, then we can
force the algorithm to stop after a prespecified number of iterations, declaring
failure if no sample from q is accepted, and achieve the total variation guarantee.
We describe both of these guarantees in the following theorem, which summarizes
the query complexity of our algorithm.

Theorem 7.3.1. Suppose that the target distribution π belongs to the class of
univariate strongly log-concave and log-smooth distributions (Definition 7.2.1).
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Algorithm 7.1 uses O(log log κ) queries to build the upper envelope q̃. Once q̃ is
constructed, we can use it for either of the following tasks.

1. (exact sampling) Algorithm 7.2 returns an exact sample from π after an
additional O(1) expected queries to the oracle.

2. (approximate sampling) Fix an accuracy parameter 0 < ε < 1. If we limit
Algorithm 7.2 to use at most O(log(1/ε)) queries, then the output of Algo-
rithm 7.2 (or ‘FAILURE’, if Algorithm 7.2 fails to accept a sample within
the allowed number of queries) has a distribution which is at total variation
distance at most ε away from π.

We give the proof in §7.5.
Although our algorithm is tailored to distributions in one dimension, we remark

that the task of sampling from a one-dimensional log-concave distribution is a
subroutine for the hit-and-run algorithm, which is explored in [Che+22d].

■ 7.4 Proof of the lower bound

■ 7.4.1 The construction

x

V ′′i (x/
√
κ)

1

κ

2i−1 2i 2i+1 5
4
2i+1 2i+2 5

4
2i+2 . . . 5

4
2m+2

Figure 7.3: The dashed lines correspond to ϕ and the dotted lines correspond to ψ.

Let m be the largest integer such that

exp
(
−22m−2

2κ

)
≥ 1

2
. (7.2)
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Define two auxiliary functions

ϕ(x) :=


κ , 1/2 ≤ x < 1 ,

1 , 1 ≤ x < 2 ,

κ , 2 ≤ x < 5/2 ,

0 otherwise ,

ψ(x) :=


1 , 5/2 ≤ x < 4 ,

κ , 4 ≤ x < 5 ,

0 , otherwise .

We define a family (Vi)
m
i=1 of 1-strongly convex and κ-smooth potentials as

follows. We require that Vi(0) = V ′i (0) = 0 and that Vi be an even function, so it
suffices to specify V ′′i on R+. For x ≥ 0, the second derivative is given by

V ′′i (x) := 1{x ≤ κ−
1
2 2i−1}+ ϕ

( x

κ−
1
2 2i

)
+

m−1∑
j=i

ψ
( x

κ−
1
2 2j

)
+ 1{x ≥ 5κ−

1
2 2m−1} .

Observe that all of the terms in the above summation have disjoint supports, see
Figure 7.3.

x

1

κ

2i−1 2i 2i+1 5
4
2i+1 2i+2 5

4
2i+2

Figure 7.4: We plot V ′′i (in blue) and V ′′i+1 (in orange). In this figure, we do not distort
the horizontal axis lengths to make it easier to visually compare the relative lengths of
intervals on which the second derivatives are constant.

The following lemma provides intuition for the construction.

Lemma 7.4.1. We have the equalities

Vi = Vi+1 ,

V ′i = V ′i+1 ,

V ′′i = V ′′i+1 ,

outside of the set {x ∈ R : κ−
1
2 2i−1 ≤ |x| ≤ 5

4
κ−

1
2 2i+1}.
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Proof. Refer to Figure 7.4 for a visual aid for the proof.
Clearly the potentials and derivatives match when |x| ≤ κ−

1
2 2i−1. Since

the second derivatives match when |x| ≥ 5
4
κ−

1
2 2i+1, it suffices to show that

V ′i (
5
4
κ−

1
2 2i+1) = V ′i+1(

5
4
κ−

1
2 2i+1) and Vi(

5
4
κ−

1
2 2i+1) = Vi+1(

5
4
κ−

1
2 2i+1).

To that end, note that for x ≥ 0,

V ′′i+1(x)− V ′′i (x) = 1{κ− 1
2 2i−1 < x ≤ κ−

1
2 2i}

− ϕ
( x

κ−
1
2 2i

)
+ ϕ

( x

κ−
1
2 2i+1

)
− ψ

( x

κ−
1
2 2i

)

=


−(κ− 1) , κ−

1
2 2i−1 ≤ x ≤ κ−

1
2 2i ,

+(κ− 1) , κ−
1
2 2i ≤ x ≤ κ−

1
2 2i+1 ,

−(κ− 1) , κ−
1
2 2i+1 ≤ x ≤ 5

4
κ−

1
2 2i+1 ,

0 , otherwise .

A little algebra shows that the above expression integrates to zero, hence we
deduce the equality V ′i (

5
4
κ−

1
2 2i+1) = V ′i+1(

5
4
κ−

1
2 2i+1). Also, by integrating this

expression twice, we see that

Vi+1

(5

4
κ−

1
2 2i+1

)
− Vi

(5

4
κ−

1
2 2i+1

)
= −κ− 1

2
(κ−

1
2 2i−1)

2︸ ︷︷ ︸
integral on [κ−

1
2 2i−1,κ−

1
2 2i]

− (κ− 1)κ−
1
2 2i−1 κ−

1
2 2i +

κ− 1

2
(κ−

1
2 2i)

2︸ ︷︷ ︸
integral on [κ−

1
2 2i,κ−

1
2 2i+1]

+ (κ− 1)κ−
1
2 2i−1

1

4
κ−

1
2 2i+1 − κ− 1

2

(1

4
κ−

1
2 2i+1

)2︸ ︷︷ ︸
integral on [κ−

1
2 2i+1, 5

4
κ−

1
2 2i+1]

=
κ− 1

κ
{−22i−3 − 22i−1 + 22i−1 + 22i−2 − 22i−3}

= 0 ,

as desired.

We also need a lemma showing that each probability distribution πi ∝ exp(−Vi)
places a substantial amount of mass on the interval (κ−

1
2 2i−2, κ−

1
2 2i−1].

Lemma 7.4.2. For each i ∈ [m],

πi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
≥ 1

32
.
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Proof. According to the definition of πi, we have

πi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
=

∫ κ− 1
2 2i−1

κ−
1
2 2i−2

exp(−x2/2) dx

Zπi
, Zπi :=

∫
R

exp(−Vi) .

Recalling that m is chosen so that exp(−x2/2) ≥ 1/2 whenever |x| ≤ κ−
1
2 2m−1

(see (7.2)), we can conclude that∫ κ−
1
2 2i−1

κ−
1
2 2i−2

exp
(
−x

2

2

)
dx ≥ 1

2
κ−

1
2 2i−2 .

For the normalizing constant, observe that∫ ∞
0

exp(−Vi) =

∫ κ−
1
2 2i

0

exp(−Vi) +

∫ ∞
κ−

1
2 2i

exp(−Vi) ≤ κ−
1
2 2i +

∫ ∞
κ−

1
2 2i

exp(−Vi) .

Since V ′′i = κ on [κ−
1
2 2i−1, κ−

1
2 2i], it follows that V ′i (κ

− 1
2 2i) ≥ κ

1
2 2i−1, and so

Vi(x) ≥ κ
1
2 2i−1 (x− κ− 1

2 2i) +
(x− κ− 1

2 2i)
2

2
, x ≥ κ−

1
2 2i .

Therefore,∫ ∞
κ−

1
2 2i

exp(−Vi) ≤
∫ ∞
κ−

1
2 2i

exp
(
−κ 1

2 2i−1 (x− κ− 1
2 2i)− (x− κ− 1

2 2i)
2

2

)
dx

≤ 1

κ
1
2 2i−1

≤ 1√
κ
,

where we applied a standard tail estimate for Gaussian densities (Lemma 7.4.3).
Putting it together,

πi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
≥ 2i−3

2 (2i + 1)
≥ 1

32
,

which proves the result.

Above, we used the following elementary lemma about Gaussian integrals.

Lemma 7.4.3. Let a, x0 > 0. Then,∫ ∞
x0

exp
(
−a (x− x0)−

1

2
(x− x0)2

)
dx ≤ 1

a
.
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Proof. Completing the square,∫ ∞
x0

exp
(
−a (x− x0)−

1

2
(x− x0)2

)
dx =

∫ ∞
0

exp
(
−ax− 1

2
x2
)

dx

=
√

2π exp
(a2

2

)
P(Z > a) ,

where Z ∼ normal(0, 1). The result follows from the Mills ratio inequality [Gor41].

■ 7.4.2 Lower bound via Fano’s inequality

In this section, we use the densities {πi}mi=1 constructed in the previous section
together with Fano’s inequality from information theory in order to prove the
lower bound.

Proof of Theorem 7.2.2. Let Z ∼ uniform([m]) be an index chosen uniformly at
random. Suppose that an algorithm makes n queries to the oracle for πZ , and
given Z = i, outputs a sample Y whose law µi is at total variation distance at
most 1

64
from πi. In light of Lemma 7.4.2, a good candidate estimator for Z from

the observation of Y is given by

Ẑ := {k ∈ N : Y ∈ (κ−
1
2 2k−2, κ−

1
2 2k−1]} .

On the one hand, the probability that the estimator is correct is bounded by

P{Ẑ = Z} =
1

m

m∑
i=1

P{Ẑ = i | Z = i}

=
1

m

m∑
i=1

P{Y ∈ (κ−
1
2 2i−2, κ−

1
2 2i−1] | Z = i}

=
1

m

m∑
i=1

µi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
≥ 1

m

m∑
i=1

πi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
− 1

64
≥ 1

64
, (7.3)

where the last inequality uses Lemma 7.4.2.
On the other hand, we can lower bound P{Ẑ ̸= Z} using Fano’s inequality.

Let x1, . . . , xn denote the query points of the algorithm, and let Wi be a shorthand
for the triple (Vi, V

′
i , V

′′
i ). We will first prove the lower bound for deterministic
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algorithms, i.e., assuming that each query point xj is a deterministic function of
the previous query points and query values. Since

Z → {xj,WZ(xj), j ∈ [n]} → Ẑ

forms a Markov chain, Fano’s inequality [CT06] yields

P{Ẑ ̸= Z} ≥ 1−
I({xj,WZ(xj)}j∈[n];Z) + log 2

logm
,

where I denotes the mutual information. By the chain rule for mutual informa-
tion [CT06],

I
(
{xj,WZ(xj)}j∈[n];Z

)
=

n∑
j=1

I
(
xj,WZ(xj);Z

∣∣ x1,WZ(x1), . . . , xj−1,WZ(xj−1)
)
.

Observe that, conditioned on {xi,WZ(xi)}j−1i=1 , the query point xj is deterministic.
Also, from the construction of the family of potentials, we know that WZ(xj) =

W1(xj) if xj ≤ κ−
1
2 2Z−1, and WZ(xj) = Wm(xj) if xj ≥ 5

4
κ−

1
2 2Z+1. It yields that:

• for Z ≤ log2(
4
5

√
κxj)− 1, WZ(xj) takes a unique value given by Wm(xj),

• for Z ≥ log2(
√
κxj) + 1, WZ(xj) takes a unique value given by W1(xj),

and otherwise, Z lives in an interval of size at most log2(
√
κxj)+1−(log2(

4
5

√
κxj)−

1) ≤ 2+log2(5/4) which covers at most three integers, say z0−1, z0, z0 +1. Hence,
the conditional distribution of WZ(xj) can be supported on at most 5 points given
respectively by

W1(xj),Wm(xj),Wz0−1(xj),Wz0(xj), and Wz0+1(xj) .

Since the mutual information is upper bounded by the conditional entropy of
WZ(xj), we can conclude

I
(
{xj,WZ(xj)}j∈[n];Z

)
≤ n log 5 .

Substituting this into Fano’s inequality yields

P{Ẑ ̸= Z} ≥ 1− n log 5 + log 2

logm
. (7.4)

In general, if the algorithm is randomized, then we can apply the inequal-
ity (7.4) conditioned on the random seed ξ of the algorithm, since ξ is independent
of Z. It yields

P{Ẑ ̸= Z | ξ} ≥ 1− n log 5 + log 2

logm
,
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and upon taking expectations we see that (7.4) holds for randomized algorithms
as well.

Combined with (7.3), we obtain n ≳ logm ≳ log log κ as desired.

■ 7.5 Proof of the upper bound

Let π be the target distribution and let π̃ = πZπ denote the unnormalized
distribution which we access via oracle queries. We recall our preprocessing
steps: we assume that the query values take the form π̃(x) = exp(−V (x)), with
V (0) = V ′(0) = 0 and V satisfying (7.1). This is without loss of generality
because we can query π̃(0) and replace subsequent queries π̃(x) with π̃(x)/π̃(0),
thereby normalizing V to satisfy V (0) = 0. By rescaling the distribution, we can
assume that 1 ≤ V ′′ ≤ κ. Also, we can assume that the target distribution is
only supported on the positive reals R+, because we can then construct an upper
envelope on all of R by repeating our algorithm on the negative reals, which only
doubles the number of queries and does not change the complexity.

Proof of Theorem 7.3.1. Our goal is to use the oracle queries to construct an
upper envelope q̃ that satisfies q̃ ≥ π̃, and Zq ≲ Zπ, where

Zπ :=

∫
R
π̃ , Zq :=

∫
R
q̃

are the normalizing constants. The guarantees of Theorem 7.3.1 will then follow
from standard results on rejection sampling, see Theorem 4.4.6.

Let i0 denote the smallest integer such that V (2i0/
√
κ) ≥ 1/2. Note that

x2/2 ≤ V (x) ≤ κx2/2 implies that 0 ≤ i0 ≤ (log2 κ)/2. Using binary search over
an array of size O(log κ), we can find i0 using only O(log log κ) queries to π̃.

Let x0 := 2i0/
√
κ. We first claim that∫ x0

0

π̃ ≳ x0 . (7.5)

When i0 = 0, this holds because∫ x0

0

π̃ =

∫ 1/
√
κ

0

exp(−V ) ≥
∫ 1/

√
κ

0

exp
(
−κx

2

2

)
dx ≥ 1

3
√
κ

=
x0
3
.

When i0 > 0, this holds because, by definition of i0, we have V (x0/2) ≤ 1/2 and∫ x0

0

π̃ ≥
∫ x0/2

0

exp(−V ) ≳ x0 .
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Next, define the upper envelope as follows:

q̃(x) =

{
1 , x ≤ x0 ,

exp{−(x− x0)/(2x0)− (x− x0)2/2} , x > x0 .

To see that q̃ ≥ π̃ and hence that q̃ is a valid upper envelope, observe first that
since π̃(0) = 1, and π̃ is decreasing, we get that π̃(x) ≤ 1 = q̃(x) for all x ∈ [0, x0].

Next, if x > x0, using the fact that V is convex and V (x0) ≥ 1/2 by the
definition of x0,

V ′(x0) ≥
V (x0)− V (0)

x0
≥ 1

2x0
.

Hence, for any x > x0 we have

V (x) ≥ V (x0) + V ′(x0) (x− x0) +
1

2
(x− x0)2

≥ 1

2x0
(x− x0) +

1

2
(x− x0)2 .

It implies that π̃(x) ≤ q̃(x) also for the tail x > x0.
To complete the proof, we show that Zq ≲ Zπ. In light of (7.5) it is sufficient

to show that Zq ≲ x0. To see this, observe that by Lemma 7.4.3, we have

Zq =

∫ x0

0

q̃ +

∫ ∞
x0

q̃ ≤ x0 +

∫ ∞
x0

exp
(
− 1

2x0
(x− x0)−

1

2
(x− x0)2

)
dx ≤ 3x0 .

This completes the proof.

■ 7.6 Conclusion

In this paper, we established the oracle complexity of sampling from the class of
univariate strongly log-concave and log-smooth distributions, in analogy with the
now pervasive oracle lower bounds for optimization initiated by Nemirovski and
Yudin [NY83]. A clear future direction suggested by this work is to extend this
result to higher dimensions, and to ultimately develop a theory of lower complexity
bounds and optimal algorithms for sampling. Towards that goal, in the forth-
coming work [Che+23b], we pin down the complexity of sampling in two further
relevant regimes: in any constant dimension, the complexity is Θ(log κ), and for

the task of sampling from Gaussians, the complexity is Θ̃(min{d,√κ log d}). In
particular, since Gaussians are a subfamily of the class of strongly log-concave
and log-smooth distributions, a lower bound for sampling from the former readily
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furnishes a lower bound for sampling from the latter. In another direction, we
investigate lower bounds for non-log-concave sampling in §14.

Recently, an intense amount of research has been devoted to the use of Markov
chain Monte Carlo-based methods for sampling, and it may come as a surprise
that the complexity lower bound we have proven in this paper is attained by
an entirely different type of algorithm, namely rejection sampling. Our result
highlights that standard algorithms may not be optimal, and that the search for
optimal algorithms goes hand-in-hand with lower bound constructions.

In particular, our work motivates revisiting the idea of rejection sampling
through the modern lens of minimax optimality. See [Che+22e] for an investigation
of the complexity of rejection sampling in a discrete setting.
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Chapter 8

Continuous-time analysis of the
mirror Langevin diffusion

In the first part of the thesis, we focused on unconstrained sampling, i.e., sampling
from densities on Rd with full support. In this chapter, we begin our investigations
of the mirror Langevin diffusion, the sampling analogue of the mirror descent
algorithm from optimization. Our main result highlights the role of relative
convexity of the potential w.r.t. the mirror map for establishing convergence of
the diffusion in continuous time, and this same assumption will be used in §9 to
obtain non-asymptotic guarantees for constrained sampling. As a special case of
this framework, we propose a class of diffusions called Newton Langevin diffusions
and prove that they converge to stationarity exponentially fast with a rate that
is independent of the condition number of the problem.

This chapter is based on [Che+20e], joint with Thibaut Le Gouic, Chen Lu,
Tyler Maunu, Philippe Rigollet, and Austin J. Stromme.

■ 8.1 Introduction

Sampling from a target distribution is a central task in statistics and machine
learning with applications ranging from Bayesian inference [RC04; DM19] to
deep generative models [Goo+14]. Owing to a firm mathematical grounding in
the theory of Markov processes [MT09], as well as its great versatility, Markov
chain Monte Carlo (MCMC) has emerged as a fundamental sampling paradigm.
While traditional analyses are anchored in the asymptotic framework of ergodic
theory, this work focuses on finite-time results that better witness the practical
performance of MCMC for high-dimensional problems arising in machine learning.

This perspective parallels an earlier phenomenon in the much better understood
field of optimization where convexity has played a preponderant role for both
theoretical and methodological advances [Bub15; Nes18]. In fact, sampling and
optimization share deep conceptual connections that have contributed to a renewed
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understanding of the theoretical properties of sampling algorithms [Dal17a; Wib18]
building on the seminal work of Jordan, Kinderlehrer and Otto [JKO98].

We consider the following canonical sampling problem. Let π be a log-concave
probability measure over Rd so that π has density equal to exp(−V ), where the
potential V : Rd → R is convex. Throughout this paper, we also assume that V
is twice continuously differentiable for convenience, though many of our results
hold under weaker conditions.

Many MCMC algorithms for this task are based on the Langevin diffusion
(LD), that is the solution (Xt)t≥0 to the stochastic differential equation (SDE)

dXt = −∇V (Xt) dt+
√

2 dBt , (LD)

with (Bt)t≥0 a standard Brownian motion in Rd. Indeed, π is the unique invariant
distribution of (LD) and suitable discretizations result in algorithms that can be
implemented when V is known only up to an additive constant, which is crucial
for applications in Bayesian statistics and machine learning.

A first connection between sampling from log-concave measures and optimizing
convex functions is easily seen from (LD): omitting the Brownian motion term
yields the gradient flow ẋt = −∇V (xt), which results in the celebrated gradient
descent algorithm when discretized in time [Dal17a; Dal17b]. There is, however,
a much deeper connection involving the distribution of Xt rather than Xt itself,
and this latter connection has been substantially more fruitful: the marginal
distribution of a Langevin diffusion process (Xt)t≥0 evolves according to a gradi-
ent flow, over the Wasserstein space of probability measures, that minimizes the
Kullback–Leibler (KL) divergence KL(· ∥ π) [JKO98; AGS08; Vil09b]. This point
of view has led not only to a better theoretical understanding of the Langevin
diffusion [Ber18; CB18; Wib18; DMM19; VW19] but it has also inspired new
sampling algorithms based on classical optimization algorithms, such as proxi-
mal/splitting methods [Ber18; Wib18; Wib19; SR20], mirror descent [Hsi+18;
Zha+20], Nesterov’s accelerated gradient descent [Che+18b; DR20; Ma+21], and
Newton methods [Mar+12; Sim+16; WL20].

Our contributions. This paper further exploits the optimization perspective on
sampling by establishing a theoretical framework for a large class of stochastic
processes called mirror Langevin diffusions (MLD) introduced in [Zha+20]. These
processes correspond to alternative optimization schemes that minimize the KL
divergence over the Wasserstein space by changing its geometry. They show better
dependence in key parameters such as the condition number and the dimension.

Our theoretical analysis is streamlined by a technical device which is unex-
pected at first glance, yet proves to be elegant and effective: we track the progress
of these schemes not by measuring the objective function itself, the KL divergence,
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Figure 8.1: Samples from the posterior distribution of a 2D Bayesian logistic regression
model using the Newton Langevin algorithm (NLA), the unadjusted Langevin algorithm
(ULA), and the tamed unadjusted Langevin algorithm (TULA) [Bro+19]. For details,
see §8.7.2.

but rather by measuring the chi-squared divergence to the target distribution π
as a surrogate. This perspective highlights the central role of mirror Poincaré
inequalities (MP) as sufficient conditions for exponentially fast convergence of
the mirror Langevin diffusion to stationarity in chi-squared divergence, which
readily yields convergence in other well-known information divergences, such as
the Kullback–Leibler divergence, the Hellinger distance, and the total variation
distance [Tsy09, §2.4].

We also specialize our results to the case when the mirror map equals the
potential V . This can be understood as the sampling analogue of Newton’s
method, and we therefore call it the Newton Langevin diffusion (NLD). In this
case, the mirror Poincaré inequality translates into the Brascamp–Lieb inequality
which automatically holds when V is twice-differentiable and strictly convex. In
turn, it readily implies exponential convergence of the Newton Langevin diffusion
(Corollary 8.4.1) and can be used for approximate sampling even when the second
derivative of V vanishes (Corollary 8.4.2). Strikingly, the rate of convergence has
no dependence on π or on the dimension d and, in particular, is robust to cases
where ∇2V is arbitrarily close to zero. This scale-invariant convergence parallels
that of Newton’s method in convex optimization.

This invariance property is useful for approximately sampling from the uniform
distribution over a convex body C, which has been well-studied in the computer
science literature [FKP94; KLS95; LV07]. By taking the target distribution
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π ∝ exp(−βV ), where V is any strictly convex barrier function, and β, the inverse
temperature parameter, is taken to be small (depending on the target accuracy),
we can use the Newton Langevin diffusion, much in the spirit of interior point
methods (as promoted by [LLV20]), to output a sample which is approximately
uniformly distributed on C; see Corollary 8.4.3.

Throughout this chapter, we work exclusively in the setting of continuous-time
diffusions such as (LD), and we leave the question of obtaining discretization error
bounds to §9.

Related work. The discretized Langevin algorithm, and the Metropolis–Hastings
adjusted version, have been well-studied when used to sample from strongly log-
concave distributions, or distributions satisfying a log-Sobolev inequality [Dal17b;
DM17; CB18; DK19; DM19; Dwi+19; VW19; Che+20c; Mou+22], see also §3.
Moreover, various ways of adapting Langevin diffusion to sample from bounded
domains have been proposed [BEL18; Hsi+18; Zha+20]; in particular, [Zha+20]
studied the discretized mirror Langevin diffusion. Finally, we note that while our
analysis and methods are inspired by the optimization perspective on sampling,
it connects to a more traditional analysis based on coupling stochastic processes.
Quantitative analysis of the continuous Langevin diffusion process associated to
SDE (LD) has been performed with Poincaré and log-Sobolev inequalities [BGG12;
BGL14; VW19], and with couplings of stochastic processes [CL89; Ebe16].

Notation. The Euclidean norm over Rd is denoted by ∥ · ∥. Throughout, we
simply write

∫
g to denote the integral with respect to the Lebesgue measure:∫

g(x) dx. When the integral is with respect to a different measure µ, we explicitly
write

∫
g dµ. The expectation and variance of g(X) when X ∼ µ are respectively

denoted Eµ g =
∫
g dµ and varµ g :=

∫
(g − Eµ g)2 dµ. When clear from context,

we sometimes abuse notation by identifying a measure µ with its Lebesgue density.

■ 8.2 Mirror Langevin diffusions

Before introducing mirror Langevin diffusions, our main objects of interest, we
provide some intuition by drawing a parallel with convex optimization.

■ 8.2.1 Gradient flows, mirror flows, and Newton’s method

We briefly recall some background on gradient flows and mirror flows; we refer read-
ers to the monograph [Bub15] for the convergence analysis of the corresponding
discrete-time algorithms.

Suppose we want to minimize a differentiable function f : Rd → R. The
gradient flow of f is the curve (xt)t≥0 on Rd solving ẋt = −∇f(xt). A suitable
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time discretization of this curve yields the well-known gradient descent (GD).
Although the gradient flow typically works well for optimization over Euclidean

spaces, it may suffer from poor dimension scaling in more general cases such as
Banach space optimization; a notable example is the case when f is defined
over the probability simplex equipped with the ℓ1 norm. This observation led
Nemirovski and Yudin [NY83] to introduce the mirror flow, which is defined as
follows. Let ϕ : Rd → R ∪ {∞} be a mirror map, that is a strictly convex twice
continuously differentiable function of Legendre type1. The mirror flow (xt)t≥0
satisfies ∂t∇ϕ(xt) = −∇f(xt), or equivalently, ẋt = −[∇2ϕ(xt)]

−1∇f(xt). The
corresponding discrete-time algorithms, called mirror descent (MD) algorithms,
have been successfully employed in varied tasks of machine learning [Bub15] and
online optimization [BC12] where the entropic mirror map plays an important
role. In this work, we are primarily concerned with the following choices for the
mirror map:

1. When ϕ = ∥ · ∥2/2, then the mirror flow reduces to the gradient flow.

2. Taking ϕ = f and the discretization xk+1 = xk−hk [∇2f(xk)]
−1∇f(xk) yields

another popular optimization algorithm known as (damped) Newton’s method.
Newton’s method has the important property of being invariant under affine
transformations of the problem, and its local convergence is known to be
much faster than that of GD; see [Bub15, §5.3].

■ 8.2.2 Mirror Langevin diffusions

We now introduce the mirror Langevin diffusion (MLD) of [Zha+20]. Just as LD
corresponds to the gradient flow, the MLD is the sampling analogue of the mirror
flow. To describe it, let ϕ : Rd → R be a mirror map as in the previous section.
Then, the mirror Langevin diffusion satisfies the SDE

Xt = ∇ϕ⋆(Yt) , dYt = −∇V (Xt) dt+
√

2 [∇2ϕ(Xt)]
1/2

dBt , (MLD)

where ϕ⋆ denotes the convex conjugate of ϕ [BL06, §3.3]. In particular, if we
choose the mirror map ϕ to equal the potential V , then we arrive at a sampling
analogue of Newton’s method, which we call the Newton Langevin diffusion (NLD),

Xt = ∇V ⋆(Yt) , dYt = −∇V (Xt) dt+
√

2 [∇2V (Xt)]
1/2

dBt . (NLD)

From our intuition gained from optimization, we expect that NLD has special
properties, such as affine invariance and faster convergence. We validate this

1This ensures that ∇ϕ is invertible, c.f. [Roc97, §26].
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intuition in Corollary 8.4.1 below by showing that, provided π is strictly log-
concave, the NLD converges to stationarity exponentially fast, with no dependence
on π. This should be contrasted with the vanilla Langevin diffusion (LD), for which
the convergence rate depends on the Poincaré constant of π, as we discuss in the
next section.

We now compare MLD and NLD with similar sampling algorithms proposed
in the literature inspired by mirror descent and Newton’s method.

Mirrored Langevin dynamics . A variant of MLD, called “mirrored Langevin dynam-
ics”, was introduced in [Hsi+18]. The mirrored Langevin dynamics is motivated
by constrained sampling and corresponds to the vanilla Langevin algorithm ap-
plied to the new target measure (∇ϕ)#π. In contrast, MLD can be understood as
a Riemannian diffusion w.r.t. the Riemannian metric induced by the mirror map
ϕ. Thus, the motivations and properties of the two algorithms are different, and
we refer to [Zha+20] for further comparison of the two algorithms.

Quasi-Newton diffusion. The paper [Sim+16] proposes a quasi-Newton sampling
algorithm, based on L-BFGS, which is partly motivated by the desire to avoid
computation of the third derivative∇3V while implementing the Newton Langevin
diffusion. We remark, however, that the form of NLD employed above, which
treats V as a mirror map, does not in fact require the computation of ∇3V , and
thus can be implemented practically; see §8.7.1. Moreover, since we analyze the
full NLD, rather than a quasi-Newton implementation, we are able to give a clean
convergence result.

Information Newton’s flow . Inspired by the perspective of [JKO98], which views
the Langevin diffusion as a gradient flow in the Wasserstein space of probability
measures, the paper [WL20] proposes an approach termed “information Newton’s
flow” that applies Newton’s method directly on the space of probability measures
equipped with either the Fisher–Rao or the Wasserstein metric. However, un-
like LD and NLD that both operate at the level of particles, information Newton’s
flow faces significant challenges at the level of both implementation and analysis.

■ 8.3 Convergence analysis

■ 8.3.1 Convergence of gradient flows and mirror flows

We provide a brief reminder about the convergence analysis of gradient flows and
mirror flows defined in §8.2.1 to provide intuition for the next section. Throughout,
let f be a differentiable function with minimizer x∗.

Consider first the gradient flow for f : ẋt = −∇f(xt). From straightforward
computation, ∂t[f(xt) − f(x∗)] = −∥∇f(xt)∥2. From this identity, it is natural
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to assume a Polyak– Lojasiewicz (PL) inequality, which is well-known in the op-
timization literature [KNS16] and can be employed even when f is not convex.
Indeed, if there exists a constant CPL > 0 with

f(x)− f(x∗) ≤ CPL

2
∥∇f(x)∥2 ∀x ∈ Rd , (PL)

then ∂t[f(xt)− f(x∗)] ≤ − 2
CPL

[f(xt)− f(x∗)]. Together with Grönwall’s inequal-

ity, it readily yields exponentially fast convergence in objective value: f(xt) ≤
f(x0) exp(−2t/CPL).

A similar analysis may be carried out for the mirror flow. Fix a mirror map
ϕ and consider the mirror flow: ẋt = −[∇2ϕ(xt)]

−1∇f(xt). Similarly, it holds
that ∂t[f(xt)− f(x∗)] = −⟨∇f(xt), [∇2ϕ(xt)]

−1∇f(xt)⟩. Therefore, the analogue
of (PL) which guarantees exponential decay in the objective value is the following
inequality, which we call a mirror PL inequality :

f(x)− f(x∗) ≤ CMPL

2
⟨∇f(x), [∇2ϕ(x)]

−1∇f(x)⟩ ∀x ∈ Rd . (MPL)

Next, we describe analogues of (PL) and (MPL) that guarantee convergence of LD
and MLD.

■ 8.3.2 Convergence of mirror Langevin diffusions

The above analysis employs the objective function f to measure the progress of
both the gradient and mirror flows. While this is the most natural choice, our
approach below crucially relies on measuring progress via a different functional F .
What should we use as F? To answer this question, we first consider the simpler
case of the vanilla Langevin diffusion (LD), which is a special case of MLD when
the mirror map is ϕ = ∥·∥2/2. We keep this discussion informal and postpone
rigorous arguments to §8.5.

Since the work of [JKO98], it has been known that the marginal distribution
µt at time t ≥ 0 of LD evolves according to the gradient flow of the KL divergence
KL(·∥π) with respect to the 2-Wasserstein distance W2; we refer readers to [San17]
for an overview of this work, and to [AGS08; Vil09b] for comprehensive treatments.
Therefore, the most natural choice for F is, as in §8.3.1, the objective function
KL(· ∥ π) itself. Following this approach, one can compute [Vil03, §9.1.5]

∂t KL(µt ∥ π) = −
∫ ∥∥∇ ln

dµt
dπ

∥∥2
dµt = −4

∫ ∥∥∇√dµt
dπ

∥∥2
dπ .

In this setup, the role of the PL inequality (PL) is played by a log-Sobolev inequality
of the form

entπ(g2) :=

∫
g2 ln(g2) dπ −

( ∫
g2 dπ

)
ln
( ∫

g2 dπ
)
≤ 2CLSI

∫
∥∇g∥2 dπ . (LSI)
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When g =
√

dµt/dπ, (LSI) reads KL(µt ∥ π) ≤ 2CLSI

∫ ∥∥∇√dµt/dπ
∥∥2

dπ, which
implies exponentially fast convergence: KL(µt ∥ π) ≤ KL(µ0 ∥ π) exp(−2t/CLSI) by
Grönwall’s inequality.

A disadvantage of this approach, however, is that the log-Sobolev inequal-
ity (LSI) does not hold for any log-concave measure π, or it may hold with a
poor constant CLSI. For example, it is known that the log-Sobolev constant of an
isotropic log-concave distribution must in general depend on the diameter of its
support [LV18b]. In contrast, we work below with a Poincaré inequality, which is
conjecturally satisfied by such distributions with a universal constant [KLS95].

Motivated by [BCG08; CG09], we instead consider the chi-squared divergence

F (µ) = χ2(µ ∥ π) := varπ
dµ

dπ
=

∫ (dµ

dπ

)2

dπ − 1 , if µ≪ π ,

and F (µ) =∞ otherwise. It is well-known that the law (µt)t≥0 of LD satisfies the
Fokker–Planck equation in the weak sense [KS91, §5.7]:

∂tµt = div
(
µt∇ ln

µt
π

)
.

Using this, we can compute the derivative of the chi-squared divergence:

1

2
∂tF (µt) =

∫
µt
π
∂tµt =

∫
µt
π

div
(
µt∇ ln

µt
π

)
= −

∫ 〈
∇ ln

µt
π
,∇µt

π

〉
µt

= −
∫ ∥∥∇µt

π

∥∥2
π ,

and exponential convergence of the chi-squared divergence follows if π satisfies a
Poincaré inequality:

varπ g ≤ CP Eπ[∥∇g∥2] for all locally Lipschitz g ∈ L2(π) . (P)

Thus, when using the chi-squared divergence to track progress, the role of the PL
inequality is played by a Poincaré inequality. As we discuss in §8.4.1 and §8.4.3
below, the Poincaré inequality is significantly weaker than (LSI).

A similar analysis may be carried out for MLD using an appropriate variation
of Poincaré inequalities.

Definition 8.3.1 (Mirror Poincaré inequality). Given a mirror map ϕ, we say
that the distribution π satisfies a mirror Poincaré inequality with constant CMP if

varπ g ≤ CMP Eπ⟨∇g, (∇2ϕ)
−1∇g⟩ for all locally Lipschitz g ∈ L2(π) . (MP)

When ϕ = ∥ · ∥2/2, (MP) is simply called a Poincaré inequality and the smallest
CMP for which the inequality holds is the Poincaré constant of π, denoted CP.
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Using a similar argument as the one above, we show exponential convergence
of MLD in chi-squared divergence χ2(· ∥ π) under (MP). Together with standard
comparison inequalities between information divergences [Tsy09, §2.4], it implies
exponential convergence in a variety of commonly used divergences, including the
total variation (TV) distance ∥· − π∥TV, the Hellinger distance H(·, π), and the
KL divergence KL(· ∥ π).

Theorem 8.3.2. For each t ≥ 0, let µt be the marginal distribution of MLD
with target distribution π at time t. Then if π satisfies the mirror Poincaré
inequality (MP) with constant CMP, it holds

2 ∥µt−π∥2TV, H2(µt, π), KL(µt∥π), χ2(µt∥π) ≤ exp
(
− 2t

CMP

)
χ2(µ0∥π) , ∀ t ≥ 0 .

We give two proofs of this result in §8.5.
Recall that LD can be understood as a gradient flow for the KL divergence

on the 2-Wasserstein space. In light of this interpretation, the above bound for
the KL divergence yields a convergence rate in objective value, and it is natural
to wonder whether a similar rate holds for the iterates themselves in terms of
2-Wasserstein distance. From the works [Din15; Led18; Liu20], it is known that a
Poincaré inequality (P) implies the transport inequality

W 2
2 (µ, π) ≤ 2CP χ

2(µ ∥ π) , ∀µ≪ π . (8.1)

A proof of a weaker version of this inequality is also given in [Che+20e].
The inequality (8.1) implies that if π has a finite Poincaré constant CP then

Theorem 8.3.2 also yields exponential convergence in Wasserstein distance. In the
rest of the paper, we write this as

1

2CP
W 2

2 (µt, π) ≤ exp
(
− 2t

CMP

)
χ2(µ0 ∥ π) ,

for any target measure π that satisfies a mirror Poincaré inequality, with the
convention that CP =∞ when π fails to satisfy a Poincaré inequality. In this case,
the above inequality is simply vacuous.

■ 8.4 Applications

We specialize Theorem 8.3.2 to the following important applications.

■ 8.4.1 Newton Langevin diffusion

For NLD, we assume that V is strictly convex and twice continuously differentiable;
take ϕ = V . In this case, the mirror Poincaré inequality (MP) reduces to the
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Brascamp–Lieb inequality, which is known to hold with constant CMP = 1 for any
strictly log-concave distribution π [BL76; BL00; Gen08]. It yields the following
remarkable result where the exponential contraction rate has no dependence on π
nor on the dimension d.

Corollary 8.4.1. Suppose that V is strictly convex and twice continuously differ-
entiable. Then, the law (µt)t≥0 of NLD satisfies

2 ∥µt − π∥2TV, H2(µt, π), KL(µt ∥ π), χ2(µt ∥ µ),
1

2CP
W 2

2 (µt, π)

≤ exp(−2t)χ2(µ0 ∥ π) .
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Figure 8.2: Approximately sampling
from π ∝ exp(−∥ · ∥) by sampling from
πβ ∝ exp(−∥·∥−β ∥·−1∥2) (β = .0005).
Algorithms are initialized at a random
X0 with ∥X0∥ = 1000. The plot shows
the squared distance of the running
means to 0.

If π is log-concave, then it satisfies
a Poincaré inequality [AB15] so that the
result in Wasserstein distance holds. In
fact, contingent on the Kannan–Lovász–
Simonovitz (KLS) conjecture [KLS95], the
Poincaré constant of any log-concave distri-
bution π is upper bounded by a dimension-
free constant times the largest eigenvalue
of the covariance matrix of π.

At this point, one may wonder, under
the same assumptions as the Brascamp–
Lieb inequality, whether a mirror version of
the log-Sobolev inequality (LSI) holds. This
question was answered negatively in [BL00],
reinforcing our use of the chi-squared diver-
gence as a surrogate for the KL divergence.

If the potential V is convex, but degenerate (i.e., not strictly convex) we cannot
use NLD directly with π as the target distribution. Instead, we perturb π slightly
to a new measure πβ, which is strongly log-concave, and for which we can use NLD.
Crucially, due to the scale invariance of NLD, the time it takes for NLD to mix
does not depend on β, the parameter which governs the approximation error.

Corollary 8.4.2. Fix a target accuracy ε > 0. Suppose π = exp(−V ) is log-
concave and set πβ ∝ exp(−V − β ∥ · ∥2), where β ≤ ε2/(2

∫
∥ · ∥2 dπ). Then, the

law (µt)t≥0 of NLD with target distribution πβ satisfies ∥µt − π∥TV ≤ ε by time

t = 1
2

ln[2χ2(µ0 ∥ πβ)] + ln(1/ε).

Proof. From our assumption, it holds

KL(π ∥ πβ) =

∫
ln

dπ

dπβ
dπ = β

∫
∥ · ∥2 dπ + ln

∫
exp(−β ∥ · ∥2) dπ
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≤ β

∫
∥ · ∥2 dπ ≤ ε2

2
.

Moreover, Theorem 8.3.2 with the above choice of t yields KL(µt ∥ πβ) ≤ ε2/2. To
conclude, we use Pinsker’s inequality and the triangle inequality for ∥ · ∥TV.

Convergence guarantees for other cases where ϕ is only a proxy for V are
presented in §8.6.1.

■ 8.4.2 Sampling from the uniform distribution on a convex body

Next, we consider an application of NLD to the problem of sampling from the
uniform distribution π on a convex body C. A natural method of outputting an
approximate sample from π is to take a strictly convex function Ṽ : Rd → R∪{∞}
such that dom Ṽ = C and Ṽ (x) → ∞ as x → ∂C, and to run NLD with target

distribution πβ ∝ exp(−βṼ ), where the inverse temperature β is taken to be small

(so that πβ ≈ π). The function Ṽ is known as a barrier function.

Although we can take any choice of barrier function Ṽ , we obtain a clean
theoretical result if we assume that Ṽ is ν−1-exp-concave, that is, the mapping
exp(−ν−1Ṽ ) is concave. Interestingly, this assumption further deepens the rich
analogy between sampling and optimization, since such barriers are widely studied
in the optimization literature. There, the property of exp-concavity is typically
paired with the property of self-concordance, and barrier functions satisfying
these two properties are a cornerstone of the theory of interior point algorithms
(see [Bub15, §5.3] and [Nes18, §4]).

We now formulate our sampling result. In our continuous framework, it does
not require self-concordance of the barrier function.

Corollary 8.4.3. Fix a target accuracy ε > 0. Let π be the uniform distribution
over a convex body C and let Ṽ be a ν−1-exp-concave barrier for C. Then, the
law (µt)t≥0 of NLD with target density πβ ∝ exp(−βṼ ) for β ≤ ε2/(2ν) satisfies

∥µt − π∥TV ≤ ε by time t = 1
2

ln[2χ2(µ0 ∥ πβ)] + ln(1/ε).

Proof. Lemma 8.6.3 in §8.6.2 ensures that KL(πβ ∥ π) ≤ ε2/2. We conclude as in
the proof of Corollary 8.4.2, by using Theorem 8.3.2, Pinsker’s inequality, and the
triangle inequality for ∥ · ∥TV.

We demonstrate the efficacy of NLD in a simple simulation: sampling uniformly
from the ill-conditioned rectangle [−a, a]× [−1, 1] with a = 0.01 (Figure 8.3). We
compare NLA with the projected Langevin algorithm (PLA) [BEL18], both with

200 iterations and h = 10−4. For NLA, we take Ṽ (x) = − ln(1− x21)− ln(a2 − x22)
and β = 10−4.
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Figure 8.3: Uniform sampling from the set [−0.01, 0.01]× [−1, 1]: PLA (blue) vs. NLA
(orange). See §8.7.3.

■ 8.4.3 Langevin diffusion under a Poincaré inequality

We conclude this section by giving some implications of Theorem 8.3.2 to the
Langevin diffusion (LD) when ϕ = ∥ · ∥2/2. In this case, the mirror Poincaré
inequality (MP) reduces to the classical Poincaré inequality (P) as in §8.3.2.

Corollary 8.4.4. Suppose that π satisfies a Poincaré inequality (P) with constant
CP > 0. Then, the law (µt)t≥0 of the Langevin diffusion (LD) satisfies

2 ∥µt − π∥2TV, H2(µt, π), KL(µt ∥ π), χ2(µt ∥ µ),
1

2CP
W 2

2 (µt, π)

≤ exp
(
− 2t

CP

)
χ2(µ0 ∥ π) .

The convergence in TV distance recovers results of [Dal17b; DM17]. Bounds for
the stronger error metric χ2(·∥π) have appeared explicitly in [CLL19; VW19] and is
implicit in the work of [BCG08; CG09] on which the TV bound of [DM17] is based.
Discretization guarantees under a Poincaré inequality and (weak) smoothness were
obtained in §3.

Moreover, it is classical that if π satisfies a log-Sobolev inequality (LSI) with
constant CLSI then it has Poincaré constant CP ≤ CLSI (Lemma 2.2.8). Thus, the
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choice of the chi-squared divergence as a surrogate for the KL divergence when
tracking progress indeed requires weaker assumptions on π.

■ 8.5 Proof of the main convergence result

The law (µt)t≥0 of MLD satisfies the Fokker–Planck equation

∂tµt = div
(
µt (∇2ϕ)

−1∇ ln
µt
π

)
. (8.2)

A unique solution to this equation, with enough regularity to justify our com-
putations below, exists under fairly benign conditions on ϕ and V , see [LL08,
Proposition 6].

As discussed in §8.3.2, it suffices to prove the convergence result in chi-squared
divergence. The convergence results for total variation distance, Hellinger distance,
and KL divergence follow from the inequalities [Tsy09, §2.4]

2 ∥µ− π∥2TV, H2(µ, π), KL(µ ∥ π) ≤ χ2(µ ∥ π) , ∀µ≪ π ,

while the convergence in Wasserstein distance follows from (8.1).

Proof of Theorem 8.3.2. Using the Fokker–Planck equation (8.2), we compute

∂tχ
2(µt ∥ π) = ∂t

∫
µ2
t

π
= 2

∫
µt
π
∂tµt = 2

∫
µt
π

div
(
µt (∇2ϕ)

−1∇ ln
µt
π

)
= −2

∫ 〈
∇µt
π
, (∇2ϕ)

−1∇ ln
µt
π

〉
µt = −2

∫ 〈
∇µt
π
, (∇2ϕ)

−1∇µt
π

〉
π .

The mirror Poincaré inequality (MP) implies that this quantity is upper bounded
by −2C−1MP χ

2(µt ∥ π), which completes the proof via Grönwall’s inequality.

We may reinterpret this proof within Markov semigroup theory.

Proof of Theorem 8.3.2 from a Markov semigroup perspective. In this proof, we
denote the semigroup of MLD by (Pt)t≥0; we refer readers to [BGL14; Han16] for
background on Markov semigroup theory. The Dirichlet form E is given by

E(f, g) =

∫
⟨∇f, (∇2ϕ)

−1∇g⟩ dπ .

Since it is a self-adjoint semigroup, we get for all f ∈ L2(π),∫
Pt
(dµ0

dπ

)
f dπ =

∫ (dµ0

dπ

)
Ptf dπ =

∫
Ptf dµ0 =

∫
f dµt =

∫
dµt
dπ

f dπ ,
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so that
Pt
(µ0

π

)
=
µt
π
.

Therefore,

χ2(µt ∥ π) := varπ
(dµt

dπ

)
= varπ Pt

(dµ0

dπ

)
.

Then, using a classical result of Markov semigroup theory (see for instance [CG09,
Theorem 2.1] or [BGL14, Theorem 4.2.5]),

χ2(µt ∥ π) = varπ Pt
(dµ0

dπ

)
≤ exp

(
−2t

C

)
varπ

(dµ0

dπ

)
= exp

(
−2t

C

)
χ2(µ0 ∥ π)

if and only if the semigroup (Pt)t≥0 satisfies

varπ(f) ≤ C E(g, g) , for all g ∈ D(E) , (8.3)

where E is the Dirichlet form of (Pt)t≥0 with domain D(E). To conclude the proof,
it suffices to note that (8.3) is precisely our assumption (MP) with C = CMP.

■ 8.6 Auxiliary results

■ 8.6.1 Additional choices for the mirror map

We extend our results to other choices of the mirror map ϕ that serve as proxies
for V and that also lead to exponential convergence of MLD.

The first result below is useful in situations when there exists a strictly convex
mirror map ϕ such ∇ϕ is easier to invert than ∇V . It ensures exponential
ergodicity of (MLD) when ∇2V dominates ∇2ϕ in the sense of the Loewner order.

Corollary 8.6.1. Suppose that π is strictly log-concave and that ∇2ϕ ⪯ C∇2V ,
where ⪯ denotes the Loewner order. Then, the law (µt)t≥0 of MLD satisfies

2 ∥µt − π∥2TV, H2(µt, π), KL(µt ∥ π), χ2(µt ∥ µ),
1

2CP
W 2

2 (µt, π)

≤ exp
(
−2t

C

)
χ2(µ0 ∥ π) .

Proof. The assumption implies

C Eπ⟨∇f, (∇2ϕ)
−1∇f⟩ ≥ Eπ⟨∇f, (∇2V )

−1∇f⟩ ≥ varπ f ,

where again we apply the Brascamp–Lieb inequality. This verifies (MP) with
constant CMP = C.
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Our second result does not require π to be log-concave but only that it is close
to a strictly log-concave distribution π̃ in the following sense: the density of π
with respect to π̃ is uniformly bounded away from 0 and ∞.

Corollary 8.6.2. Suppose that π̃ = exp(−Ṽ ) is strictly log-concave and suppose
that π has density ρ w.r.t. π̃. Let M := (sup ρ)/(inf ρ). Then, the law (µt)t≥0
of MLD with mirror map ϕ = Ṽ and target density π satisfies

2 ∥µt − π∥2TV, H2(µt, π), KL(µt ∥ π), χ2(µt ∥ µ),
1

2CPM
W 2

2 (µt, π)

≤ exp
(
− 2t

M

)
χ2(µ0 ∥ π) ,

where CP is the Poincaré constant of π̃.

Proof. It is standard that the Poincaré inequality (P), and the mirror Poincaré
inequality (MP), are stable under bounded perturbations of the measure. It implies
that π satisfies a Poincaré inequality with constant CPM , and a mirror Poincaré
inequality with constant M . We prove the latter statement for completeness; for
the former statement, see [Han16, Problem 3.20].

Observe that∫
⟨∇f, (∇2Ṽ )−1∇f⟩ dπ =

∫
⟨∇f, (∇2Ṽ )−1∇f⟩ dπ

dπ̃
dπ̃

≥ (inf ρ)

∫
⟨∇f, (∇2Ṽ )−1∇f⟩ dπ̃

and

varπ̃ f = inf
m∈R

∫
|f −m|2 dπ̃ = inf

m∈R

∫
|f −m|2 dπ̃

dπ
dπ

≥ 1

sup ρ
inf
m∈R

∫
|f −m|2 dπ =

1

sup ρ
varπ f .

Combining these inequalities with the Brascamp–Lieb inequality for π̃,∫
⟨∇f, (∇2Ṽ )−1∇f⟩ dπ̃ ≥ varπ̃ f ,

yields (MP) with constant CMP = M .
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■ 8.6.2 Stability in KL with respect to exp-concave perturbations

The following lemma quantifies the approximation error of replacing π by πβ in
§8.4.2 and, more generally provides a simple bound to control the KL divergence
between a log-concave distribution and its perturbation by a ν-exp-concave barrier
function. Its proof uses crucially displacement convexity of the KL divergence to
a log-concave measure [Vil03, §5], and it can be viewed as the sampling analogue
of [Nes18, (4.2.17)].

Recall that b is ν-exp-concave if the mapping exp(−ν−1b) is concave.

Lemma 8.6.3. Let π be a log-concave distribution on a convex set K ⊂ Rd. Fix
ν > 0, and let π̃ have density exp(−b) with respect to π, where b : K → R is
ν-exp-concave. Then it holds that

KL(π̃ ∥ π) ≤ ν .

Proof. On intK, we have

−∇ ln
dπ̃

dπ
= ∇b . (8.4)

The measure π is log-concave, so by displacement convexity of entropy [AGS08,
Theorem 9.4.11] and the “above-tangent” formulation of convexity [Vil03, Propo-
sition 5.29], we have

0 = KL(π ∥ π) ≥ KL(π̃ ∥ π) + E
〈
∇ ln

dπ̃

dπ
(X̃), X − X̃

〉
,

where (X, X̃) are optimally coupled for π and π̃. If we rearrange this inequality
and use the identities in (8.4), we get

KL(π̃ ∥ π) ≤ −E
〈
∇ ln

dπ̃

dπ
(X̃), X − X̃

〉
= E⟨∇b(X̃), X − X̃⟩ . (8.5)

We now use the fact that b is ν-exp-concave. To that end, define the convex
function

φ(t) = − exp
(
−1

ν
b(X̃ + t (X − X̃))

)
, t ∈ [0, 1] .

By convexity, we have

φ′(0) · (1− 0) ≤ φ(1)− φ(0) ≤ −φ(0) = exp
(
−1

ν
b(X̃)

)
.
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Since

φ′(0) =
1

ν
exp

(
−1

ν
b(X̃)

)
⟨∇b(X̃), X − X̃⟩ ,

the above inequality reads ⟨∇b(X̃), X − X̃⟩ ≤ ν, which completes the proof
together with (8.5).

Remark 8.6.4. It is known that given any convex body C ⊂ Rd, there exists a
standard self-concordant ν−1-exp-concave barrier with ν ≤ d [NN94; BE19; LY21];
see also §10.

■ 8.7 Numerical experiments

In this section, we gather additional details and figures to support our numerical
experiments. First, in §8.7.1, we display the samples for a Gaussian experiment.
Then, §8.7.2 gives details of the Bayesian logistic regression experiment displayed
in Figure 8.1 and shows the effect of varying step size. §8.7.3 gives details of
sampling from an ill-conditioned convex set. Finally, §8.7.4 shows an experiment
where we use the NLA and a mirror Langevin algorithm MLA to approximately
sample from a degenerate log-concave distribution.

■ 8.7.1 Sampling from a Gaussian distribution

In this section, we examine the numerical performance of the Newton Langevin
algorithm (NLA), which is given by the following Euler discretization of NLD:

∇V (Xk+1) = (1− h)∇V (Xk) +
√

2h [∇2V (Xk)]
1/2
ξk , (NLA)

where (ξk)k∈N is a sequence of i.i.d. normal(0, Id) variables. In cases where ∇V
does not have a closed-form inverse, such as the logistic regression case of §8.7.2,
we invert it numerically by solving the convex optimization problem ∇V ⋆(y) =
arg maxx∈Rd {⟨x, y⟩ − V (x)}.

We focus here on sampling from an ill-conditioned generalized Gaussian dis-
tribution on R100 with V (x) = ⟨x,Σ−1x⟩γ/2 for γ = 3/4 to demonstrate the scale
invariance of NLD established in Corollary 8.4.1.

Figure 8.4 compares the performance of NLA to that of the unadjusted Langevin
algorithm (ULA) and of the tamed unadjusted Langevin algorithm (TULA)
from [Bro+19]. We run the algorithms 50 times and compute running estimates
for the mean and scatter matrix of the family following [ZWG13]. Convergence
is measured in terms of squared distance between means and relative squared
distance between scatter matrices, ∥Σ̂− Σ∥2/∥Σ∥2. NLA generates samples that
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Figure 8.4: V (x) = ⟨x,Σ−1x⟩ 34 /2, Σ = diag(1, 2, 3, . . . , 100). Left: absolute squared
error of the mean 0. Right: relative squared error for the scatter matrix Σ.

rapidly approximate the true distribution and also displays stability to the choice
of the step size.

Next, we repeat the example in Figure 8.4 for the simpler case of the Gaussian
distribution (γ = 1) on R100 with the same scatter matrix Σ = diag(1, 2, 3, . . . , 100)
in Figure 8.5. We again see the superiority of NLA over the ULA and TULA. The
additional parameter of TULA (denoted γ in [Bro+19]) is chosen equal to 0.1.
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Figure 8.5: We display convergence of the various algorithms for an ill-conditioned
Gaussian distribution, with d = 100 and Σ = diag(1, 2, 3, . . . , 100). Left: error is the
squared distance from 0. Right: error is the relative distance between scatter matrices.
As in the experiment displayed in Figure 8.4, NLA rapidly converges both in terms of
location and scale for large step sizes.

We also display some samples from the Gaussian experiment of Figure 8.5 in
Figure 8.6. NLA maintains good performance for a wide range of step sizes, while
ULA and TULA require a small step size to accurately sample from the target
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distribution. In fact, even with a small step size, ULA and TULA often jump to
small probability regions, while NLA avoids these regions even for large step sizes.

Figure 8.6: Samples from NLA, ULA, and TULA for the ill-conditioned Gaussian
example of Figure 8.5, with Σ = diag(1, 2, 3, . . . , 100). We display the projection onto
the first (least spread) and last (most spread) population principal components, along
with the projection of a 95% confidence region. Top: the step size for all algorithms is
h = 0.7. Bottom: the step size for all algorithms is h = 0.05.

■ 8.7.2 Bayesian logistic regression

We give details for the two-dimensional Bayesian logistic regression example in
Figure 8.1. In the Bayesian logistic regression model, covariates are drawn as Xi ∼
normal(0, diag(10, 0.1)), the response variables are Yi ∼ Bernoulli(logit(⟨θ,Xi⟩)),
and the parameters θ have a normal(0, 10I2) prior. We consider using NLA to
sample from the posterior distribution of θ given the observations (Xi, Yi), i =
1, . . . , n, which is

π(θ) ∝ exp
[
− 1

20
∥θ∥2 +

n∑
i=1

(
Yi ⟨θ,Xi⟩ − ln(1 + exp ⟨θ,Xi⟩)

)]
,

which is strongly log-concave. While the gradient of the potential is invertible,
it has no closed-form, and so in our experiments we invert it numerically by
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solving ∇V ⋆(y) = arg maxx∈Rd {⟨x, y⟩ − V (x)} with Newton’s method. We find
that, with a warm start from the current iterate Xt, it suffices to run Newton’s
method for a small number of iterations to approximately invert the gradient.

For visualization, we generate 100 samples Xi ∼ normal(0, diag(10, 0.1)) and
Yi ∼ Bernoulli(logit(⟨θ⋆, Xi⟩)), where we set θ⋆ = (1, 1).

We display the result for various sampling algorithms in Figure 8.1. All
algorithms are implemented with h = 0.1 and a burn-in time of 104 steps. This
example shows the advantage of taking a large step size with NLA in this ill-
conditioned model, while ULA and TULA create samples that are overdispersed.
In Figure 8.7, we also show the effect of decreasing step size in this example.
In this case, we see that ULA and TULA still step into low probability regions
or fail to explore the underlying density well. On the other hand, NLA remains
constrained in the high probability region.
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Figure 8.7: Samples from the posterior distribution of a Bayesian logistic regression
model using one run of NLA, ULA, and TULA after a burn-in of 104. Left: large
step size (all algorithms use h = 0.05); NLA remains within the high-density contours,
while the ULA and TULA take steps into low-density areas. Right: small step size
(all algorithms use h = 0.01); NLA explores the underlying distribution faster than its
competitors.
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Figure 8.8: W2 distance (on logarithmic scale) between the uniform distribution on the
rectangle [−0.01, 0.01]× [−1, 1], and samples produced by NLA, PLA, and MALA.

■ 8.7.3 Uniform sampling on a convex body

This section contains details for the simulations in Figure 8.3. We sample from
the uniform distribution on the rectangle [−0.01, 0.01]× [−1, 1] using NLA, PLA,
and the Metropolis-adjusted Langevin algorithm (MALA) [Bes+95]. PLA and
MALA target the uniform distribution directly. NLA samples from an approximate
distribution, given in §8.4.2. The step sizes are chosen as h = 10−5 for NLA and
PLA and h = 0.01 for MALA. The step sizes for PLA and MALA are tuned to
allow the algorithm to reach approximate stationarity in the fewest number of
iterations. MALA can use a larger step size because it is unbiased (its stationary
distribution coincides with the target distribution, due to the Metropolis–Hastings
adjustment). On the other hand, samples from PLA tend to cluster around the
boundary for larger step sizes, so we use a smaller step size for both PLA (and NLA
for fair comparison).

To evaluate the performance of the algorithms, we estimate the 2-Wasserstein
distance between the samples drawn by the algorithms and samples drawn from the
uniform distribution on the rectangle; see Figure 8.8. We use the Sinkhorn distance
(ε = 0.01) as an approximation for the 2-Wasserstein distance [Cut13; ANR17].
Specifically, we sample 1000 points in parallel, using the three algorithms of
interest. At each iteration, we also draw 1000 points from the uniform distribution
on the rectangle, and we compute the Sinkhorn distance between these points and
the samples produced by the algorithms. The convergence estimates are averaged
over 30 runs.
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■ 8.7.4 Approximate sampling from degenerate log-concave distributions

In this section, we explore further the problem of approximately sampling ac-
cording to the measure π(x) ∝ exp(−∥x∥) in R2 considered in Figure 8.2. To
that end, we use the penalization strategy outlined in §8.4.1 and sample instead
from the strongly log-concave measure πβ(x) ∝ exp(−∥x∥ − β ∥x − 1∥2) as in
Corollary 8.4.2, where β = 0.0005, using discretizations of either NLD or MLD
with a customized mirror map. Here, 1 is the vector of all ones, which simulates
the effect of not knowing the true mean.

We initialize all algorithms with a random point X0 with ∥X0∥ = 1000. The
initialization is chosen so that the gradients of the potential at initialization are
extremely small. In these circumstances, we expect ULA to mix slowly.

Through this experiment, we demonstrate two empirical observations:

1. Initially, the iterates of NLA converge extremely rapidly to the vicinity of the
origin. This suggests that NLA can be useful for initializing other sampling
algorithms in highly ill-conditioned settings.

2. However, once the iterates of NLA are near the origin, NLA becomes unstable.
Specifically, since the Hessian of the potential degenerates rapidly near 0, the
iterates of NLA occasionally make large jumps away from 0. This is due to
the fact that the Hessian of V (x) = ∥x∥+ β ∥x− 1∥2 is given by

∇2V (x) =
1

∥x∥
[
I2 −

( x

∥x∥
)( x

∥x∥
)T]

+ 2β I2 (8.6)

which blows up to infinity around x = 0. We remark that Newton’s method
in optimization can also exhibit unstable behavior [CGT00; NP06], so this
phenomenon is not unexpected.

To rectify this behavior, we also consider the Euler discretization of MLD,
which we call MLA (see below). We demonstrate that with an appropriate
choice of mirror map, the iterates of MLA are stable, yet still enjoy faster
convergence than ULA.

Now we proceed to the details of the experiment. We compare four different
methods for sampling from this distribution: NLA, ULA, TULA, and the mirror
Langevin algorithm (MLA)

∇ϕ(Xk+1) = ∇ϕ(Xk)− h∇V (Xk) +
√

2h [∇2ϕ(Xk)]
1/2
ξk , (MLA)

with mirror map ϕ(x) = ∥x∥3/2 and potential V (x) = ∥x∥ + β ∥x − 1∥2. Notice
that this mirror map corresponds to that used in the generalized Gaussian case
of §8.7.1.
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In Figure 8.9, we display the results of the first 1000 iterations of the four
algorithms. In this stage of the experiment, we observe rapid convergence of NLA
towards the origin (around which the mass is concentrated), and MLA also exhibits
faster convergence than ULA and TULA. However, already in Figure 8.9 (Right)
we observe the instability of NLA witnessed through large jumps of the iterates.

Next, in Figure 8.10, we treat the samples from the first 1000 iterations as
burn-in, and we look at the performance of the next 1000 samples. Here we see
that the flexible framework of the more general MLD allows us to design algorithms
which can outperform NLA with superior stability in specific scenarios.

0 200 400 600 800 1000
t (iterations)

0.0

0.2

0.4

0.6

0.8

1.0

|X
t|2

1e6
NLA
MLA
ULA
TULA

1000 500 0 500 10001000

750

500

250

0

250

500

750

1000
NLA
MLA
ULA
TULA

Figure 8.9: First stage of the experiment. Left: We plot the norm of the running mean
versus the iteration number for the target measure πβ(x) ∝ exp(−∥x∥−0.0005 ∥x−1∥2).
Right: We display the corresponding samples.

Recall that the Hessian of the potential V is given in (8.6) while the potential
of the mirror map ϕ is given by

∇2ϕ(x) =
3

2 ∥x∥1/2
[
I2 −

3

4

( x

∥x∥
)( x

∥x∥
)T]

.

From these expressions, it can be checked that Corollary 8.6.1 holds with C ≤
3/(4
√

2β). On the other hand, the measure πβ satisfies a Poincaré inequality (P)
with constant CP ≤ 1/(2β). Heuristically, we therefore expect the mixing time of
ULA to scale as O(β−1), and the mixing time of MLA to scale as O(β−1/2), which
provides an explanation for the rates of convergence observed in Figure 8.9. In com-
parison, the mixing time of NLA is scale-invariant, i.e., O(1), as we demonstrated
in Corollary 8.4.1, as witnessed by the initial rapid convergence in Figure 8.9.

As mentioned in our open questions, this points to the intriguing possibility
of developing more stable variants of NLA, which would mirror the development
of such strategies for Newton’s method [CGT00; NP06].
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Figure 8.10: Second stage of the experiment. In this stage, we treat the 1000 samples
from the first stage of the experiment as burn-in and look at the performance of the
next 1000 samples. Left: We plot the logarithm of the norm of the running mean versus
iteration. Right: We again display the corresponding samples.

■ 8.8 Conclusion

We conclude this chapter by discussing several intriguing directions for future
research. In this chapter, we focused on giving clean convergence results for the
continuous-time diffusions MLD and NLD, and the problem of obtaining discretiza-
tion error bounds is deferred to §9. In discrete time, Newton’s method can be
unstable, and one uses methods such as damped Newton, Levenburg–Marquardt,
or cubic-regularized Newton [CGT00; NP06]; it is an interesting question to de-
velop sampling analogues of these optimization methods. In a different direction,
we ask the following question: are there appropriate variants of other popular
sampling methods, such as accelerated Langevin [Ma+21] or Hamiltonian Monte
Carlo [Nea11], which also enjoy the scale invariance of NLD?



Chapter 9

Discretization analysis of mirror
Langevin Monte Carlo

In §8, we focused on the mirror Langevin diffusion in continuous time. In this
chapter, we propose a new discretization of the mirror Langevin diffusion and give
a crisp proof of its convergence. Our analysis uses relative convexity/smoothness
and self-concordance, ideas which originated in convex optimization, together
with a new result in optimal transport that generalizes the displacement convexity
of the entropy. Unlike prior works, our result both (1) requires much weaker
assumptions on the mirror map and the target distribution, and (2) has vanishing
bias as the step size tends to zero. In particular, for the task of sampling from a
log-concave distribution supported on a compact set, our theoretical results are
significantly better than the existing guarantees.

This chapter is based on [AC21], joint with Kwangjun Ahn.

■ 9.1 Introduction

We consider the following canonical sampling problem. Let V : Rd → R ∪ {∞}
be a convex function and let π be the density on Rd which is proportional to
exp(−V ). The task is to output a sample which is (approximately) distributed
according to π, given query access to the gradients of V .

As in previous chapters, we are motivated by the deep and fruitful connec-
tion between sampling and the field of optimization, introduced in the seminal
work [JKO98]. To describe this connection, we recall the Langevin diffusion, which
is the solution to the following stochastic differential equation (SDE):

dXt = −∇V (Xt) dt+
√

2 dBt . (LD)

Under standard assumptions on the potential V , the SDE is well-posed and it
converges in distribution, as t→∞, to its unique stationary distribution π. Thus,
once suitably discretized, it yields a popular algorithm for the sampling prob-

277
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lem. The Langevin diffusion is classically studied using techniques from Markov
semigroup theory [see, e.g., BGL14; Pav14], but there is a more insightful per-
spective which views the diffusion (LD) through the lens of optimization [JKO98].
Specifically, if µt denotes the law of the process (LD) at time t, then the curve
(µt)t≥0 is the gradient flow of the KL divergence KL(· ∥π) in the Wasserstein space
of probability measures. This perspective has not only inspired new analyses of
Langevin [CB18; Wib18; DMM19; VW19], but has also emboldened the possibil-
ity of bringing to bear the extensive toolkit of optimization onto the problem of
sampling (see, e.g., §4).

However, the vanilla Langevin diffusion notably fails when the support of
the target distribution π is not all of Rd. This task of constrained sampling,
named in analogy to constrained optimization, arises in applications such as
Bayesian matrix factorization [PBJ15], latent Dirichlet allocation [BNJ03], or-
dinal data models [JA99], and regularized regression [Cel+12]. Despite such a
broad range of applications, the constrained sampling problem has proven to be
challenging. In particular, most prior works have focused on domain-specific al-
gorithms [GSL92; PP14; LS16], and the first general-purpose algorithms for this
task are recent [Bro+17; BEL18].

In this work, we tackle the constrained sampling problem via mirror Langevin
Monte Carlo (MLMC). MLMC is a discretization of the mirror Langevin diffu-
sion [Hsi+18; Zha+20], which is the sampling analogue of mirror descent. Namely,
if ϕ : Rd → R ∪ {∞} is a mirror map, then the mirror Langevin diffusion is the
solution to the SDE

Xt = ∇ϕ⋆(Yt) , dYt = −∇V (Xt) dt+
√

2 [∇2ϕ(Xt)]
1/2 dBt . (MLD)

Technical motivation. Zhang et al. [Zha+20] analyzed an Euler–Maruyama dis-
cretization of MLD; see (9.2) for details. The most curious aspect of their result is
that their convergence guarantee has a bias term that does not vanish even when
step size tends to zero and the number of iterations tends to infinity. Moreover,
they conjecture that this bias term is unavoidable. This is in contrast to known
results for standard Langevin, which raises the main question of this paper:

Can a different discretization of MLD lead to a vanishing bias?

Our contributions. We propose a new discretization of the mirror Langevin diffu-
sion, given in (MLMC) and illustrated in Figure 9.1. Our proposed discretization
has the same cost as the standard Euler–Maruyama discretization of MLD in
terms of the number of queries to the gradient oracle for V . We remark that our

scheme for the case ϕ = ∥·∥2
2

recovers the Langevin Monte Carlo algorithm. The
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Figure 9.1: Illustration of mirror Langevin Monte Carlo (MLMC). This illustration is
adapted from [Bub15, Figure 4.1].
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most important aspect of our result is that the bias of our algorithm vanishes as
the step size tends to zero unlike the result by Zhang et al. [Zha+20].

By adapting the analysis of Durmus et al. [DMM19], we provide a clean con-
vergence analysis of our algorithm which theoretically validates our discretization
scheme. Notably, our analysis only requires standard assumptions/definitions
which are well-studied in optimization. In particular, we establish a stronger
link between sampling and optimization without relying on technical assumptions
of [Zha+20] (e.g., commutation conditions for Hessians; see (A5) therein).

Moreover, our analysis combines ideas from optimization with the calculus of
optimal transport. In particular, we establish a new generalization of a celebrated
fact, namely that the entropy functional is displacement convex along Wasserstein
geodesics, to the setting of Bregman divergences (Theorem 9.4.1). This inequality
has interesting consequences in its own right; as we discuss in Corollary 9.4.2, our
result already implies the transport inequality of Cordero-Erausquin [Cor17].

We provide convergence guarantees for the following classes of potentials: (1)
convex and relatively smooth (Theorem 9.3.5); (2) strongly relatively convex and
relatively smooth (Theorem 9.3.6); and (3) convex and Lipschitz (Theorem 9.3.7).
Our results largely match state-of-the-art results for the discretization of the
Langevin algorithm for unconstrained sampling. Our work paves the way for
the practical deployment of mirror Langevin methods for sampling applications,
paralleling the successes of mirror descent in optimization [NY83; Bub15].

In §9.5, we demonstrate the strength of our convergence guarantees compared
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with the previous works [Bro+17; BEL18] in various applications such as Bayesian
logistic regression.

Other related works. Recently, a few works have proposed modifications of the
Langevin algorithm for the task of constrained sampling. Bubeck et al. [BEL18]
studied the projected Langevin algorithm, which simply projects each step of the
Langevin algorithm onto dom(V ). A different approach was taken in Brosse et
al. [Bro+17], which applies the Langevin algorithm to a smooth approximation
of V given by the Moreau–Yosida envelope. The latter approach was later inter-
preted and further analyzed by Salim and Richtarik [SR20] using the primal-dual
optimality framework from convex optimization.

A different line of work, more closely related to ours, uses a mirror map to
change the geometry of the sampling problem, see [Hsi+18; Zha+20] and §8. In
particular, the mirror Langevin diffusion (MLD) was first introduced in an earlier
draft of [Hsi+18], as well as in [Zha+20]. The diffusion was further studied in
§8, which provided a simple convergence analysis in continuous time using the
sampling analog of Polyak– Lojasiewicz inequalities [KNS16]. We also remark that
the idea of changing the geometry via a mirror map also played an crucial role
for the problem of sampling from the uniform distribution over a polytope [KN12;
Che+18a; LV18a; LLV20; GN22; LV22].

Lastly, our work follows the trend of applying ideas from optimization to
the task of sampling. Specifically, our analysis adopts the framework of relative
convexity and smoothness, which was advocated as a more flexible framework for
optimization in [BBT17; LFN18].

■ 9.2 Mirror Langevin Monte Carlo

■ 9.2.1 Background

In this section, we list basic definitions and assumptions that we employ.

Convex functions of Legendre type. Throughout, we assume familiarity
with the basic notions of convex analysis [see, e.g., Roc97; BL06].

Definition 9.2.1 (Convex functions of Legendre type [Roc97, §26]). A proper
convex lower semicontinuous function ϕ : Rd → R ∪ {∞} is of Legendre type if

(i) Q := int(dom(ϕ)) ̸= ∅,

(ii) ϕ is strictly convex and differentiable on Q, and

(iii) limk→∞∥∇ϕ(xk)∥ = ∞ whenever {xk}k∈N is a sequence in Q converging to
∂Q.
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The key properties of convex functions of Legendre type are listed below:

• The subdifferential ∂ϕ is single-valued and hence ∂ϕ = {∇ϕ} [Roc97, Theo-
rem 26.1].

• ϕ is a convex function of Legendre type if and only if its Fenchel conjugate
ϕ⋆ is a convex function of Legendre type [Roc97, Theorem 26.5].

• The gradient ∇ϕ forms a bijection between int(dom(ϕ)) and int(dom(ϕ⋆))
with ∇ϕ⋆ = (∇ϕ)−1 [Roc97, Theorem 26.5].

We refer readers to [Roc97, §26] for more details. We henceforth assume that our
mirror map ϕ is a convex function of Legendre type.

The natural notion of “distance” associated with the mirror map ϕ is given by
the Bregman divergence [see, e.g., Bub15, §4]:

Definition 9.2.2 (Bregman divergence [Brè67]). For a convex function ϕ of
Legendre type, the Bregman divergence Dϕ(· ∥ ·) associated to ϕ is defined as

Dϕ(x ∥ y) := ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩ , ∀x, y ∈ Q := int(dom(ϕ)) .

The Bregman divergence behaves like a squared distance; indeed, as x → y
a Taylor expansion shows that Dϕ(x, y) ∼ 1

2
⟨x − y,∇2ϕ(y) (x − y)⟩. We refer

to [Bub15, §4] for other basic properties of the Bregman divergence. Hereinafter,
when we use a Bregman divergence, we implicitly assume that its associated
function ϕ is a mirror map.

An important case to keep in mind is the mirror map ϕ = ∥·∥2
2

, where ∥·∥
denotes the Euclidean norm, in which case the Bregman divergence simply becomes
Dϕ(x, y) = 1

2
∥x− y∥2.

Self-concordance. We recall the definition of self-concordance, which has
been extensively used in applications such as interior-point methods [NN94]. Given
a C2 strictly convex function ϕ, the local norm at x ∈ int(dom(ϕ)) with respect
to ϕ is defined as

∥u∥∇2ϕ(x) =
√
⟨∇2ϕ(x)u, u⟩ for all u ∈ Rd .

The dual local norm at x ∈ int(dom(ϕ)) with respect to ϕ is

∥u∥[∇2ϕ(x)]−1 =
√〈

[∇2ϕ(x)]−1u, u
〉

for all u ∈ Rd .

Definition 9.2.3 (Self-concordant function [Nes18, §5.1.3]). We say that a C3
convex function ϕ is self-concordant with a constant Mϕ ≥ 0 if for any x ∈
int(dom(ϕ)),

|∇3ϕ(x)[u, u, u]| ≤ 2Mϕ ∥u∥3∇2ϕ(x) for all u ∈ Rd .
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Relative convexity/smoothness. We recall the following definitions:

Definition 9.2.4 (Relative convexity [BBT17; LFN18]). V is α-convex relative
to ϕ if

V (y) ≥ V (x) + ⟨∇V (x), y − x⟩+ αDϕ(y ∥ x) ∀x, y ∈ Q .

Definition 9.2.5 (Relative smoothness [BBT17; LFN18]). V is β-smooth relative
to ϕ if

V (y) ≤ V (x) + ⟨∇V (x), y − x⟩+ βDϕ(y ∥ x) ∀x, y ∈ Q .

For the reader’s convenience, we list basic facts regarding relative convexity
and smoothness.

Proposition 9.2.6 ([LFN18, Proposition 1.1]). The following conditions are
equivalent:

• f is β-smooth relative to h.

• βh− f is convex on Q.

• Under twice differentiability, ∇2f(x) ⪯ β∇2h(x) for any x ∈ int(Q).

• ⟨∇f(x)−∇f(y), x− y⟩ ≤ β ⟨∇h(x)−∇h(y), x− y⟩ for all x, y ∈ int(Q).

Furthermore, the following conditions are equivalent:

• f is α-convex relative to h.

• f − αh is convex on Q.

• Under twice differentiability, ∇2f(x) ⪰ α∇2h(x) for any x ∈ int(Q).

• ⟨∇f(x)−∇f(y), x− y⟩ ≥ α ⟨∇h(x)−∇h(y), x− y⟩ for all x, y ∈ int(Q).

In the rest of this work, we assume that V ∈ C2(X ) where X := int(dom(V )),
that X ⊆ Q, and X ∩ Q ≠ ∅. Also, we assume that exp(−V ) is integrable
so that π is well-defined; this holds if and only if V (x) ≥ a ∥x∥ − b for some
a, b > 0 [Bra+14, Lemma 2.2.1].

Optimal transport. Given a lower semicontinuous cost function c : Rd ×
Rd → [0,∞], we can define the optimal transport cost between two probability
measures µ and ν on Rd to be

inf{E c(X, Y ) | X ∼ µ, Y ∼ ν} . (9.1)
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Here, the infimum is taken over pairs of random variables (X, Y ) defined on the
same probability space, with marginal laws µ and ν respectively. It is known that
the infimum in (9.1) is always attained; we refer to the standard introductory
texts [Vil03; Vil09b; San15] for this and other basic facts in optimal transport.

In this work, we are most concerned with the case when the cost function c is
the Bregman divergence associated with a mirror map:

Definition 9.2.7 (Bregman transport cost). The Bregman transport cost is de-
fined as

Dϕ(µ ∥ ν) := inf{EDϕ(X ∥ Y ) | X ∼ µ, Y ∼ ν} .

The Bregman transport cost was also studied in [Cor17].

In particular, when ϕ = ∥·∥2
2

, we obtain an important special case:

Definition 9.2.8 (2-Wasserstein distance). The 2-Wasserstein distance W2 is
defined as

W 2
2 (µ, ν) := inf{E[∥X − Y ∥2] | X ∼ µ, Y ∼ ν} .

The W2 optimal transport cost indeed defines a metric over the space of
probability measures on Rd with finite second moment [Vil03, Theorem 7.3]; we
refer to this metric space as the Wasserstein space. The W2 metric is particularly
important because it arises from a formal Riemannian structure on the Wasserstein
space. This perspective was introduced in [Ott01] and applied to the Langevin
diffusion in [JKO98; OV00]; in particular, these latter two works justify the
perspective of the Langevin diffusion as a gradient flow of the Kullback-Leibler
divergence in Wasserstein space. A rigorous exposition to Wasserstein calculus
can be found in [AGS08; Vil09b]. See also §2.1 for further background.

Here, we give a brief and informal introduction to the calculation rules of opti-
mal transport. For any regular curve of measures (µt)t≥0, there is a corresponding

family of tangent vectors (vt)t≥0 [see AGS08, Theorem 8.3.1]; here, vt : Rd → Rd

is a vector field on Rd. Also, if F is any well-behaved functional defined over
Wasserstein space, then at each regular measure µ one can define the Wasserstein
gradient of F at µ, which we denote ∇W2F(µ); it is also a mapping Rd → Rd.
Then, we have the calculation rule

∂tF(µt) = E⟨∇W2F(µt)(Xt), vt(Xt)⟩

for any regular curve of measures (µt)t≥0 with corresponding tangent vectors
(vt)t≥0, where Xt ∼ µt. We will use this calculation rule in §9.6.
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■ 9.2.2 Discretization of the mirror Langevin diffusion

In order to turn a continuous-time diffusion such as (MLD) into an implementable
algorithm, it is necessary to first discretize the stochastic process. The discretiza-
tion considered in [Zha+20] and in §8 is a simple Euler–Maruyama discretization:
fixing h > 0, we define a sequence of iterates (Xk)k∈N via

∇ϕ(Xk+1) = ∇ϕ(Xk)− h∇V (Xk) +
√

2h [∇2ϕ(Xk)]
1/2
ξk , (9.2)

where (ξk)k∈N is a sequence of i.i.d. standard Gaussians in Rd.
However, many other discretizations are possible. Indeed, in many machine

learning applications, the most costly step is the evaluation of ∇V , which may
require a sum over a large training set, whereas the mirror map ϕ may be chosen
to have a simple form. For the purpose of obtaining a more efficient sampling
algorithm, it may therefore be a favorable trade-off to use a high-precision im-
plementation of the diffusion step at the cost of additional computation time
(which nonetheless does not require additional query access to the gradients of V ).
Motivated by these considerations, we propose a new discretization (see Figure 9.1
for an illustration):

Mirror Langevin Monte Carlo (MLMC):

Xk+1/2 := arg min
x∈Q

[⟨h∇V (Xk), x⟩+Dϕ(x ∥Xk)] , (MLMC:1)

Xk+1 := ∇ϕ⋆(Wh) , where

{
dWt =

√
2 [∇2ϕ⋆(Wt)]

−1/2
dBt ,

W0 = ∇ϕ(Xk+1/2) .

(MLMC:2)

In MLMC:2, the stochastic processes (Wt)t≥0 are assumed to be driven by

independent Brownian motions at each iteration. When ϕ = ∥·∥2
2

, MLMC recovers
the unadjusted Langevin algorithm.

Practicality. Although MLMC:2 is defined using the exact solution of an SDE (and
we analyze the exact step MLMC:2 for simplicity), it should be understood as
capturing the idea of discretizing the diffusion step more finely (e.g., through
multiple inner iterations of an Euler–Maruyama discretization) than the gradient
step. This is indeed amenable to practical implementation since, as previously
discussed, the gradient step is typically much more costly than the diffusion
step. Moreover, this is justified by our theoretical results in the next section,
which together with the conjecture of [Zha+20] suggest that fine discretization
of MLMC:2 is potentially crucial for attaining vanishing bias. Nevertheless, it is
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indeed the case that a single iteration of MLMC is more costly than a single step
of the Euler–Maruyama discretization of MLD, and this represents a limitation of
our work.

Remark 9.2.9. Our proposed discretization can be understood as a more faithful
discretization of the mirror Langevin diffusion (MLD), à la [GWS21]. It can
also be understood as the forward-flow discretization of MLD in the interpretation
of [Wib18].

Remark 9.2.10. In order for MLMC:2 to be well-defined, we require assump-
tions on ϕ such that the diffusion (Wt)t≥0 is non-explosive, i.e., it does not exit
int(dom(ϕ⋆)) in finite time. This holds under mild assumptions on ϕ; see [GK96].
For situations of interest, the assumptions of [GK96] can be checked directly.

■ 9.3 Convergence analysis for mirror Langevin Monte Carlo

First, we state the main assumptions which are used for our main results.

Assumption 9.3.1 (Self-concordance of ϕ). We assume that the mirror map ϕ
is Mϕ-self-concordant (Definition 9.2.3).

Assumption 9.3.2 (Relative Lipschitzness). We assume that V is L-relatively
Lipschitz with respect to ϕ, in the sense that ∥∇V (x)∥[∇2ϕ(x)]−1 ≤ L for all x ∈ X
(see §9.2.1 for the definition of the local norm used here).

Assumption 9.3.3 (Relative convexity and smoothness). We assume that V
is α-convex relative to ϕ and β-smooth relative to ϕ, where 0 ≤ α ≤ β ≤ ∞
(Definitions 9.2.4 and 9.2.5).

Remark 9.3.4. We work under weaker assumptions than those of [Zha+20]. In
particular, our analysis does not assume the moment condition on the Hessian
((A2) therein) and the bound on the commutator between ∇2ϕ and ∇2V ((A5)
therein). Moreover, our analysis uses weaker (and more standard) definitions of
self-concordance.

Throughout this section, we assume the conditions listed above, and we present
convergence results for MLMC under various sets of assumptions. Our first two
results pertain to the smooth case, i.e., β <∞. Define the parameter

β′ := β + 2MϕL .

One might wonder how large β′ is for typical applications. First, we only need
ϕ to be self-concordant, not a self-concordant barrier. Hence the appearance of
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Mϕ is typically not problematic; for instance, a log barrier with m constraints is
O(1)-self-concordant. The smoothness parameter could be large and dimension-
dependent in general. However, such situations are actually where our approach
could be potentially advantageous. In §9.5.2, we demonstrate an example where
the smoothness parameter becomes much smaller by choosing ϕ carefully.

Theorem 9.3.5 (Weakly convex case). Suppose that Assumptions 9.3.1, 9.3.2,
and 9.3.3 hold with α = 0 and β′ > 0. For a target accuracy ε > 0, let Xk ∼ µk
denote the iterates of MLMC with step size h = min{ ε2

2β′d
, 1
β′
}. Then, the following

convergence rate holds for the mixture distribution µN := 1
N

∑N
k=1 µk:

KL(µN ∥ π) ≤ ε2 , provided that N ≥ 4β′dDϕ(π ∥ µ0)

ε4
max

{
1,
ε2

2d

}
. (9.4)

Proof. See §9.6.2.

Theorem 9.3.6 (Strongly relatively convex case). Suppose that the Assump-
tions 9.3.1, 9.3.2, 9.3.3 hold with α, β′ > 0.

1. (Convergence in Bregman transport cost) For a target accuracy ε > 0, let
Xk ∼ µk denote the iterates of MLMC with step size h = min{ αε2

2β′d
, 1
β′
}.

Then,

Dϕ(π ∥ µN) ≤ ε2 , provided that N ≥ 2β′d

α2ε2
ln
(2Dϕ(π ∥ µ0)

ε2

)
max

{
1,
αε

2d

}
.

2. (Convergence in KL divergence) For a target accuracy ε > 0, suppose that
X0 ∼ µ0 satisfies Dϕ(π ∥ µ0) ≤ ε2/α. Let Xk ∼ µk denote the iterates

of MLMC with step size h = min{ αε2
2β′d

, 1
β′
}. Then, the following convergence

rate holds for the mixture distribution µN := 1
N

∑N
k=1 µk,

KL(µN ∥ π) ≤ ε2 , provided that N ≥ 4β′d

αε2
max

{
1,
ε2

2d

}
.

Proof. See §9.6.3.

Note that the initialization assumption Dϕ(π, µ0) ≤ ε2/α in the second asser-
tion of Theorem 9.3.6 can be obtained from the first guarantee of Theorem 9.3.6.
Chaining together the two parts of the theorem, we therefore obtain the following
guarantee: suppose that we initialize MLMC at a distribution µ0. Then, with step
size h = min{ αε2

2β′d
, 1
β′
}, we obtain

DKL

( 1

N1

N0+N1∑
k=N0+1

µk

∥∥∥ π) ≤ ε2 , provided that

{
N0 ≥ Ω̃( β

′d
αε2

) ,

N1 ≥ Ω( β
′d

αε2
) .
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Observe also that for the case ϕ = ∥·∥2
2

, Theorems 9.3.5 and 9.3.6 recover the cor-
responding convergence guarantees for the unadjusted Langevin algorithm [Corol-
lary 7, and Corollaries 10 and 11 respectively in DMM19].1

Next, we present our guarantee for the non-smooth case β = ∞. For this
result, we assume that ϕ is strongly convex w.r.t. a norm ∥·∥ on Rd, and that V
is L̃-Lipschitz in this norm. Since the norm of the gradient should be measured
in the dual norm ∥·∥⋆, this means precisely that

∥∇V (x)∥⋆ ≤ L̃ , for all x ∈ X . (9.5)

We also note that the next result does not require self-concordance of ϕ.

Theorem 9.3.7 (Non-smooth case). Assume ϕ is 1-strongly convex w.r.t. a norm
∥·∥ on Rd, that V is L̃-Lipschitz in this norm (in the sense of (9.5)), and that
α = 0 (i.e., V is convex). For a target accuracy ε > 0, let Xk ∼ µk denote the
iterates of MLMC with step size h = ε2/L̃2. Then, the following convergence rate
holds for the mixture distribution µN := 1

N

∑N
k=1 µk:

KL(µN ∥ π) ≤ ε2 , provided that N ≥ 2L̃2Dϕ(π ∥ µ1/2)

ε4
.

Proof. See §9.6.4.

The assumption (9.5) is stronger than relative Lipschitzness: if V satisfies (9.5)
and ϕ is 1-strongly convex w.r.t. ∥·∥, then V is L-relatively Lipschitz with respect

to ϕ with L ≤ L̃. When ∥·∥ is the Euclidean norm and ϕ = ∥·∥2
2

, then we recover
a special case of [DMM19, Corollary 14].

We now make a number of remarks about our result.

Remark 9.3.8 (Implementing µN). One can output a sample from µN by simply
outputting one of the iterates {Xk}Nk=1 chosen uniformly at random.

Remark 9.3.9 (Convergence in other metrics). Using standard inequalities, our
results for convergence in KL divergence imply convergence in a number of other
information divergences such as the total variation distance, see [Tsy09, §2.4].

When V is α-strongly convex (w.r.t. ∥·∥
2

2
), then the T2 transport inequal-

ity [Vil09b, Theorem 22.14] αW 2
2 (µ, π) ≤ KL(µ∥π) implies convergence in the W2

distance as well. In general, we do not have convergence in W2, but we can always
obtain convergence with respect to a different optimal transport cost, namely, the
Bregman transport cost DV associated with V . This is a consequence of Corol-
lary 9.4.2 [also see Cor17, Proposition 1], which asserts that DV (µ, π) ≤ KL(µ∥π).

1In this case,Mϕ = 0, so the Lipschitz constant L does not enter the final result. In particular,
it is not contradictory to assume strong convexity (α > 0).
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Remark 9.3.10 (Dimension dependence). Ignoring for now the dependence on
β′ (which may also have a dimension dependence depending on the application),
the Bregman divergence Dϕ(π ∥ µ0) term is typically of size O(d) (see §9.5.1 for
a particular instance of this). Thus, our overall dimension dependence is O(d2)
for the weakly convex case and O(d) for the strongly convex case. Overall, this
is a significantly better dependence on the dimension as compared to the previous
works [Bro+17; BEL18]; we perform a comparison in §9.5.1 for a specific setting.

We also remark that mirror descent has classically been used for dimension
reduction by changing the geometry of the algorithm from ℓ2 to ℓ1. We investigate
the possibility of doing the same for sampling in §9.5.2.

Remark 9.3.11 (Comparison with [Hsi+18]). [Hsi+18] show that for strictly
log-concave targets, there exists a good mirror map ϕ for which the pushforward of
the target distribution via ∇ϕ enjoys the same guarantees as ordinary Langevin.
However, this result is only existential and gives no guidance on how to construct
the mirror map. In contrast, our theorems hold for any choice of mirror map which
satisfies our assumptions, and provide guidance on how to choose the mirror map.
Also, our relative smoothness condition allows for potentials which blow up at the
boundary of their domain (i.e., the target distribution vanishes near the boundary
of its support), whereas this is forbidden by the assumptions of [Hsi+18]. Lastly,
our algorithm does not require computing the third derivative of the mirror map,
whereas this is required for [Hsi+18].

Remark 9.3.12 (Comparison with [Zha+20]). [Zha+20] performs an analysis
of the Euler–Maruyama discretization of MLD, which we temporarily refer to as
MLMC′. Our result guarantees that for any desired accuracy ε, it is possible to
choose the step size sufficiently small so that MLMC achieves the target accuracy; in
contrast, the result of [Zha+20] only guarantees that MLMC′ contracts to within a
ball around π of radius O(

√
d) (measured w.r.t. a modified Wasserstein distance).2

Moreover, [Zha+20] conjecture that their bias term is unavoidable.
In light of our result, we believe that it is an interesting open question to resolve

their conjecture. Their conjecture, if true, suggests that replacing MLMC:2 in our
algorithm by a single step of the Euler–Maruyama discretization has disastrous
effects on the convergence of the algorithm, and therefore provides further support
for considering MLMC instead of MLMC′.

Recently, after the first draft of our paper was published online, Li et al. [Li+22]
gave an analysis of MLMC′ under a subset of the assumptions of [Zha+20] which
indeed exhibits vanishing bias, provided that the relative strong convexity parameter
of the potential is sufficiently large compared to the modified self-concordance

2Notably, the radius of this ball is comparable to the distance at initialization.
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parameter of the mirror map. It remains an open question to remove this latter
restriction from their work, and moreover to obtain similar results under the more
usual definitions of relative convexity/smoothness and self-concordance that we
adopt in this work.

In order to generalize the discretization analysis from the vanilla Langevin
algorithm to the mirror Langevin algorithm, in the next section we prove a
new displacement convexity result for the entropy with respect to the Bregman
transport cost which may be of independent interest.

■ 9.4 Convexity of the entropy with respect to the Bregman divergence

It is well-known that the entropy functional H is displacement convex along W2

geodesics [AGS08, Theorem 9.4.11]. In fact, this displacement convexity is crucial
in showing that KL(· ∥π) = E+H is displacement convex (when π is log-concave),
which in turn is used to analyze the convergence of LD to the target measure.
Therefore, in order to understand the convergence of MLD, it is crucial to see
if such a result is true when W2 is replaced by Dϕ. We prove that indeed the
displacement convexity-like property holds for H under Dϕ-optimal couplings.

Theorem 9.4.1 (“Convexity” of the entropy with respect to the Bregman diver-
gence). Let µ, ν be probability measures on Rd and let X ∼ µ, Y ∼ ν be coupled
according to the Bregman transport cost Dϕ(µ ∥ ν). Then, it holds that

H(ν) ≥ H(µ) + E
〈
[∇W2H(µ)](X), Y −X

〉
.

As a corollary, we can use the calculus of optimal transport in order to recover
the transport inequality of [Cor17]. In the following, we do not carry out the
approximation arguments necessary to make the proof fully correct because a
rigorous proof of the statement is already given in [Cor17].3 Rather, our main
purpose in giving this argument is simply to point out the convexity principle
which underlies the transport inequality.

Corollary 9.4.2 ([Cor17, Proposition 1]). For any probability measure µ on Rd,

KL(µ ∥ π) ≥ DV (µ ∥ π) .

Proof sketch. Let (X, Y ) be optimally coupled according to the Bregman transport
cost DV (· ∥ ·) between µ and π. We decompose KL(µ ∥ π) = EV (X) + H(µ). On
one hand, the first term is

EV (X) = EV (Y ) + E⟨∇V (Y ), X − Y ⟩+ EDV (X ∥ Y ) .

3In fact, the proof of [Cor17] does not even require convexity of V .
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On the other hand, the convexity result (Theorem 9.4.1) shows that

H(µ) ≥ H(π) + E⟨∇W2H(π)(Y ), X − Y ⟩ .

Putting these together, we obtain

KL(µ ∥ π) ≥ EV (Y ) + E⟨∇V (Y ), X − Y ⟩+ EDV (X ∥ Y )

+ H(π) + E⟨∇W2H(π)(Y ), X − Y ⟩
= KL(π ∥ π) + E

〈
[∇V +∇W2H(π)](Y ), X − Y

〉
+ EDV (X ∥ Y )

= EDV (X ∥ Y ) ,

since ∇V +∇W2H(π), the W2 gradient of KL(· ∥ π) at π, is zero.

■ 9.5 Applications

In this section, we provide examples which illustrate our results; see [AC21] for
numerical experiments.

■ 9.5.1 Bayesian logistic regression

In this section, we apply our main result to Bayesian logistic regression.
We recall the setting of Bayesian logistic regression: we observe pairs (Xi, Yi),

i = 1, . . . , n, where Xi ∈ Rd and Yi ∈ {0, 1}. The data follow the model

Yi ∼ Bernoulli
( exp ⟨θ,Xi⟩

1 + exp ⟨θ,Xi⟩
)
, independently for i = 1, . . . , n . (9.6)

Here, the parameter θ itself is assumed to be a random variable taking values in
Rd. If we assume that θ has a prior density λ with respect to Lebesgue measure,
then the posterior distribution is

π(θ) ∝ λ(θ) exp
[ n∑
i=1

(
Yi ⟨θ,Xi⟩ − ln(1 + exp ⟨θ,Xi⟩)

)]
.

Since it may be computationally infeasible to explicitly compute the normalizing
constant for the posterior distribution, we turn towards sampling algorithms.

When we take a prior λ which has full support on Rd, e.g., a Gaussian prior,
then we may apply off-the-shelf methods such as the Langevin diffusion (LD).
However, if we choose a prior which has compact support, then the unadjusted
Langevin algorithm is no longer an acceptable option because it outputs samples
outside the support of the posterior. In this case, we must turn to other methods,
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such as the projected Langevin algorithm [BEL18]. Here, we explore the use of
the mirror Langevin algorithm (MLMC) for constrained sampling.

For the rest of this section, we will focus on a particular problem for concrete-
ness and interpretability: we consider the uniform prior λ on the ℓ∞ ball [−1, 1]d.
By duality, this is an attractive model when the data (Xi)

n
i=1 have small ℓ1-norm,

i.e., are approximately sparse. A natural choice of mirror map for this problem is
the logarithmic barrier

ϕ(θ) =
d∑
i=1

(
ln

1

1− θ[i] + ln
1

1 + θ[i]

)
,

where we use θ[·] to denote the coordinates of θ ∈ Rd. Then, ϕ is 1-self-concordant
([Nes18, §5.1.3]). We remark that the separability of the mirror map in this
example implies that the diffusion step MLMC:2 can be simulated in O(d) steps,
rather than O(d2).

For this setting, we compare the guarantees of MLMC with the Moreau–Yosida
unadjusted Langevin algorithm (MYULA) [Bro+17] and the projected Langevin
algorithm (PLA) [BEL18]; see Table 9.1.

Algorithm Guarantee

MLMC O(d/ε4)
MYULA O(d9/ε6)

PLA O(d15/ε12)

Table 9.1: Comparison of MLMC with other constrained sampling algorithms for the
number of iterations required to output a sample whose total variation distance to π is
at most ε. For simplicity, we focus on the dependence with respect to dimension and
the accuracy ε.

Details. We may compute

V (θ) =
n∑
i=1

(
−Yi ⟨θ,Xi⟩+ ln(1 + exp ⟨θ,Xi⟩)

)
,

∇V (θ) = −
n∑
i=1

(
Yi −

exp ⟨θ,Xi⟩
1 + exp ⟨θ,Xi⟩

)
Xi ,

∇2V (θ) =
n∑
i=1

exp ⟨θ,Xi⟩
(1 + exp ⟨θ,Xi⟩)2

XiX
T
i ,
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and

ϕ(θ) =
d∑
i=1

(
ln

1

1− θ[i] + ln
1

1 + θ[i]

)
,

∇ϕ(θ) =
d∑
i=1

( 1

1− θ[i] −
1

1 + θ[i]

)
ei ,

∇2ϕ(θ) = diag
[ 1

(1− θ)2
+

1

(1 + θ)2

]
.

From these expressions, we see that

0 ⪯ ∇2V ⪯
n∑
i=1

XiX
T
i , 2Id ⪯ ∇2ϕ .

Let L := sup[−1,1]d ∥∇V ∥ denote the (ordinary) Lipschitz constant of V , and

let β denote the (ordinary) smoothness parameter of V (from above we see that β
can be taken to be the largest eigenvalue of

∑n
i=1XiX

T
i ). Note that the 2-strong

convexity of ϕ implies that V is L/
√

2-relatively Lipschitz and β/2-relatively
smooth with respect to ϕ, so Theorem 9.3.5 holds with

β′ =
β

2
+
√

2L .

In order to fully understand the quantitative convergence rate provided by Theo-
rem 9.3.5, we must also bound the Bregman divergence Dϕ(π, µ0). We have:

Lemma 9.5.1. Let µ0 = δ0 be the point mass at 0. Then, for the logarithmic
barrier mirror map ϕ defined above, we have Dϕ(π ∥ µ0) ≤ 4.1 (1 + β + L) d.

Proof. See §9.5.4.

From Theorem 9.3.5, we can deduce that using N iterations of MLMC, we can
obtain a distribution µMLMC

N such that for ε ≤
√

2d,

2 ∥µMLMC
N − π∥2TV ≤ KL(µMLMC

N ∥ π) ≤ ε2 , provided N ≥ 23 (1 + β + L)2d2

ε4
,

where β is the largest eigenvalue of
∑n

i=1XiX
T
i and L := sup[−1,1]d ∥∇V ∥ is the

usual Lipschitz constant of V . In fact, if we use the non-smooth guarantee in
Theorem 9.3.7, then we can improve this to O(L2d/ε4) iterations. For comparison
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purposes, the Moreau–Yosida unadjusted Langevin algorithm (MYULA) [Bro+17,
Theorem 2] with R =

√
d provides the guarantee4

∥µMYULA
N − π∥TV ≤ ε , provided N ≥ Ω̃

(β4d9

ε6

)
.

On the other hand, the corresponding guarantee for the projected Langevin algo-
rithm (PLA) [BEL18, Theorem 1] with R =

√
d implies

∥µPLA
N − π∥TV ≤ ε , provided N ≥ Ω̃

((
√
d+ β + L)12d9

ε12

)
.

■ 9.5.2 Better dimension dependency via mirror Langevin

As described in [Bub15, §4.3], a classical application of mirror descent is to obtain
better dependence on the dimension by changing the geometry of the optimization
algorithm from ℓ2 to ℓ1. We investigate the possibility of analogous improvements
in the setting of constrained sampling.

We consider a simple toy problem in which the constraint set is the interior
of the filled-in simplex Q := {x ∈ Rd | x > 0,

∑d
i=1 x[i] < 1}, and we take the

potential to be a quadratic

V (x) :=
1

2
⟨x,Ax⟩ ,

where A ∈ Rd×d is a symmetric positive semidefinite matrix with all entries
bounded in magnitude by 1. We choose as our mirror map the barrier:

ϕ(x) :=
d∑
i=1

ln
1

x[i]
+ ln

1

1−∑d
i=1 x[i]

.

This map is self-concordant with parameter 1.
We can compute

∇ϕ(x) =
d∑
i=1

(
− 1

x[i]
+

x[i]

1−∑d
j=1 x[j]

)
ei ,

∇2ϕ(x) = diag
1

x2
+

Id

1−∑d
i=1 x[i]

+
xxT

(1−∑d
i=1 x[i])

2 .

4To be precise, their bound on the number of iterates required reads N ≥ Ω̃(∆4
2d

7/ε6), where
∆2 is a parameter measuring how close the domain dom(V ) is to an isotropic convex body. For
concreteness, we bound this parameter by βR following [Bro+17, pg. 7].
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Since x[i] < 1 for all i ∈ [d], it follows that ⟨v, diag(1/x2) v⟩ ≥ ⟨v, diag(1/x) v⟩ ≥
∥v∥21, where the second inequality follows from the strong convexity of the entropy
with respect to the ℓ1-norm. Hence, ϕ is 1-strongly convex with respect to the
ℓ1-norm. From our assumption on A,

∥∇V (x)∥[∇2ϕ(x)]−1 ≤ ∥∇V (x)∥∞ ≤ 1 ,

⟨v,∇2V (x) v⟩ ≤
∣∣∣ d∑
i,j=1

Ai,jvivj

∣∣∣ ≤ d∑
i,j=1

|vi| |vj| ≤ ∥v∥21 ,

which implies that V is 1-relatively Lipschitz and 1-relatively smooth with respect
to ϕ, and the assumptions of Theorem 9.3.5 hold with β′ = 3. In contrast, if we
had instead considered the ℓ2-norm, then the Lipschitz constant of V could be as
large as

√
d, and the smoothness parameter of V could be as large as d. Together

with a warm start, this suggests that MLMC could attain a better dimension
dependence for this example.

Remark 9.5.2. Alternatively, we can apply Theorem 9.3.7 with the entropic
mirror map

ϕ(x) =
d∑
i=1

x[i] lnx[i] +
(

1−
d∑
i=1

x[i]
)

ln
(

1−
d∑
i=1

x[i]
)

to the above setting; note that Theorem 9.3.7 only requires standard assumptions
for mirror descent guarantees (e.g., [Bub15, Theorem 4.2]), and does not require
the mirror map to be self-concordant. In particular, V is 1-Lipschitz w.r.t. ∥·∥1
and ϕ is strongly convex w.r.t. ∥·∥1, so Theorem 9.3.7 implies that KL(µN ∥π) ≤ ε2

after N = O
(Dϕ(π∥µ1/2)

ε4

)
iterations. For comparison, note that the approach of

Hsieh et al. [Hsi+18] does not apply to this example, because the pushforward of
the distribution via the entropic mirror map is not log-concave.

■ 9.5.3 Sampling from non-smooth distributions

Thus far, we have focused on distributions whose potential V is bounded within its
domain dom(V ). However, in many applications, one is required to sample from
a distribution whose potential V blows up near the boundary of its domain. Such
distributions violate the standard assumptions of Lipschitzness and smoothness
and hence are beyond the scope of the existing guarantees. In this subsection, we
demonstrate that one can still sample from such distributions via MLMC together
with the relative Lipschitzness and relative smoothness.
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Consider the Dirichlet distribution π which is defined on the interior of the
filled-in simplex Q := {x ∈ Rd | x > 0,

∑d
i=1 x[i] < 1} by the potential

V (x) = a0 ln
1

1−∑d
i=1 x[i]

+
d∑
i=1

ai ln
1

x[i]
,

for some constants a0, a1, . . . , ad > 0, and we take V = ϕ. Then, it is well-
known that V is (maxi=0,1,...,d ai

−1/2)-self-concordant [Nes18, Theorem 5.1.1]. Also,

from (
∑d

i=0 ai)-exp-concavity of V [Nes18, Theorem 5.3.2], ∥∇V (x)∥[∇2V (x)]−1 ≤
(
∑d

i=0 ai)
1/2

. Therefore, it follows that V is (
∑d

i=0 ai)
1/2

-Lipschitz, 1-convex, and
1-smooth relative to V , so that the assumptions of Theorem 9.3.6 hold with

β′ = 1 + 2
(

max
i=0,1,...,d

ai
−1/2) ( d∑

i=0

ai

)1/2

≤ 3
√
d

√
amax

amin

,

where amax := maxi=0,1,...,d ai and amax := mini=0,1,...,d ai. Therefore, one can obtain
a mixture distribution µN after N iterations of MLMC such that

KL(µN ∥ π) ≤ ε2 , provided that N ≥ Ω̃
(√amax

amin

d3/2

ε2

)
.

■ 9.5.4 Auxiliary results

Lemma 9.5.3. Let π be a probability distribution supported on [−1, 1]d which has
density proportional to exp(−V ). Assume that V : [−1, 1]d → Rd is L-Lipschitz
and β-smooth. Then, we have the following bound on the marginal density π1 of
π on the first coordinate:

sup
[−1,1]

π1 ≤ 3 (1 +
√
β + L) .

Proof. Let Z :=
∫
[−1,1]d exp(−V ) denote the normalizing constant, let θ⋆1 ∈ [−1, 1]

be the maximizer of π1, and let θ ∈ [−1, 1]d. We can write θ = (θ1, θ−1), where
θ−1 ∈ Rd−1.5 Then,

V (θ) ≤ V (θ⋆1, θ−1) + ∂1V (θ⋆1, θ−1) (θ1 − θ⋆1) +
β

2
(θ1 − θ⋆1)2

≤ V (θ⋆1, θ−1) + L |θ1 − θ⋆1|+
β

2
(θ1 − θ⋆1)2

5In §9.5.1 we used the notation θ[i] for the ith coordinate of θ, but for the sake of simplicity
we switch to the notation θi for this proof.
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≤ 1

2
+ V (θ⋆1, θ−1) +

β + L2

2
(θ1 − θ⋆1)2 .

This yields the lower bound

π1(θ1) =
1

Z

∫
[−1,1]d−1

exp
(
−V (θ1, θ−1)

)
dθ−1

≥ exp[−(β + L2) (θ1 − θ⋆1)2/2− 1/2]

Z

∫
[−1,1]d−1

exp
(
−V (θ⋆1, θ−1)

)
dθ−1

= exp

[
−1

2
(β + L2) (θ1 − θ⋆)2 −

1

2

]
sup
[−1,1]

π1 .

Next,

1 =

∫
[−1,1]

π1(θ1) dθ1 ≥
sup[−1,1] π1√

e

∫
[−1,1]

exp
[
−1

2
(β + L2) (θ1 − θ⋆)2

]
dθ1

≥
sup[−1,1] π1√

e

∫ 1

0

exp
[
−1

2
(β + L2)x2

]
dx .

Let c :=
∫ 1

0
exp(−x2) dx. By splitting into the two cases β+L2 ≤ 1 and β+L2 ≥ 1,

we can deduce the inequality

1 ≥
c sup[−1,1] π1√

E

( 1√
β + L2

∧ 1
)
.

It yields

sup
[−1,1]

π1 ≤
√

e

c

(√
β + L2 ∨ 1

)
≤
√

e

c

(
(
√
β + L) ∨ 1

)
≤
√

e

c
(1 +

√
β + L) ,

which is the result.

Proof of Lemma 9.5.1. Let πi denote the i-th marginal of π. Then, since ϕ(0) = 0
and ∇ϕ(0) = 0, we must estimate

Dϕ(π ∥ µ0) =

∫
[−1,1]d

d∑
i=1

ln
1

1− θ[i]2
π(θ) dθ =

d∑
i=1

∫
[−1,1]

ln
1

1− θ[i]2
πi(θ[i]) dθ[i]

≤ C (1 +
√
β + L) d

∫
[−1,1]

ln
1

1− x2 dx

≤ 3

2
C (1 + β + L) d

∫
[−1,1]

ln
1

1− x2 dx ,

where C is the constant from the proof of Lemma 9.5.3. It yields the result.
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■ 9.6 Proof of the convergence rates

■ 9.6.1 Per-iteration progress bound

For the convergence rates of MLMC, we first prove the following per-iterate progress
bound, from which Theorems 9.3.5 and 9.3.6 will be easily deduced.

Lemma 9.6.1 (Per-iteration progress bound). Assume β > 0. For 0 ≤ h ≤ 1
β

, let
Xk ∼ µk be the iterates of MLMC with step size h. Then, under Assumptions 9.3.1-
9.3.3, the following holds:

hKL(µk+1 ∥ π) ≤ (1− αh)Dϕ(π ∥ µk)−Dϕ(π ∥ µk+1) + (β + 2MϕL) dh2 . (9.7)

Proof. We decompose the KL divergence into two parts:

KL(µ ∥ π) =

∫
Q
V (x) dµ(x)︸ ︷︷ ︸
=:E(µ)

+

∫
Q
µ(x) lnµ(x) dx︸ ︷︷ ︸

=:H(µ)

.

Here and throughout the paper, we abuse notation by identifying a measure µ
with its density.

The first term above has the interpretation of energy, while the second term
has the interpretation of (negative) entropy. The basic scheme of the proof follows
the method in [DMM19], which views the two steps of the update rule MLMC as
alternately dissipating the energy and the entropy. More specifically, we will show
that MLMC:1 dissipates E and MLMC:2 dissipates H, while the two steps do not
badly interfere with each other.

Our analysis proceeds by controlling each term in the following decomposition:

KL(µk+1 ∥ π) = E(µk+1) + H(µk+1)− E(π)−H(π)

= E(µk+1/2)− E(π)︸ ︷︷ ︸
1

+E(µk+1)− E(µk+1/2)︸ ︷︷ ︸
2

+H(µk+1)−H(π)︸ ︷︷ ︸
3

.

Before we go into the analysis of each term, we outline our proof strategy. Term 1

corresponds to a deterministic step of the mirror descent algorithm, and we adapt
the analysis of mirror descent based on the Bregman proximal inequality [CT93,
Lemma 3.2].

For terms 2 and 3 , it will be important to understand the stochastic process
(Zt)t∈[0,h] in MLMC, where Zt := ∇ϕ⋆(Wt), along with the corresponding marginal
laws (νt)t∈[0,h]. There are two important and distinct perspectives we can adopt.
On one hand, the stochastic process (Zt)t∈[0,h] is a diffusion, and can be studied
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via stochastic calculus. On the other hand, the laws (νt)t∈[0,h] follow a Wasserstein
“mirror flow” of the entropy functional H, in the sense that it evolves continuously
in Wasserstein space with tangent vector −[∇2ϕ]

−1∇W2H(νt) (see §9.2.1 for a
brief introduction to Wasserstein calculus, and §8 for a discussion of MLD from
this perspective). In turn, these two perspectives offer different calculation rules:
stochastic calculus provides Itô’s formula (see [Le 16, Theorem 5.10] or [Str18,
§3.3]), while Wasserstein calculus provides the rule

∂tF(νt) = −E⟨∇W2F(νt)(Zt), [∇2ϕ(Zt)]
−1∇W2H(νt)(Zt)⟩ ,

for any sufficiently well-behaved functional F on Wasserstein space. Both of these
perspectives are insightful, and we will employ both.

For term 2 , we show that MLMC:2 does not greatly increase the energy, and
we accomplish this via calculations using Itô’s formula together with the relative
smoothness and self-concordance assumptions. Finally, we control term 3 by
developing a new displacement convexity result (Theorem 9.4.1) for the entropy
functional H, which is crucial for applying Wasserstein calculus.

1 : Let Y be a random variable (defined on the same probability space) which is
distributed according to π. Then,

E(µk+1/2)− E(π) = E[V (Xk+1/2)]− E[V (Y )]

= E[V (Xk+1/2)]− E[V (Xk)] + E[V (Xk)]− E[V (Y )]

≤ E[⟨∇V (Xk), Xk+1/2 −Xk⟩+ βDϕ(Xk+1/2 ∥Xk)]

+ E[⟨∇V (Xk), Xk − Y ⟩ − αDϕ(Y ∥Xk)]

= E[⟨∇V (Xk), Xk+1/2 − Y ⟩
+ βDϕ(Xk+1/2 ∥Xk)− αDϕ(Y ∥Xk)] , (9.8)

where the inequality follows due to the α-relative strong convexity and β-
relative smoothness of V . Now to control (9.8), we invoke a standard tool
from optimization:

Lemma 9.6.2 (Bregman proximal inequality [CT93, Lemma 3.2]). For a
convex function f and a convex function ϕ of Legendre type, suppose that

x+ := arg min
z∈Q

[f(z) +Dϕ(z ∥ x)] .

Then,

f(x+)− f(y) ≤ Dϕ(y ∥ x)−Dϕ(y ∥ x+)−Dϕ(x+ ∥ x) ∀y ∈ Q .
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Applying the Bregman proximal inequality (Lemma 9.6.2) with f(x) =
h ⟨∇V (Xk), x⟩,

(9.8) ≤ E
[(1

h
− α

)
Dϕ(Y ∥Xk)−

1

h
Dϕ(Y ∥Xk+1/2)

+
(
β − 1

h

)
Dϕ(Xk+1/2 ∥Xk)

]
≤ E

[(1

h
− α

)
Dϕ(Y ∥Xk)−

1

h
Dϕ(Y ∥Xk+1/2)

]
,

provided that 1
h
≥ β ⇔ h ≤ β−1. Choosing Y so that the coupling (Y,Xk)

minimizes E[Dϕ(Y ∥Xk)], we obtain

h {E(µk+1/2)− E(π)} ≤ (1− αh)Dϕ(π ∥ µk)− E[Dϕ(Y ∥Xk+1/2)]

≤ (1− αh)Dϕ(π ∥ µk)−Dϕ(π ∥ µk+1/2) .

2 : First, note from MLMC that

E(µk+1)− E(µk+1/2) = E
[
V
(
∇ϕ⋆(Wh)

)
− V

(
∇ϕ⋆(W0)

)]
.

To compute the above term, we define f(x) := V (∇ϕ⋆(x)) and apply Itô’s
formula to the random variable f(Wh)−f(W0). To that end, we first compute
the Hessian of f :

∇f = ∇V (∇ϕ⋆)T∇2ϕ⋆ = ∇V (∇ϕ⋆)T[∇2ϕ(∇ϕ⋆)]−1 ,
∇2f = ∇2V (∇ϕ⋆) [∇2ϕ(∇ϕ⋆)]−1 [∇2ϕ⋆]

+∇V (∇ϕ⋆)T [∇2ϕ(∇ϕ⋆)]−1 [∇3ϕ(∇ϕ⋆)] [∇2ϕ(∇ϕ⋆)]−2 .

Itô’s formula now decomposes f(Wh)−f(W0) into the sum of an integral and
a stochastic integral. Intuitively, the stochastic integral has mean zero (since
it is a local martingale), and this can be rigorously argued using the standard
technique of localization; we give the argument at the end of this step. Thus,
we concentrate on the expectation of the first term. Writing Zt := ∇ϕ⋆(Wt),
the above Hessian calculation gives

E[f(Wh)− f(W0)] (9.9)

= E
∫ h

0

〈
∇2V (Zt) [∇2ϕ(Zt)]

−2
,∇2ϕ(Zt)

〉
dt

+ E
∫ h

0

〈
∇V (Zt)

T [∇2ϕ(Zt)]
−1

[∇3ϕ(Zt)] [∇2ϕ(Zt)]
−2
,∇2ϕ(Zt)

〉
dt
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= E
∫ h

0

〈
∇2V (Zt), [∇2ϕ(Zt)]

−1〉
dt (9.10)

+ E
∫ h

0

tr
(
∇V (Zt)

T [∇2ϕ(Zt)]
−1

[∇3ϕ(Zt)] [∇2ϕ(Zt)]
−1)

dt .

(9.11)

We can control (9.10) easily based on the relative smoothness of V : indeed,
since ∇2V ⪯ β∇2ϕ (see Proposition 9.2.6),

(9.10) ≤ βdh .

To control (9.11), we use the self-concordance of ϕ. We recall here the
following result:

Proposition 9.6.3 ([Nes18, Corollary 5.1.1]). A function ϕ is self-concordant
with a constant Mϕ ≥ 0 if and only if for any x ∈ dom(ϕ) and any direction
u ∈ Rn we have

∇3ϕ(x)u ⪯ 2Mϕ ∥u∥∇2ϕ(x)∇2ϕ(x) .

Using Proposition 9.6.3, it follows that

1

2Mϕ

× (9.11)

≤
∫ h

0

E
[∥∥[∇2ϕ(Zt)]

−1∇V (Zt)
∥∥
∇2ϕ(Zt)

tr
(
[∇2ϕ(Zt)] [∇2ϕ(Zt)]

−1)]
dt

≤ d

∫ h

0

E
[
∥∇V (Zt)∥[∇2ϕ(Zt)]

−1

]
dt ≤ 2MϕLdh .

Thus, our calculation shows that

E(µk+1)− E(µk+1/2) ≤ (β + 2MϕL) dh . (9.12)

We now sketch the localization argument. Let (τℓ)ℓ∈N be a localizing sequence
for (Wt)t∈[0,h]. The argument above may be applied rigorously for the stopped
process (Wt∧τℓ)t∈[0,h] to obtain EV (Zh∧τℓ)−EV (Z0) ≤ (β+ 2MϕL) dh. Since

V is bounded below, we use Fatou’s lemma to pass ℓ→∞ and deduce (9.12).

3 : Let νt denote the law of Zt := ∇ϕ⋆(Wt). For this step, we calculate the
derivative of t 7→ Dϕ(π ∥ νt). Noting that ∇2Dϕ(y ∥ x) = −∇2ϕ(x) (y − x)
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and that νt follows the Wasserstein tangent vector −[∇2ϕ]
−1∇W2H(νt), we

expect that

∂tDϕ(π ∥ νt) = E
〈
[∇2ϕ(Zt)]

−1∇W2H(νt)(Zt),∇2ϕ(Zt) (Y − Zt)
〉

= E⟨∇W2H(νt)(Zt), Y − Zt⟩ ,

where (Y, Zt) are optimally coupled for π and νt for the Bregman trans-
port cost. In general, the differentiability properties of optimal transport
costs can be quite subtle, but thankfully it is much easier to establish the
superdifferentiability

∂+t Dϕ(π ∥ νt) ≤ E⟨∇W2H(νt)(Zt), Y − Zt⟩

at almost all t, which is all that will be needed for the subsequent argument.
The superdifferentiability result is proven along the lines of [OV00, Lemma
2]; see also [AGS08, Theorem 10.2.2] or the proof of [Vil09b, Theorem 23.9].

Next, we apply a result which can be interpreted as convexity of the entropy
functional with respect to the Bregman divergence, given as Theorem 9.4.1.
It implies that for t ∈ [0, h],

∂+t Dϕ(π ∥ νt) ≤ E⟨∇W2H(νt)(Zt), Y − Zt⟩ ≤ H(π)−H(νt)

≤ H(π)−H(νh) ,

where the last inequality follows since

∂tH(νt) = −E
[〈
∇W2H(νt)(Zt), [∇2ϕ(Zt)]

−1∇W2H(νt)(Zt)
〉]
≤ 0 ,

which implies H(νh) ≤ H(νt) for any t ∈ [0, h]. Integrating from 0 to h,

Dϕ(π ∥ νh)−Dϕ(π ∥ ν0) ≤ h {H(π)−H(νh)} ,

which is the same as

h {H(µk+1)−H(π)} ≤ Dϕ(π ∥ µk+1/2)−Dϕ(π ∥ µk+1) .

Combining the bounds from 1 , 2 , and 3 , the proof is complete.

■ 9.6.2 Proof of Theorem 9.3.5

From the per-iteration progress bound (Lemma 9.6.1), we have for any k ∈ N

hKL(µk+1 ∥ π) ≤ Dϕ(π ∥ µk)−Dϕ(π ∥ µk+1) + β′dh2 . (9.13)
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Summing (9.13) over k = 0, 1, . . . , N − 1,

h

N∑
k=1

KL(µk ∥ π) ≤ Dϕ(π ∥ µ0)−Dϕ(π ∥ µN) + β′dh2N .

Using the convexity of the KL divergence [which follows from the Gibbs variational
principle; see RS15, §5.1],

KL(µN ∥ π) ≤ Dϕ(π ∥ µ0)

Nh
+ β′dh ≤ ε2

2
+
ε2

2
,

where the last inequality follows from the choice N ≥ 2Dϕ(π∥µ0)
hε2

and h ≤ ε2

2βd
.

■ 9.6.3 Proof of Theorem 9.3.6

Let us first prove the convergence in Bregman transport cost. For any k ∈ N, the
per-iteration progress bound (Lemma 9.6.1) together with KL(µk+1 ∥π) ≥ 0 imply

Dϕ(π ∥ µk+1) ≤ (1− αh)Dϕ(π ∥ µk) + β′dh2 . (9.14)

Recursively applying (9.14) for k = 0, 1, . . . , N − 1, we obtain

Dϕ(π ∥ µN) ≤ (1− αh)N Dϕ(π ∥ µ0) + β′dh2
N−1∑
k=0

(1− αh)k

≤ (1− αh)N Dϕ(π ∥ µ0) + β′dh2
∞∑
k=0

(1− αh)k

≤ exp(−αhN)Dϕ(π ∥ µ0) +
β′dh

α
≤ ε2

2
+
ε2

2
,

where the last inequality follows since N ≥ 1
αh

ln
2Dϕ(π∥µ0)

ε2
and h ≤ αε2

2β′d
. Having

proved the convergence in terms of the Bregman transport cost, the convergence
in terms of the KL divergence follows by applying Theorem 9.3.5.

■ 9.6.4 Analysis for the non-smooth case (Theorem 9.3.7)

The analysis for the non-smooth case proceeds in a similar manner to the smooth
case. We first prove the following per-iterate progress bound.

Lemma 9.6.4 (Per-iteration progress bound; non-smooth case). Let Xk ∼ µk be
the iterates of MLMC with step size h > 0. Assume that ϕ is 1-strongly convex
w.r.t ∥·∥, and that V is convex and L̃-Lipschitz w.r.t ∥·∥. Then,

hKL(µk+1 ∥ π) ≤ Dϕ(π ∥ µk+1/2)−Dϕ(π ∥ µk+3/2) +
h2L̃2

2
. (9.15)
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Proof. Our analysis proceeds by controlling each term in the decomposition

KL(µk+1 ∥ π) = E(µk+1)− E(π)︸ ︷︷ ︸
A

+H(µk+1)−H(π)︸ ︷︷ ︸
B

.

For term B , we invoke the following upper bound (from the analysis of term 3

in the proof of Lemma 9.6.1):

h {H(µk+1)−H(π)} ≤ Dϕ(π ∥ µk+1/2)−Dϕ(π ∥ µk+1) . (9.16)

Let us turn to A , and let Y be a random variable (defined on the same probability
space) which is distributed according to π. Since we have

Xk+3/2 = arg min
x∈Q

[⟨h∇V (Xk+1), x⟩+Dϕ(x ∥Xk+1)] ,

applying the Bregman proximal inequality (Lemma 9.6.2) with the choice f(x) =
h ⟨∇V (Xk+1), x⟩ gives

h ⟨∇V (Xk+1), Xk+3/2 − Y ⟩
≤ Dϕ(Y ∥Xk+1)−Dϕ(Y ∥Xk+3/2)−Dϕ(Xk+3/2 ∥Xk+1) ,

which after rearranging becomes

Dϕ(Y ∥Xk+3/2)−Dϕ(Y ∥Xk+1)

≤ h ⟨∇V (Xk+1), Y −Xk+3/2⟩ −Dϕ(Xk+3/2 ∥Xk+1) .
(9.17)

On the other hand, the right hand side of (9.17) can be controlled using the
convexity, the Lipschitzness of V , and strong convexity of ϕ:

RHS of (9.17)

= h ⟨∇V (Xk+1), Y −Xk+1⟩+ h ⟨∇V (Xk+1), Xk+1 −Xk+3/2⟩
−Dϕ(Xk+3/2 ∥Xk+1)

≤ h [V (Y )− V (Xk+1)] + h ∥∇V (Xk+1)∥⋆ ∥Xk+1 −Xk+3/2∥

− 1

2
∥Xk+1 −Xk+3/2∥2

≤ h [V (Y )− V (Xk+1)] +
h2

2
∥∇V (Xk+1)∥2⋆

≤ h [V (Y )− V (Xk+1)] +
h2L̃2

2
.
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For the LHS of (9.17), choose Y so that the coupling (Y,Xk+1) minimizes the cost
E[Dϕ(Y ∥Xk+1)] to obtain

E[LHS of (9.17)] = E[Dϕ(Y ∥Xk+3/2)]−Dϕ(π ∥ µk+1)

≥ Dϕ(π ∥ µk+3/2)−Dϕ(π ∥ µk+1) .

Combining these upper and lower bounds, (9.17) becomes:

h [E(µk+1)− E(π)] ≤ Dϕ(π ∥ µk+1)−Dϕ(π ∥ µk+3/2) +
h2L̃2

2
.

Together with (9.16), the proof is complete.

Now using Lemma 9.6.4, we prove Theorem 9.3.7.

Proof of Theorem 9.3.7. From Lemma 9.6.4, we have for any k ∈ N

hKL(µk+1 ∥ π) ≤ Dϕ(π ∥ µk+1/2)−Dϕ(π ∥ µk+3/2) +
h2L̃2

2
. (9.18)

Summing (9.18) over k = 0, 1, . . . , N − 1,

h
N∑
k=1

KL(µk ∥ π) ≤ Dϕ(π ∥ µ1/2)−Dϕ(π ∥ µN+1/2) +
h2L̃2

2
N .

Again using the convexity of the KL divergence, we obtain

KL(µN ∥ π) ≤ Dϕ(π ∥ µ1/2)

Nh
+
hL̃2

2
≤ ε2

2
+
ε2

2
,

where the last inequality follows from the choice N ≥ 2Dϕ(π∥µ1/2)
hε2

and h ≤ ε2

L̃2 .

■ 9.7 Proofs for the convexity of entropy

To prove Theorem 9.4.1, we will use the known result about the convexity of H
along generalized geodesics [AGS08, Theorem 9.4.11]. To that end, the first step
is to obtain a characterization of the optimal Bregman transport coupling which is
analogous to Brenier’s theorem. The following theorem is of independent interest:

Theorem 9.7.1 (Brenier’s theorem for the Bregman transport cost). Let µ, ν be
probability measures on Rd. The optimal Bregman transport coupling (X, Y ) for
µ and ν is of the form

∇ϕ(X)−∇ϕ(Y ) = ∇h(X) ,

where h : Rd → R ∪ {−∞} is such that ϕ− h is convex.
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Proof. From the general theory of optimal transport duality, it holds that

∇1Dϕ(X, Y ) = ∇h(X) ,

where h is a Dϕ-concave function [see Vil09b, Theorem 10.28].6 The left-hand
side of this equation evaluates to ∇ϕ(X) − ∇ϕ(Y ), so we simply have to check
that Dϕ-concavity of h implies that ϕ − h is convex (which is in fact equivalent
to saying that h is 1-relatively smooth with respect to ϕ, see Proposition 9.2.6).

Recall that the Dϕ-concavity of h means there exists a function h̃ : Rd →
R ∪ {−∞} such that

h(x) = inf
y∈Rd
{Dϕ(x, y)− h̃(y)} ,

see [Vil09b, Definition 5.2].7 If we expand out the definition of the Bregman
divergence, we can rewrite this as

ϕ(x)− h(x) = sup
y∈Rd
{⟨∇ϕ(y), x− y⟩+ h̃(y) + ϕ(y)} . (9.19)

As a supremum of affine functions, we see that ϕ− h is convex, which completes
the proof.

We now prove Theorem 9.4.1 using Theorem 9.7.1:

Proof of Theorem 9.4.1. By Theorem 9.7.1, the optimal Bregman transport cou-
pling is of the form ∇ϕ(Y ) = ∇(ϕ− h)(X) = ∇ζ(X), where we have defined the
convex function ζ := ϕ − h. Hence, letting ν denote the law of Y := ∇ϕ(Y ), it
follows that (X,∇ζ(X)) is a W2 optimal coupling between µ and ν. Furthermore,
since ϕ is a convex function of Legendre type, (∇ζ(X),∇ϕ⋆ ◦ ∇ζ(X)) is also a
W2 optimal coupling between ν and ν. Noting that

∇ϕ⋆ ◦ ∇ζ(X) = ∇ϕ⋆ ◦ ∇ϕ(Y ) = Y ,

it follows that (X, Y ) is a generalized geodesic according to W2. Therefore, the
convexity of H along generalized geodesics [AGS08, Theorem 9.4.11] concludes
the proof (see [SR20, Lemma 4]).

6In fact, there are three assumptions for [Vil09b, Theorem 10.28]. Here, we explicitly check
them one by one for clarity. (i) Super-differentiability: Dϕ is clearly differentiable on Q as ϕ is of
class C3. (ii) Injectivity of gradient: ∇1Dϕ(x, ·) = ∇ϕ(x)−∇ϕ(·) is injective as ϕ is of Legendre
type. (iii) µ-almost-sure differentiability of Dϕ-concave functions: In (9.19), we actually show
that for any Dϕ-concave function h, ϕ−h is convex and thus differentiable Lebesgue a.e. [Roc97,
Theorem 25.5]. Since µ is absolutely continuous w.r.t. Lebesgue measure and ϕ is differentiable,
h must be differentiable µ-almost surely.

7In Villani’s book, he works with the definition of c-convexity rather than c-concavity, but
this is merely a matter of convention; c.f. [Vil03, §2.4] for the conventions regarding c-concavity.
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Remark 9.7.2. For reader’s convenience, we provide a direct calculation that
(formally) shows the convexity result. Since we have shown Y = ∇ϕ⋆ ◦ ∇ζ(X),
the change of variable formula gives

H(ν) =

∫
ν(y) ln ν(y) dy =

∫
µ(x) ln ν

(
∇ϕ⋆ ◦ ∇ζ(x)

)
dx

=

∫
µ(x) ln

µ(x)

det∇(∇ϕ⋆ ◦ ∇ζ)(x)
dx.

Here the change of variables is valid since

det
(
[∇(∇ϕ⋆ ◦ ∇ζ)](x)

)
= det

(
[∇2ϕ⋆(∇ζ(x))] [∇2ζ(x)]

)
> 0 .

Thus, using the convexity of − ln det and integrating by parts, we obtain

H(µ)−H(ν) = −
∫
µ(x) ln det∇(∇ϕ⋆ ◦ ∇ζ)(x) dx

≥ −
∫
µ(x) tr[∇(∇ϕ⋆ ◦ ∇ζ)(x)− Id] dx

=

∫
⟨∇µ(x), (∇ϕ⋆ ◦ ∇ζ)(x)− x⟩ dx

=

∫
⟨∇ lnµ(x), (∇ϕ⋆ ◦ ∇ζ)(x)− x⟩ dµ(x) .

Recalling that ∇W2H(µ) = ∇ lnµ and Y = ∇ϕ⋆(∇ζ(X)), the result follows.

■ 9.8 Conclusion

We conclude by discussing some questions for future research.

1. As we discuss in Remark 9.3.12, it is an open question to determine if the
analyses of [Zha+20; Li+22] can be improved to obtain vanishing bias for
the Euler–Maruyama discretization of MLD under weaker assumptions.

We remark that [Jia21] also obtained similar conclusions as our work, namely
that the Euler–Maruyama discretization potentially incurs non-vanishing bias,
whereas MLMC does not. See also the recent work of [GV22].

2. In our work, we analyze the sampling analogue of mirror descent under
the assumption that the mirror map is self-concordant. This notably bears
resemblance to the development of interior-point methodology in optimiza-
tion [NN94], and it is an interesting problem to develop further sampling
analogues of interior-point algorithms.
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3. In §9.5.2, we investigated the possibility that MLMC can alleviate the de-
pendence on dimension for some sampling problems. However, Metropolis-
adjusted variants of the Langevin algorithm enjoy significantly better de-
pendence on the dimension as compared to their unadjusted counterparts;
see [RR98; PST12] and §5. Thus, the Metropolis-adjusted version of MLMC
may be a more appropriate setting in which to investigate this dimension
reduction question, which we leave to future work.





Chapter 10

Interlude: two applications of
Brascamp–Lieb inequalities

We saw in §8 that the Brascamp–Lieb inequality is key for establishing conver-
gence of the mirror Langevin diffusion. In turn, the geometry underlying the
mirror Langevin diffusion can be used to recover the Brascamp–Lieb inequality
(Corollary 9.4.2). In this chapter, we explore two further applications of the
Brascamp–Lieb inequality to optimization and optimal transport.

For any convex body K ⊆ Rn, S. Bubeck and R. Eldan introduced the entropic
barrier on K in [BE19] and showed that it is a (1 + o(1))n-self-concordant barrier.
In §10.1, we prove that the optimal bound of n on the self-concordance parameter
holds as a consequence of the dimensional Brascamp–Lieb inequality. This is
based on [Che21b].

The optimal transport map between the standard Gaussian measure and an
α-strongly log-concave probability measure is α−1/2-Lipschitz, as first observed in
a celebrated theorem of Caffarelli. In §10.2, we apply dual covariance inequalities
(the Brascamp–Lieb and Cramér–Rao inequalities) to prove a sharp bound on the
Lipschitz constant of the map that arises from entropically regularized optimal
transport. In the limit as the regularization tends to zero, we obtain an elegant and
short proof of Caffarelli’s original result. We also extend Caffarelli’s theorem to
the setting in which the Hessians of the log-densities of the measures are bounded
by arbitrary positive definite commuting matrices. This is based on [CP22], joint
with Aram-Alexandre Pooladian.

■ 10.1 Optimal self-concordance of the entropic barrier

■ 10.1.1 Introduction

Let K ⊆ Rn be a convex body. In [BE19], S. Bubeck and R. Eldan introduced
the entropic barrier f ⋆ : intK → R, defined as follows. First, let f : Rn → R

309
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denote the logarithmic Laplace transform of the uniform measure on K,

f(θ) := ln

∫
K

exp ⟨θ, x⟩ dx . (10.1)

Then, define f ⋆ to be the Fenchel conjugate of f ,

f ⋆(x) := sup
θ∈Rn
{⟨θ, x⟩ − f(θ)} .

They proved the following result.

Theorem 10.1.1 ([BE19, Theorem 1]). The function f ⋆ is strictly convex on
intK. Also, the following statements hold.

1. f ⋆ is self-concordant, i.e.,

∇3f ⋆(x)[h, h, h] ≤ 2 |⟨h,∇2f ⋆(x)h⟩|3/2 , for all x ∈ intK , h ∈ Rn .

2. f ⋆ is a ν-self-concordant barrier, i.e.,

∇2f ⋆(x) ⪰ 1

ν
∇f ⋆(x)∇f ⋆(x)T , for all x ∈ intK ,

with ν = (1 + o(1))n.

Self-concordant barriers are most well-known for their prominent role in the
theory of interior-point methods for optimization [NN94], but they also find
applications to numerous other problems such as online linear optimization with
bandit feedback [AHR08] (indeed, the latter was a motivating example for the
introduction of the entropic barrier in [BE19]).

A central theoretical question in the study of self-concordant barriers is: for any
convex domain K ⊆ Rn, does there exist a ν-self-concordant barrier for K, and
if so, what the optimal value of the parameter ν? In their seminal work [NN94],
Y. Nesterov and A. Nemirovskii constructed for each K a universal barrier with
ν = O(n). On the other hand, explicit examples (e.g., the simplex and the
cube) show that the best possible self-concordance parameter is ν = n [NN94,
Proposition 2.3.6]. The situation was better understood for convex cones, on
which the canonical barrier was shown to be n-self-concordant independently
by R. Hildebrand and D. Fox [Hil14; Fox15]. Then, in [BE19], S. Bubeck and
R. Eldan introduced the entropic barrier and showed that it is (1 + o(1))n-self-
concordant on general convex bodies, and n-self-concordant on convex cones;
further, they showed that the universal barrier is also n-self-concordant on convex
cones. Subsequently, Y. T. Lee and M.-C. Yue settled the question of obtaining
optimal self-concordant barriers for general convex bodies by proving that the
universal barrier is always n-self-concordant [LY21].

The purpose of this section is to describe the following observation.
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Theorem 10.1.2. The entropic barrier on any convex body K ⊆ Rn is an n-self-
concordant barrier.

Besides improving the result of [BE19], the theorem shows that the entropic
barrier provides a second example of an optimal self-concordant barrier for general
convex bodies; to the best of the author’s knowledge, no other optimal self-
concordant barriers are known.

We will provide two distinct proofs of Theorem 10.1.2. First, we will observe
that Theorem 10.1.2 is an immediate consequence of the following theorem, which
was obtained independently in [Ngu14; Wan14]; see also [FMW16].

Theorem 10.1.3. Let µ ∝ exp(−V ) be a log-concave density on Rn. Then,

varµ V ≤ n .

In turn, as discussed in [Ngu14; BGG18], Theorem 10.1.3 is related to certain
dimensional improvements of the Brascamp–Lieb inequality. We state a version
of this inequality which is convenient for the present discussion.

Theorem 10.1.4 ([BGG18, Proposition 4.1]). Let µ ∝ exp(−V ) be a log-concave
density on Rn, where V is of class C2 and ∇2V ≻ 0. Then, for all C1 compactly
supported g : Rn → R, it holds that

varµ g ≤ Eµ⟨∇g, (∇2V )−1∇g⟩ − covµ(g, V )2

n− varµ V
.

It is straightforward to see that Theorem 10.1.4 implies Theorem 10.1.3. In-
deed, via a routine approximation argument, we may assume that µ satisfies
the hypothesis of Theorem 10.1.4. Taking g = V (which is justified via another
approximation argument) and rearranging the inequality of Theorem 10.1.4 yields

varµ V ≤
nEµ⟨∇V, (∇2V )−1∇V ⟩
n+ Eµ⟨∇V, (∇2V )−1∇V ⟩ ≤ n .

Next, in our second approach to Theorem 10.1.2, we observe that a key step
in the proof of Theorem 10.1.3 given by [Wan14] is a tensorization principle. It
is then natural to wonder whether such a principle can be applied directly to
deduce Theorem 10.1.2. Indeed, we have the following elementary lemma.

Lemma 10.1.5. Suppose that for each n ∈ N+ and each convex body K ⊆ Rn, we
have a function ϕn,K : intK → R such that ϕn,K is a ν(n)-self-concordant barrier
for K. Also, suppose that the following consistency condition holds:

ϕm+n,K×K′(x, x
′) = ϕm,K(x) + ϕn,K′(x

′) , (10.2)

for all m,n ∈ N+, all convex bodies K ⊆ Rm, K ′ ⊆ Rn, and all x ∈ K, x′ ∈ K ′.
Then, ϕn,K is a infk∈N+ ν(kn)/k-self-concordant barrier for K.
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We will check that the entropic barrier satisfies the consistency condition
described in the previous lemma in §10.1.4. Combined with the second statement
in Theorem 10.1.1, it yields another proof of Theorem 10.1.2.

The remainder of this section is organized as follows. In §10.1.2, we will
explain the connection between Theorem 10.1.2 and Theorem 10.1.3, thereby
deducing the former from the latter. Then, so as to make this section more
self-contained, in §10.1.3 we will provide two proofs of the dimensional Brascamp–
Lieb inequality (Theorem 10.1.4). The first proof follows [BGG18] and proceeds
via a dimensional improvement of Hörmander’s L2 method. The second “proof”,
which is only sketched, shows how the dimensional Brascamp–Lieb inequality may
be obtained from a convexity principle: the entropy functional is convex along
generalized Wasserstein geodesics which arise from Bregman divergence couplings
(Theorem 9.4.1). The second argument appears to be new. Finally, in §10.1.4, we
present the tensorization argument as encapsulated in Lemma 10.1.5.

■ 10.1.2 From the entropic barrier to the dimensional Brascamp–Lieb in-

equality

In this section, we follow [BE19]. The entropic barrier has a fruitful interpretation
in terms of an exponential family of probability distributions defined over the
convex body K ⊆ Rn. For each θ ∈ Rn, we define the density pθ on K via

pθ(x) :=
exp ⟨θ, x⟩∫

K
exp ⟨θ, x′⟩ dx′ 1{x ∈ K} . (10.3)

Since f (defined in (10.1)) is essentially the logarithmic moment-generating func-
tion of pθ, then the derivatives of f yield cumulants of pθ. In particular,

∇f(θ) = Epθ X , ∇2f(θ) = covpθ X .

By convex duality, the mappings ∇f : Rn → intK and ∇f ⋆ : intK → Rn

are inverses of each other. From the classical duality between the logarithmic
moment-generating function and entropy, we can also deduce that

f ⋆(x) = H(p∇f⋆(x)) ,

where H denotes the entropy functional1

H(p) :=

∫
p ln p . (10.4)

1Note the sign convention, which is opposite the usual one in information theory. We use
this convention as it is convenient for H to be convex.
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The self-concordance parameter of f ⋆ is the least ν ≥ 0 such that

⟨∇f ⋆(x), [∇2f ⋆(x)]−1∇f ⋆(x)⟩ ≤ ν , for all x ∈ intK .

Taking x = ∇f(θ), equivalently we require

⟨θ,∇2f(θ) θ⟩ ≤ ν , for all θ ∈ Rn ,

which has the probabilistic interpretation

varpθ ⟨θ,X⟩ ≤ ν , for all θ ∈ Rn . (10.5)

From the definition (10.3), we see that the density pθ ∝ exp(−V ) is log-
concave, where V (x) = ⟨θ, x⟩ for x ∈ intK. By applying Theorem 10.1.3 to pθ,
we immediately deduce that (10.5) holds with ν = n.

■ 10.1.3 Proof of the dimensional Brascamp–Lieb inequality

Next, we wish to give some proofs of the dimensional Brascamp–Lieb inequality
(Theorem 10.1.4). Classically, the Brascamp–Lieb inequality reads as follows.

Theorem 10.1.6 ([BL76]). Let µ ∝ exp(−V ) be a density on Rn, where V is a
convex function of class C2. Then, for every locally Lipschitz g : Rn → R,

varµ g ≤ Eµ⟨∇g, (∇2V )−1∇g⟩ . (10.6)

The Brascamp–Lieb inequality is a Poincaré inequality for the measure µ
corresponding to the Newton–Langevin diffusion (§8). When V is strongly convex,
∇2V ⪰ αIn, it recovers the usual Poincaré inequality

varµ g ≤
1

α
Eµ[∥∇g∥2] .

See [BL00; BGL14; Cor17] for various proofs of Theorem 10.1.6.
Since the inequality (10.6) makes no explicit reference to the dimension, it

actually holds in infinite-dimensional space. In contrast, Theorem 10.1.4 asserts
that (10.6) can be improved by subtracting an additional non-negative term from
the right-hand side in any finite dimension. This is referred to as a dimensional
improvement of the Brascamp–Lieb inequality.

■ 10.1.3.1 Proof by Hörmander’s L2 method

We now present the proof of Theorem 10.1.4 given in [BGG18]. The starting point
for Hörmander’s L2 method is to first dualize the Poincaré inequality.



314 CHAPTER 10. INTERLUDE: TWO APPLICATIONS OF BRASCAMP–LIEB INEQUALITIES

Proposition 10.1.7 ([BC13, Lemma 1]). Let µ ∝ exp(−V ) be a probability
density on Rn, where V is of class C1. Define the corresponding generator L on
smooth functions g : Rn → R via

L g := ∆g − ⟨∇V,∇g⟩ .

Suppose A : Rn → PD(n) is a matrix-valued function mapping into the space of
symmetric positive definite matrices such that for all smooth u : Rn → R,

Eµ[(L u)2] ≥ Eµ⟨∇u,A∇u⟩ . (10.7)

Then, for all g ∈ L2(µ), it holds that

varµ g ≤ Eµ⟨∇g, A−1∇g⟩ .

Proof. We may assume Eµ g = 0. This condition is certainly necessary for the
Poisson equation −L u = g to be solvable; in order to streamline the proof,
we will assume that a solution u exists. (This assumption can be avoided by
invoking [CFM04] and using a density argument; see [BC13] for details.)

Using the integration by parts formula for the generator,

−Eµ[gL u] = Eµ⟨∇g,∇u⟩ ,

we obtain

varµ g = Eµ[g2] = −2Eµ[gL u]− Eµ[(L u)2]

≤ 2Eµ⟨∇g,∇u⟩ − Eµ⟨∇u,A∇u⟩ .

Next, since 2 ⟨x, y⟩ ≤ ⟨x,Ax⟩+ ⟨y, A−1 y⟩ for all x, y ∈ Rn, it implies

varµ g ≤ Eµ⟨∇g, A−1∇g⟩ .

The key idea now is that the condition (10.7) can be verified with the help of
the curvature of the potential V . Indeed, assume now that V is of class C2 and
that ∇2V ≻ 0. By direct calculation, one verifies the commutation relation

∇L u = (L −∇2V )∇u . (10.8)

Hence,

Eµ[(L u)2] = −Eµ⟨∇u,∇L u⟩ = −Eµ⟨∇u, (L −∇2V )∇u⟩
= Eµ⟨∇u,∇2V ∇u⟩+ Eµ[∥∇2u∥2HS] ,

(10.9)
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where the last equality follows from the integration by parts formula for the genera-
tor applied to each coordinate separately: −Eµ⟨∇u,L∇u⟩ = Eµ[∥∇2u∥2HS]. Since
the second term is non-negative, Proposition 10.1.7 now implies the Brascamp–
Lieb inequality (Theorem 10.1.6).

In order to obtain the dimensional improvement of the Brascamp–Lieb inequal-
ity (Theorem 10.1.4), we will imitate the proof of Proposition 10.1.7, only now we
will use the additional term Eµ[∥∇2u∥2HS] in the above identity.

Proof of Theorem 10.1.4. As before, let Eµ g = 0. However, we introduce an
additional trick and consider u not necessarily satisfying −L u = g; this will help
to optimize the bound at the end of the argument. Following the computations
in Proposition 10.1.7 and using the key identity (10.9), we obtain

varµ g = Eµ[g2] = Eµ[(g + L u)2]− 2Eµ[gL u]− Eµ[(L u)2]

= Eµ[(g + L u)2] + 2Eµ⟨∇g,∇u⟩ − Eµ⟨∇u,∇2V ∇u⟩ − Eµ[∥∇u∥2HS]

≤ Eµ[(g + L u)2] + Eµ⟨∇g, (∇2V )−1∇g⟩ − Eµ[∥∇u∥2HS] .

For the second term, we use the inequality

Eµ[∥∇u∥2HS] ≥ 1

n
(Eµ ∆u)2 .

From integration by parts,

Eµ ∆u = Eµ⟨∇V,∇u⟩ = −Eµ[V L u] = covµ(g, V )− Eµ[V (L u+ g)] .

We now choose −L u = g + a (V − Eµ V ) for some a ≥ 0 to be chosen later. For
brevity of notation, write C := covµ(g, V ) and V := varµ V . Then,

varµ g − Eµ⟨∇g, (∇2V )−1∇g⟩ ≤ a2V − 1

n
(C + aV)2

= −V (n−V)

n

(
a− C

n−V

)2

− C2V

n (n−V)
− C2

n
.

Observe that this inequality entails V ≤ n, or else we could send a → ∞ and
arrive at a contradiction. Optimizing over a, we obtain

varµ g ≤ Eµ⟨∇g, (∇2V )−1∇g⟩ − C2

n−V
.
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■ 10.1.3.2 Proof by convexity of the entropy along Bregman divergence couplings

It is well-known that Poincaré inequalities are obtained from linearizing transporta-
tion inequalities. In [Cor17], D. Cordero-Erausquin obtained the Brascamp–Lieb
inequality (Theorem 10.1.6) by linearizing the following inequality:

DV (ρ ∥ µ) ≤ KL(ρ ∥ µ) , for all ρ ∈ P(Rn) . (10.10)

Here, µ ∝ exp(−V ) on Rn; P(Rn) denotes the space of probability measures on
Rn; KL(·∥ ·) is the Kullback–Leibler (KL) divergence; and DV (·∥ ·) is the Bregman
divergence coupling cost, defined as

DV (ρ ∥ µ) = inf
γ∈couplings(ρ,µ)

∫
DV (x ∥ y) dγ(x, y) ,

with

DV (x ∥ y) := V (x)− V (y)− ⟨∇V (y), x− y⟩ .

On the other hand, we obtained the transport inequality (10.10) as Corol-
lary 9.4.2 as a consequence of a convexity principle in optimal transport. It is
therefore natural to ask whether the dimensional Brascamp–Lieb inequality (The-
orem 10.1.4) can be obtained directly from (a strengthening of) this principle.
This is indeed the case, and we now describe this argument.

Making the argument fully rigorous, however, would entail substantial technical
complications which would detract from the focus of this section. In any case, a
complete proof of the dimensional Brascamp–Lieb inequality is already present
in [BGG18]. Hence, we will work on a purely formal level and assume that
everything is smooth, bounded, etc. Also, the computations are rather similar
to the proof of Theorem 10.1.4 given in the previous section. Nevertheless, the
argument seems interesting enough to warrant presenting it here.

The main difference with the preceding proof is that the Bochner formula
(implicit in the commutation relation (10.8)) is replaced by the convexity principle.

Proof sketch of Theorem 10.1.4. Throughout the proof, let ε > 0 be small. Let h
be bounded and satisfy Eµ h = 0, so that µε := (1+εh)µ defines a valid probability
density on Rn. Our aim is to first strengthen the transportation inequality (10.10),
at least infinitesimally, and then to linearize it.

Let (Xε, X) be an optimal coupling for the Bregman divergence coupling cost
DV (µε ∥ µ). In §9, we proved the following facts:

1. There is a function uε : Rn → R such that ∇V (X) = ∇V (Xε) − ∇uε(Xε),
and V − uε is convex.
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2. The entropy functional (defined in (10.4)) is convex in the sense that

H(µε) ≥ H(µ) + E⟨[∇W2H(µ)](X), Xε −X⟩ . (10.11)

Here, ∇W2H(µ) = ∇ lnµ is the Wasserstein gradient of the entropy functional,
c.f. [AGS08; Vil09b; San15].

Write Tε(x) := (∇V −∇uε)−1(∇V (x)). Since (Tε)#µ = µε, the change of variables
formula implies

µ(x)

µε(Tε(x))
=

µ(x)

µ(Tε(x)) (1 + εh(Tε(x)))
= det∇Tε(x) . (10.12)

To linearize this equation, write uε = εu + o(ε) and Tε(x) = x + εT (x) + o(ε).
Then, the definition of Tε yields

∇V (x) = (∇V −∇uε)
(
x+ εT (x) + o(ε)

)
= ∇V (x) + ε∇2V (x)T (x)− ε∇u(x) + o(ε)

which implies

Tε(x) = x+ ε [∇2V (x)]−1∇u(x) + o(ε) .

Taking logarithms and expanding to first order in ε,

lnµ(x)− lnµ(Tε(x))− ln(1 + εh(Tε(x)))

= −ε ⟨∇ lnµ(x), [∇2V (x)]−1∇u(x)⟩ − εh(x) + o(ε)

= ε ⟨∇V (x), [∇2V (x)]−1∇u(x)⟩ − εh(x) + o(ε)

and

ln det∇Tε(x) = ln det∇
(
id + ε [∇2V ]−1∇u+ o(ε)

)
(x)

= ln det
(
In + ε∇([∇2V ]−1∇u)(x) + o(ε)

)
= ε div([∇2V ]−1∇u)(x) + o(ε) .

To interpret this, we introduce a new generator, denoted L̂ to avoid confusion
with the previous section, defined by

L̂ u := div([∇2V ]−1∇u)− ⟨∇V, [∇2V ]−1∇u⟩ .

This new generator satisfies the integration by parts formula

Eµ[u L̂ v] = Eµ⟨∇u, [∇2V ]−1∇v⟩ .
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In this notation, the preceding computations yield

L̂ u = −h+ o(1) .

Next, to strengthen (10.11), we repeat the proof. From (10.12),

H(µε) =

∫
µε lnµε =

∫
µ ln(µε ◦ Tε) =

∫
µ ln

µ

det∇Tε
= H(µ)−

∫
µ ln det∇Tε .

From the second-order expansion of − ln det around In,

−
∫
µ ln det∇Tε

≥ −
∫
µ ln det In −

∫
µ ⟨In,∇Tε − In⟩+

1

2

∫
µ ∥∇Tε − In∥2HS + o(ε2)

≥ −
∫
µ tr(∇Tε − In) +

1

2n

(∫
µ tr(∇Tε − Id)

)2

+ o(ε2)

= −
∫
µ div(Tε − id) +

1

2n

(∫
µ div(Tε − id)

)2

+ o(ε2)

=

∫
µ ⟨∇ lnµ, Tε − id⟩+

1

2n

(∫
µ ⟨∇ lnµ, Tε − id⟩

)2

+ o(ε2) .

Recalling that ∇W2H(µ) = ∇ lnµ, we have established

H(µε)−H(µ)− E⟨[∇W2H(µ)](X), Xε −X⟩

≥ 1

2n

(∫
µ ⟨∇V, Tε − id⟩

)2

+ o(ε2)

=
ε2

2n

(∫
µ ⟨∇V, [∇2V ]−1∇u⟩

)2

+ o(ε2)

=
ε2

2n
{Eµ[V L̂ u]}2 + o(ε2) .

The next step is to write down the strengthened transportation inequality.
Indeed, if we add a suitable additive constant to V so that µ = exp(−V ), then

KL(µε ∥ µ) = Eµε V + H(µε)

≥ EV (X) + H(µ)︸ ︷︷ ︸
=KL(µ∥µ)=0

+E⟨[∇V +∇W2H(µ)](X), Xε −X⟩︸ ︷︷ ︸
=[∇W2

KL(·∥µ)](µ)=0

+ E[V (Xε)− V (X)− ⟨∇V (X), Xε −X⟩]︸ ︷︷ ︸
=DV (µε∥µ)
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+
ε2

2n
{Eµ[hV ]}2 + o(ε2)

≥ DV (µε ∥ µ) +
ε2

2n
{Eµ[hV ]}2 + o(ε2) .

Finally, it remains to linearize the transportation inequality. On one hand, it
is classical that

KL(µε ∥ µ) =
ε2

2
Eµ[h2] + o(ε2) .

On the other hand, we can guess that

DV (µε ∥ µ) =
1

2
E⟨Xε −X,∇2V (X) (Xε −X)⟩+ o(ε2)

=
ε2

2
Eµ⟨∇u, (∇2V )−1∇u⟩+ o(ε2)

≥ ε2

2

{Eµ⟨∇g, (∇2V )−1∇u⟩}2
Eµ⟨∇g, (∇2V )−1∇g⟩ + o(ε2)

=
ε2

2

{Eµ[g L̂ u]}2

Eµ⟨∇g, (∇2V )−1∇g⟩ + o(ε2)

=
ε2

2

{Eµ[gh]}2
Eµ⟨∇g, (∇2V )−1∇g⟩ + o(ε2) .

A rigorous proof of this inequality is given as [Cor17, Lemma 3.1].
Thus, we obtain

1

2

{Eµ[gh]}2
Eµ⟨∇g, (∇2V )−1∇g⟩ +

1

2n
{Eµ[hV ]}2 ≤ 1

2
Eµ[h2] + o(1) .

Now we let ε ↘ 0 and choose h = g + a (V − Eµ V ) for some a ∈ R. Writing
C := covµ(g, V ) and V := varµ V , it yields

(varµ g + aC)2

Eµ⟨∇g, (∇2V )−1∇g⟩ +
1

n
(C + aV)2 ≤ varµ g + 2aC + a2V .

Actually, choosing a to optimize this inequality and simplifying the resulting
expression may be cumbersome, so with our foresight from the earlier proof
of Theorem 10.1.4, we now take a = C/(n−V). After some algebra,

(varµ g + C2/(n−V))
2

Eµ⟨∇g, (∇2V )−1∇g⟩ ≤ varµ g +
C2

n−V
,

which of course yields

varµ g ≤ Eµ⟨∇g, (∇2V )−1∇g⟩ − C2

n−V
.
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■ 10.1.4 A tensorization trick

We begin by verifying that the entropic barrier has the consistency property (10.2).
Let fK denote the function (10.1), where we now explicitly denote the dependence
on the convex body K. Also, let f ⋆K denote the corresponding entropic barrier.
Then, we see that

fK×K′(θ, θ
′) = ln

∫
K×K′

exp(⟨θ, x⟩+ ⟨θ′, x′⟩) dx dx′

= ln

∫
K

exp ⟨θ, x⟩ dx+ ln

∫
K′

exp ⟨θ′, x′⟩ dx′ = fK(θ) + fK′(θ
′) .

Hence,

f ⋆K×K′(x, x
′) = sup

θ,θ′∈Rn
{⟨θ, x⟩+ ⟨θ′, x′⟩ − fK(θ)− fK′(θ′)} = f ⋆K(x) + f ⋆K′(x

′) .

Finally, we check that the tensorization property automatically improves the
bound on the self-concordance parameter of f ⋆K obtained in [BE19].

Proof of Lemma 10.1.5. Let x := (x1, . . . , xk) ∈ (Rn)k. By assumption, the self-
concordant barrier ϕkn,Kk on Kk satisfies ϕkn,Kk(x) =

∑k
j=1 ϕn,K(xj). Also, we

are given that

∇2ϕkn,Kk(x) ⪰ 1

ν(kn)
∇ϕkn,Kk(x)∇ϕkn,Kk(x)T . (10.13)

Via elementary calculations,

∇ϕkn,Kk(x) =
(
∇ϕn,K(x1), . . . ,∇ϕn,K(xk)

)
and

∇2ϕkn,Kk(x) =

∇
2ϕn,K(x1)

. . .

∇2ϕn,K(xk)

 .

Let v ∈ Rn and let v := (v, . . . , v) ∈ (Rn)k. Also, take x1 = · · · = xk = x.
By (10.13), we know that

k ⟨v,∇2ϕn,K(x) v⟩ = ⟨v,∇2ϕkn,Kk(x)v⟩ ≥ 1

ν(kn)
⟨v,∇ϕkn,Kk(x)⟩2

=
k2

ν(kn)
⟨v,∇ϕn,K(x)⟩2
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which proves

∇2ϕn,K(x) ⪰ k

ν(kn)
∇ϕn,K(x)∇ϕn,K(x)T

and gives the claim.

Proof of Theorem 10.1.2. According to Theorem 10.1.1, we know that the en-
tropic barrier in n dimensions is (1+εn)n-self-concordant, with εn → 0 as n→∞.
By Lemma 10.1.5, it is actually (1 + εkn)n-self-concordant, for any k ∈ N+. Let
k →∞ to deduce that it is in fact n-self-concordant.

■ 10.2 An entropic generalization of Caffarelli’s contraction theorem

■ 10.2.1 Introduction

In [Caf00], Caffarelli proved the following seminal result.

Theorem 10.2.1 (Caffarelli’s contraction theorem). Let P = exp(−V ) and Q =
exp(−W ) have smooth densities on Rd, with ∇2V ⪯ βV I and ∇2W ⪰ αW I ≻ 0.
Then, the optimal transport map ∇ϕ0 from P to Q is

√
βV /αW -Lipschitz.

Here, ϕ0 : Rd → R is a convex function, known as a Brenier potential. The
optimal transport map ∇ϕ0 : Rd → Rd pushes forward P to Q, in the sense that
if X is a random variable with law P , then ∇ϕ0(X) is a random variable with law
Q. See §10.2.2.2 and the textbook [Vil03] for background on optimal transport.

Caffarelli’s contraction theorem can be used to transfer functional inequalities,
such as a Poincaré inequality, from the standard Gaussian measure on Rd to
other probability measures [BGL14]. Towards this end, recent works have also
constructed and studied alternative Lipschitz transport maps (e.g. [KM12; MS21;
MS22; Nee22]), but still the properties of the original optimal transport map
remain of fundamental interest, with many questions unresolved [Val07; CFJ17].

Indeed, besides the application to functional inequalities, the structural proper-
ties of optimal transport maps play a fundamental role in theoretical and method-
ological advances in optimal transport, such as the control of the curvature of the
Wasserstein space through the notion of extendible geodesics [ALP20; Le +22],
the stability of Wasserstein barycenters (see §15), and the statistical estimation
of optimal transport maps [HR21].

In applied domains, however, the inauspicious computational and statistical
burden of solving the original optimal transport problem has instead led prac-
titioners to consider entropically regularized optimal transport, as pioneered by
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Cuturi in [Cut13]. In addition to its practical merits, entropic optimal trans-
port enjoys a rich mathematical theory, rooted in its connection to the classical
Schrödinger bridge problem [Léo14], which has led to powerful applications to
high-dimensional probability [Led18; FGP20; Gen+20]. As such, it is natural to
study the properties of the entropic analogue of the optimal transport map.

In this section, we prove a generalization of Caffarelli’s contraction theorem
to the setting of entropic optimal transport. Namely, we study the Hessian of
the entropic Brenier potential (see §10.2.3), which admits a representation as a
covariance matrix (Lemma 10.2.6). By applying two well-known inequalities for
covariance matrices (the Brascamp–Lieb inequality and the Cramér–Rao inequal-
ity), we quickly deduce a sharp upper bound on the operator norm of the Hessian
which holds for any value ε > 0 of the regularization parameter.

As a by-product of our analysis, by sending ε ↘ 0 and appealing to recent
convergence results for the entropic Brenier potentials [BGN22], we obtain the
shortest proof of Caffarelli’s contraction theorem to date. Notably, our argument
allows us to sidestep the regularity of the optimal transport map, which is a
key obstacle in Caffarelli’s original proof and many others in the literature (see,
e.g., [Kol11]).

Recently, in [FGP20] (see also [Pro21]), Fathi, Gozlan, and Prod’homme gave a
proof of Caffarelli’s theorem using a surprising equivalence between Theorem 10.2.1
and a statement about Wasserstein projections, which was discovered through the
theory of weak optimal transport [GJ20]. In order to verify the latter, their proof
also used ideas from entropic optimal transport.2 In comparison, we note that
our argument is much more direct.

To further demonstrate the applicability of our technique, in §10.2.5 we prove
a generalization of Caffarelli’s result which reveals a remarkable extremal property
of optimal transport maps between Gaussians. Namely, if ∇2V ⪯ A−1 and
∇2W ⪰ B−1, where A and B are arbitrary commuting positive definite matrices,
then the Hessian of the Brenier potential from P to Q is pointwise upper bounded
(in the PSD ordering) by A−1/2B1/2, the Hessian of the Brenier potential from
normal(0, A) to normal(0, B). To the best of our knowledge, this result is new.

■ 10.2.2 Background

■ 10.2.2.1 Assumptions

We study probability measures P , Q on Rd satisfying the following mild regularity
assumptions.

2In particular, with some effort, a bound on the Hessian of the entropic Brenier potential
can also be read off from their proof.
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Assumption 10.2.2 (Regularity conditions). We henceforth refer to the source
measure as P and the target measure as Q. We say that (P,Q) satisfies our
regularity conditions if:

1. P has full support on Rd and Q is supported on a convex subset of Rd. Let
ΩQ denote the interior of the support of Q, so that ΩQ is a convex open set.

2. P and Q admit positive Lebesgue densities on Rd and ΩQ, which we can
therefore be written exp(−V ) and exp(−W ) respectively for functions V,W :
Rd → R ∪ {∞}. We abuse notation and identify the measures with their
densities, thus writing P = exp(−V ) and Q = exp(−W ).

3. We assume that V and W are twice continuously differentiable on Rd and ΩQ

respectively.

Some of these assumptions can be eventually relaxed, but they suffice for the
purposes of this work. Throughout the rest of the chapter and for the sake of
simplicity, these regularity assumptions are assumed to hold for the probability
measures under consideration.

■ 10.2.2.2 Optimal transport without regularization

Let P and Q be probability measures with finite second moment. The optimal
transport problem is the following optimization problem:

minimize
π∈Π(P,Q)

∫
1
2
∥x− y∥2 dπ(x, y) (10.14)

where Π(P,Q) is the set of joint probability measures with marginals P and Q.
The following fundamental result characterizes the optimal solution to (10.14).

Theorem 10.2.3 (Brenier’s theorem). Suppose that P admits a density with
respect to Lebesgue measure. Then, there exists a proper, convex, lower semi-
continuous function ϕ0 : Rd → R ∪ {∞} such that the optimal transport plan
in (10.14) can be written π0 = (id,∇ϕ0)#P . The function ϕ0 is called the Brenier
potential, and the mapping ∇ϕ0 is called the optimal transport map from P to
Q. Moreover, the optimal transport map ∇ϕ0 is unique up to P -a.e. equality.

The Brenier potential ϕ0 is obtained as the solution to the dual problem

maximize
ϕ∈Γ0

∫ (∥·∥2
2
− ϕ

)
dP +

∫ (∥·∥2
2
− ϕ∗

)
dQ , (10.15)

where ϕ∗ is the convex conjugate to ϕ, and Γ0 is the set of proper, convex, lower
semicontinuous functions on Rd.

We refer to [Vil03] for further background.
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■ 10.2.3 Optimal transport with entropic regularization

We recall that entropic optimal transport is the problem that arises when we add
the Kullback–Leibler (KL) divergence, KL(· ∥ ·), as a regularizer to (10.14):

minimize
π∈Π(P,Q)

∫
1
2
∥x− y∥2 dπ(x, y) + εKL(π ∥ P ⊗Q) . (10.16)

The following theorem characterizes the solution to (10.16) [Csi75; PC19; BGN22].

Theorem 10.2.4 (Entropic optimal transport). Let P and Q be probability mea-
sures on Rd and fix ε > 0. Then there exists a unique solution πε ∈ Π(P,Q)
to (10.16). Moreover, πε has the form

πε(dx, dy) = exp
(fε(x) + gε(y)− 1

2
∥x− y∥2

ε

)
P (dx)Q(dy) , (10.17)

where (fε, gε) are maximizers for the dual problem

maximize
(f,g)∈L1(P )×L1(Q)

∫
f dP +

∫
g dQ

− ε
∫∫

exp
(f(x) + g(y)− 1

2
∥x− y∥2

ε

)
dP (x) dQ(y) + ε .

The constraint that πε has marginals P and Q implies the following dual
optimality conditions for (fε, gε) (see [MN19; BGN22] for more details):

fε(x) = −ε log

∫
exp

(gε(y)− 1
2
∥x− y∥2
ε

)
dQ(y) (x ∈ Rd) , (10.18)

gε(y) = −ε log

∫
exp

(fε(x)− 1
2
∥x− y∥2
ε

)
dP (x) (y ∈ Rd) . (10.19)

In particular, fε and gε are smooth. In this work, it is more convenient to work
with the entropic Brenier potentials, defined as

(ϕε, ψε) := (1
2
∥ · ∥2 − fε, 1

2
∥ · ∥2 − gε) . (10.20)

Since (fε, gε) are only unique up to adding a constant to fε and subtracting the
same constant from gε, we fix the normalization convention

∫
fε dP =

∫
gε dQ.

Under this condition, it was shown by Nutz and Wiesel in [NW22] that we have
convergence to the Brenier potential φε → φ0 as ε↘ 0; we recall an abbreviated
version of the statement for the convenience of the reader:
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Theorem 10.2.5. For any choice of regularization parameter ε > 0, let (ϕε, ψε)
be the unique entropic Brenier potentials with the normalization condition∫

(1
2
∥ · ∥2 − ϕε) dP =

∫
(1
2
∥ · ∥2 − ψε) dQ .

If (ϕ0, ϕ
∗
0) are unique, it holds that limε↘0 ϕε = ϕ0 in L1(P ) and limε↘0 ψε = ϕ∗0

in L1(Q).

Adopting this new notation, with P = exp(−V ) and Q = exp(−W ), we can
rewrite the entropic optimal plan as

πε(dx, dy) = exp
(
−φε(x) + ψε(y)− ⟨x, y⟩

ε
− V (x)−W (y)

)
dx dy .

The entropic Brenier potentials were first introduced to develop a computa-
tionally tractable estimator of the optimal transport map ∇ϕ0 [Seg+18; PCN22;
PN22]. Indeed, this is motivated by the following observation, which acts as an en-

tropic version of Brenier’s theorem. Write π
Y |X=x
ε for the conditional distribution

of Y given X = x for (X, Y ) ∼ πε, and similarly define π
X|Y=y
ε . Then, by [PN22,

Proposition 1], ∇ϕε is the barycentric projection

∇ϕε(x) =

∫
y dπY |X=x

ε (y) . (10.21)

For clarity, we abuse notation and abbreviate π
Y |X=x
ε by πxε and π

X|Y=y
ε by πyε

when there is no danger of confusion.
The following lemma is a straightforward computation using (10.17), (10.18),

and (10.19).

Lemma 10.2.6. It holds that

∇2ϕε(x) = ε−1 covY∼πxε (Y ) , and ∇2ψε(y) = ε−1 covX∼πyε (X) .

In particular, φε and ψε are convex. Moreover, under our regularity conditions,

∇2
y log(1/πxε )(y) = ε−1∇2ψε(y) +∇2W (y) ,

∇2
x log(1/πyε )(x) = ε−1∇2ϕε(x) +∇2V (x) .

■ 10.2.3.1 Covariance inequalities

In our proofs, we make use of the following key inequalities.
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Lemma 10.2.7. Let P = exp(−V ) be a probability measure on Rd and assume
that V is twice continuously differentiable on the interior of its domain. Then,
the following hold.

1. (Brascamp–Lieb inequality) If in addition we assume that P is strictly log-
concave, then it holds that

covX∼P (X) ⪯ EX∼P [(∇2V (X))
−1

] .

2. (Cramér–Rao inequality)

covX∼P (X) ⪰ (EX∼P [∇2V (X)])
−1
.

The Brascamp–Lieb inequality is classical, and we refer readers to [BL00;
BGL14; Cor17] for several proofs. To make our exposition more self-contained,
we provide a proof of the Cramér–Rao inequality.

Proof of Lemma 10.2.7, Cramér–Rao inequality. For any smooth and compactly
supported test function h : Rd → R, integration by parts yields

EP ∇h =

∫
∇h dP = −

∫
(h∇ lnP ) dP =

∫
(h− EP h)∇V dP

where we used the fact that EP ∇ lnP = 0. Therefore,

⟨EP ∇h, (EP ∇2V )
−1 EP ∇h⟩ =

∫
(h− EP h) ⟨∇V, (EP ∇2V )

−1 EP ∇h⟩ dP .
(10.22)

Applying the Cauchy–Schwarz inequality,

(10.22) ≤
√

(varP h)

∫
⟨EP ∇h, (EP ∇2V )−1 (∇V )⊗2 (EP ∇2V )−1 EP ∇h⟩ dP .

Integration by parts shows that
∫
∇V ⊗2 dP =

∫
∇2V dP , and upon rearranging

we deduce that

varP h ≥ ⟨EP ∇h, (EP ∇2V )
−1 EP ∇h⟩ . (10.23)

By approximation, this continues to hold for any locally Lipschitz h : Rd → R
with EP∥∇h∥ <∞.

Specializing the inequality (10.23) to h := ⟨e, ·⟩ for a unit vector e ∈ Rd then
recovers the Cramér–Rao inequality of Lemma 10.2.7.
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■ 10.2.4 Main theorem

We now state and prove our main theorem.

Theorem 10.2.8. Let P = exp(−V ) and Q = exp(−W ).

1. Suppose that (P,Q) satisfy our regularity assumptions, as well as

∇2V ⪯ βV I , and ∇2W ⪰ αW I ≻ 0 .

Then, for every ε > 0 and all x ∈ Rd, the Hessian of the entropic Brenier
potential satisfies

∇2φε(x) ⪯ 1

2

(√
4βV /αW + ε2β2

V − εβV
)
I .

2. Suppose that (Q,P ) satisfy our regularity assumptions, as well as

∇2V ⪰ αV I ≻ 0 , and ∇2W ⪯ βW I .

Then, for every ε > 0 and all x ∈ ΩP := int(supp(P )), the Hessian of the
entropic Brenier potential satisfies

∇2φε(x) ⪰ 1

2

(√
4αV /βW + ε2α2

V − εαV
)
I .

As ε↘ 0, we formally expect the following bounds on the Brenier potential:√
αV /βW I ⪯ ∇2φ0(x) ⪯

√
βV /αW I .

In particular, this recovers Caffarelli’s contraction theorem (Theorem 10.2.1). We
make this intuition rigorous below by appealing to convergence results for the
entropic potentials as the regularization parameter ε tends to zero.

Proof of Theorem 10.2.8. Upper bound. Fix x ∈ Rd. Recall from Lemma 10.2.6:

∇2φε(x) = ε−1 covY∼πxε (Y ) .

By an application of the Brascamp–Lieb inequality, this results in the upper bound

∇2φε(x) = ε−1 covY∼πxε (Y )

⪯ ε−1 EY∼πxε
[(
ε−1∇2ψε(Y ) +∇2W (Y )

)−1]
⪯ EY∼πxε

[(
∇2ψε(Y ) + εαW I

)−1]
, (10.24)
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where in the last inequality we also used the lower bound on the spectrum of ∇2W .
Next, using Lemma 10.2.6 and the Cramér–Rao inequality (Lemma 10.2.7), we
obtain the lower bound

∇2ψε(Y ) = ε−1 covX∼πYε (X)

⪰ ε−1
(
EX∼πYε

[
ε−1∇2φε(X) +∇2V (X)

])−1
⪰

(
EX∼πYε

[
∇2φε(X) + εβV I

])−1
,

where we used the upper bound on the spectrum of ∇2V . Combining these
inequalities,

∇2φε(x) ⪯ EY∼πxε
[((

EX∼πYε
[
∇2φε(X) + εβV I

])−1
+ εαW I

)−1]
.

Now, define the quantity

Lε := sup
x∈Rd

λmax

(
∇2φε(x)

)
.

From (10.24) and the fact that ψε is convex (Lemma 10.2.6), it follows that Lε is
finite: Lε ≤ (εαW )−1. Then, we have shown

λmax

(
∇2φε(x)

)
≤

(
(Lε + εβV )−1 + εαW

)−1
.

Taking the supremum over x ∈ Rd,

Lε ≤
(
(Lε + εβV )−1 + εαW

)−1
.

Solving the inequality yields

Lε ≤
1

2

(√
4βV /αW + ε2β2

V − εβV
)
. (10.25)

Lower bound. The lower bound argument is symmetric, but we give the
details for completeness. Using Lemma 10.2.6 and the Cramér–Rao inequality
(Lemma 10.2.7),

∇2φε(x) = ε−1 covY∼πxε (Y )

⪰ ε−1
(
EY∼πxε

[
ε−1∇2ψε(Y ) +∇2W (Y )

])−1
⪰

(
EY∼πxε

[
∇2ψε(Y ) + εβW I

])−1
.

Applying Lemma 10.2.6 and the Brascamp–Lieb inequality (Lemma 10.2.7),

∇2ψε(Y ) = ε−1 covX∼πYε (X)
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⪯ ε−1 EX∼πYε
[(
ε−1∇2φε(X) +∇2V (X)

)−1]
⪯ EX∼πYε

[(
∇2φε(X) + εαV I

)−1]
.

Combining the two inequalities and setting

ℓε := inf
x∈ΩP

λmin

(
∇2φε(x)

)
,

we deduce that

ℓε ≥
(
(ℓε + εαV )−1 + εβW

)−1
.

On the other hand, from Lemma 10.2.6, we know that ℓε ≥ 0. Solving the
inequality then yields

ℓε ≥
1

2

(√
4αV /βW + ε2α2

V − εαV
)
.

Next, we rigorously deduce Caffarelli’s contraction theorem.

Proof of Caffarelli’s contraction (Theorem 10.2.1). For every ε > 0, by Theo-
rem 10.2.8, we have proven that ∇2φε ⪯ LεI, with Lε as in (10.25). Equivalently,

this can be reformulated as saying that Lε ∥·∥2
2
− φε is convex. Fix some δ > 0; in

particular, for ε sufficiently small,
(
√
βV /αW+δ) ∥·∥2

2
− φε is convex.

Upon passing to a sequence εk ↘ 0, existing results on the convergence of
entropic optimal transport potentials show that φεk → φ0 in L1(P ) (see Theo-
rem 10.2.5). Passing to a further subsequence, we obtain φεk → φ0 (P -almost

surely). It follows that
(
√
βV /αW+δ) ∥·∥2

2
− φ0 is convex for every δ > 0 (see the

remark after [Roc97, Theorem 25.7]), and thus for δ = 0.

Remark 10.2.9. Our main theorem provides both upper and lower bounds for
∇2φε. In the case when ε = 0, the lower bound follows from the upper bound.
Indeed, if φ0 is the Brenier potential for the optimal transport from P to Q, then
the convex conjugate φ∗0 is the Brenier potential for the optimal transport from Q
to P . By applying Caffarelli’s contraction theorem to φ∗0 and appealing to convex
duality, it yields a lower bound on ∇2φ0. However, we are not aware of a method
of deducing the lower bound from the upper bound for positive values of ε.

Remark 10.2.10. In §10.2.6, by inspecting the Gaussian case, we show that
Theorem 10.2.8 is sharp for every ε > 0.

Remark 10.2.11. In the proof of Theorem 10.2.8, we do not use the full force
of the Brascamp–Lieb inequality. Rather, we use the covariance inequality in
Lemma 10.2.7 which is a corollary of the usual Brascamp–Lieb inequality obtained
by applying it to linear test functions.
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An inspection of the proof of the upper bound in Theorem 10.2.8 reveals the
following more general pair of inequalities.

Proposition 10.2.12. Let (P,Q) be probability measures satisfying our regularity
conditions. Then, for all x ∈ Rd, y ∈ ΩQ,

∇2φε(x) ⪯ EY∼πxε
[(
∇2ψε(Y ) + ε∇2W (Y )

)−1]
,

∇2ψε(y) ⪰
(
EX∼πyε

[
∇2φε(X) + ε∇2V (X)

])−1
.

In the next section, we use these inequalities to prove a generalization of
Caffarelli’s theorem.

■ 10.2.5 A generalization to commuting positive definite matrices

In the next result, we replace the main assumptions of Caffarelli’s theorem, namely
∇2V ⪯ βV I and ∇2W ⪰ αW I, by the conditions

∇2V ⪯ A−1 and ∇2W ⪰ B−1 , (10.26)

where A and B are commuting positive definite matrices. Recall that the Hessian
of the Brenier potential between the Gaussian distributions normal(0, A) and
normal(0, B) is the matrix A−1/2B1/2 [Gel90]. In light of this observation, the
following theorem is sharp for every pair of commuting positive definite (A,B), and
shows that the Brenier potential between Gaussians achieves the largest possible
Hessian among all source and target measures obeying the constraint (10.26).

Theorem 10.2.13. Let (P,Q) satisfy our regularity conditions as well as the
condition (10.26). Then, the Hessian of the Brenier potential satisfies the uniform
bound: for all x ∈ Rd, it holds that

∇2φ0(x) ⪯ A−1/2B1/2 .

As in Theorem 10.2.8, the proof technique also yields a lower bound on ∇2φ0

under appropriate assumptions. We omit this result because it is straightforward.

Proof. Let Cε be the smallest constant C ≥ 0 such that∇2φε(x) ⪯ A−1/2B1/2+CI
for all x ∈ Rd. In light of Theorem 10.2.8, Cε is well-defined and finite:

Cε = sup
x∈Rd

sup
e∈Rd, ∥e∥=1

〈
e, [∇2φε(x)− A−1/2B1/2] e

〉
.

Let (x, e) achieve the above supremum. Using our assumptions and Proposi-
tion 10.2.12, we obtain

Cε =
〈
e, [∇2φε(x)− A−1/2B1/2] e

〉
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≤
〈
e,
[(
EY∼πxε ∇2ψε(Y ) + εB−1

)−1 − A−1/2B1/2
]
e
〉

≤
〈
e,
[(

(A−1/2B1/2 + CεI + εA−1)−1 + εB−1
)−1 − A−1/2B1/2

]
e
〉
.

From our assumptions and Theorem 10.2.8, we know that the spectrum of Mε :=
A−1/2B1/2 +CεI is bounded away from zero and infinity as ε↘ 0, which justifies
the Taylor expansion(

(Mε + εA−1)
−1

+ εB−1
)−1

=
(
M−1

ε − εM−1
ε A−1M−1

ε + εB−1 +O(ε2) I
)−1

= Mε + εA−1 − εMεB
−1Mε +O(ε2) I .

Hence,

Cε ≤
〈
e,
[
Mε + εA−1 − εMεB

−1Mε +O(ε2) I − A−1/2B1/2
]
e
〉

≤ Cε + ε
〈
e, [A−1 −MεB

−1Mε] e
〉

+O(ε2)

= Cε − ε
〈
e, [2CεA

−1/2B−1/2 + C2
εB
−1] e

〉
+O(ε2) .

This shows that limε↘0Cε = 0 (otherwise (Cε)ε>0 would have a strictly positive
cluster point which would contradict the above inequality for small enough ε > 0).

By combining this fact with convergence of the entropic Brenier potentials as
in the proof of Theorem 10.2.1, we deduce the result.

Next, we recover and extend a result of Valdimarsson [Val07], which was used
to derive new forms of the Brascamp–Lieb inequality.3

Theorem 10.2.14. Suppose that

• Ā, B̄, and G are positive definite matrices;

• Ā ⪯ G and B̄ commutes with G;

• P = exp(−Ṽ ) ∗ µ, where ∇2Ṽ ⪯ B̄−1G, ∗ denotes convolution, and µ is an
arbitrary probability measure on Rd;

• Q = exp(−W ) with ∇2W ⪰ B̄−1/2Ā−1B̄−1/2.

Then, the Brenier potential satisfies ∇2φ0 ⪯ G.

Remark 10.2.15. Valdimarsson’s result required that P = normal(0, B̄G−1) ∗ µ.

To prove this result, we check that convolution with any probability measure
only makes the density more log-smooth.

3This is a different Brascamp–Lieb inequality than the one in Lemma 10.2.7.
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Lemma 10.2.16. Let P̃ ∝ exp(−Ṽ ) be a probability measure, where Ṽ : Rd → R
is twice continuously differentiable. Let P := P̃ ∗ µ = exp(−V ) where µ is any
probability measure on Rd. Suppose that for some positive definite matrix A−1, we
have ∇2Ṽ ⪯ A−1. Then, ∇2V ⪯ A−1 as well.

Proof. An elementary computation shows that if we define the probability measure

νy(dx) :=
exp(−Ṽ (y − x))µ(dx)∫
exp(−Ṽ (y − x′))µ(dx′)

then

∇2V (y) = EX∼νy
[
∇2Ṽ (y −X)

]
− covX∼νy

(
∇Ṽ (y −X)

)
,

from which the result follows.

Proof of Theorem 10.2.14. Under Lemma 10.2.16 and the third assumption, it
holds that P ∝ exp(−V ) with ∇2V ⪯ B̄−1G. The other assumptions imply that
Q ∝ exp(−W ) with

∇2W ⪰ B̄−1/2Ā−1B̄−1/2 ⪰ B̄−1/2G−1B̄−1/2 = B̄−1G−1 .

By Theorem 10.2.13, it holds that ∇2ϕ0 ⪯ G.

Remark 10.2.17. It is natural to ask whether Theorem 10.2.13 can be obtained
by first applying Caffarelli’s contraction theorem to show that the optimal transport
map T̃0 between the measures (A−1/2)#P and (B−1/2)#Q is 1-Lipschitz, and then

considering the mapping T0(x) := B1/2T̃0(A
−1/2x). Although T0 is indeed a valid

transport mapping from P to Q, under our assumptions ∇T0 is not guaranteed to
be symmetric, so it does not make sense to ask that ∇T0 ⪯ A−1/2B1/2.

In Valdimarsson’s application to Brascamp–Lieb inequalities, it is crucial that
the transport map T0 is chosen so that ∇T0 is symmetric and positive definite.
Symmetry of ∇T0 implies that T0 is the gradient ∇ϕ0 of a function ϕ0 : Rd → R,
and positive definiteness implies that ϕ0 is convex. By Brenier’s theorem, the
unique gradient of a convex function that pushes forward P to Q is the optimal
transport map. Thus, it is crucial that we consider the optimal transport map
here; alternative maps such as the ones in [KM12; MS21] cannot be applied.

■ 10.2.6 Gaussian case

Suppose P = normal(0, A) and Q = normal(0, B) are Gaussians. Then, it is known
that the Hessian of the Brenier potential is given by [Gel90]

∇2φ0(x) = A−1/2 (A1/2BA1/2)
1/2
A−1/2 .
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If we have

A−1 ⪯ βI and B−1 ⪰ αI ≻ 0 ,

then Caffarelli’s contraction theorem (Theorem 10.2.1) implies

∥∇2ϕ0∥op ≤
√
β/α .

For ε > 0, the upper bound from Theorem 10.2.8 implies

∥∇2ϕε∥op ≤
1

2

(√
4β/α + ε2β2 − εβ

)
. (10.27)

On the other hand, from [Jan+20; MGM22], it is known that

∇2ϕε(x) = A−1/2
(
A1/2BA1/2 +

ε2

4
I
)1/2

A−1/2 − ε

2
A−1 .

In particular, if we take A = β−1I and B = α−1I, then (10.27) is an equality.
Hence, Theorem 10.2.8 is sharp for every ε > 0.





Part III

Optimization and sampling
without convexity
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Chapter 11

Dimension-free log-Sobolev
inequalities for mixtures

We now turn towards optimization and sampling without convexity assumptions.
Recall that in §3, §4, and §6, we already initiated a study of non-log-concave
sampling by assuming that the target distribution satisfies a functional inequality,
such as a log-Sobolev inequality. However, even for the canonical case of a Gaussian
mixture, sharp bounds on the log-Sobolev constant were unknown.

In this chapter, we prove that if (Px)x∈X is a family of probability measures
which satisfy the log-Sobolev inequality and whose pairwise chi-squared diver-
gences are uniformly bounded, and µ is any mixing distribution on X , then the
mixture

∫
Px dµ(x) satisfies a log-Sobolev inequality. In various settings of inter-

est, the resulting log-Sobolev constant is dimension-free. In particular, our result
implies a conjecture of Zimmermann and Bardet et al. that Gaussian convolutions
of measures with bounded support enjoy dimension-free log-Sobolev inequalities.

This chapter is based on [CCN21], joint with Hong-Bin Chen and Jonathan
Niles-Weed.

■ 11.1 Introduction

Functional inequalities, such as the Poincaré inequality and the log-Sobolev in-
equality, have played a key role in the study of subjects such as concentration
of measure and quantitative convergence analysis of Markov processes [BGL14;
Han16] (in particular for spin systems [Mar99; Wei04]), as well as the geometry of
metric measure spaces [Led00]. It is therefore of considerable interest to identify
situations in which such inequalities hold, and furthermore to identify simple
criteria which imply their validity.

We begin with a few motivating examples. Suppose that µ is a probability
measure on Rd whose support is contained in the Euclidean ball of radius R,
and let γ0,t denote the centered Gaussian distribution with variance tId. What

337
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functional inequalities can we expect the convolution measure µ ∗ γ0,t to satisfy?
This question, motivated by random matrix theory, was initiated in [Zim13; Zim16],
and further investigated in [WW16; Bar+18]. These works prove that µ ∗ γ0,t
satisfies both a Poincaré inequality and a log-Sobolev inequality; moreover, the
Poincaré inequality holds with a constant depending only on R and t, and not on
the dimension d. Furthermore, [Bar+18] conjectures that the same holds true for
the log-Sobolev constant, and they verify the conjecture in special cases.

Another line of work [CM10; Sch19] studies the following question: let P0

and P1 be two probability measures on Rd, and consider the mixture distribution
(1−p)P0+pP1 with mixing weight p ∈ (0, 1). If both P0 and P1 satisfy log-Sobolev
inequalities, when does the mixture satisfy a log-Sobolev inequality too?

Although the two preceding examples may at first glance appear to be different
in nature, we can in fact place them in the same framework, as follows. Let
(Px)x∈X be a family of probability measures satisfying the log-Sobolev inequality,
and let µ be a mixture distribution on X ; here, X may be finite or infinite.
When does the mixture

∫
Px dµ(x) satisfy a log-Sobolev inequality?

• For the Gaussian convolution example, we take Px to be the Gaussian distri-
bution with mean x and variance tId.

• For the mixture example, we take µ to be the Bernoulli distribution with
parameter p.

In this chapter, we identify general conditions which ensure that a mixture
distribution satisfies a log-Sobolev inequality. Our main contribution can be
summarized as follows.

Theorem 11.1.1 (Informal). Let (Px)x∈X be a family of probability measures
satisfying the log-Sobolev inequality with a uniform constant C1. Assume that the
pairwise chi-squared divergences χ2(Px ∥ Px′) are uniformly bounded by C2. Then,
the mixture

∫
Px dµ(x) satisfies a log-Sobolev inequality with a constant depending

only on C1 and C2.

In fact, in our main result, we will relax the assumption that the chi-squared
divergences are uniformly bounded into a moment condition; see Theorem 11.3.1.
In turn, this will allow us to prove log-Sobolev inequalities for Gaussian convo-
lutions of measures with sub-Gaussian tails, provided that the variance of the
Gaussians is sufficiently large.

Crucially, the log-Sobolev constant has no dependence on the mixing dis-
tribution µ. As we show in §11.4, our general theorem yields dimension-free
log-Sobolev inequalities in various settings; in particular, our result implies the
conjecture of [Zim13; Zim16; Bar+18].
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The rest of the chapter is organized as follows. In §11.2, we describe the setting
of our general investigation and recall the definitions of a Poincaré inequality and
a log-Sobolev inequality. We then state and prove our main theorem in §11.3.

In §11.4, we illustrate our general result in a number of applications. §11.4.1
is devoted to the proof of the aforementioned conjecture, and §11.4.2 and §11.4.3
generalize the result to Gaussian convolutions of measures with sub-Gaussian tails
and other diffusion semigroups. In §11.4.4, we compare our results to prior work
on functional inequalities for mixtures of two distributions. Then, in §11.4.5, we
discuss analogues of our result on the Boolean hypercube.

■ 11.2 Background and notation

To state our results in a form that applies to both discrete and continuous mixture
distributions, we adopt the general framework of [BGL14] and let Γ be a suitable
notion of a gradient operator. More precisely, let Y be a Polish space equipped
with the Borel σ-algebra BY , and let A be a subspace of bounded measurable
functions on E containing all constant functions. Let Γ : A × A → A be a
symmetric bilinear operator satisfying Γ(f, f) ≥ 0 everywhere on Y for every
f ∈ A. In addition, we require Γ to satisfy

Γ(1, 1) = 0 , (11.1)

where 1 is understood as a constant function. From bilinearity and positivity of
Γ follows the Cauchy–Schwarz inequality

Γ(f, g)2 ≤ Γ(f, f) Γ(g, g) for all f, g ∈ A ,

which in turn shows that (11.1) is equivalent to the condition Γ(1, f) = 0 for all
f ∈ A. For brevity, we write Γ(f) = Γ(f, f).

Important examples include the squared gradient Γ(f) = ∥∇f∥2 on Rd, and
Γ(f) =

∑d
i=1 (Dif)2 on a product space X = Xd, where Dif is given by

Dif(x) := sup
x′i∈X

f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xd)

− inf
x′i∈X

f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xd) .

For any probability measure ρ on (Y ,BY ), we write

Eρ[f ] :=

∫
Y

f dρ
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for a ρ-integrable function f . In addition, we define

varρ(f) := Eρ[(f − Eρ f)2] ,

entρ(g) := Eρ(g log g)− Eρ g logEρ g ,

for suitable measurable functions f and g, with g non-negative. When there is no
confusion, we often omit the brackets and parentheses in these expressions. If X
is a random variable with law µ, we also write E f(X) = Eµ f and similarly for
var and ent.

We say ρ satisfies a Poincaré inequality (PI) if there exists C ≥ 0 such that

varρ(f) ≤ C Eρ Γ(f) , ∀f ∈ A . (PI)

The optimal constant in this inequality is denoted CP(ρ). In addition, ρ is said
to satisfy a logarithmic Sobolev inequality (LSI) if there exists C ≥ 0 such that

entρ(f
2) ≤ 2C Eρ Γ(f) , ∀f ∈ A . (LSI)

Similarly, we let CLS(ρ) denote the optimal constant in this inequality.
For probability measures ρ1 and ρ2 on (Y ,BY ), the Kullback–Leibler (KL)

divergence and the chi-squared divergence are defined as

KL(ρ1 ∥ ρ2) := entρ2

(dρ1
dρ2

)
=

∫
Y

dρ1
dρ2

ln
dρ1
dρ2

dρ2 =

∫
Y

(
ln

dρ1
dρ2

)
dρ1 ,

χ2(ρ1 ∥ ρ2) := varρ2

(dρ1
dρ2

)
=

∫
Y

(dρ1
dρ2
− 1

)2
dρ2 =

∫
Y

dρ1
dρ2

dρ1 − 1 .

The expressions above are understood to be +∞ if ρ1 is not absolutely continuous
w.r.t. ρ2.

■ 11.3 Main theorem

In addition to (Y ,BY ), let X be a polish space with Borel σ-algebra BX . We
consider a Markov kernel P : X × BY → [0, 1] satisfying: (1) for each x ∈ X ,
P (x, ·) is a probability measure on (Y ,BY ), and (2) for each B ∈ BY , P (·, B) is
a BX -measurable function on X . We also write Px := P (x, ·) for convenience.
This kernel naturally induces a transition map which maps bounded measurable
functions on X to bounded measurable functions on Y :

Pf(x) :=

∫
X

f dPx , ∀x ∈X .
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For a probability measure µ on (X ,BX ), we denote by µP the probability measure
on (Y ,BY ) defined by the duality∫

Y

f dµP =

∫
X

Pf dµ .

Lastly, we introduce the following quantities.

KP(P ;µ) := ess supµ-a.s. x∈X CP(Px) , (11.2)

KLS(P ;µ) := ess supµ-a.s. x∈X CLS(Px) , (11.3)

Kp, χ2(P ;µ) := E
[(

1 + χ2(PX ∥ PX′)
)p] 1

p , (11.4)

for p ≥ 1, where X and X ′ are i.i.d. with law µ. Since (LSI) implies (PI) with
the same constant, we have KP(P ;µ) ≤ KLS(P ;µ). Throughout, for p ≥ 1, we
set p∗ = p

p−1 to be the dual exponent.

Theorem 11.3.1.

1. If KP(P ;µ) and Kp, χ2(P ;µ) are finite for some p > 1, then µP satisfies (PI)
with constant

CP(µP ) ≤ KP {p∗ + Kp∗

p, χ2} ,
where KP = KP(P ;µ) and Kp, χ2 = Kp, χ2(P ;µ).

2. If KLS(P ;µ) and Kp, χ2(P ;µ) are finite for some p > 1, then µP satisfies (LSI)
with constant

CLS(µP ) ≤ 3KLS (p∗ +Kp∗

p, χ2) (1 + logKp∗

p, χ2) ,

where KLS = KLS(P ;µ) and Kp, χ2 = Kp, χ2(P ;µ).

Remark 11.3.2. Our theorem is stated with a simpler constant for readability. A
slightly sharper constant can be read off from the proof. Our results clearly extend
to the case p =∞ (p∗ = 1) with

K∞,χ2(P ;µ) := 1 + ess supµ-a.s. x,x′∈X χ2(Px ∥ Px′) .

For both steps, our starting point is to apply classical decompositions for the
variance and the entropy, which have been used to prove functional inequalities
for spin systems (see, e.g., the appendix of [Wei04]). If X is a random variable
drawn according to µ, then

varµP f = E varPX f + varEPX f , (11.5)
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entµP f
2 = E entPX f

2 + entEPX f
2 . (11.6)

In both of these decompositions, the first term is easy to handle because we can
apply the PI, resp. LSI, for the family (Px)x∈X inside the expectation. The crux
of the proof is therefore the second terms.

Proof of Theorem 11.3.1 (1). In the case p = ∞ (i.e., the pairwise chi-squared
divergences are uniformly bounded), the Poincaré inequality can be proven via a
straightforward generalization of [Bar+18]. However, the case 1 < p <∞ requires
non-trivial modifications, and we present a complete proof.

Let X be a random variable with law µ. As described above, we use the
decomposition (11.5), and we focus on the problematic second term

varEPX f = E[|EPX f − EµP f |2] .

The finiteness of Kp,χ2(P ;µ) implies that Px and Px′ are mutually absolutely
continuous for µ-a.e. x, x′. In particular, it implies that the Radon–Nikodym
derivatives dµP

dPX
and dPX

dµP
are well-defined almost surely. We can therefore write

EPX f − EµP f =

∫
f
(

1− dµP

dPX

)
dPX

= −
∫
f
(

1− dPX
dµP

)
dµP .

For brevity, we write χ2
ρ, ρ′ := χ2(ρ ∥ ρ′). Applying the Cauchy–Schwarz inequality

to the above display, we have

varEPX f ≤ Emin{(varµP f)χ2
PX , µP

, (varPX f)χ2
µP, PX

}
≤ E

[
(varµP f)1/p (χ2

PX , µP
)
1/p

(varPX f)1/p
∗

(χ2
µP, PX

)
1/p∗]

.

Then, Young’s inequality implies that for all λ > 0,

varEPX f ≤
λp

p
(varµP f)E

[
(χ2

PX , µP
) (χ2

µP, PX
)
p−1]

+
λ−p

∗

p∗
E varPX f .

Setting

λ = E
[
(χ2

PX , µP
) (χ2

µP, PX
)
p−1]− 1

p

and substituting the above into (11.5) yields

varµP f ≤
{
p∗ + E

[
(χ2

PX , µP
) (χ2

µP, PX
)
p−1] 1

p−1
}
E varPX f .
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The joint convexity of the chi-squared divergence follows from, e.g., its dual
characterization as a supremum of linear functionals (see, e.g., [AGS08, Lemma
9.4.4]), which implies

max{Eχ2
PX , µP

,Eχ2
µP, PX

} ≤ Eχ2
PX , PX′

,

where X ′ is an i.i.d. copy of X. Hölder’s inequality then implies

E
[
(χ2

PX , µP
) (χ2

µP, PX
)
p−1] ≤ E

[
(χ2

PX , PX′
)
p]
.

The desired result follows from the definitions ofKP(P ;µ) in (11.3) andKp, χ2(P ;µ)
in (11.4).

To prove the second assertion in Theorem 11.3.1, we derive a so-called defective
LSI for µP , which can be tightened to yield a full LSI. In order to control the
second term in (11.6), we need a lemma.

Lemma 11.3.3. Let π and ρ be two probability measures. Then, the following
holds for every non-negative function f satisfying Eπ(f) <∞:

Eπ f log
Eπ f
Eρ f

≤ entπ(f) + Eπ(f) log
(
1 + χ2(π ∥ ρ)

)
,

where by convention both sides vanish if Eπ f = 0.

Proof. Recall the Donsker–Varadhan theorem1: for any probability measures µ
and ν, it holds

KL(µ ∥ ν) = sup
g
{Eµ g − logEν exp(g)} , (11.7)

where the supremum is taken over all g for which the expectations on the right
side make sense.

We may assume that π is absolutely continuous with respect to ρ and that
Eπ(f log f) <∞; otherwise, the expression on the right side is infinite. Since the
expression is vacuous if Eπ f = 0, we may assume that 0 < Eπ f <∞, and, since
each term in the lemma statement is homogeneous in f , we may assume without
loss of generality that Eπ f = 1.

Define a new probability measure πf by
dπf
dπ

= f . Then,

Eπ
[
f log

f

Eρ f

]
= Eπf log

f

Eρ f
≤ KL(πf ∥ ρ) + logEρ exp log

f

Eρ f
= KL(πf ∥ ρ) ,

1See [RS15, Theorem 5.4] or [DZ10, Lemma 6.2.13].
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where we have used (11.7). Since

KL(πf ∥ ρ) = Eπ
[
f log

(
f

dπ

dρ

)]
,

subtracting Eπ(f log f) from both sides of the inequality above and recalling that
we have assumed that Eπ f = 1 yields

Eπ f log
Eπ f
Eρ f

≤ Eπ
[
f log

dπ

dρ

]
.

Continuing, we have again by (11.7) that

Eπ
[
f log

dπ

dρ

]
= Eπf log

dπ

dρ
≤ KL(πf ∥ π) + logEπ exp log

dπ

dρ

= Eπ(f log f) + log
(
1 + χ2(π ∥ ρ)

)
,

as claimed.

Proof of Theorem 11.3.1 (2). Assume that p < ∞. If not, we may apply the
argument below with p finite and send p→∞ to obtain the desired bound.

Let X,X ′ be i.i.d. copies with law µ. The second term entEPX (f 2) in (11.6)
can be written as

entEPX (f 2) = E
[
EPX (f 2) log

EPX (f 2)

EµP (f 2)

]
.

Setting π = PX and ρ = µP in Lemma 11.3.3, we obtain

entEPX (f 2) ≤ E entPX (f 2) + E
[
EPX (f 2) log

(
1 + χ2(PX ∥ PX′)

)]
(11.8)

where we also used the convexity of the chi-squared divergence in the second
inequality. The definition of Kp, χ2(P ;µ) in (11.4) ensures that

E exp
{
p log

(
1 + χ2(PX ∥ PX′)

)
− p logKp, χ2(P ;µ)

}
= 1 .

Using the variational principle for the entropy [Han16, Lemma 3.15]:

entY = sup{E(Y Z) | Z is a random variable with E expZ = 1} ,

we obtain

E
[
EPX (f 2) log

(
1 + χ2(PX ∥ PX′)

)]
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≤ 1

p
entEPX (f 2) + logKp, χ2(P ;µ)EµP (f 2) .

Substituting this into (11.8) yields

entEPX (f 2) ≤ p∗
{
E entPX (f 2) + logKp, χ2(P ;µ)EµP (f 2)

}
.

We insert this into (11.6) to obtain:

entµP (f 2) ≤ (p∗ + 1)E entPX (f 2) + p∗ logKp, χ2(P ;µ)EµP (f 2)

≤ 4p∗KLS(P ;µ)EµP Γ(f) + p∗ logKp, χ2(P ;µ)EµP (f 2) .

This inequality is known as a defective LSI (see [BGL14, §5]). It is standard
that a defective LSI together with a Poincaré inequality implies a full LSI; this is
known as tightening the LSI, and we refer to §11.5 for details. Together with the
PI in the first assertion of Theorem 11.3.1, this completes the proof.

■ 11.4 Applications

■ 11.4.1 Gaussian convolutions

Set Y = Rd, A = C∞b (Rd) (infinitely differentiable functions with bounded
derivatives), and Γ(f) = ∥∇f∥2. Let µ be a probability measure supported
on B(0, R) := {x ∈ Rd : ∥x∥ ≤ R}, and for x ∈ Rd and t > 0, let

γx,t(y) =
1

(2πt)
d
2

exp
(
−∥y − x∥

2

2t

)
be the Gaussian with mean x and variance tId. If we take Px = γx,t, then the
measure µP is the convolution µ ∗ γ0,t.

Functional inequalities for the measure µ ∗ γ0,t were studied in [Zim13; Zim16],
and further investigated in [WW16; Bar+18]. In particular, [Bar+18] proves
that CP(µ ∗ γ0,t) is bounded above by a function of R and t, and is therefore
dimension-free.

For the log-Sobolev constant, these works also show that CLS(µ ∗ γ0,t) is finite,
but the precise dependence of this constant (in particular on the dimension) was
previously unknown. Bardet et al. [Bar+18] verify in several cases that CLS(µ∗γ0,t)
is dimension-free, and they conjecture that this is true in general. We now show
that their conjecture is an immediate consequence of Theorem 11.3.1.

It is well-known that γx,t satisfies (LSI) with CLS(γx,t) = t. Also, for x, x′ ∈ Rd

and t ≥ 0, a straightforward computation shows that

χ2(γx,t ∥ γx′,t) = exp
(∥x− x′∥2

t

)
− 1 .
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Hence, K∞, χ2(P ;µ) ≤ exp(4R2/t) and we deduce the following result.

Corollary 11.4.1. Let µ be a probability measure on Rd supported on B(0, R) for
some R ≥ 0. Then, for each t ≥ 0, µ ∗ γ0,t satisfies (LSI) with

CLS(µ ∗ γ0,t) ≤ 6 (4R2 + t) exp
(4R2

t

)
.

Bardet et al. also prove that µ ∗ γ0,t satisfies a T2 transport-entropy inequality
with a dimension-dependent constant; see [Vil03, §9.3] for the relevant back-
ground. Since a log-Sobolev inequality implies a T2 inequality with the same
constant [OV00], we immediately obtain the following improvement.

Corollary 11.4.2. Let µ be a probability measure on Rd supported on B(0, R)
for some R ≥ 0. Then, for each t ≥ 0, µ ∗ γ0,t satisfies a T2 transport-entropy
inequality with constant

CT2(µ ∗ γ0,t) ≤ 6 (4R2 + t) exp
(4R2

t

)
.

Remark 11.4.3. These results show that evolving a compactly supported measure
for a short time under the heat flow yields dimension-free functional inequalities,
which can be interpreted as a strong regularizing effect of the heat flow. This is in
line with other results on the smoothing behavior of the heat flow, e.g., [EL18].

Remark 11.4.4 (Sharpness of the result). As t→∞, Corollary 11.4.1 implies

lim sup
t→∞

CLS(µ ∗ γ0,t)
t

≤ 6 .

It is easy to improve this to 1, which is sharp. Indeed, from the subadditivity of
the log-Sobolev constant under convolution, for t ≥ 4R2,

CLS(µ ∗ γ0,t) ≤ CLS(µ ∗ γ0,4R2) + CLS(γ0,t−4R2) ≤ t+ 130R2 .

On the other hand, as t ↘ 0, the exponential dependence on R2/t cannot be
avoided, as a simple example shows. Indeed, consider the measure µ = 1

2
δ−R+ 1

2
δR

in one dimension and 0 < t≪ R. Define the function f : R→ [−1, 1] via

f(x) :=


−1 for x < −R/2,
+1 for x > +R/2,

linear interpolation in between.



Sec. 11.4. Applications 347

Let g denote a standard Gaussian variable. Then, Eµ∗γ0,t f = 0, so

varµ∗γ0,t f = Eµ∗γ0,t(f 2)

≥ 1

2
P
{
−R +

√
t g ≤ −R

2

}
+

1

2
P
{
R +
√
t g ≥ R

2

}
= P

{
g ≤ R

2
√
t

}
≥ 1

2
.

On the other hand, |f ′| = 2/R on [−R/2, R/2], so

Eµ∗γ0,t(|f ′|2) ≤
4

R2
P
{
g ≥ R

2
√
t

}
≤ 2

R2
exp

(
−R

2

8t

)
,

by standard Gaussian tail bounds. This yields the following lower bound on the
Poincaré constant of µ ∗ γ0,t:

CP(µ ∗ γ0,t) ≥
1

4
R2 exp

R2

8t
.

Hence, the exponential dependence on R2/t is already present in the Poincaré
constant. However, it is worth noting that the exp(4R2/t) dependence in the log-
Sobolev constant enters only via the Poincaré constant through the method of
tighening a defective log-Sobolev inequality. In particular, if µ is known a priori to
satisfy a Poincaré inequality with constant CP(µ), then µ∗γ0,t satisfies a Poincaré
inequality with constant CP(µ ∗ γ0,t) ≤ CP(µ) + t, and the log-Sobolev inequality
no longer suffers an explicit exponential dependence on R2/t.

■ 11.4.2 Extension to sub-Gaussian tails

Consider the setting in the previous section. However, we now relax the assumption
that µ has bounded support, and instead assume that µ has sub-Gaussian tails.
More specifically, assume that there exist constants σ2, CSG such that∫∫

exp
(∥x− x′∥2

σ2

)
dµ(x) dµ(x′) ≤ CSG . (11.9)

Since a log-Sobolev inequality implies sub-Gaussian tails [BGL14, §5.4], the ex-
istence of such constants σ2, CSG are certainly necessary in order for µ ∗ γ0,t to
satisfy (LSI). We will show that if t is greater than σ2, then we indeed obtain a
log-Sobolev constant for µ ∗ γ0,t, and we will explicitly estimate the constant.

The main point is to estimate, for X, X ′ i.i.d. from µ,

E
[
{1 + χ2(γX,t ∥ γX′,t)}p

]
=

∫∫
exp

(p ∥x− x′∥2
t

)
dµ(x) dµ(x′) ≤ CSG ,
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provided that t/p ≥ σ2; then, Kp, χ2(P ;µ)p
∗ ≤ C

p∗/p
SG . We therefore take p = t/σ2

and we obtain as an immediate consequence of Theorem 11.3.1 the following.

Theorem 11.4.5. Suppose µ is a probability measure on Rd satisfying (11.9) and
that t > σ2. Then, µ ∗ γ0,t satisfies both (PI) and (LSI), with

CP(µ ∗ γ0,t) ≤ t
{ t

t− σ2
+ C

σ2/(t−σ2)
SG

}
,

and

CLS(µ ∗ γ0,t) ≤ 3t
{ t

t− σ2
+ C

σ2/(t−σ2)
SG

}{
1 +

σ2

t− σ2
logCSG

}
.

Remark 11.4.6. The first part of Theorem 11.4.5 was observed without proof
in [Cou20].

Remark 11.4.7. The result of Theorem 11.4.5 recovers the result of Corol-
lary 11.4.1, albeit with worse constants. Indeed, if µ has support contained in
the ball B(0, R) and t > 0, then we can take σ2 = t/2 and

CSG =

∫∫
exp

(2 ∥x− x′∥2
t

)
dµ(x) dµ(x′) ≤ exp

8R2

t
.

Then, Theorem 11.4.5 yields a log-Sobolev inequality for µ ∗ γ0,t with a similar
dependence as Corollary 11.4.1.

Remark 11.4.8. The sub-Gaussian tail condition (11.9) is equivalent to µ sat-
isfying a T1 transportation-cost inequality [BV05]. Hence, our result shows that
sufficient Gaussian smoothing upgrades a T1 inequality to a log-Sobolev inequality.

Note that the condition t > σ2 is similar to the one in [WW16, Theorem 1.2].

Remark 11.4.9. As in Remark 11.4.4, the Poincaré and log-Sobolev constants
here can easily be improved when t→∞ to improve the constant factor in front
of t to 1.

■ 11.4.3 General diffusions

We now consider a different extension of the setting in §11.4.1. Let (P t)t≥0
be a Markov semigroup on (Y ,BY ) with invariant measure π and infinitesimal
generator L . Let A be an algebra of bounded measurable functions such that A
is dense in L2(Y , π); A is contained in the domain of L ; and the carré du champ
operator Γ : A×A → A given by

Γ(f, g) =
1

2

(
L (fg)− fL g − gL f

)
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is well defined for f, g ∈ A. We assume these objects satisfy the conditions
specified in [BGL14, §1.14] so that results therein are applicable. For κ ∈ R and
t ≥ 0, we set

Cloc(κ, t) :=

{
(1− exp(−2κt))/κ , κ ̸= 0 ,

2t , κ = 0 .

We recall the following result ([BGL14, Theorem 5.5.2]).

Lemma 11.4.10. For every κ ∈ R, the following statements are equivalent.

1. The curvature-dimension condition CD(κ,∞) holds.

2. For all x ∈X and t ≥ 0,

CLS(P t
x) ≤ Cloc(κ, t) .

The following result is then a special case of Theorem 11.3.1.

Corollary 11.4.11. Suppose that the curvature-dimension condition CD(κ,∞)
holds for some κ ∈ R. Let µ be a probability measure on (Y ,BY ). Then, for every
t ≥ 0, it holds:

CLS(µP t) ≤ 6Cloc(κ, t)K∞, χ2(P t;µ) {1 + logK∞, χ2(P t;µ)} .

Remark 11.4.12. If Y is a complete connected Riemannian manifold and the
diffusion has generator L = ∆−⟨∇V,∇·⟩ which satisfies the curvature-dimension
condition, then under mild conditions the constant K∞, χ2(P t;µ) is finite for
any measure µ with bounded support, as a consequence of heat kernel estimates
in [GW01].

■ 11.4.4 Mixtures of two distributions

In this section, we consider the case when X = {0, 1} is the two-point space.
Then, the mixing distribution µ is a Bernoulli distribution with a mixing weight
p ∈ [0, 1], and the measure µP is the convex combination

µP = (1− p)P0 + pP1 . (11.10)

Functional inequalities for such mixtures were studied in [CM10; Sch19]. One
of the interesting findings of these papers is that as the mixing weight p tends
to {0, 1}, the Poincaré constant can remain bounded whereas the log-Sobolev
constant diverges logarithmically. Specifically, [Sch19] shows that if P0 and P1

satisfy (LSI), p ∈ (0, 1), and either χ2(P0 ∥ P1) or χ2(P1 ∥ P0) is finite, then µP
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satisfies (LSI). Note that this last assumption is weaker than ours, which requires
both χ2(P0 ∥ P1) and χ2(P1 ∥ P0) to be finite. However, even under our stronger
assumption, the bound of [Sch19] on the log-Sobolev constant diverges in general
as p→ {0, 1}.

We now present our results for this setting for comparison.

Corollary 11.4.13. For all p ∈ [0, 1], the mixture (11.10) satisfies (LSI) with

CLS(µP ) ≤ 6 max{CLS(P0), CLS(P1)}Kχ2 {1 + log(1 +Kχ2)} ,
where Kχ2 := max{χ2(P0 ∥ P1), χ

2(P1 ∥ P0)}.
In particular, our assumption Kχ2 < ∞ guarantees that the mixture satis-

fies (LSI) with a constant independent of p, and hence does not exhibit a logarith-
mic divergence as p→ {0, 1}. We refer to the aforementioned papers for further
discussion and examples of mixtures.

■ 11.4.5 Analogues on the hypercube

We now present another interesting illustration of our results. Here, we take
X = {0, 1}n to be the Boolean hypercube, and we take Y := Yn to be a product
space. We also require the Γ operator on Y to be consistent with the product
structure; for simplicity of presentation, we omit this discussion and instead think
of Γ as being either the squared gradient operator Γ(f) = ∥∇f∥2 on Euclidean
space, or the discrete gradient Γ(f) = (Df)2 as described in §11.2. Let π0, π1 be
two probability measures on Y with

KLS(π) := max{CLS(π0), CLS(π1)} <∞ ,

Kχ2(π) := max{χ2(π0 ∥ π1), χ2(π1 ∥ π0)} <∞ .

Given x ∈ {0, 1}n, define the measure

Px =
n⊗
i=1

πxi . (11.11)

From the tensorization of the chi-squared divergence,

χ2(Px ∥ Px′) =
n∏
i=1

{1 + χ2(πxi ∥ πx′i)} − 1 ≤ {1 +Kχ2(π)}d(x,x′) − 1 ,

where d(·, ·) denotes the Hamming metric on {0, 1}n. Moreover, each Px satis-
fies (LSI) with a constant at most KLS(π), due to the classical tensorization of
log-Sobolev inequalities. As a consequence, we deduce the following result from
Theorem 11.3.1.
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Corollary 11.4.14. Suppose µ is a probability measure on {0, 1}n which is sup-
ported on a set of diameter at most k in the Hamming metric. Then, the mixture
distribution µP :=

∑
x∈{0,1}n µ(x)Px, with Px as in (11.11), satisfies (LSI) with

CLS(µP ) ≤ 6kKLS(π) {1 +Kχ2(π)}k
{

1 + log
(
1 +Kχ2(π)

)}
.

Importantly, the log-Sobolev inequality is dimension-free in the sense that it
depends only on properties of π0 and π1 as well as the diameter k of the support
of µ. An example of such a measure µ is any measure which is supported on
k/2-sparse strings.

We now specialize this result to obtain an analogue of the result for Gaussian
convolutions in §11.4.1 to the setting of the Boolean hypercube. Let 0 < p < 1/2,
and we take π0 and π1 to be the Bernoulli distributions with parameters p and 1−p
respectively. Also, we take the Γ operator to be the square of discrete gradient.
The optimal log-Sobolev inequality for these distributions is given in [Han16,
Problem 8.3], and a quick computation yields

KLS(π) =
p (1− p)
2 (1− 2p)

log
1− p
p

, Kχ2(π) =
(1− p)2

p
+

p2

1− p − 1 .

Note that the mixture µP can be interpreted as the result of evolving the initial
measure µ for a short time under the natural semigroup on the hypercube. We
obtain the following result.

Corollary 11.4.15. Suppose µ is a probability measure on {0, 1}n which is sup-
ported on a set of diameter at most k in the Hamming metric. Then, the mixture
distribution µP with 0 < p < 1/2 satisfies (LSI) with

CLS(µP ) ≤ 6k

pk−1 (1− 2p)
log2 1

p
.

■ 11.5 Tightening of the LSI

The following proposition is a standard result, see [BGL14, Proposition 5.1.3].
It is straightforward to see that bilinearity of Γ and our assumption (11.1) are
sufficient for the proof to go through.

Proposition 11.5.1.

1. If ρ satisfies (LSI), then ρ satisfies (PI) with CP(ρ) ≤ CLS(ρ).
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2. If ρ satisfies the following defective LSI

entρ(f
2) ≤ 2C Eρ Γ(f) +DEρ(f 2) ∀f ∈ A ,

together with (PI), then ρ satisfies (LSI) with

CLS(ρ) ≤ C + CP(ρ)
(D

2
+ 1

)
.



Chapter 12

Lower bounds for finding stationary
points in optimization

In general, finding the global minimizer of a non-convex function is intractable,
and the best we can hope for algorithmically is to locate a stationary point.

In this chapter, we characterize the query complexity of finding stationary
points of one-dimensional non-convex but smooth functions. We consider four
settings, based on whether the algorithms under consideration are deterministic
or randomized, and whether the oracle outputs 1st-order or both 0th- and 1st-order
information. Our results show that algorithms for this task provably benefit by
incorporating either randomness or 0th-order information. Our results also show
that, for every dimension d ≥ 1, gradient descent is optimal among deterministic
algorithms using 1st-order queries only.

This chapter is based on [CBS23], joint with Sébastien Bubeck and Adil Salim.

■ 12.1 Introduction

We consider optimizing a non-convex but smooth function f : Rd → R, a task
which underlies the spectacular successes of modern machine learning. Despite
the fundamental nature of this question, there are still important aspects which
remain poorly understood.

To set the stage for our investigation, let f : Rd → R be a β-smooth function
with bounded objective gap: f(0) − inf f ≤ ∆. Since global minimization of f
is, in general, computationally intractable [c.f. NY83], we focus on the task of
outputting an ε-stationary point, that is, a point x⋆ ∈ Rd such that ∥∇f(x⋆)∥ < ε.
By a standard rescaling argument (see Lemma 12.2.1), it suffices to consider the
case β = ∆ = 1. Then, it is well-known [see, e.g., Nes18], that the standard
gradient descent (GD) algorithm solves this task in O(1/ε2) queries to an oracle
for the gradient ∇f . Conversely, [Car+20] proved that if the dimension d is
sufficiently large, then any randomized algorithm for this task must use at least

353
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Ω(1/ε2) queries to a local oracle for f , thereby establishing the optimality of GD
in high dimension.

However, the low-dimensional complexity of computing stationary points re-
mains open. Indeed, the main limitation of [Car+20] is that their lower bound
constructions require the ambient dimension to be large: more precisely, they
require d ≥ Ω(1/ε2) for deterministic algorithms, and d ≥ Ω̃(1/ε4) for randomized
algorithms. The large dimensionality arises because they adapt to the non-convex
smooth setting a “chain-like” lower bound construction for optimization of a
convex non-smooth function [Nes18]. The chain-like construction forces certain
natural classes of iterative algorithms to explore only one new dimension per
iteration, and hence the dimension of the “hard” function in the construction is
at least as large as the iteration complexity.

In fact, the non-convex and smooth setting shares interesting parallels with
the convex and non-smooth setting, despite their apparent differences (in the
former setting, we seek an ε-stationary point, whereas in the latter setting, we
seek an ε-minimizer). Namely, in both settings the optimal oracle complexity is
Θ(1/ε2) in high dimension, and the optimal algorithm is (sub)gradient descent
(as opposed to the convex smooth setting, for which accelerated gradient methods
outperform GD). However, for the convex non-smooth setting, we know that
the large dimensionality d ≥ Ω(1/ε2) of the lower bound construction is almost
necessary, because of the existence of cutting-plane methods [see, e.g., Bub15;
Nes18] which achieve a better complexity of O(d log(1/ε)) in dimension d ≤
Õ(1/ε2). This raises the question of whether or not there exist analogues of
cutting-plane methods for non-convex optimization.

A negative answer to this question would substantially improve our understand-
ing of non-convex optimization, as it would point towards fundamental algorithmic
obstructions. As such, the low-dimensional complexity of finding stationary points
for non-convex optimization was investigated in a series of works [Vav93; Hin18;
BM20]. These results show the existence of algorithms which improve upon GD
in dimension d ≤ O(log(1/ε)). This suggests that GD is actually optimal for
all d ≥ Ω(log(1/ε)). To date, there has been little progress on this tantalizing
conjecture because the existing low-dimensional lower bounds are delicate, relying
on the theory of unpredictable random walks [Vav93; BPP98; BM20].

Our contributions. In this chapter, we study the task of finding an ε-stationary
point of a smooth and univariate function f : R → R. Our results, which
are summarized as Table 12.1, provide a complete characterization of the oracle
complexity of this task in four settings, based on whether or not the algorithm is
allowed to use external randomness and whether or not the oracle outputs zeroth-
order information. In particular, our lower bounds, which hold in dimension one,
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Alg. Class Oracle Complexity Lower Bound Upper Bound

Deterministic 1st Θ(1/ε2) Theorem 12.2.4 GD (well-known)
Randomized 1st Θ(1/ε) Theorem 12.2.2 Theorem 12.2.3
Deterministic 0th + 1st Θ(log(1/ε)) Theorem 12.2.5 Theorem 12.2.6
Randomized 0th + 1st Θ(log(1/ε)) Theorem 12.2.5 Theorem 12.2.6

Table 12.1: Summary of the results of this chapter.

also hold in every dimension d ≥ 1. In spite of the simplicity of the setting, we
can draw a number of interesting conclusions from the results.

• Optimality of GD for any dimension d ≥ 1. Our results imply that,
among algorithms which are deterministic and only use first-order queries,
GD is optimal in every dimension d ≥ 1. This was previously known only for
d ≥ Ω(1/ε2) [Car+20].

• Separations between algorithm classes and oracles. Our results exhibit
a natural setting in which both randomization and zeroth-order queries prov-
ably improve the query complexity of optimization. It shows, in particular,
that at least one of these additional ingredients is necessary to improve upon
the basic GD algorithm.

• Finding stationary points for unconstrained optimization. The meth-
ods of [Vav93; BM20] for improving upon the complexity of GD in low
dimension are applicable to the constrained case in which the domain of f is
the cube [0, 1]d, and it is not obvious that they can be applied to unbounded
domains. We address this question by characterizing the oracle complexity
for the unconstrained case.

Related works. Usually, optimization lower bounds are established for specific
classes of algorithms, such as algorithms for which each iterate lies in the span
of the previous iterates and gradients [Nes18]. As noted in [WS17], lower bounds
against arbitrary randomized algorithms for convex optimization are trickier and
are often loose with regards to the dimension in which the construction is embed-
ded. The complexity of finding stationary points is further studied in [Car+21].

Conventions and notation. A function f : Rd → R is β-smooth if it is continuously
differentiable and its gradient ∇f is β-Lipschitz. If d = 1, we shall write f ′ instead
of ∇f . We use the standard asymptotic notation Ω(·), O(·), and Θ(·).
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■ 12.2 Results

In this section, we give detailed statements of our results as well as proof sketches.
The full proofs are deferred to §12.3. We also record the following lemma, which
allows us to reduce to the case of β = ∆ = 1.

Lemma 12.2.1. Let C∗(ε; β,∆, d,O) ≥ 0 denote the complexity of finding an
ε-stationary point over the class of β-smooth functions f : Rd → R with f(0) −
inf f ≤ ∆ using an oracle O, where given x ∈ Rd the oracle O returns either ∇f(x)
(first-order information) or (f(x),∇f(x)) (zeroth- and first-order information).
Here, ∗ ∈ {det, rand} is a subscript denoting whether or not the algorithm is
allowed to use external randomness; when ∗ = rand, the randomized complexity
refers to the minimum number of queries required to find an ε-stationary point
with probability at least 1/2. Then, for any β,∆, ε > 0,

C∗(ε; β,∆, d,O) = C∗
( ε√

β∆
; 1, 1, d,O

)
.

Proof. Given a β-smooth function f : Rd → R with f(0) − inf f ≤ ∆, define
g : Rd → R via g(x) := ∆−1f(

√
∆/β x). Then, g is 1-smooth with g(0)− inf g ≤ 1,

and it is clear that the oracle for g can be simulated using the oracle for f .
Moreover, an ε/

√
β∆-stationary point for g translates into an ε-stationary point

for f . Obviously, the reduction is reversible.

Often, we will assume without loss of generality that f(0) = 1 and β = ∆ = 1,
so that f ≥ 0. Also, we may assume that f ′(0) ≤ −ε, since if f ′(0) ∈ (−ε, ε) then
0 is an ε-stationary point of f , and if f ′(0) ≥ ε we can replace f by x 7→ f(−x).
We abbreviate C∗(ε; O) := C∗(ε; 1, 1, 1,O), and from now on we consider d = 1.

Let O1st denote the oracle which returns first-order information (given x ∈ R,
it outputs f ′(x)), and let O0th+1st denote the oracle which returns zeroth- and
first-order information (given x ∈ R, it outputs (f(x), f ′(x))). We remark that
in the one-dimensional setting, we could instead assume access to an oracle O0th

which only outputs zeroth-order information, rather than O0th+1st ; this is because
we can simulate O1st to arbitrary accuracy given O0th with only a constant factor
overhead in the number of oracle queries by using finite differences. For simplicity,
we work with O0th+1st and we will not consider O0th further.

■ 12.2.1 Lower bound for randomized algorithms

We begin with a lower bound construction for randomized algorithms which only
use first-order queries. For simplicity, assume that 1/ε is an integer. We construct
a family of functions (fj)j∈[1/ε], with the following properties. On the negative
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half-line R−, each fj decreases with slope −ε, with fj(0) = 1. We also set the
slope of fj on the positive half-line R+ to be −ε, but this entails that fj(x) < 0
for x > 1/ε, violating the constraint fj(0) − inf f ≤ 1. Instead, on the interval
[j − 1, j], we modify fj to increase as much as possible while remaining O(1)-
smooth, so that fj(1/ε) = fj(0) = 1; we can then periodically extend fj on the
rest of R+.

Due to the periodicity of the construction, we can restrict our attention to the
interval [0, 1/ε]. Without prior knowledge of the index j, any algorithm only has a
“probability” (made precise in §12.3.2) of at most ε of finding the interval [j−1, j],
which contains all of the ε-stationary points in [0, 1/ε]. Hence, we expect that any
randomized algorithm must require at least Ω(1/ε) queries to find an ε-stationary
point of fj.

To make this formal, let Φ : [0, 1] → R be a smooth function such that
Φ(0) = 0, Φ(1) = 1, and Φ′(0) = Φ′(1) = −ε. For example, we can take

Φ(x) =

{
2 (1 + ε)x2 − ε x , x ∈ [0, 1

2
] ,

2 Φ(1
2
)− Φ(1− x) , x ∈ [1

2
, 1] .

We can check that Φ satisfies the desired properties and that Φ is β-smooth with
β = 4 (1 + ε) ≤ 5 for ε ≤ 1

4
. Then, let

fj(x) :=


1− ε x , x ∈ (−∞, j − 1] ,

1− ε (j − 1) + (1− ε) Φ(x− (j − 1)) , x ∈ [j − 1, j] ,

fj(j)− ε (x− j) , x ∈ [j, 1/ε] ,

fj(x− 1/ε) , x ∈ [1/ε,∞) .

It follows that fj is also 5-smooth, with fj(0)− inf fj ≤ 1; see Figure 12.1.

Figure 12.1: (Left) A plot of Φ. (Right) A plot of fj , where the dotted line indicates
the value of j.

We prove the following theorem in §12.3.2.
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Theorem 12.2.2. For all ε ∈ (0, 1
8
), it holds that

Crand

(
ε; O1st

)
≥ Ω

(1

ε

)
.

■ 12.2.2 An optimal randomized algorithm

The lower bound construction of the previous section suggests a simple strategy
for computing an ε-stationary point of f : namely, just repeatedly pick points
uniformly at random in the interval [0, 1/ε]. We now show that such a strat-
egy (together with some additional processing steps) succeeds at obtaining an
ε-stationary point in O(1/ε) queries.

Algorithm 12.1 RandomSearch

Require: oracle O1st for f
Ensure: ε-stationary point x
while true do

draw x ∼ uniform([0, 2/ε])
if |f ′(x)| < ε then

output x
else if f ′(x) > 0 then

call BinarySearch(O1st , 0, x)

Algorithm 12.2 BinarySearch

Require: oracle O1st for f ; initial points x0 < x1 with f ′(x0) ≤ −ε and f ′(x1) > 0
Ensure: ε-stationary point x

set m← x0+x1
2

if |f ′(m)| < ε then
output m

else if f ′(m) ≤ −ε then
call BinarySearch(O1st ,m, x1)

else if f ′(m) > 0 then
call BinarySearch(O1st , x0,m)

The pseudocode for the algorithms is given as Algorithms 12.1 and 12.2. In
short, RandomSearch (Algorithm 12.1) uses O(1/ε) queries to find a “good
point”, i.e., either an ε-stationary point or a point x with f ′(x) > 0. In the latter
case, BinarySearch (Algorithm 12.2) then locates an ε-stationary point using
an additional O(log(1/ε)) queries.
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We prove the following theorem in §12.3.3.

Theorem 12.2.3. Assume that f : R → R is 1-smooth, f ≥ 0, f(0) = 1, and
f ′(0) ≤ −ε. Then, RandomSearch (Algorithm 12.1) terminates with an ε-
stationary point for f using at most O(1/ε) queries to the oracle with probability
at least 1/2.

As usual, the success probability can be boosted by rerunning the algorithm. In
Figure 12.2, we demonstrate the performance of RandomSearch in a numerical
experiment as a sanity check.

Figure 12.2: Iteration complexity of gradient descent (GD) vs. one run of Random-
Search (Algorithm 12.1) for various choices of ε on an instance of the construction in
§12.2.1. The flatter slope of the orange line reflects the improved O(1/ε) complexity of
RandomSearch over the O(1/ε2) complexity of GD.

■ 12.2.3 Lower bound for deterministic algorithms

Against the class of deterministic algorithms, the construction of Theorem 12.2.2
can be strengthened to yield a Ω(1/ε2) lower bound. The idea is based on the
concept of a resisting oracle Oresist from [Nes18] which, regardless of the query
point x, outputs “f ′(x) = −ε”. The goal then is to show that for any deterministic
sequence of queries x1, . . . , xN , if N ≤ O(1/ε2), there exists a 1-smooth function
f : R→ R with f(0)− inf f ≤ ∆ which is consistent with the output of the oracle,
i.e., satisfies f ′(xi) = −ε for all i ∈ [N ]. Note that this strategy necessarily only
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provides a lower bound against deterministic algorithms.1

For simplicity of notation, since the order of the queries does not matter here,
we assume that the queries are sorted: x1 < · · · < xN . The function f that
we construct has slope −ε at the query points, but rapidly rises in between the
query points to ensure that the condition f(0) − inf f ≤ 1 holds. Moreover, we
will ensure that f ′(x) = −ε for x ≤ 0 and that f ′ is periodic on R+ with period
1/ε; hence, we may assume that all of the queries lie in the informative interval
(0, 1/ε). The key here is that for deterministic algorithms, the intervals on which
the function f rises can be adapted to the query points, rather than being selected
in advance.

The intuition is as follows. If the algorithm has made fewer than O(1/ε2)
queries, then there must be Ω(1/ε2) disjoint intervals in [0, 1/ε] of length at least
Ω(ε) in which there are no query points. On each such interval, we can grow
our function value by Ω(ε2) while staying smooth and with slope −ε at the start
and end of the interval. Hence, we can guarantee that the constructed function f
remains above f(0)− 1, while answering f ′(x) = −ε at every query point x.

To make this precise, let ℓi := xi+1 − xi and define the function

Φi(x) := −ε (x− xi)

+


1
2

(x− xi)2 , x ∈ [xi, xi + ℓi
2

] ,

ℓ2i
8

+ ℓi
2

(x− xi − ℓi
2

)− 1
2

(x− xi − ℓi
2

)
2
, x ∈ [xi + ℓi

2
, xi+1] .

The construction of Φi satisfies the following properties:

1. Φi is continuously differentiable and 1-smooth on [xi, xi+1].

2. Φi(xi) = 0 and Φi(xi+1) = ℓi (
ℓi
4
− ε).

3. Φ′i(xi) = Φ′i(xi+1) = −ε.

Write x0 := 0 and xN+1 := 1/ε. Recall that xi ∈ (0, 1/ε), for all i ∈ [N ]. We now

1In more detail, the argument is as follows. Let x1, . . . , xN be the sequence of query points
generated by the algorithm when run with Oresist, and suppose we can find a function f which
is consistent with the responses of Oresist. Then, for a deterministic algorithm, we can be sure
that had the algorithm been run with the oracle O1st for f , it would have generated the same
sequence of query points x1, . . . , xN , and hence would have never found an ε-stationary point
of f among the N query points. This argument fails if the algorithm incorporates external
randomness.
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define

f(x) :=


1− ε x , x ∈ (−∞, 0] ,

f(xi)− ε (x− xi) , x ∈ [xi, xi+1] and ℓi < 8ε (0 ≤ i ≤ N) ,

f(xi) + Φi(x) , x ∈ [xi, xi+1] and ℓi ≥ 8ε (0 ≤ i ≤ N) ,

f(x− 1/ε) + a , x ∈ [1/ε,∞) ,

where a := f(1/ε) − f(0). See Figure 12.3 for an illustration of f . We shall
prove that when N ≤ O(1/ε2), then the function f is 1-smooth and satisfies
f(0)− inf f ≤ 1, thus completing the resisting oracle construction. It yields the
following theorem, which we prove in §12.3.4.

Figure 12.3: We plot an example of the function f . The dashed lines indicate the query
points made by the algorithms.

Theorem 12.2.4. For all ε ∈ (0, 1), it holds that

Cdet

(
ε; O1st

)
≥ Ω

( 1

ε2

)
.

The lower bound is matched by gradient descent. For the sake of completeness,
we provide a proof of the matching O(1/ε2) upper bound via gradient descent as
Theorem 12.3.2 in §12.3.1.

■ 12.2.4 Lower bound for randomized algorithms with zeroth-order infor-

mation

We now turn towards algorithms which use the 0th + 1st-order oracle O0th+1st . For
the lower bound, we again use the family of functions (fj)j∈[1/ε] introduced in
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§12.2.1. The main difference is that given a query point x ∈ [0, 1/ε], the value of
fj(x) reveals whether or not the interval [j − 1, j] lies to the left of x and hence
allows for binary search to determine j. Consequently, the lower bound is only of
order Ω(log(1/ε)).

We prove the following theorem in §12.3.5.

Theorem 12.2.5. For all ε ∈ (0, 1
8
), it holds that

Cdet

(
ε; O0th+1st

)
≥ Crand

(
ε; O0th+1st

)
≥ Ω

(
log

1

ε

)
.

■ 12.2.5 An optimal deterministic algorithm with zeroth-order information

Finally, we provide a deterministic algorithm whose complexity matches the lower
bound in Theorem 12.2.5. At a high level, the idea is to use the zeroth-order
information to perform binary search, but the actual algorithm is slightly more
involved and requires the consideration of various cases.

We summarize the idea behind the algorithm. First, as described earlier, we
may freely assume f ≥ 0, f(0) = 1, and f ′(0) ≤ −ε. Also, we recall that if the
algorithm ever sees a point x with either |f ′(x)| < ε or f ′(x) > 0, then we are
done (in the latter case, we can call Algorithm 12.2: BinarySearch).

1. DecreaseGap (Algorithm 12.4) checks the value of f(2/ε). If f(2/ε) ≤
3
4
f(0), then we have made progress on the objective gap and we may treat 2/ε

as the new origin. This can happen at most O(log(1/ε)) times. Otherwise,
we have f(2/ε) ≥ 3

4
f(0), and we move on to the next phase of the algorithm.

2. Set x− := 0 and x+ := 2/ε. There are two cases: either 3
4
f(x−) ≤ f(x+) ≤

f(x−), in which case f(x−)− f(x+) ≤ ε
4

(x+ − x−), or f(x+) ≥ f(x−).

3. The first case is handled by BinarySearchII (Algorithm 12.5). A simple cal-
culation reveals that the condition 0 ≤ f(x−)−f(x+) ≤ 3

4
(x+−x−) together

with f ′(x−) ≤ −ε implies the existence of an ε-stationary point in [x−, x+].
We now check the midpoint m of x− and x+. If f(m) /∈ [f(x+), f(x−)], then
we arrive at the second case. Otherwise, we replace either x− or x+ with
m; one of these two choices will cut the value of f(x−) − f(x+) by at least
half, thereby ensuring that the condition 0 ≤ f(x−) − f(x+) ≤ 3

4
(x+ − x−)

continues to hold. This can happen at most O(log(1/ε)) times.

4. Finally, the second case is handled by BinarySearchIII (Algorithm 12.6).
In this case, f(x+) ≥ f(x−) together with f ′(x−) ≤ −ε ensures that there is
a stationary point in [x−, x+]. We then check the value of f(m) where m is
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the midpoint of x− and x+. It is straightforward to check that we can replace
either x− or x+ with m and preserve the condition f(x+) ≥ f(x−). This can
happen at most O(log(1/ε)) times.

Algorithm 12.3 ZerothOrder

Require: oracle O0th+1st for f
Ensure: ε-stationary point x

set x− ← DecreaseGap(O0th+1st , 0)
set x+ ← x− + 2/ε
if |f ′(x−)| < ε then

output x−
else if f(x+) ≤ f(x−) then

call BinarySearchII(O0th+1st , x−, x+)
else if f(x+) > f(x−) then

call BinarySearchIII(O0th+1st , x−, x+)

Algorithm 12.4 DecreaseGap

Require: oracle O0th+1st for f ; point x0
Ensure: either an ε-stationary point x or a point x such that f(x) ≤ f(x0),
f ′(x) ≤ −ε, and f(x+ 2/ε) ≥ 3

4
f(x)

if |f ′(x0 + 2/ε)| < ε then
output x0 + 2/ε

else if f ′(x0 + 2/ε) > 0 then
call BinarySearch(O0th+1st , x0, x0 + 2/ε)

else if f(x0 + 2/ε) ≥ 3
4
f(x0) then

output x0
else

call DecreaseGap(O0th+1st , x0 + 2/ε)

We prove the following theorem in §12.3.6.

Theorem 12.2.6. Assume that f : R → R is 1-smooth, f ≥ 0, f(0) = 1,
and f ′(0) ≤ −ε. Then, ZerothOrder (Algorithm 12.3) terminates with an
ε-stationary point for f using at most O(log(1/ε)) queries to the oracle.



Algorithm 12.5 BinarySearchII

Require: oracle O0th+1st for f ; points x− < x+ with f ′(x−) ≤ −ε and 0 ≤
f(x−)− f(x+) ≤ ε

4
(x+ − x−)

Ensure: an ε-stationary point x
set m← x−+x+

2

if |f ′(m)| < ε then
output m

else if f ′(m) > 0 then
call BinarySearch(O0th+1st , x−,m)

else if f(m) ≥ f(x−) then
call BinarySearchIII(O0th+1st , x−,m)

else if f(m) ≤ f(x+) then
call BinarySearchIII(O0th+1st ,m, x+)

else if f(x−)− f(m) ≤ 1
2

(f(x−)− f(x+)) then

call BinarySearchII(O0th+1st , x−,m)
else if f(m)− f(x+) ≤ 1

2
(f(x−)− f(x+)) then

call BinarySearchII(O0th+1st ,m, x+)

Algorithm 12.6 BinarySearchIII

Require: oracle O0th+1st for f ; points x− < x+ with f ′(x−) ≤ −ε, f(x+) ≥ f(x−)
Ensure: an ε-stationary point x

set m← x−+x+
2

if |f ′(m)| < ε then
output m

else if f ′(m) > 0 then
call BinarySearch(O0th+1st , x−,m)

else if f(m) ≥ f(x−) then
call BinarySearchIII(O0th+1st , x−,m)

else
call BinarySearchIII(O0th+1st ,m, x+)



Sec. 12.3. Proofs 365

■ 12.3 Proofs

■ 12.3.1 Preliminaries

The standard approach for proving lower bounds against randomized algorithms
is to reduce the task under consideration to a statistical estimation problem, for
which we can bring to bear tools from information theory. Namely, we use Fano’s
inequality ; we refer readers to [CT06, §2] for background.

Theorem 12.3.1 (Fano’s inequality). Let m be a positive integer and let J ∼
uniform([m]). Then, for any estimator Ĵ of J which is measurable w.r.t. some
data Y , it holds that

P{Ĵ ̸= J} ≥ 1− I(J ;Y ) + ln 2

lnm
,

where I denotes the mutual information.

For the sake of completeness, we also include a proof of the O(1/ε2) complexity
bound for gradient descent.

Theorem 12.3.2. Suppose that f : Rd → R is 1-smooth with f(0) − inf f ≤ 1.
Set x0 := 0 and for k ∈ N, consider the iterates of GD with step size 1:

xk+1 := xk −∇f(xk) .

Then,

min
k=0,1,...,N−1

∥∇f(xk)∥ ≤
√

2

N
.

Proof. Due to the 1-smoothness of f ,

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+
1

2
∥xk+1 − xk∥2 = −1

2
∥∇f(xk)∥2 .

(12.1)

Rearranging this and summing,

min
k=0,1,...,N−1

∥∇f(xk)∥2 ≤
1

N

N−1∑
k=0

∥∇f(xk)∥2 ≤
2

N

N−1∑
k=0

{f(xk)− f(xk+1)}

≤ 2

N
{f(0)− f(xN)} ≤ 2

N
{f(0)− inf f} ≤ 2

N
.
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■ 12.3.2 Proof of Theorem 12.2.2

Proof of Theorem 12.2.2. By making the value of ε larger (up to a factor of 2),
we may assume that 1/ε is an integer.

We reduce the optimization task to a statistical estimation problem. Let
J ∼ uniform([1/ε]). Since the only regions in which |f ′j| < ε are contained in
intervals of the form k/ε+ [j − 1, j] for some k ∈ N, then finding an ε-stationary
point of fJ implies that the algorithm can guess the value of J (exactly).

On the other hand, we lower bound the number of queries required to guess
the value of J . Let x1, . . . , xN denote the query points of the algorithm, which
may also depend on an external source of randomness U . Write Ofj(x) = f ′j(x)
for the output of the oracle for fj on the query x (we omit the superscript 1st for

brevity). Let Ĵ be any estimator of J based on {xi,OfJ (xi) : i ∈ [N ]}. Then, by
Fano’s inequality (Theorem 12.3.1),

P{Ĵ ̸= J} ≥ 1− I({xi,OfJ (xi) : i ∈ [N ]}; J) + ln 2

ln(1/ε)
.

First, suppose that the algorithm is deterministic. This means that each xi is a
deterministic function of {xi′ ,OfJ (xi′) : i′ ∈ [i−1]}. The chain rule for the mutual
information implies that

I
(
{xi,OfJ (xi) : i ∈ [N ]}; J

)
≤

N∑
i=1

I
(
OfJ (xi); J

∣∣ {xi′ ,OfJ (xi′) : i′ ∈ [i− 1]}
)
.

On the other hand, there are two possibilities for the i-th term in the summation.
Either one of the previous queries already landed in an interval corresponding to
J , in which case J is already known and the mutual information is zero, or none
of the previous queries have hit an interval corresponding to J . In the latter case,
conditionally on the information up to iteration i, J is uniformly distributed on
1/ε− i remaining intervals, and so

I
(
OfJ (xi); J

∣∣ {xi′ ,OfJ (xi′) : i′ ∈ [i− 1]}
)

≤ H
(
OfJ (xi)

∣∣ {xi′ ,OfJ (xi′) : i′ ∈ [i− 1]}
)

= h
( 1

1/ε− i
)
,

with h denoting the entropy function p 7→ p ln 1
p
+(1−p) ln 1

1−p . The last inequality

follows because conditionally, OfJ (xi) can only be one of two possible values with
probabilities 1

1/ε−i and 1− 1
1/ε−i respectively. If N ≤ 1/(2ε), then

I
(
{xi,OfJ (xi) : i ∈ [N ]}; J

)
≤ 2

N∑
i=1

1

1/ε− i ln
(1

ε
− i

)
≤ 4Nε ln

1

ε
.
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Hence,

P{Ĵ ̸= J} ≥ 1− 4Nε ln(1/ε) + ln 2

ln(1/ε)
>

1

2
(12.2)

provided that ε ≤ 1
8

and N ≤ O(1/ε) for a sufficiently small implied constant.
Although we have proven the bound (12.2) for deterministic algorithms, the
bound (12.2) continues to hold for randomized algorithms simply by conditioning
on the random seed U which is independent of J .

We have proven that any randomized algorithm which is guaranteed to find
an ε-stationary point of fJ must use at least N ≥ Ω(1/ε) queries, or

C (ε; 5, 1, 1,O1st) ≥ Ω
(1

ε

)
.

We conclude by applying the rescaling lemma (Lemma 12.2.1).

■ 12.3.3 Proof of Theorem 12.2.3

First, we analyze the subroutine BinarySearch.

Lemma 12.3.3. Suppose that f is 1-smooth. Then, BinarySearch (Algo-
rithm 12.2) terminates with an ε-stationary point for f using at most O(log x1−x0

ε
)

queries to the oracle.

Proof. Since f is 1-smooth, f(x0) ≤ −ε and f(x1) > 0 cannot hold if x1− x0 ≤ ε.
Moreover, each time that BinarySearch fails to find an ε-stationary point for
f , the length of the interval [x0, x1] is cut in half. The result follows.

We also need one lemma about continuous functions on R.

Lemma 12.3.4. Let g : R→ R be continuous, let I be a compact and non-empty
interval, and let ε > 0. Then, there is a finite collection of disjoint closed intervals
which cover I ∩ {g ≥ ε} and which are contained in I ∩ {g ≥ 0}.

Proof. For each x ∈ S := I ∩ {g ≥ ε}, by continuity of g there exists a closed
interval Ix ⊆ I such that x belongs to the interior of Ix and such that g ≥ 0 on
Ix. The collection (Ix)x∈S covers the compact set S, so we can extract a finite
subcover. The connected components of the union of the finite subcover consist
of disjoint closed intervals.

We are now ready to prove Theorem 12.2.3.
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Proof of Theorem 12.2.3. Let x ∼ uniform([0, 2/ε]). If |f ′(x)| < ε, then we are
done, and if f ′(x) > 0, then Lemma 12.3.3 shows that BinarySearch terminates
with an ε-stationary point of f using O(log(1/ε)) queries. What remains to show
is that x satisfies either |f ′(x)| < ε or f ′(x) > 0 with probability at least Ω(ε),
which implies that Algorithm 12.1 succeeds using O(1/ε) queries with probability
at least 1/2.

Let m denote the Lebesgue measure restricted to [0, 2/ε]. Then,

1 ≥ f(0)− f(2/ε) = −
∫
[0,2/ε]

f ′

≥ εm{f ′ ≤ −ε} − εm{|f ′| < ε} −
∫
[0,2/ε]∩{f ′≥ε}

f ′ .

From Lemma 12.3.4, we can cover the set [0, 2/ε] ∩ {f ′ ≥ ε} with a union of
disjoint closed intervals

⋃K
k=1 Ik ⊆ [0, 2/ε]∩ {f ′ ≥ 0}. On Ik, the smoothness of f

ensures that

−
∫
Ik

f ′ ≥ −m(Ik) f
′(inf Ik)︸ ︷︷ ︸
≤ε

−
∫
Ik

(x− inf Ik) dx ≥ −εm(Ik)−
1

2
m(Ik)

2 .

Write ℓk := m(Ik) = sup Ik − inf Ik. Note that
∑K

k=1 ℓk ≤ m{f ′ ≥ 0}. Thus,

−
∫
[0,2/ε]∩{f ′≥ε}

f ′ ≥ −ε
K∑
k=1

ℓk −
1

2

K∑
k=1

ℓ2k ≥ −ε
K∑
k=1

ℓk −
1

2

( K∑
k=1

ℓk

)2

≥ −εm{f ′ ≥ 0} − 1

2
m{f ′ ≥ 0}2 .

Now suppose that m{|f ′| < ε or f ′ ≥ ε} ≤ c0, where c0 > 0 is a constant to be
chosen later. In this case, the inequalities above imply

1 + 2c0ε+
1

2
c20 ≥ εm{f ′ ≤ −ε} ≥ ε

(2

ε
−m{|f ′| < ε or f ′ ≥ ε}

)
which, when rearranged, yields

1 + 3c0ε+
1

2
c20 ≥ 2 .

If c0 is a sufficiently small absolute constant, we arrive at a contradiction.
We conclude that m{|f ′| < ε or f ′ ≥ ε} ≥ c0, which means that the random

point x will be good in the sense that either |f ′(x)| < ε or f ′(x) ≥ ε. The
probability that Algorithm 12.1 fails to obtain a good random point in N tries
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is at most (1− c0ε/2)N , which can be made at most 1/2 by taking N = Θ(1/ε).
We conclude that with probability at least 1/2, using

O
(1

ε
+ log

1

ε

)
= O

(1

ε

)
queries ,

Algorithm 12.1 finds an ε-stationary point.

■ 12.3.4 Proof of Theorem 12.2.4

Proof of Theorem 12.2.4. The goal is to show that when N ≤ O(1/ε2), the resist-
ing oracle construction succeeds, and hence no deterministic algorithm can find an
ε-stationary point of an arbitrary 1-smooth function with objective gap at most 1
using N queries.

For the resisting oracle construction, the crux of the matter is to show that
a = f(1/ε)−f(0) ≥ 0. Indeed, if this holds, then since f is clearly bounded below
by 0 on [0, 1/ε] it will follow that f ≥ 0 on all of R, and hence f(0)− inf f ≤ 1.

Let I be the set of indices i ∈ [N ] for which ℓi ≥ 8ε. Since f has slope −ε on
all of the linear pieces, then over all of the linear pieces the value of f drops by
at most 1 on the interval [0, 1/ε]. The goal is to show that∑

i∈I

{f(xi+1)− f(xi)}
!

≥ 1 .

To prove this, write

1

ε
=

N∑
i=1

ℓi =
∑
i∈I

ℓi +
∑
i∈Ic

ℓi ≤
∑
i∈I

ℓi + 8ε |Ic| .

There are two cases to consider. If |Ic| ≥ 1
16ε2

queries, then we are done, as the
algorithm has made Ω(1/ε2) queries. Otherwise, |Ic| ≤ 1

16ε2
, in which case

1

2ε
≤

∑
i∈I

ℓi .

In this second case, we now have∑
i∈I

{f(xi+1)− f(xi)} =
∑
i∈I

Φi(xi+1) =
∑
i∈I

ℓi
(ℓi

4
− ε

)
≥ 1

8

∑
i∈I

ℓ2i

≥ 1

8 |I|
(∑
i∈I

ℓi

)2

≥ 1

32ε2 |I| .
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This is greater than 1 provided |I| ≤ 1
32ε2

.
In summary, the resisting oracle construction is valid provided |I| ≤ 1

32ε2
and

|Ic| ≤ 1
16ε2

. Since |I| + |Ic| = N , any deterministic algorithm which finds an
ε-stationary point must use at least N ≥ min{ 1

32ε2
, 1
16ε2
} = 1

32ε2
queries, or

Cdet(ε; O
1st) ≥ 1

32ε2
.

■ 12.3.5 Proof of Theorem 12.2.5

Proof of Theorem 12.2.5. The proof is very similar to the proof of Theorem 12.2.2.
We follow the proof up to the point where

I
(
OfJ (xi); J

∣∣ {xi′ ,OfJ (xi′) : i′ ∈ [i− 1]}
)

≤ H
(
OfJ (xi)

∣∣ {xi′ ,OfJ (xi′) : i′ ∈ [i− 1]}
)
,

where now OfJ (x) = {fJ(x), f ′J(x)} returns zeroth- and first-order information.
The key point now is that since xi is deterministic (conditioned on previous
queries), OfJ (xi) can only take a constant number of possible values, and so
the above entropy term is O(1) (as opposed to Theorem 12.2.2, in which the
entropy term was of order O(ε log(1/ε))). Plugging this into Fano’s inequality
(Theorem 12.3.1), we obtain

P{Ĵ ̸= J} ≥ 1− O(N) + ln 2

ln(1/ε)
>

1

2
,

provided that ε ≤ 1
8

and N ≤ O(log(1/ε)). Hence, Ω(log(1/ε)) queries to O0th+1st

are necessary to find an ε-stationary point, even for a randomized algorithm.

■ 12.3.6 Proof of Theorem 12.2.6

We prove the correctness of the algorithms in reverse order, beginning with Bina-
rySearchIII.

Lemma 12.3.5. Let f : R → R be 1-smooth. Then, BinarySearchIII (Algo-
rithm 12.6) terminates with an ε-stationary point of f using O(log x+−x−

ε
) queries

to the oracle.

Proof. Due to the 1-smoothness of f , if x+ − x− < ε, then f ′ < 0 on the inter-
val [x−, x+], which contradicts the hypothesis f(x+) ≥ f(x−). Hence, Binary-
SearchIII recursively calls itself O(log x+−x−

ε
) times. If it calls BinarySearch,

then by Lemma 12.3.3 this uses an additional O(log x+−x−
ε

) queries.
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Lemma 12.3.6. Let f : R → R be 1-smooth. Then, BinarySearchII (Algo-
rithm 12.5) terminates with an ε-stationary point of f using O(log x+−x−

ε
) queries

to the oracle.

Proof. First, we check that when BinarySearchII calls itself, the preconditions
of BinarySearchII continue to be met. Suppose for instance that 0 ≤ f(x−)−
f(m) ≤ 1

2
(f(x−)− f(x+)). Since 0 ≤ f(x−)− f(x+) ≤ ε

4
(x+−x−) by hypothesis,

0 ≤ f(x−)− f(m) ≤ ε

8
(x+ − x−) =

ε

4
(x− −m) ,

which is what we wanted to show. The other case is similar.
Next, we argue that BinarySearchII terminates. The hypotheses of Bina-

rySearchII imply that there is an ε/2-stationary point in the interval [x−, x+].
Indeed, if this were not the case, then f ′ ≤ −ε/2 on the entire interval, so
f(x+) = f(x−) +

∫
[x−,x+]

f ′ ≤ f(x−) − ε
2

(x+ − x−), but this contradicts the as-

sumption f(x−)−f(x+) ≤ ε
4

(x+−x−). Therefore, if x+−x− < ε
2
, it would follow

that f ′(x−) > −ε, which contradicts the hypothesis f ′(x−) ≤ −ε. Since the value
of x+−x− is cut in half each time that BinarySearchII calls itself, we conclude
that this can happen at most O(log x+−x−

ε
) times. If BinarySearchII calls either

BinarySearch or BinarySearchIII, then by Lemma 12.3.3 and Lemma 12.3.5,
this uses at most an additional O(log x+−x−

ε
) queries to the oracle.

Lemma 12.3.7. Let f : R → R be 1-smooth. Then, DecreaseGap (Algo-
rithm 12.4) terminates, either with an ε-stationary point of f , or with a point x
such that f(x) ≤ f(x0), f(x+ 2

ε
) ≥ 3

4
f(x), using O(log 1

ε
) queries to the oracle.

Proof. Each time DecreaseGap calls itself, the value of f(x0) decreases by a
factor of 3

4
. If f ′(x0) ≤ −ε, then from (12.1) we deduce that f(x0) ≥ 1

2
|f ′(x0)|2 ≥

ε2/2. Hence, DecreaseGap can call itself at most O(log 1
ε2

) = O(log 1
ε
) times.

If it calls BinarySearch, then by Lemma 12.3.3 this uses an additional O(log 1
ε
)

queries to the oracle.

Finally, we are ready to verify the correctness of ZerothOrder (Algo-
rithm 12.3).

Proof of Theorem 12.2.6. From Lemma 12.3.7, if |f ′(x−)| > ε then we must have
f ′(x−) ≤ −ε and f(x+) ≥ 3

4
f(x−). There are two cases. If f(x+) ≤ f(x−), then

we know that

0 ≤ f(x−)− f(x+) ≤ 1

4
f(x−) ≤ 1

4
=
ε

8
(x+ − x−)
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so the preconditions of BinarySearchII are met; by Lemma 12.3.6, the algo-
rithm ZerothOrder terminates with an ε-stationary point of f using O(log 1

ε
)

additional queries. In the other case f(x+) ≥ f(x−), by Lemma 12.3.5, Ze-
rothOrder again terminates with an ε-stationary point of f using O(log 1

ε
)

additional queries. This concludes the proof.

■ 12.4 Conclusion

We have characterized the oracle complexity of finding an ε-stationary point of a
smooth univariate function f : R→ R in four natural settings of interest. Besides
providing insight into the limitations of gradient descent, our results exhibit sur-
prising separations between the power of deterministic and randomized algorithms,
and between algorithms that use zeroth-order information and algorithms (like
gradient descent) which only use first-order information.

We conclude with a number of open directions for future research.

• The main question motivating this work remains open, namely, for random-
ized algorithms using zeroth- and first-order information, is it possible to
prove a Ω(1/ε2) complexity lower bound with a construction in di-
mension d = O(log(1/ε))? An affirmative answer to this question would
likely build upon the lower bound techniques used in [Vav93; BM20].

An even more ambitious goal is to fully characterize the query complexity of
finding stationary points using zeroth- and first-order information in every
fixed dimension d.

• Towards the above question, we also ask: is there an analogue of gradient
flow trapping [BM20] for unconstrained optimization?

• We have established that among deterministic algorithms which only use first-
order queries, gradient descent is optimal already in dimension one. Although
randomized algorithms outperform GD in our setting of investigation, it is
unclear to what extent randomness helps in higher dimension. Hence, we
make the following bold conjecture: can one prove a Ω(1/ε2) complexity
lower bound for randomized algorithms which only make first-order
queries in dimension two?



Chapter 13

Sampling upper bounds in the
Fisher information metric

Just as we studied the complexity of finding stationary points for non-convex op-
timization in §12, in this chapter we explore the concept of first-order stationarity
in the context of non-log-concave sampling.

For the task of sampling from a density π ∝ exp(−V ) on Rd, where V is
possibly non-convex but β-smooth, we prove that averaged Langevin Monte Carlo
outputs a sample with ε2-relative Fisher information after O(β2d2/ε4) iterations.
This is the sampling analogue of complexity bounds for finding an ε-approximate
first-order stationary points in non-convex optimization and therefore constitutes
a first step towards the general theory of non-log-concave sampling.

This chapter is based on [Bal+22], joint with Krishnakumar Balasubramanian,
Murat A. Erdogdu, Adil Salim, and Matthew Zhang.

■ 13.1 Introduction

Consider the canonical task of sampling from a density π ∝ exp(−V ) on Rd,
given query access to the gradients of V . In the case where V is strongly convex
and smooth, this task is well-studied, with a number of works giving precise
and non-asymptotic complexity bounds which scale polynomially in the problem
parameters. In contrast, there are comparatively few works which study the case
when V is non-convex. In this chapter, we take a first step towards developing a
general theory of non-log-concave sampling by formulating the sampling analogue
of stationary point analysis, which has been highly successful in the non-convex
optimization [Nes18].

Recall that the Langevin diffusion

dZt = −∇V (Zt) dt+
√

2 dBt , (13.1)

has π as its unique stationary distribution and converges to it as t → ∞ under

373
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mild conditions. Here, (Bt)t≥0 is a standard d-dimensional Brownian motion.
Discretizing this stochastic process with step size h > 0 yields the standard
Langevin Monte Carlo (LMC) algorithm

X(k+1)h := Xkh − h∇V (Xkh) +
√

2 (B(k+1)h −Bkh) . (LMC)

Several extensions of LMC have been considered in the literature. For instance, a
stochastic gradient can be used as an estimate of the “full” gradient ∇V (xkh) at
each iteration.

Although LMC and its extensions are ostensibly sampling algorithms, they
find applications in optimization. Indeed, LMC and its extensions can be viewed
as a variant of (stochastic) gradient descent in which Gaussian noise is explicitly
injected in the (stochastic) gradient in each iteration. As explored, for example,
in [RRT17; Jin+21], the presence of noise allows the iteration to escape local
minima and allows for establishing global non-asymptotic convergence guarantees
on well-behaved yet non-convex objectives.

Perhaps surprisingly, the connection between optimization and sampling also
goes in the other direction: the theory of optimization can be used to understand
the performance of sampling algorithms. On a superficial level, this is anticipated
because the Langevin diffusion (13.1) is simply a standard gradient flow to which a
Brownian noise has been added. However, there is a much deeper connection, due
to [JKO98], which interprets the Langevin diffusion as an exact gradient flow in the
space of probability measures equipped with the geometry of optimal transport,
where the objective functional is the Kullback–Leibler (KL) divergence KL(· ∥ π).
This perspective has spurred researchers to provide novel optimization-inspired
analyses of sampling [Ber18; Wib18; DMM19].

For example, the Wasserstein gradient of KL(· ∥ π) at µ is ∇ ln(µ/π), and the
calculation rules for gradient flows imply that if πt denotes the law of the Langevin
diffusion (13.1) at time t, then ∂t KL(πt ∥ π) = −Eπt [∥∇ ln(πt/π)∥2] [see AGS08;
Vil09b; San15]. As this quantity is important in what follows, we explicitly write
FI(µ ∥ π) := Eµ[∥∇ ln(µ/π)∥2] for the (relative) Fisher information of µ w.r.t. π.
If V is convex (resp. strongly convex), then the objective functional KL(· ∥ π) is
convex (resp. strongly convex) in the Wasserstein geometry, which in turn implies
that KL(πt ∥ π) decays to zero at the rate O(1/t) (resp. exponentially fast).

In the case when V is non-convex, however, less is known. Of course, just
like non-convex optimization, it is in general impossible to obtain polynomial
sampling guarantees for non-log-concave distributions. Recently, [VW19; Ma+21]
study tractable cases of non-log-concave sampling in which the target π satisfies
a functional inequality, such as the log-Sobolev inequality (LSI); see also §3, §4,
and §6. Indeed, if LSI holds, then FI(µ ∥ π) ≳ KL(µ ∥ π) for all µ. In light of the
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Wasserstein calculus described above, this is the analogue of the gradient domi-
nation condition (or Polyak– Lojasiewicz inequality) in non-convex optimization:
∥∇V (x)∥2 ≳ V (x)−minV [ Loj63; Pol63; KNS16]. Furthermore, [DM17; Li+19;
Che+20b; MMS20; EH21; HBE22] study tractable classes of non-log-concave sam-
pling based on certain tail-growth conditions. However, the assumptions made in
these works are far from capturing the breadth of non-log-concave sampling.

Instead, in general non-convex optimization, the standard approach is to prove
convergence to a stationary point of the objective function, or from a more quan-
titative perspective, to determine the complexity of obtaining a point x satisfying
∥∇V (x)∥ ≤ ε. This complexity is typically O(1/ε2) [Nes18]. Following this
paradigm, we propose to use the Fisher information as the sampling analogue of
the squared norm of the gradient. Our main result (Theorem 13.4.2) establishes
that under the sole assumption that ∇V is β-gradient Lipschitz, an averaged
version of the LMC algorithm (LMC) outputs a sample whose law µ satisfies
FI(µ ∥ π) ≤ ε2 after O(β2d2/ε4) iterations. Intuitively, the Fisher information
captures the rapid local mixing of the Langevin diffusion near modes of the dis-
tribution π, while ignoring the metastability effects which occur between the
modes [Bov+02; Bov+04; BGK05]. We give an illustrative example in §13.2
which expands upon this intuition.

Organization and contributions. The rest of the chapter is organized as follows. In
§13.2, we provide intuitions on Fisher information guarantees in sampling. In
§13.3, we formally define the Fisher information, and in §13.4, we state our main
result in Theorem 13.4.2. In §13.5, we consider applications of our main result:

• We show the weak convergence of averaged LMC with decaying step size
under general assumptions (§13.5.1).

• We provide new sampling guarantees in the total variation distance under a
Poincaré inequality (§13.5.2). These guarantees can be compared with the
ones obtained in §3 (in fact, here we obtain substantially better dimension
dependence).

• In an effort to stick to the main ideas, we have omitted other applications
and extensions of our results which can be found in the full paper [Bal+22].
We give an overview of these additional results in §13.5.3.

Finally, we conclude with open directions in §13.7.
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■ 13.2 Interpretation of approximate first-order stationarity in sampling

Intriguingly, unlike the situation in non-convex optimization, in sampling there
are no “spurious stationary points”: if µ and π have positive and smooth densities
and FI(µ ∥ π) = 0, then µ = π. However, for ε > 0, it may be unclear what the
guarantee FI(µ ∥ π) ≤ ε2 entails. In this section, we give an example illustrating
what conclusions may be drawn from a bound on the Fisher information, which
helps to better interpret our result in the next sections.

Figure 13.1

Consider a mixture of two Gaussians in one dimension as the target:

π =
1

2
normal(−m, 1)︸ ︷︷ ︸

π−

+
1

2
normal(+m, 1)︸ ︷︷ ︸

π+

,

where m≫ 0. Also, consider a mixture of two Gaussians with different weights:

µ :=
3

4
π− +

1

4
π+ .

An illustrative plot of π and µ is provided in Figure 13.1 for the sake of easier
visualization. In §13.6.1, we will prove the following.

Proposition 13.2.1. Let π and µ be as defined above. For all m ≥ 0,

∥µ− π∥TV ≥
1

4

[
1− exp

(
−m

2

2

)]
.

On the other hand,

FI(µ ∥ π) ≤ 4m2 exp
(
−m

2

2

)
→ 0 as m→∞ .
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In the next section, we will show that averaged LMC can drive the Fisher
information to zero at a polynomial rate. For large m, the measure µ has small
Fisher information with respect to π, so µ serves as a model for the kind of
distribution that averaged LMC can reach. We can draw a few conclusions:

1. Although the Fisher information FI(µ ∥ π) is very small, the total variation
distance remains bounded away from zero. This shows that a Fisher in-
formation guarantee does not ensure fast convergence of averaged LMC in
other metrics without further assumptions (anyway, polynomial guarantees
for non-log-concave sampling in other metrics are impossible in general).

2. Here, µ locally captures the correct shape of π at the two modes. On the
other hand, µ has different mixing weights than π, which means that µ is
globally different from π. Since FI(µ ∥ π) is small for this example, it shows
that the Fisher information is not sensitive to the latter effect. Hence, our
Fisher information guarantee for averaged LMC captures the fact that the
algorithm rapidly gets the local structure of π correct.

3. After a few steps of LMC started at the distribution 3
4
δ−m + 1

4
δ+m, the

algorithm arrives at a measure which closely resembles µ, rather than the
true stationary measure π. Indeed, the iterates of LMC do not need to
jump from one mode to another to approximate µ. This jumping takes an
exponentially long time and is the main barrier to the mixing of LMC, but
it is necessary for LMC to learn the global mixing weights—this is known
as the metastability phenomenon [Bov+02; Bov+04; BGK05]. Our analysis
provides a convenient way to quantify this effect.

Remark 13.2.2. In the context of Bayesian inference, the choice of relative Fisher
information metric between the prior and the exact posterior distribution has been
proposed by [Wal16; HW17; Sha+19], as a measure of robustness of the overall
inferential procedure. In this regard, our results provide a computational angle to
this paradigm: in practice we rarely have access to the exact posterior distribution.
Our results algorithmically quantify the distance (in relative Fisher information)
between the posterior distribution obtained after a certain number of iterations of
LMC and the exact posterior.

■ 13.3 Preliminaries

Throughout the paper, we assume that the potential V : Rd → R is a smooth (i.e.,
twice continuously differentiable) function such that

∫
exp(−V ) <∞. The target

distribution π ∝ exp(−V ) is therefore well-defined.
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For a probability measure µ with a smooth density, we can define the Fisher
information of µ relative to π via FI(µ ∥ π) := Eµ[∥∇ ln(µ/π)∥2]. To extend
this definition to other probability measures, we recall from Markov semigroup
theory [see BGL14] that we associate with the Langevin diffusion (13.1) a Dirichlet
energy f 7→ E (f) which maps a subspace dom E ⊆ L2(π) to R+. If f is smooth
and compactly supported, then f ∈ dom E and the Dirichlet energy has the
explicit expression E (f) = Eπ[∥∇f∥2]. The Fisher information is defined from
the Dirichlet energy as follows. For an arbitrary probability measure µ, set

FI(µ ∥ π) :=

{
4 E (
√
f) , if f := dµ

dπ
exists and

√
f ∈ dom E ,

+∞ , otherwise .

In particular, if f = dµ
dπ

is positive and smooth, one can check that

FI(µ ∥ π) =

∫
∥∇ ln(f)∥2 dµ , or FI(µ ∥ π) =

∫ ∥∇f∥2
f

dπ .

Using the convexity of (a, b) 7→ ∥a∥2/b on Rd×R+, the latter formula implies that
the Fisher information µ 7→ FI(µ∥π) is convex in the classical sense on the space of
probability measures. Besides, the Fisher information is also lower semicontinuous
in its first argument with respect to the weak topology of measures [see, e.g., Wu00,
Appendix B].

■ 13.4 Main result

Recall that the LMC algorithm is given by

X(k+1)h := Xkh − h∇V (Xkh) +
√

2 (B(k+1)h −Bkh) .

Our main result is stated for the following continuous interpolation of LMC:

Xt := Xkh − (t− kh)∇V (Xkh) +
√

2 (Bt −Bkh) for t ∈ [kh, (k + 1)h] .
(13.2)

We write µt for the law of Xt.

Assumption 13.4.1. The gradient of V is β-Lipschitz continuous: for some
β > 0, ∥∇V (x1)−∇V (x2)∥ ≤ β ∥x1 − x2∥ for all x1, x2 ∈ Rd.

Theorem 13.4.2. Let (µt)t≥0 denote the law of the interpolation (13.2) of LMC,
and let the potential V satisfy Assumption 13.4.1. Then, for any step size h ∈
(0, 1

6β
), it holds that

1

Nh

∫ Nh

0

FI(µt ∥ π) dt ≤ 2KL(µ0 ∥ π)

Nh
+ 8β2dh .
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In particular, if KL(µ0 ∥ π) ≤ K0 and we choose h =
√
K0/(2β

√
dN), then for

N ≥ 9K0/d,

1

Nh

∫ Nh

0

FI(µt ∥ π) dt ≤ 8β
√
dK0√
N

.

By the convexity of the Fisher information, it follows that the averaged distri-
bution µ̄Nh := (Nh)−1

∫
µt dt satisfies FI(µ̄Nh ∥ π) ≤ 8β

√
dK0/N as well. Also, it

is possible to output a sample from µ̄Nh, as follows:

1. Pick a time t ∈ [0, Nh] uniformly at random.

2. Let k be the largest integer such that kh ≤ t, and let Xkh be the iterate of
LMC at time kh. Then, perform a partial LMC update for time t− kh, i.e.,

Xt := Xkh − (t− kh)∇V (Xkh) +
√

2 (Bt −Bkh) .

Then, Xt is a sample from µ̄Nh. Note that it is possible to sample the
Brownian increments exactly as long as one can sample standard Gaussians.

Remark 13.4.3. Since we can usually take K0 to be of order d, see, e.g., [VW19,
Lemma 1] or §3.6.6, in order for averaged LMC to reach ε2 accuracy in terms of
the Fisher information w.r.t. the target, the iteration complexity is O(β2d2/ε4).

■ 13.5 Applications

■ 13.5.1 Asymptotic convergence of averaged LMC with vanishing step size

Our main result immediately implies asymptotic convergence of averaged LMC
with decreasing step size under very general conditions. Let (hk)

∞
k=1 be a sequence

of positive step sizes such that

∞∑
k=1

hk =∞ and
∞∑
k=1

h2k <∞ . (13.3)

Write τn :=
∑n

k=1 hk, and denote by µ̄τn := τ−1n

∫ τn
0
µt dt, where µt is the law of

Xt defined by

Xt = Xτn−1 − (t− τn−1)∇V (Xτn−1) +
√

2 (Bt −Bτn−1) , t ∈ [τn−1, τn] .

Then, we have the following convergence result.
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Theorem 13.5.1. Let (µt)t≥0 denote the law of the interpolation (13.2) of LMC,
and let the potential V satisfy Assumption 13.4.1. Suppose that LMC is initialized
at µ0 with KL(µ0 ∥ π) < ∞ and that the step size sequence (hk)

∞
k=1 satisfies

hk ∈ (0, 1
6β

) for every k, as well as the conditions (13.3). Then, µ̄τn → π weakly.

While it might be possible to prove the weak convergence of LMC using
other techniques, for example, the ordinary differential equation method from
the stochastic approximation literature [KY03] or general results on the analysis
of Markov chains [BGL14; Dou+18], we emphasize that Theorem 13.5.1 follows
immediately from our main result in Theorem 13.4.2 and the connectedness prop-
erty that FI(µ ∥ π) = 0 implies µ = π. To the best of our knowledge, explicit
results available in the literature on the weak convergence of LMC [e.g., LP02;
PP12] require Lyapunov-type conditions. In comparison, Theorem 13.5.1 holds
just under the Lipschitz gradient assumption on the potential V . See also the
recent results of [KHK23].

■ 13.5.2 New sampling guarantees under a Poincaré inequality

In this section, we show that if we additionally assume that π satisfies a Poincaré
inequality, then we obtain sampling guarantees in total variation distance as a
corollary of our main theorem. Surprisingly, the rates we obtain in this manner
are competitive with (and arguably better than) the state-of-the-art results for
LMC, for these classes of target distributions. To present our result, we recall the
following transport inequality.

Lemma 13.5.2 ([Gui+09, Theorem 3.1]). Suppose that π satisfies a Poincaré
inequality: for all smooth compactly supported functions f : Rd → R,

varπ f ≤ CPI Eπ[∥∇f∥2] . (PI)

Then, for all probability measures µ,

∥µ− π∥2TV ≤ 4CPI FI(µ ∥ π) .

When combined with Theorem 13.4.2, we immediately obtain:

Corollary 13.5.3. Let (µt)t≥0 denote the law of the interpolation (13.2) of LMC,
and let the potential V satisfy Assumption 13.4.1. If KL(µ0 ∥ π) ≤ K0 and we

choose h =
√
K0/(2β

√
dN), then for N ≥ 9K0/d and µ̄Nh := (Nh)−1

∫ Nh
0

µt dt,

∥µ̄Nh − π∥2TV ≤
32CPIβ

√
dK0√

N
.



Sec. 13.6. Proofs 381

Remark 13.5.4. If K0 = O(d), Corollary 13.5.3 implies an iteration complexity
of O(C2

PIβ
2d2/ε4) to output a sample whose total variation distance to π is at most

ε. In contrast, Theorem 3.3.4 yields an iteration complexity of Õ(C2
PIβ

2d3/ε2) for
LMC (without averaging). Corollary 13.5.3 has worse dependence on the inverse
accuracy, but better dependence on the dimension.

■ 13.5.3 Further applications and extensions

In this section, we describe further results contained in [Bal+22].

• If the potential V satisfies an additional Hessian smoothness condition, i.e.,
∇2V is Lipschitz in the operator norm, then under an additional mild dissi-
pativity condition we improve the complexity to reach ε2 Fisher information
to O(d2/ε3) [Bal+22, Theorem 12].

• We also extend Theorem 13.4.2 to cover the use of stochastic gradients with
bounded bias and variance [Bal+22, Theorem 15].

• A particular application of the stochastic gradient result is to cover non-
smooth potentials by applying the Gaussian smoothing technique [following
Cha+20]. By choosing the smoothing level to balance the bias and vari-
ance [see NS17] and incorporating mini-batching, we extend Theorem 13.4.2
and Corollary 13.5.3 to the non-smooth case [Bal+22, Corollaries 18 and 19].

• Finally, when the potential is a finite sum V =
∑n

i=1 Vi, then we consider
using a variance-reduced stochastic gradient given by PAGE [Li+21] in or-
der to provide a guarantee in terms of the number of individual gradient
evaluations [Bal+22, Theorem 21].

■ 13.6 Proofs

■ 13.6.1 Proof for the illustrative example

Proof of Proposition 13.2.1. The total variation distance is

∥µ− π∥TV =
1

2

∫
|µ− π| = 1

8

∫
|π+ − π−| =

1

4
∥π+ − π−∥TV .

Since π− = normal(−m, 1) and π+ = normal(m, 1), standard Gaussian tail esti-
mates yield

π−(R+) ≤ 1

2
exp

(
−m

2

2

)
, π+(R+) ≥ 1− 1

2
exp

(
−m

2

2

)
,
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and the lower bound on ∥µ− π∥TV follows.
Next, we have

∇ ln
µ

π
=

1

µ

(3

4
∇π− +

1

4
∇π+

)
− 1

π

(1

2
∇π− +

1

2
∇π+

)
=

1

µπ

[
π
(3

4
∇π− +

1

4
∇π+

)
+ µ

(1

2
∇π− +

1

2
∇π+

)]
.

Writing s∓ := ∇ ln π∓, some algebra reveals that

∇ ln
µ

π
=

1

4µπ
(π+∇π− − π−∇π+) =

π−π+
4µπ

(s− − s+) = −π−π+
2µπ

m .

Therefore,

FI(µ ∥ π) =
m2

4

∫
π2
−π

2
+

µ2π2
dµ =

m2

4

∫
π2
−π

2
+

µπ2
=
m2

4

∫
π2
−π

2
+

(3
4
π− + 1

4
π+) (1

2
π− + 1

2
π+)

2

≤ 4m2

∫
π2
−π

2
+

(π− + π+)3
≤ 4m2

[∫
R−

π2
+

π−
+

∫
R+

π2
−

π+

]
.

Writing Z := (2π)d/2 for the normalizing constant,∫
R+

π2
−

π+
=

1

Z

∫ ∞
0

exp
(
−|x+m|2 +

1

2
|x−m|2

)
dx

=
exp(4m2)

Z

∫ ∞
0

exp
(
−1

2
|x+ 3m|2

)
dx = exp(4m2)P{ξ ≥ 3m}

where ξ is a standard Gaussian random variable. Using a Gaussian tail bound,

P{ξ ≥ 3m} ≤ 1

2
exp

(
−9m2

2

)
.

A symmetric argument holds for the other integral, and hence

FI(µ ∥ π) ≤ 4m2 exp
(
−m

2

2

)
which completes the proof.

■ 13.6.2 Proof of the main theorem

Our proof follows the interpolation argument of [VW19] which proceeds by ob-
taining a differential inequality for the KL divergence along an interpolation of
the algorithm. Although these lemmas also appeared in §3, we reproduce them
here for convenience.
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Lemma 13.6.1. Along the interpolation (13.2), writing µt for the law of Xt, it
holds that

∂t KL(µt ∥ π) ≤ −3

4
FI(µt ∥ π) + E[∥∇V (Xt)−∇V (Xkh)∥2] .

Proof. See Proposition 3.6.1.

Lemma 13.6.2. Assume that ∇V is β-Lipschitz. For any probability measure µ,
it holds that

Eµ[∥∇V ∥2] ≤ FI(µ ∥ π) + 2βd .

Proof. See Lemma 3.6.3.

We now prove our main result.

Proof of Theorem 13.4.2. Let (Xt)t≥0 denote the interpolation of LMC (defined
in (13.2)). For t ∈ [kh, (k + 1)h], Lemma 13.6.1 yields

∂t KL(µt ∥ π) ≤ −3

4
FI(µt ∥ π) + E[∥∇V (Xt)−∇V (Xkh)∥2]

and the error term is

E[∥∇V (Xt)−∇V (Xkh)∥2] ≤ β2 E[∥Xt −Xkh∥2]
≤ 2β2 (t− kh)2 E[∥∇V (Xkh)∥2] + 4β2 E[∥Bt −Bkh∥2] .

Next, since ∇V is Lipschitz,

∥∇V (Xkh)∥ ≤ ∥∇V (Xt)∥+ β ∥Xt −Xkh∥
≤ ∥∇V (Xt)∥+ βh ∥∇V (Xkh)∥+

√
2β ∥Bt −Bkh∥ ,

and for h ≤ 1/(3β) we can rearrange this to yield

∥∇V (Xkh)∥ ≤
3

2
∥∇V (Xt)∥+

3β√
2
∥Bt −Bkh∥ .

Plugging this in,

∥∇V (Xt)−∇V (Xkh)∥2 ≤ 9β2 (t− kh)2 ∥∇V (Xt)∥2 + 6β2 ∥Bt −Bkh∥2 . (13.4)

For the expectation of the first term, we can use Lemma 13.6.2 to bound

Eµt [∥∇V ∥2] ≤ FI(µt ∥ π) + 2βd .
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Hence, for h ≤ 1/(6β),

∂t KL(µt ∥ π) ≤ −
(3

4
− 9β2h2

)
FI(µt ∥ π) + 18β3d (t− kh)2 + 6β2d (t− kh)

≤ −1

2
FI(µt ∥ π) + 18β3d (t− kh)2 + 6β2d (t− kh) . (13.5)

Integrating, we obtain

KL(µ(k+1)h ∥ π)− KL(µkh ∥ π) ≤ −1

2

∫ (k+1)h

kh

FI(µt ∥ π) dt+ 6β3dh3 + 3β2dh2

≤ −1

2

∫ (k+1)h

kh

FI(µt ∥ π) dt+ 4β2dh2 . (13.6)

Now by summing, we have

1

Nh

∫ Nh

0

FI(µt ∥ π) dt ≤ 2KL(µ0 ∥ π)

Nh
+ 8β2dh .

This concludes the proof.

■ 13.6.3 Asymptotic convergence of averaged LMC

Proof of Theorem 13.5.1. The one-step recursion (13.6) in the proof of Theo-
rem 13.4.2 yields

KL(µτn ∥ π)− KL(µτn−1 ∥ π) ≤ −1

2

∫ τn

τn−1

FI(µt ∥ π) dt+ 4β2dh2n .

Iterating the above bound, we obtain

KL(µτn ∥ π) ≤ KL(µ0 ∥ π)− 1

2

∫ τn

0

FI(µt ∥ π) dt+ 4β2d
n∑
k=1

h2k .

Rearranging the terms, dividing by τn, and using the convexity of the Fisher
information,

FI(µ̄τn ∥ π) ≤ 1

τn

∫ τn

0

FI(µt ∥ π) dt ≤ 2KL(µ0 ∥ π)

τn
+

8β2d

τn
S , (13.7)

where S :=
∑∞

k=1 h
2
k <∞. On the other hand, if t ∈ [τn, τn+1], integrating (13.5)

between τn and t shows that

KL(µt ∥ π) ≤ KL(µτn ∥ π) + 4β2d (t− τn)2 ≤ KL(µ0 ∥ π) + 8β2dS <∞ ,
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so that {KL(µt ∥ π) | t ≥ 0} is bounded. By convexity of the KL divergence, it
also implies that {KL(µ̄τn ∥ π) | n ∈ N} is uniformly bounded. Recalling that the
sublevel sets of KL(· ∥ π) are weakly compact we obtain that (µ̄τn)n∈N is tight. To
show that µ̄τn → π weakly, it suffices to show that every cluster point of (µ̄τn)n∈N
is equal to π.

Consider a subsequence of (µ̄τn)n∈N converging to some cluster point µ̄. Taking
n → ∞ in (13.7) and noting that τn → ∞ by our assumptions, FI(µ̄τn ∥ π) → 0,
therefore this is still true along the subsequence. Using the weak lower semiconti-
nuity of the Fisher information along the subsequence, FI(µ̄ ∥ π) = 0. This means
that for f := dµ̄

dπ
, we have

√
f ∈ dom E and E (

√
f) = 0. Since ∇V is Lipschitz,

then π has a continuous and strictly positive density on Rd, so E (
√
f) = 0 implies

that f is a constant π-a.e., and hence µ̄ = π.

■ 13.7 Conclusion

In this chapter, we have initiated the study of non-log-concave sampling by prov-
ing that, under the sole assumption that the potential has a Lipschitz gradient,
averaged LMC drives the Fisher information w.r.t. the target to zero after polyno-
mially many iterations. We have argued that this is the natural sampling analogue
of finding approximate first-order stationary points in non-convex optimization.

Although our focus was to work under the minimal assumption of smoothness,
surprisingly our analysis yielded new results for sampling from targets satisfying
a Poincaré inequality, and moreover our results attain state-of-the-art dimension
dependence for these settings for LMC.

We believe there are many intriguing directions for future work, and we list a
few to conclude.

1. (lower bounds) We ask whether one can prove matching lower bounds on the
complexity of outputting a sample whose Fisher information w.r.t. the target
is ε2. Since the setting of this work is fully non-log-concave, it may be easier
to produce lower bound constructions than the strongly log-concave case, in
which the theory of lower bounds is nascent (see §7). In §14, we investigate this
lower bound question in detail and in doing so we establish further connections
between non-convex optimization and non-log-concave sampling, although
pinning down the complexity of obtaining Fisher information guarantees is
still an open question in many regimes.

2. (improved results and further extensions) Although we have provided results
under Hessian smoothness and via variance reduction, our investigation is
still preliminary and we believe that these results can be strengthened. Ad-
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ditionally, there are other important extensions to consider; for instance, is
there an analogue of second-order stationarity in sampling?

3. (Poincaré case) The iteration complexity we obtained for smooth potentials
which satisfy a Poincaré inequality (focusing only on dimension and accuracy)

is O(d2/ε4), whereas in §3 we obtained a complexity of Õ(d3/ε2). Is it possible

to achieve Õ(d2/ε2) with a variant of LMC? If so, is averaging necessary?



Chapter 14

Sampling lower bounds in the Fisher
information metric

We prove two lower bounds for the complexity of non-log-concave sampling within
the framework of §13, which introduced the use of Fisher information (FI) bounds
as a notion of approximate first-order stationarity in sampling. Our first lower
bound shows that averaged Langevin Monte Carlo (LMC) is optimal for the regime
of large FI by reducing the problem of finding stationary points in non-convex
optimization to sampling. Our second lower bound shows that in the regime
of small FI, obtaining a FI of at most ε2 from the target distribution requires
poly(1/ε) queries, which is surprising as it rules out the existence of high-accuracy
algorithms (e.g., algorithms using Metropolis–Hastings filters) in this context.

This chapter is based on [Che+23c], joint with Patrik R. Gerber, Holden Lee,
and Chen Lu.

■ 14.1 Introduction

What is the query complexity of sampling from a β-log-smooth but possibly non-
log-concave target distribution π on Rd? Until recently, this question was only
investigated from an upper bound perspective, and only for restricted classes of
distributions, such as distributions satisfying functional inequalities [see §3, §4,
§6, and VW19; Wib19; Ma+21], distributions with tail decay conditions [DM17;
Xu+18; Li+19; Che+20b; MMS20; EH21; ZXG21; HBE22], or mixtures of log-
concave distributions [LRG18].

In §13, we developed a general framework to investigate non-log-concave sam-
pling. Motivated by stationary point analysis in non-convex optimization [see, e.g.,
Nes18] and the interpretation of sampling as optimization over the space of prob-
ability measures [JKO98; Wib18], we proposed to call any measure µ satisfying√

FI(µ ∥ π) ≤ ε an ε-stationary point for sampling, where FI(µ∥π) := Eµ[∥∇ ln µ
π
∥2]

denotes the relative Fisher information of µ from π. In §13.2, we explained

387
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the interpretation of this condition via the classical phenomenon of metastabil-
ity [Bov+02; Bov+04; BGK05]; in particular, for a multimodal distribution, small
Fisher information means that the distribution locally approximates the shape
at each mode, but not necessarily the relative weights between the modes. We
further showed (Theorem 13.4.2) that averaged Langevin Monte Carlo (LMC) can
find an ε-stationary point in O(β2dK0/ε

4) iterations, where K0 := KL(µ0 ∥ π) is
the initial Kullback–Leibler (KL) divergence to the target π.

In the field of optimization, however, there are also corresponding lower bounds
on the complexity of finding stationary points [see §12 and Vav93; Nes12; BM20;
Car+20; Car+21]. Such lower bounds are important for identifying optimal
algorithms and understanding the fundamental difficulty of the task at hand.
For example, the work of [Car+20] shows that the standard gradient descent
algorithm is optimal for finding stationary points of smooth functions, at least in
high dimension.

In this chapter, we establish the first lower bounds for Fisher information
guarantees for sampling. As we discuss below, our results also reveal a surprising
equivalence between the task of obtaining a sample which has moderate Fisher
information relative to a target distribution and the task of finding an approxi-
mate stationary point of a smooth function, thereby strengthening the connection
between the fields of non-convex optimization and non-log-concave sampling.

Our contributions. We now informally describe our main results. Details on no-
tation, our oracle model, and the definition of query complexity for sampling
(Definition 14.2.2) are given in §14.2. Precise statements of our results are given
in §14.3 and §14.4. For a density π ∝ exp(−U) the function U : Rd → R is called
the potential. Throughout, our notion of complexity is the number of queries
made to an oracle that returns the value of U (up to an additive constant) and
its gradients. For a 1-smooth function V : Rd → R and β > 0 let us define the
density πβ ∝ exp(−βV ), assuming it is well-defined (i.e.,

∫
exp(−βV ) <∞).

Our first result connects the task of obtaining Fisher information guarantees
with finding stationary points in non-convex optimization, for a particular regime
of large smoothness β.

Theorem 14.1.1 (Equivalence, informal). The following problems are equivalent.

1. Output an ε-stationary point of V .

2. Output a sample from a measure µ such that FI(µ∥πβ) ≲ βd, where β ≍ d/ε2.

By combining this equivalence with the lower bound of [Car+20] for finding
ε-stationary points, we obtain:
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Theorem 14.1.2 (First lower bound, informal). The number of queries required
to obtain a sample from a measure µ satisfying

√
FI(µ ∥ πβ) ≲

√
βd, starting

from an initial distribution µ0 with KL divergence K0 := KL(µ0 ∥ πβ), is at least
Ω(K0/d). The lower bound is attained by averaged LMC (Langevin Monte Carlo)
as given in Theorem 13.4.2.

To our knowledge an optimality result for LMC was not previously known in
any setting.

The first lower bound addresses the regime of large Fisher information, i.e.,
FI(µ∥πβ) ≲ βd. In order to target the regime of small Fisher information, we give
a construction based on hiding a bump of large mass and prove the following:

Theorem 14.1.3 (Second lower bound, informal). The number of queries required
to obtain a sample from a measure µ satisfying

√
FI(µ ∥ πβ) ≤ ε, starting from

an initial distribution µ0 with KL divergence K0 := KL(µ0 ∥ πβ) ≤ 1, is at least

(
√
β/ε)

2d/(d+2)−o(1)
as ε↘ 0.

We give a more precise form of our lower bound in §14.4. In infinite dimension
(actually, d ≥ Ω̃(

√
log(β/ε2)) suffices, see §14.4), the lower bound reads Ω̃(β/ε2),

which can be compared to the averaged LMC upper bound of O(β2d/ε4). It is an
open question to close this gap.

In terms of technical novelty, we note that the difficulty of showing the first
lower bound lies mainly in establishing the equivalence between optimization and
sampling, after which lower bounds from optimization apply; on the other hand,
the second lower bound requires significant technical work to establish.

We next discuss implications of our results.

• Towards a theory of lower bounds for sampling. The problem of ob-
taining sampling lower bounds is a notorious open problem raised in many
prior works [see, e.g., Che+18b; GLL20; LST21a; CBL22]. So far, uncondi-
tional lower bounds have only been obtained in restricted settings such as
in dimension 1; see §7 and the discussion therein, as well as the reduction
to optimization in [GLL22]. Our lower bounds are the first of their kind
for Fisher information guarantees, and are some of the only lower bounds
for sampling in general. Hence, our results take a significant step towards a
better understanding of the complexity of sampling. In particular, our first
lower bound identifies a regime in which (averaged) LMC is optimal, which
was not previously known in any setting.

• Stronger connections between non-convex optimization and non-log-
concave sampling. The equivalence in Theorem 14.1.1 provides compelling
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evidence that Fisher information guarantees are the correct analogue of sta-
tionary point guarantees in non-convex optimization, thereby supporting the
framework of §13.

• Obtaining an approximate stationary point in sampling is strictly
harder for non-log-concave targets. Ignoring the dependence on other
parameters besides the accuracy, our second lower bound yields a poly(1/ε)
lower bound for the Fisher information task for non-log-concave targets. In
contrast, it is morally possible to solve this task in polylog(1/ε) queries for
log-concave targets; see §14.5 for justification. This exhibits a stark separation
between log-concave and non-log-concave sampling. Note that the analogous
separation does not exist in the context of optimization, because there is
a poly(1/ε) lower bound for finding an ε-stationary point of a convex and
smooth function [Car+21].

• A separation between optimization and sampling. Finally, our sec-
ond lower bound yields a poly(1/ε) lower bound, even in dimension one.
In contrast, for the analogous question in optimization of finding an ε-
stationary point of a univariate function, we exhibited in §12 an algorithm
with O(log(1/ε)) complexity. To our knowledge, this is one of the first in-
stances in which sampling is provably harder than optimization.

■ 14.2 Notation and setting

Notation. Given a probability measure π on Rd which admits a density w.r.t. the
Lebesgue measure, we abuse notation by identifying π with its density.

The class of distributions that we wish to sample from are the β-log-smooth
distributions on Rd, defined as follows:

Definition 14.2.1 (Log-smooth distributions). The class of β-log-smooth distri-
butions consists of distributions πβ supported on Rd whose densities are of the form
π ∝ exp(−Uβ), for potential functions Uβ : Rd → R that are twice continuously
differentiable, and satisfy

∥∇Uβ(x)−∇Uβ(y)∥ ≤ β ∥x− y∥ , ∀x, y ∈ Rd .

Oracle model. We work under the following oracle model. The algorithm is given
access to a target distribution π in our class via two oracles: initialization and local
information. The initialization oracle outputs samples from some distribution µ0

for which KL(µ0 ∥ π) ≤ K0. The local oracle for π, given a query point x ∈ Rd,
returns the value of the potential (up to an additive constant) and its gradient at
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the query point x, i.e., the tuple (Uβ(x),∇Uβ(x)). Algorithms can access samples
from µ0 for free, and we care about the number of local information queries needed.
The query complexity is defined as follows.

Definition 14.2.2 (Query complexity). Let C (d,K0, ε; β) be the largest number
n ∈ N such that any algorithm which works in the oracle model described above
and outputs a sample from a measure µβ satisfying

√
FI(µβ ∥ πβ) ≤ ε, for any

β-log-smooth target πβ and any valid initialization oracle for πβ, requires at least
n queries to the local oracle for πβ.

The upper bound of Theorem 13.4.2 shows that using averaged LMC,

C (d,K0, ε; β) ≲ 1 ∨ β
2dK0

ε4
. (14.1)

We also note the following rescaling lemma.

Lemma 14.2.3 (Rescaling). It holds that

C (d,K0, ε; β) = C
(
d,K0,

ε√
β

; 1
)
.

Proof. Suppose that Uβ : Rd → R is β-smooth and that πβ ∝ exp(−Uβ) is a
density. Define the rescaled potential U : Rd → R via U(x) := Uβ(x/

√
β), and

let π ∝ exp(−U). (Note that the relationship between π and πβ is different from
that in §14.1.) Note that U is 1-smooth; moreover, if Z ∼ πβ then

√
β Z ∼ π.

Suppose KL(µβ ∥ πβ) = K0 and that Xβ ∼ µβ is a sample from µβ, and let µ :=
law(
√
β Xβ). Since the KL divergence is invariant under bijective transformations,

we have KL(µ ∥ π) = K0, which shows that we can simulate an initialization
oracle for π given an initialization oracle for πβ. We can also simulate the local
oracle for π given a local oracle for πβ, as ∇U(x) = 1√

β
∇Uβ(x/

√
β). Finally,

let µ̂ satisfy
√

FI(µ̂ ∥ π) ≤ ε/
√
β and write µ̂β := law(X̂/

√
β) where X̂ ∼ µ̂. A

straightforward calculation shows that
√

FI(µ̂β ∥ πβ) ≤ ε. This proves the upper
bound C (d,K0, ε; β) ≤ C (d,K0, ε/

√
β; 1), and the reverse bound follows because

this reduction is reversible.

From here on, we abbreviate C (d,K0, ε) := C (d,K0, ε; 1).

■ 14.3 Reduction to optimization and the first lower bound

In this section, we show a perhaps surprising equivalence between obtaining
Fisher information guarantees in sampling and finding stationary points of smooth
functions in optimization. The formal statement of the equivalence is as follows.
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Theorem 14.3.1 (Equivalence). Let V : Rd → R be a 1-smooth function such
that for any β > 0, the function exp(−βV ) is integrable. Let πβ be the probability
measure with density πβ ∝ exp(−βV ), where β = d/ε2.

1. Suppose that x ∈ Rd is a point with ∥∇V (x)∥ ≤ ε. Then, for µβ :=
normal(x, β−1Id), it holds that FI(µβ ∥ πβ) ≤ 10βd.

2. Conversely, suppose that µ is such that FI(µ ∥ πβ) ≤ βd. Let X ∼ µ be a
sample. Then, ∥∇V (X)∥ ≤ 3ε with probability at least 1/2.

Proof. See §14.6.1.

Note that an oracle for βV can be simulated from an oracle for V , so that the
above theorem provides an exact equivalence between a sampling problem and an
optimization problem within the oracle model, up to universal constants.

As a first application of this equivalence, we observe that averaged LMC yields
an nearly optimal algorithm for finding stationary points of smooth functions. We
recall the LMC algorithm for sampling from a density π ∝ exp(−U). We fix a
step size h > 0, initialize at X0 ∼ µ0, and for t ∈ [kh, (k + 1)h], we set

Xt = Xkh − (t− kh)∇U(Xkh) +
√

2 (Bt −Bkh) , (14.2)

where (Bt)t≥0 is a standard Brownian motion in Rd. Let µt := law(Xt) denote the
law of the algorithm at time t. Then, the averaged LMC algorithm at iteration
N outputs a sample from the law of µ̄Nh := (Nh)−1

∫ Nh
0

µt dt. This is obtained
algorithmically as follows: first, we sample a time t ∈ [0, Nh] uniformly at random
(independently of all other random variables). Let k denote the largest integer such
that kh ≤ t. We then compute X0, Xh, X2h, . . . , Xkh using the LMC recursion,
and then output Xt which is obtained via the partial LMC update (14.2).

Corollary 14.3.2 (Averaged LMC is nearly optimal for finding stationary points).
Let V : Rd → R be 1-smooth and satisfy V (0) − inf V ≤ ∆. Let ε > 0 be
such that ∆/ε2 ≥ 1. Assume that for β = d/ε2, the probability measure with
density πβ ∝ exp(−βV ) is well-defined and that

∫
∥·∥2 dπβ ≤ poly(∆, d, 1/ε).

Consider running averaged LMC with step size h = Θ̃(1/β), initial distribution
µ0 = normal(0, β−1Id), and target πβ, with

N ≥ Ω̃
(∆

ε2

)
iterations .

Then, we obtain a sample X such that with probability at least 1/2, it holds that
∥∇V (X)∥ ≲ ε.
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Proof. We combine Theorem 14.3.1 with the analysis of averaged LMC in Theo-
rem 13.4.2; see §14.6.2.

This matches the usual O(∆/ε2) complexity for the standard gradient descent
algorithm to find an ε-stationary point [see, e.g., Bub15; Nes18]. On its own, this
observation is not terribly surprising because as β →∞, the LMC iteration (14.2)
recovers the gradient descent algorithm. However, it is remarkable that the
analysis in §13 of averaged LMC in Fisher information nearly recovers the gradient
descent guarantee.

This observation also suggests that the lower bound of [Car+20], which estab-
lishes optimality of gradient descent for finding stationary points in high dimen-
sion, also implies optimality of averaged LMC in a certain regime. We obtain the
following theorem.

Theorem 14.3.3 (First lower bound). Suppose that the dimension d satisfies

Õ(K0) ≥ d ≥ Ω̃(K
2/3
0 ). Then, it holds that

C
(
d,K0, ε =

√
βd; β

)
≳
K0

d
.

Proof. In the lower bound of [Car+20], the authors construct a family of functions
F such that each f ∈ F is β-smooth and satisfies f(0) − inf f ≤ ∆. Moreover,
any randomized algorithm which, for any f ∈ F , makes queries to a local oracle
for f and outputs an δ-stationary point of f with probability at least 1/2, requires
at least Ω(β∆/δ2) queries. The dimension of the functions in the construction is

d = Θ̃(β2∆2/δ4). Setting βV = f and using the equivalence from Theorem 14.3.1
completes the proof. Details are given in §14.6.3.

The lower bound of Theorem 14.3.3 is matched by averaged LMC, see (14.1).

In the theorem, the restriction d ≥ Ω̃(K
2/3
0 ) arises because the lower bound

construction of [Car+20] for finding a ε-stationary point of a smooth function

requires a large dimension d ≥ Ω̃(1/ε4). If, as conjectured in [BM20] and in §12,
the lower bound construction can be embedded in dimension d ≳ log(1/ε), then
the restriction in Theorem 14.3.3 would instead become d ≳ logK0.

■ 14.4 Bump construction and the second lower bound

The main drawback of the first lower bound (Theorem 14.3.3) is that it only
provides a lower bound on the Fisher information for a specific value of the target
accuracy, ε =

√
βd. To complement this result, we provide the following lower

bound for the query complexity of sampling to high accuracy in Fisher information;
recall that it suffices to consider β = 1 by the rescaling lemma (Lemma 14.2.3).
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Theorem 14.4.1 (Second lower bound). For the class of 1-log-smooth distri-
butions on Rd, there exist universal constants c, c′ > 0, such that for all ε <
exp(−c′d), we have

C (d,K0 = 1, ε) ≳
( cd

log(1/ε)

)d/2 1

ε2d/(d+2)
. (14.3)

Proof. Here we sketch the main ideas of the proof. We construct a family of
distributions in our class which put a constant fraction of their mass on disjoint
bumps. Specifically, let Br denote the ball of radius r in Rd, and let P2r,R be a
maximal 2r-packing of BR−r. For any ω ∈P2r,R, let π̃ω denote the unnormalized
density

π̃ω(x) := exp

(
r2ϕ

(∥x− ω∥
r

)
− 1

2
(∥x∥ −R)2+

)
=: exp

(
−Vω(x)

)
, (14.4)

where ϕ : R+ → R+ is a decreasing, twice continuously differentiable function
supported on [0, 1] with bounded second derivative, chosen such that π̃ω is 1-log-
smooth. We see that the mass of the distribution πω will be concentrated on BR.
Moreover, by a careful choice of r we can ensure that exactly half of the mass of
πω is in the set ω +Br.

The key idea is the following reduction: being able to sample from πω within
small Fisher information means that we can estimate ω ∈ P2r,R. To make
this reduction work, note that if we make a query within ω + Br, then we can
immediately identify ω. Because πω puts half of its mass on ω+Br by construction,
if we can sample from a distribution within total variation distance less than 1/2
from πω then we will sample a point in ω+Br with constant probability. The last
ingredient is to note that sampling close to πω in Fisher information implies that
we are close in total variation distance due to the following functional inequality
(see [Gui+09]): for any probability measure µ,

TV(µ, πω)2 ≤ 1

4
CPI(πω)FI(µ ∥ πω) ,

where CPI(πω) is the Poincaré constant of πω.
As a result, a query complexity lower bound on sampling in Fisher information

directly follows from a lower bound on the query complexity of estimating ω,
which by standard information-theoretic arguments takes Ω(|P2r,R|) queries.

Although the scheme of the argument is straightforward, the proof requires
careful balancing of the parameters r, R, d and ε and some delicate calculations
to satisfy all of the desired properties. The details are given in §14.7.



Sec. 14.4. Bump construction and the second lower bound 395

The lower bound in Theorem 14.4.1 deteriorates in high dimension; note that
due to the restriction ε ≤ exp(−c′d), the first factor in (14.3) is exponentially small
in d. However, we can remedy this by noting that a d-dimensional construction
can be embedded into Rd′ for any d′ ≥ d, and hence

C (d,K0 = 1, ε) ≳ max
d⋆≤d

[( cd⋆
log(1/ε)

)d⋆/2
ε4/(d⋆+2)

] 1

ε2
.

By optimizing over d⋆, we show (§14.7.8) that if ε ≤ 1/C, then

C (d, 1, ε) ≳


1

ε2d/(d+2) exp(C
√

log(1/ε) log log(1/ε))
, if d ≲

√
log(1/ε)

log log(1/ε)
,

1

ε2 exp(C
√

log(1/ε) log log(1/ε))
, if d ≳

√
log(1/ε)

log log(1/ε)
,

=
1

εmin{2d/(d+2),2}−o(1) , for all d ≥ 1 ,

as ε → 0, where C > 0 is universal. Noting 2d/(d + 2) < 2, this yields the
simplified bound in Theorem 14.1.3.

For d = 1, Theorem 14.4.1 reads C (1, 1, ε) ≳ 1/(ε2/3
√

log(1/ε)). However, for
the one-dimensional case we can in fact obtain better bounds on the Poincaré con-
stants of the measures in our lower bound construction, leading to an improvement
of the exponent from 2/3 to 1. This result is stated below.

Theorem 14.4.2 (Second lower bound, univariate case). For the class of 1-log-
smooth distributions on R, there exists a universal constant c > 0, such that for
all ε < c, we have

C (d = 1, K0 = 1, ε) ≳
1

ε
√

log(1/ε)
.

Proof. See §14.7.9.

The univariate setting also provides a convenient setting in order to compare
our lower bounds with algorithms such as rejection sampling, so we include a
detailed discussion in §14.8. We highlight a few interesting conclusions of the
discussion here.

• Although rejection sampling can indeed obtain Fisher information guaran-
tees with complexity O(log(1/ε)) (Proposition 14.8.1), this does not con-
tradict our lower bounds because rejection sampling cannot be directly im-
plemented within our oracle model. Instead of an initialization µ0 satisfy-
ing KL(µ0 ∥ π) ≤ K0, rejection sampling requires the stronger assumption
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max{sup ln(µ0/π), sup ln(π/µ0)} ≤M0. Under this stronger initialization or-
acle, the complexity guarantee for rejection sampling is O(exp(3M0) log(1/ε)).

• In the model with the stronger initialization oracle (i.e., bounded M0), any
algorithm which has polylog(1/ε) dependence on the accuracy ε necessarily
incurs exponential dependence on M0 (Corollary 14.8.3). This demonstrates
a fundamental trade-off between high accuracy (e.g., rejection sampling) and
polynomial dependence on M0 (e.g., averaged LMC).

• The initialization oracle with bounded M0 is strictly stronger than the one
with bounded K0. In other words, sampling is strictly easier in the presence
of an initialization with bounded density ratio to the target (i.e., a warm
start) than an initialization with bounded KL divergence. This is consistent
with intuition from prior work on the complexity of the Metropolis-adjusted
Langevin algorithm [see §5, §6, and LST21a; WSC22].

• The effective radius R of our lower bound construction scales with 1/ε. This
is in fact necessary: if R is fixed then there is an algorithm with O(log(1/ε))
complexity (Proposition 14.8.4).

■ 14.5 Separation between log-concave and non-log-concave sampling

We show that O(log 1
ε
) Fisher information query complexity is attainable for log-

concave densities, by giving a generic post-processing method to turn χ2-error
guarantees into Fisher information guarantees.

■ 14.5.1 Post-processing lemma

Let Qt denote heat flow for time t (i.e., convolution with a Gaussian of variance
t). We aim to bound FI(µQt ∥ π), where π is the distribution that we wish to
sample from, and µ is the output of a sampling algorithm with chi-squared error
guarantees.

Lemma 14.5.1 (Fisher information guarantee from a chi-squared guarantee).
Suppose that µ and π are two probability measures on Rd, that π is β-log-smooth,
and that χ2(µ∥π) ≤ ε2χ ≤ 1. Then, if t ≲ 1/β for a small enough implied constant,
it holds that

FI(µQt ∥ π) ≲
εχ (d+ log(1/εχ))

t
+ β2dt .
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To prove Lemma 14.5.1, we start with

FI(µQt ∥ π) :=

∫
∥∇ ln(µQt)(x)−∇ ln π(x)∥2 µQt(dx)

≤ 2FI(µQt ∥ πQt) + 2

∫
Rd
∥∇ log(πQt)(x)−∇ log π(x)∥2 µQt(dx) .

(14.5)

For the first term in (14.5), we use the following lemma on error in the score
function (gradient of the log-density).

Lemma 14.5.2 (Score error under heat flow, [LLT23, Lemma 6.2]). Let µ and π
be probability measures on Rd, and let Qt denote the heat semigroup at time t. In
addition, we assume that χ2(µ ∥ π) ≤ ε2χ ≤ 1. Then,

FI(µQt ∥ πQt) =

∫
Rd
∥∇ ln(µQt)(x)−∇ ln(πQt)(x)∥2 µQt(dx) ≲

εχ
(
d+ ln 1

εχ

)
t

.

For the second term in (14.5), we use the following score perturbation lemma.

Lemma 14.5.3 ([LLT22, Lemma C.11]). Suppose that π ∝ exp(−V ) is a proba-
bility density on Rd, where V is β-smooth. Then for β ≤ 1

2t
,∥∥∥∇ ln

π(x)

(πQt)(x)

∥∥∥ ≤ 6βd1/2t1/2 + 2βt ∥∇V (x)∥ .

We are now ready to prove Lemma 14.5.1.

Proof of Lemma 14.5.1. For the second term in (14.5), Lemma 14.5.3 yields

EµQt [∥∇ ln(πQt)−∇ lnπ∥2] ≲ β2dt+ β2t2 EµQt [∥∇V ∥2] .
On the other hand, Lemma 14.6.1 below yields

EµQt [∥∇V ∥2] ≲ FI(µQt ∥ π) + βd .

Hence, from (14.5) and Lemma 14.5.2,

FI(µQt ∥ π) ≲ FI(µQt ∥ πQt) + EµQt [∥∇ ln(πQt)−∇ lnπ∥2]

≲
εχ (d+ log(1/εχ))

t
+ β2dt+ β2t2 FI(µQt ∥ π) .

If t ≲ 1/β for a small enough implied constant, it implies

FI(µQt ∥ π) ≲
εχ (d+ log(1/εχ))

t
+ β2dt

as desired.
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■ 14.5.2 High-accuracy Fisher information guarantees for log-concave tar-

gets

We now apply the post-processing lemma (Lemma 14.5.1). We recall the following
high-accuracy guarantee for sampling from log-concave targets in chi-squared
divergence, based on the proximal sampler.

Theorem 14.5.4 (Corollary 4.3.7). Suppose that the target distribution π ∝
exp(−V ) is β-log-smooth and satisfies a Poincaré inequality with constant CPI.
Then, the proximal sampler, with rejection sampling implementation of the re-
stricted Gaussian oracle and initialized at µ0, outputs a sample from a measure µ
with χ2(µ ∥ π) ≤ ε2χ using N queries to π in expectation, where N satisfies

N ≤ Õ
(
CPIβd

(
log(1 + χ2(µ0 ∥ π)) ∨ log

1

εχ

))
.

We now briefly justify why this morally leads to an O(log(1/ε)) complexity
guarantee in Fisher information, omitting details for brevity. Assume that β = 1
and that π is log-concave. If we set t ≍ ε2/d in Lemma 14.5.1, then we can ensure
that FI(µQt ∥ π) ≤ ε2, where µ is the output of the proximal sampler, provided

that εχ ≤ Õ(ε4/d2). Applying Theorem 14.5.4, this can be achieved using

N = Õ
(
CPId

(
log(1 + χ2(µ0 ∥ π)) ∨ log

√
d

ε

))
queries in expectation. Let us give crude bounds for these terms. First, let
m2

2 := Eπ[∥·∥2] denote the second moment of π. Then, we know that the Poincaré
constant of π is bounded because π is log-concave, and in fact CPI ≲ m2

2 [see, e.g.,

Bob99]. Also, if ∇V (0) = 0, then we can initialize with log(1 +χ2(µ0 ∥π)) ≤ Õ(d)
(see §3.6.6). Putting this together, we see that N = poly(d,m2, log(

√
d/ε)) queries

suffice in expectation in order to obtain the guarantee
√
FI(µQt ∥ π) ≤ ε. This is

in contrast with our lower bound in Theorem 14.4.1, which shows that poly(1/ε)
queries are necessary to obtain Fisher information guarantees for non-log-concave
targets, thereby establishing a separation between log-concave and non-log-concave
sampling in this context.

The astute reader will observe that there are some holes in this argument when
comparing the lower and upper bounds. Namely, the upper bound uses further
properties about the target distribution (e.g., ∇V (0) = 0) and does not strictly
hold in the oracle model that we describe in §14.2; the upper bound is in terms of
the expected number of queries made, because the number of queries made by the
algorithm is random; and the upper bound depends on other parameters such as
m2 which do not appear in the lower bound. In particular, the third point requires
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some consideration because in our lower bound construction for Theorem 14.4.1,
the effective radius R of the distributions depends on 1/ε. We claim, however,
that if we set d,R = polylog(1/ε), then the upper bound for log-concave targets
is polylog(1/ε) (with the caveats just discussed) and the lower bound for non-
log-concave targets is poly(1/ε). As this is not the focus of our work, we do not
attempt to make this reasoning more rigorous; rather, we leave it as the sketch
of an argument showing that non-log-concave sampling is fundamentally harder
than log-concave sampling. We also note that our argument in fact shows that
polylog(1/ε) query complexity is possible for distributions satisfying a Poincaré
inequality, which form a strict superclass of log-concave distributions.

■ 14.6 Proofs for the first lower bound

■ 14.6.1 Proof of the equivalence

In order to prove the equivalence in Theorem 14.3.1, we recall the following useful
lemma (see Lemma 3.6.3).

Lemma 14.6.1. Let π ∝ exp(−V ) be a β-log-smooth density on Rd. Then, for
any probability measure µ,

Eµ[∥∇V ∥2] ≤ FI(µ ∥ π) + 2βd .

With the lemma in hand, we are ready to prove Theorem 14.3.1.

Proof of Theorem 14.3.1. 1. We can explicitly compute

FI(µβ ∥ πβ) =

∫
∥∇ lnµβ −∇ lnπβ∥2 dµβ

=

∫
∥β (z − x)− β∇V (z)∥2 dµβ(z)

≤ 2β2

∫
∥z − x∥2 dµβ(z) + 2β2

∫
∥∇V (z)∥2 dµβ(z)

≤ 2β2

∫
∥z − x∥2 dµβ(z) + 4β2

∫
{∥z − x∥2 + ∥∇V (x)∥2} dµβ(z)

≤ 6β2

∫
∥z − x∥2 dµβ(z) + 4β2 ∥∇V (x)∥2︸ ︷︷ ︸

≤ε2

,

where we used smoothness of V . Also,
∫
∥z − x∥2 dµβ(z) = d/β. Hence,

FI(µβ ∥ πβ) ≤ 6βd+ 4β2ε2 = 10βd ,

provided β = d/ε2.
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2. Conversely, since ∇ ln(1/πβ) = β∇V is β-Lipschitz, from Lemma 14.6.1

Eµ[∥∇V ∥2] =
1

β2
Eµ[∥∇(βV )∥2] ≤ 1

β2
{FI(µ ∥ πβ) + 2βd} ≤ 3d

β
.

If we take β = d/ε2, then Eµ[∥∇V ∥2] ≤ 3ε2. By Chebyshev’s inequality,
X ∼ µ satisfies ∥∇V (X)∥ ≤

√
6 ε with probability at least 1/2.

■ 14.6.2 Proof of the averaged LMC guarantee

In order to apply Theorem 13.4.2, we need a bound on the KL divergence at
initialization. Such bounds are standard; however, since §3.6.6 assumes that we
start at a stationary point of V (contrary to the present setting), we present an
adapted version.

Lemma 14.6.2 (KL divergence at initialization). Suppose that U : Rd → R is a
function such that U(0)− inf U ≤ ∆, ∇U is β-Lipschitz, and m :=

∫
∥·∥ dπ <∞

where π ∝ exp(−U). Then, for µ0 = normal(0, β−1Id), we have the bound

KL(µ0 ∥ π) ≲ ∆ + d
(
1 ∨ ln(βm2)

)
.

Proof. Write

µ0

π
= exp

(
U − β

2
∥·∥2

) ∫
exp(−U)∫

exp(−U − δ ∥·∥2)

∫
exp(−U − δ ∥·∥2)

(2π/β)d/2
,

where δ > 0 is chosen later.
For the first term, by smoothness and Young’s inequality,

U(x)− β

2
∥x∥2 ≤ U(0) + ⟨∇U(0), x⟩ ≤ U(0) +

∥∇U(0)∥2
2β

+
β ∥x∥2

2
.

Plugging in x = − 1
β
∇U(0),

U
(
− 1

β
∇U(0)

)
− U(0) ≤ − 1

2β
∥∇U(0)∥2

or

∥∇U(0)∥2 ≤ 2β
(
U(0)− U

(
− 1

β
∇U(0)

))
≤ 2β

(
U(0)− inf U

)
≤ 2β∆ .
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Hence, for any x,

U(x)− β

2
∥x∥2 ≤ U(0) + ∆ +

β ∥x∥2
2

.

For the second term, Markov’s inequality yields∫
exp(−U − δ ∥·∥2)∫

exp(−U)
=

∫
exp(−δ ∥·∥2) dπ ≥ exp(−4δm2) π{∥·∥ ≤ 2m}

≥ 1

2
exp(−4δm2) .

For the third term,∫
exp(−U − δ ∥·∥2)

(2π/β)d/2
≤ exp(− inf U)

∫
exp(−δ ∥·∥2)

(2π/β)d/2
= exp(− inf U)

( β
2δ

)d/2
.

Combining these bounds,

KL(µ0 ∥ π) = Eµ0 ln
µ0

π

≤ U(0)− inf U + ∆ +
β

2
Eµ0 [∥·∥2] + ln 2 + 4δm2 +

d

2
ln
β

2δ
.

Now we set δ = 1
4m2 to obtain

KL(µ0 ∥ π) ≲ ∆ + d
(
1 ∨ ln(βm2)

)
as claimed.

Proof of Corollary 14.3.2. Let V be 1-smooth and apply the above lemma to
U = βV , which is β-smooth and satisfies U(0)− inf U ≤ β∆, so that

K0 := KL(µ0 ∥ πβ) ≲ β∆ + d
(
1 ∨ ln(β Eπβ [∥·∥2])

)
= Õ(β∆ + d) . (14.6)

The main result of §13 says that after N steps of averaged LMC, with an appro-
priate choice of step size h, we output a sample from µ satisfying

FI(µ ∥ πβ) ≲
β
√
K0d√
N

.

To apply this result, we find N such that this inequality implies FI(µ ∥ πβ) ≤ βd,
where we recall that β = d/ε2; this requires N ≳ K0/d. From (14.6), it suffices to

have N ≥ Ω̃(∆/ε2), provided ∆/ε2 ≥ 1. The result for finding stationary points
via averaged LMC now follows from the equivalence in Theorem 14.3.1.
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■ 14.6.3 Proof of the first lower bound

Proof of Theorem 14.3.3. Let F be the family constructed in the lower bound
of [Car+20], and let f ∈ F . Recall that F satisfies the following properties: each
f ∈ F is β-smooth with f(0)− inf f ≤ ∆; any randomized algorithm which, for
any f ∈ F , makes queries to a local oracle for f and outputs an δ-stationary
point of f with probability at least 1/2, requires at least Ω(β∆/δ2) queries.

We set δ := 4
√
βd. From the Fisher information lemma (Lemma 14.6.1), if we

can obtain a sample from a measure µ such that for πf ∝ exp(−f), it holds that
FI(µ∥πf ) ≤ βd, then a sample from µ is a δ-stationary point of f with probability
at least 1/2.

We set the initialization oracle to simply output samples from the distribution
µ0 := normal(0, β−1Id). We need to compute the value of K0 := supf∈F KL(µ0∥πf ),
and for this we use Lemma 14.6.2. First, we must bound the second moment
Eπf [∥·∥2]. Since we only care about polynomial dependencies for this calculation,
let poly denote any positive quantity for which both the quantity and its inverse
are bounded above by polynomials in β, ∆, d, and 1/δ. Inspecting the proof
of [Car+20] and using the notation therein, each f ∈ F is of the form

f(x) = poly · f̃T,U
(
ρ(x/poly)

)
+

1

2τ 2
∥x∥2 , where τ = poly .

Also, f̃T,U is bounded; thus, πf ∝ exp(−f) is well-defined. To bound the second
moment of πf , we can use the Donsker–Varadhan variational principle to write,
for any λ > 0,

Eπf [∥·∥2] ≤
1

λ
{KL(πf ∥ ν) + lnEν exp(λ ∥·∥2)} ,

where ν := normal(0, τId). By choosing λ = 1/poly, we can ensure that

lnEν exp(λ ∥·∥2) ≤ 1 .

Next, since ν satisfies a log-Sobolev inequality with constant poly, we obtain

Eπf [∥·∥2] ≤ poly ·
(
1 + FI(πf ∥ ν)

)
.

The Fisher information is computed to be

FI(πf ∥ ν) = poly · Eπf
[∥∥∇(f̃T,U(ρ(·/poly)

))∥∥2]
.

Here, f̃T,U : Rd → R and ρ : Rd → Rd are poly-Lipschitz, and hence∥∥∇(f̃T,U(ρ(·/poly)
))∥∥ ≤ poly .
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Putting everything together, we deduce that Eπf [∥·∥2] ≤ poly.

From Lemma 14.6.2, we can take K0 ≲ ∆ + Õ(d). If K0 ≥ Ω̃(d), then this
shows that ∆ ≳ K0. From the lower bound of [Car+20], we obtain

C (d,K0,
√
βd; β) ≳

β∆

δ2
≳
βK0

βd
=
K0

d
.

Finally, in order for the construction of [Car+20] to be valid, the functions must

be defined in dimension d ≥ Ω̃((K0/d)2), which holds provided d ≥ Ω̃(K
2/3
0 ).

■ 14.7 Proofs for the second lower bound

■ 14.7.1 Proof of Theorem 14.4.1

Throughout the proof, we will often work with unnormalized densities. For a
distribution π, which we identify with its density, we denote by π̃ an unnormalized
density, where π = π̃

Z
and the normalizing constant is given by Z :=

∫
Rd π̃(x) dx.

We reduce the task of estimating the distribution from queries to the task of
sampling. Namely, we construct a set of distributions π that are 1-log-smooth,
such that if we can sample well from π in Fisher information, then we can estimate
its identity. Let Br denote the ball of radius r in Rd; let Vd := π

d/2/Γ(d
2

+1) denote
the volume of B1, and let Ad−1 = dVd denote the surface area of ∂B1. Let P2r,R

be a maximal 2r-packing of BR−r, for some R ≥ r to be specified. By standard

volume arguments [see, e.g., Ver18, §4.2], we know that |P2r,R| ≥
(
R−r
2r

)d
. For

any ω ∈P2r,R, let π̃ω denote the unnormalized density

π̃ω(x) := exp

(
r2ϕ

(∥x− ω∥
r

)
− 1

2
(∥x∥ −R)2+

)
=: exp

(
−Vω(x)

)
, (14.7)

where (x)+ := max(0, x), and ϕ : R+ → R+ is a bump function with the following
properties1:

(ϕ.1) ϕ is continuous, decreasing, supported on [0, 1], and twice continuously dif-
ferentiable on the open interval (0,∞).

(ϕ.2) ϕ(x) = ϕ(0)− 1
2
x2 for all x ∈ [0, α] for some α > 0.

(ϕ.3) supx>0 |ϕ′′(x)| ≤ 1.

1One such function is ϕ(x) =


11
64 − 1

2x
2 , for x ∈ [0, 1/4] ,

1
27

(
4 + 8x− 48x2 + 56x3 − 20x4

)
, for x ∈ [1/4, 1] ,

0 , otherwise .



404 CHAPTER 14. SAMPLING LOWER BOUNDS IN THE FISHER INFORMATION METRIC

The above implies that on Rd, x 7→ ϕ(∥x∥) is 1-smooth (see Lemma 14.7.10),
and hence π̃ω is 1-log-smooth. For a measurable set A, we will write π̃ω(A) :=∫
A
π̃ω(x) dx and we let Zω := π̃ω(Rd) denote the normalizing constant for π̃ω.
We also define the null probability measure πinit to have unnormalized density

π̃init(x) := exp
(
−1

2
(∥x∥ −R)2+

)
,

with normalizing constant Zinit := π̃init(Rd).
The distribution πω is the combination of a flat, uniform distribution on BR,

fast decaying tails outside of BR, and a bump of radius r around the point
ω ∈ P2r,R. The following lemma summarizes the properties that we need for
the lower bound construction. Together, Properties (P.1) and (P.2) imply that
if an algorithm outputs a sample X from a distribution which is close in Fisher
information to πω, then X is likely to lie in the set ω+Br. Hence, an algorithm for
sampling from πω can be used to estimate ω. Property (P.4) is then used to prove
a lower bound on the number of queries to solve the estimation task. Finally,
Property (P.3) is needed in order to ensure that there is a valid initialization
oracle with K0 = 1.

Lemma 14.7.1 (Lower bound construction). There exist universal constants
cε, c > 0 such that for every d ≥ 1 and ε ≤ exp(−cεd) we can choose r, R such
that the following properties hold.

(P.1) (most of the mass lies in the bump) For any ω ∈P2r,R,

πω(ω +Br) =
1

2
.

(P.2) (FI guarantees imply TV guarantees) For any ω ∈ P2r,R and any probability
measure µ, √

FI(µ ∥ πω) ≤ ε =⇒ TV(µ, πω) ≤ 1

3
.

(P.3) (initial KL divergence) There exists a probability measure πinit that satisfies

max
ω∈P2r,R

KL(πinit ∥ πω) ≤ log 2 .

(P.4) (lower bound on the packing number) It holds that

|P2r,R| ≥
( cd

log(1/ε)

)d/2 1

ε2d/(d+2)
.
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Proof. First, Property (P.1) holds by the definition of r and R, see (14.15) and
Lemma 14.7.5. We prove Property (P.2) in §14.7.4, Property (P.3) in §14.7.5,
and Property (P.4) in §14.7.6.

Remark 14.7.2. In order for the bound in Property (P.4) to be non-trivial, i.e.,
|P2r,R| ≳ 1, we require ε−2d/(d+2) ≳ (

√
log(1/ε)/(cd))d, i.e.,

2d

d+ 2
log

1

ε

!

≥ d

2
log log

1

ε
− d

2
log d+ Ω(d) .

Let γ be such that log(1/ε) = γd. Substituting this in, we require

2γd2

d+ 2

!

≥ d

2
log γ + Ω(d) .

This holds as long as γ is larger than a universal constant, which is equivalent to
ε ≤ exp(−cεd) for a sufficiently large absolute constant cε > 0.

Using the lemma, we can now apply a standard information theoretic argument.
We recall the statement of Fano’s inequality, see [CT06, §2] for background.

Theorem 14.7.3 (Fano’s inequality). Let ω ∼ uniform(X), where X is a finite
set. Then, for any estimator ω̂ which is measurable w.r.t. the data ξ, it holds that

P{ω̂ ̸= ω} ≥ 1− I(ξ;ω) + ln 2

ln |X| ,

where I denotes the mutual information.

With this theorem in hand, we are ready to prove Theorem 14.4.1.

Proof of Theorem 14.4.1. Let ω ∼ uniform(P2r,R) and consider the task of esti-
mating ω with randomized algorithms that have query access to πω. We first
show that a sampling algorithm can solve this estimation task. Suppose that
there is an algorithm that works under the oracle model specified in §14.2, with
initialization oracle outputting samples from µ0 = πinit given in Property (P.3),
which guarantees that KL(µ0 ∥ πω) ≤ log 2. For any ω ∈P2r,R and target πω, the
algorithm makes at most N queries to the local oracle, and outputs a sample from
the measure µN with

√
FI(µN ∥ πω) ≤ ε. We can then estimate ω as follows: let

X ∼ µN , and set

ω̂ := arg min
ω∈P2r,R

∥X − ω∥ .



406 CHAPTER 14. SAMPLING LOWER BOUNDS IN THE FISHER INFORMATION METRIC

Because the initialization oracle µ0 is independent of the choice of ω, the estimator
ω̂ is the output of a randomized algorithm that only uses the query information
to πω to estimate ω.

The probability that ω̂ succeeds can be calculated as follows. By Prop-
erty (P.2), we have TV(µN , πω) ≤ 1/3. Let X ∼ µN ; then,

P{X ∈ ω +Br} = µN(ω +Br) ≥ πω(ω +Br)− TV(µN , πω) ≥ 1

2
− 1

3
=

1

6
,

where we used Property (P.1). Hence we see that

P{ω̂ = ω} ≥ 1

6
. (14.8)

Now we prove a lower bound for the estimation task for any algorithm that
succeeds with probability at least 1

6
. Let x1, . . . , xN denote the query points made

by the algorithm. We first prove a lower bound for deterministic algorithms, where
each query point xi is a deterministic function of the previous queries and oracle
outputs (xi′ , Vω(xi′),∇Vω(xi′) : i′ = 1, . . . , i− 1). Since the initialization oracle is
independent of ω, the data available to the algorithm is

ξN :=
(
xi, Vω(xi),∇Vω(xi) : i = 1, . . . , N

)
.

We assume that the algorithm has made at most N ≤M/2 queries where M :=
|P2r,R| (otherwise, N ≥M/2 and this is our desired lower bound).

Applying Fano’s inequality (Theorem 14.7.3):, we therefore have

P{ω̂ ̸= ω} ≥ 1− I(ξN ;ω) + ln 2

lnM
. (14.9)

Applying the chain rule for the mutual information,

I(ξN ;ω) ≤
N∑
i=1

I
(
xi, Vω(xi),∇Vω(xi); ω

∣∣ ξi−1) .
Given ξi−1, the query point xi is deterministic. We can bound the mutual infor-
mation via the conditional entropy,

I
(
xi, Vω(xi),∇Vω(xi); ω

∣∣ ξi−1) ≤ H
(
Vω(xi),∇Vω(xi)

∣∣ ξi−1) .
If one of the query points x1, . . . , xi−1 landed in the ball ω+Br, then ω is fully

known and the conditional entropy is zero. Otherwise, given the history ξi−1, the
random variable ω is uniformly distributed on the set

P2r,R(i) := {ω′ ∈P2r,R | xi′ /∈ ω′ +Br for i = 1, . . . , i− 1} .
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If xi does not belong to ω′ + Br for some ω′ ∈ P2r,R(i), then the query point
is useless and the conditional entropy is again zero. Otherwise, conditionally on
ξi−1, the tuple (Vω(xi),∇Vω(xi)) can take on two possible values with probability
1/|P2r,R(i)| and 1− 1/|P2r,R(i)| respectively, depending on whether or not xi ∈
ω +Br. The conditional entropy is thus bounded by

H
(
Vω(xi),∇Vω(xi)

∣∣ ξi−1) ≤ h
( 1

|P2r,R(i)|
)
≤ h

( 2

M

)
,

where h(p) := p ln 1
p

+ (1− p) ln 1
1−p is the binary entropy function. Assuming that

M ≥ 4 (which can be ensured thanks to Remark 14.7.2),

h
( 2

M

)
≤ 4

M
ln
M

2
.

Substituting this into (14.9),

P{ω̂ ̸= ω} ≥ 1−
4N
M

ln(M/2) + ln 2

lnM
. (14.10)

If M ≥ 4, and N ≤ 1
12
M , we would obtain P{ω̂ ̸= ω} > 5/6, contradicting (14.8).

Hence, we deduce that N ≳M .
In general, if the algorithm is randomized, it can depend on a random seed ζ

that is independent of ω. Then we can apply (14.10) conditional on ζ, and obtain

P{ω̂ ̸= ω | ζ} ≥ 1−
4N
M

ln(M/2) + ln 2

lnM
.

Taking expectation over ζ, we see that the lower bound (14.10), and hence N ≳M ,
holds for randomized algorithms as well.

The proof of Theorem 14.4.1 is concluded by noting that the estimation lower
bound gives a lower bound on sampling, and that Property (P.4) provides us with
a lower bound on M .

In the remaining sections, we focus on establishing Lemma 14.7.1.

■ 14.7.2 Estimates for integrals

In this section we provide useful estimates for integrals that appear in the nor-
malizing constants for our lower bound construction. Notice that since π̃ω = 1 on
BR \ (ω +Br),

Zω = π̃ω(Rd \BR) + π̃ω(BR)
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= π̃ω(Rd \BR) + (Rd − rd)Vd +

∫
Br

exp
(
r2ϕ

(∥x∥
r

))
dx

= π̃ω(Rd \BR) + (Rd − rd)Vd + rd Ir ,

where we define Ir :=
∫
B1

exp(r2ϕ(∥x∥)) dx. We record some useful properties
of the quantities defined thus far that will be used throughout the proof of
Lemma 14.7.1.

Lemma 14.7.4 (Main estimates). For any number c > 0 there exists cr(c) > 0
depending only on c such that for all r ≥ cr(c)

√
d, the following hold:

1. (asymptotics of Ir)

1

2
≤ rd Ir

(2π)d/2 exp(r2ϕ(0))
≤ 2 . (14.11)

2. (mass outside BR) There is a universal constant c0 > 2, independent of c,
such that√

π

2
VddR

d−1 ≤ π̃ω(Rd \BR) ≤ Vdc
d
0 (dRd−1 + d(d+1)/2) . (14.12)

3. (mass on the bump)

ln
Ir
Vd
≥ cd . (14.13)

Proof. Because we have chosen ϕ to be a quadratic function on the range [0, α]
(see (ϕ.2)), we can decompose Ir as follows:

Ir :=

∫
B1

exp
(
r2ϕ(∥x∥)

)
dx

=

∫
B1\Bα

exp
(
r2ϕ(∥x∥)

)
dx︸ ︷︷ ︸

A

+ exp
(
r2ϕ(0)

) ∫
Bα

exp
(
−r

2 ∥x∥2
2

)
dx︸ ︷︷ ︸

B

.

As ϕ is decreasing by (ϕ.1), clearly A ≤ Vd exp(r2ϕ(α)), and the second term is
given by

B =
(2π)d/2

rd
exp

(
r2ϕ(0)

)
P(∥X∥ ≤ αr) ,
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where X is a standard Gaussian in Rd. By standard concentration inequalities
(e.g., Markov’s inequality suffices), there exists a universal constant c1 such that
the above probability is at least 1/2 provided r ≥ c1

√
d. Recall that log Γ(d

2
+1) =

d
2

log d+O(d). Thus, for r ≥ c1
√
d we have

log
A

B
≤ log

2Vd exp(r2ϕ(α))

(2π)d/2 r−d exp(r2ϕ(0))
= log

2 exp(r2ϕ(α))

2d/2 r−d exp(r2ϕ(0)) Γ(d
2

+ 1)

= O(d)− r2 (ϕ(0)− ϕ(α)) + d log r − d

2
log d

= O(d)− d
(( r√

d

)2
(ϕ(0)− ϕ(α))− log

( r√
d

))
.

From the above it is clear that there is a universal constant c2 such that r ≥ c2
√
d

implies that A ≤ B. Thus, for r ≥ (c1 ∨ c2)
√
d the following holds:

B ≤ Ir ≤ 2B , (14.14)

proving (14.11). We now turn to the proof of (14.12). By integrating in polar
coordinates, and taking X to be a standard Gaussian on R,

π̃ω(Rd \BR) = Ad−1

∫ ∞
R

sd−1 exp
(
−1

2
(s−R)2

)
ds

= Ad−1

∫ ∞
0

(s+R)d−1 exp
(
−s

2

2

)
ds

≤
√

2πAd−1 E[|X +R|d−1]
≤
√

2πAd−12
d (Rd−1 + E[|X|d−1])

≤ Ad−1c
d
0 (Rd−1 + (d− 1)(d−1)/2)

≤ Vdc
d
0 (dRd−1 + d(d+1)/2)

for some universal constant c0 > 2. For the other direction we can simply write

π̃ω(Rd \BR) = Ad−1

∫ ∞
0

(s+R)d−1 exp
(
−s

2

2

)
ds

≥
√

π

2
Ad−1R

d−1 .

Finally, we prove (14.13). We again use the fact log Γ(d
2

+ 1) = d
2

log d+O(d).

Therefore, for r ≥ (c1 ∨ c2)
√
d and using (14.11) we obtain

log
Ir
Vd
≥ log

(2π)d/2 r−d exp(r2ϕ(0))/2

πd/2/Γ(d
2

+ 1)
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= d
(( r√

d

)2
ϕ(0)− log

( r√
d

))
+O(d) .

Clearly, there exists a constant c3 (depending only on c) such that r ≥ c3
√
d

implies that the RHS is at least linear in d with a positive constant. Taking
cr = c1 ∨ c2 ∨ c3 concludes the proof.

■ 14.7.3 Proof of Property (P.1)

We choose r, R such that (P.1) holds, i.e., πω(ω +Br) = 1/2. This holds if

f(r) := (Ir + Vd) r
d !

= π̃ω(Rd \BR) + VdR
d =: g(R) . (14.15)

Lemma 14.7.5 (Choice of r, R). For any d ≥ 1, R ≥ 0, there exists a correspond-
ing value of r such that (14.15) holds. Moreover, there is a universal constant
cR ≥ 1 such that for any R ≥ cR

√
d, the corresponding r solving (14.15) satisfies

r ≥ cr
(
log(6c0)

)√
d , (14.16)

R/r ≥ 2 , (14.17)

where cr(·) is the function defined in Lemma 14.7.4.

The argument log(6c0) to cr(·) in Lemma 14.7.5 is chosen for later convenience.

Proof. Notice that f and g are continuous and increasing in r, R respectively.
Moreover, we check that f(0) = 0, g(0) = (2π)d/2, and f(∞) = g(∞) =∞. This
tells us that for any value of d ≥ 1 and R ≥ 0, there exists a value of r ≥ 0 for
which f(r) = g(R).

For the rest of the proof, we abbreviate cr := cr(log(6c0)).
First, we prove (14.16). Note that since (14.16) is a hypothesis of Lemma 14.7.4,

we cannot invoke Lemma 14.7.4 during the proof of (14.16) in order to avoid a
circular argument.

By the definitions of r and R,

(Ir + Vd) r
d ≥ VdR

d .

Taking logarithms and using the definition of Ir, this rewrites as

d log
R

r
≤ log

(
1 +

Ir
Vd

)
= log

(
1 +

∫
B1

exp(r2ϕ(∥x∥)) dx

Vd

)
≤ log

(
1 + exp

(
r2ϕ(0)

))
.
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Suppose, for the sake of contradiction, that r < cr
√
d. Then, we have

d log
R

r
≤ c2rdϕ(0) + log 2 .

Rearranging,

R ≤ exp
(
c2rϕ(0) +

log 2

d

)
r ≤ exp

(
c2rϕ(0) +

log 2

d

)
cr
√
d .

Hence, if R ≥ cR
√
d for a large enough universal constant cR, then we arrive at

the desired contradiction. For later convenience we choose cR to always be at least
1. This proves (14.16).

Next, we prove (14.17). We use the fact that R ≥ cR
√
d; so that in particular

cR ≥ 1 and thus
√
d ≤ R. Then, using (14.12) from Lemma 14.7.4,

(Ir + Vd) r
d ≤ Vd (cd0dR

d−1 + cd0d
(d+1)/2 +Rd) ≤ Vd (cd0

√
dRd + cd0

√
dRd +Rd)

≤ Vd · 3cd0
√
dRd .

Taking logarithms, rearranging, and using (14.13) from Lemma 14.7.4,

d log
R

r
≥ log

(
1 +

Ir
Vd

)
− d log c0 − log(3

√
d) ≥

(
c− log c0 −

log(3
√
d)

d︸ ︷︷ ︸
≤log 3

)
d .

Taking c = log c0 + log 3 + log 2 = log(6c0), this implies R/r ≥ 2 as desired.

■ 14.7.4 Proof of Property (P.2)

The proof of Property (P.2) requires an upper bound on the Poincaré constant
of πω. We recall that the Poincaré constant of a probability measure π is the
smallest constant CPI(π) > 0 such that for all smooth and bounded test functions
f : Rd → R, it holds that

varπ(f) ≤ CPI(π)Eπ[∥∇f∥2] .

We begin with a Poincaré inequality for πinit.

Lemma 14.7.6 (Poincaré inequality for πinit). If R ≥
√
d, then the probability

measure πinit has Poincaré constant at most cPIR
2/d for a universal constant cPI.

Proof. From [Bob03] and the fact that πinit is a radially symmetric log-concave
measure, the Poincaré constant of πinit is bounded by

CPI(πinit) ≤
13Eπinit [∥·∥2]

d
.
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The second moment is

Eπinit [∥·∥2] =

∫
BR
∥·∥2

Zinit
+

∫
Rd\BR

∥·∥2 exp(−1
2

(∥·∥ −R)2)

Zinit

≤
∫
BR
∥·∥2

VdRd
+
Ad−1

∫∞
0

(r +R)d+1 exp(−r2/2) dr

Ad−1
∫∞
0

(r +R)d−1 exp(−r2/2) dr

≤ R2 +

∫
(r +R)2 ν(dr) ,

where ν is the probability measure on R+ with density

ν(r) ∝ (r +R)d−1 exp
(
−r

2

2

)
. (14.18)

Note that ν is 1-strongly-log-concave. Hence, by Lemma 2.2.13,∫
(r +R)2 ν(dr) ≲ R2 +

∫
r2 ν(dr) ≲ R2 + r2⋆ +

∫
(r − r⋆)2 ν(dr)

≤ R2 + r2⋆ + 1 ,

where r⋆ is the mode of ν. To find the mode, (14.18) and elementary calculus
show that r⋆ satisfies r⋆ (r⋆+R) = d−1, which implies r⋆ ≤ (d−1)/R. If R ≥

√
d,

then r⋆ ≲ R. Combining the bounds, we obtain CPI(πinit) ≲ R2/d.

Next, we recall the statement of the Holley–Stroock perturbation principle.

Theorem 14.7.7 (Holley–Stroock perturbation principle, [HS87]). Let π be a
probability measure which satisfies a Poincaré inequality. Suppose that µ is another
probability measure such that

0 < c ≤ dµ

dπ
≤ C <∞ .

Then, µ also satisfies a Poincaré inequality, with

CPI(µ) ≤ C

c
CPI(π) .

Proof. See [BGL14, Lemma 5.1.7].

Corollary 14.7.8 (Poincaré inequality for πω). Assume that R ≥
√
d. Then, for

each ω ∈P2r,R,

CPI(πω) ≤ 2cPIR
2

d
exp

(
r2ϕ(0)

)
.
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Proof. By (ϕ.1), we know that π̃ω ≥ π̃init and hence Zω ≥ Zinit. It follows that

Zinit

Zω
≤ πω
πinit

=
π̃ω
π̃init

Zinit

Zω
≤ π̃ω
π̃init
≤ exp

(
r2ϕ(0)

)
.

Also, by (14.15),

Zω = π̃ω(Rd \BR) + VdR
d + (Ir − Vd) rd ≤ π̃ω(Rd \BR) + VdR

d + (Ir + Vd) r
d

= 2
(
π̃ω(Rd \BR) + VdR

d
)

= 2Zinit .

Hence, Zinit/Zω ≥ 1/2. The result now follows from Lemma 14.7.6 and the Holley–
Stroock perturbation principle (Theorem 14.7.7).

To translate Fisher information guarantees into total variation guarantees, we
use the following consequence of the Poincaré inequality.

Proposition 14.7.9 (Fisher information controls total variation). Suppose that
a probability measure π satisfies a Poincaré inequality. Then, for any probability
measure µ,

TV(µ, π)2 ≤ CPI(π)

4
FI(µ ∥ π) .

Proof. See [Gui+09].

We are finally ready to prove Property (P.2). More specifically, we will show
that there is a universal constant cε > 0 such that if ε ≤ exp(−cεd), then we can
choose r and R (depending on ε) such that: (i) r and R are related according
to (14.15), which is necessary for Property (P.1); (ii) R ≥ cR

√
d, which is necessary

for Lemma 14.7.5; and (iii) Property (P.2) holds.

Proof of Property (P.2). For ω ∈P2r,R, suppose that µ satisfies
√

FI(µ ∥ πω) ≤ ε.
Then, by Corollary 14.7.8 and Proposition 14.7.9, we have

TV2(µ, πω) ≤ CPI(πω)

4
FI(µ ∥ π) ≤ cPIR

2 exp(r2ϕ(0))

2d
ε2 . (14.19)

Hence, if we choose

R2 =
2d

9cPIε2 exp(r2ϕ(0))
(14.20)

then
√

FI(µ ∥ πω) ≤ ε implies TV(µ, πω) ≤ 1/3, i.e., Property (P.2) holds.
To justify (14.20), note that thus far we have shown that for any choice of

R, there exists a choice of r which depends on R, which we temporarily denote
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by r(R), such that (14.15) holds. Also, r(·) is an increasing function. In order
for (14.20) to hold, it is equivalent to require

R2 exp
(
r(R)2 ϕ(0)

)
=

2d

9cPIε2
(14.21)

where the left-hand side is an increasing function of R. We also want R to
satisfy R ≥ cR

√
d, where cR is the universal constant in Lemma 14.7.5. From

Lemma 14.7.5, for the choice of R = cR
√
d,

r(cR
√
d) ≤ cR

√
d

2
.

Therefore, for this choice of R, the left-hand side of (14.21) is bounded by

c2Rd exp
(c2Rd

4
ϕ(0)

)
.

If it holds that

ε2 ≤ 2

9cPIc2R exp(c2Rdϕ(0)/4)
(14.22)

then the R satisfying (14.20) necessarily satisfies R ≥ cR
√
d. In turn, (14.22)

holds if ε ≤ exp(−cεd) for a universal constant cε > 0.

■ 14.7.5 Proof of Property (P.3)

Proof of Property (P.3). In the proof of Corollary 14.7.8, we showed that Zω ≤
2Zinit. The KL divergence is bounded by

KL(πinit ∥ πω) = Eπinit ln
( π̃init
π̃ω︸︷︷︸
≤1

Zω
Zinit︸︷︷︸
≤2

)
≤ log 2 ,

which is what we wanted to show.

■ 14.7.6 Proof of Property (P.4)

Proof of Property (P.4). We choose r and R to satisfy (14.15) and (14.20). If
ε ≤ exp(−cεd), then we showed in the proof of Property (P.2) that R ≥ cR

√
d

and hence Lemmas 14.7.4 and 14.7.5 apply.
As in the proof of (14.17) in Lemma 14.7.5, R ≥

√
d implies

(Ir + Vd) r
d ≤ Vd · 3cd0

√
dRd .
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Taking logarithms in (14.11) from Lemma 14.7.4 and using the above inequality,
we obtain

r2ϕ(0) ≤ log
2rdIr

(2π)d/2
≤ O(d) + log Vd + d logR .

From (14.20), we have

logR =
1

2
log d+ log

1

ε
− 1

2
r2ϕ(0) +O(1) .

Substituting this in and using log Vd = −d
2

log d+O(d),

r2ϕ(0) ≤ d log
1

ε
− d

2
r2ϕ(0) +O(d)

which is rearranged to yield

r2ϕ(0) ≤ 2d

d+ 2
log

1

ε
+O(1) .

Then, the packing number is lower bounded by

|P2r,R| ≥
(R− r

2r

)d
≥

(R
4r

)d
≥

(
c

√
d exp(− d

d+2
log(1/ε))

ε
√

log(1/ε)

)d
≥

(
c

√
d

log(1/ε)

)d 1

ε2d/(d+2)
,

for some universal constant c.

■ 14.7.7 Auxiliary lemmas

Lemma 14.7.10. Suppose that ϕ : R+ → R+ satisfies (ϕ.1), (ϕ.2), and (ϕ.3).
Then, the map x 7→ ϕ(∥x∥) is 1-smooth on Rd.

Proof. First, we claim that |ϕ′(x)|/x ≤ 1 for all x > 0. This follows from (ϕ.3)
because (ϕ.2) implies that the right derivative ϕ′(0+) exists and equals 0.

Next, we have for x ̸= 0

∂xi∂xjϕ(∥x∥) = ∂xj ϕ
′(∥x∥) xi

∥x∥
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= ϕ′′(∥x∥) xixj∥x∥2 − ϕ
′(∥x∥) xixj∥x∥3 + δi,j ϕ

′(∥x∥) 1

∥x∥ .

Thus, in matrix form we have

∇2
xϕ(∥x∥) =

ϕ′(∥x∥)
∥x∥ Id +

(ϕ′′(∥x∥)
∥x∥2 − ϕ′(∥x∥)

∥x∥3
)
xxT.

In particular, the eigenvalues are always ϕ′(∥x∥)
∥x∥ with multiplicity d−1 and ϕ′′(∥x∥)

with multiplicity 1. The fact that ϕ(∥·∥) is 1-smooth follows.

■ 14.7.8 Optimization of the bound

We wish to find d which maximizes( cd

log(1/ε)

)d/2
ε4/(d+2) ,

or after taking logarithms, we wish to maximize

f(d) :=
d

2
log d− 4

d+ 2
log

1

ε
− d

2
log log

1

ε
− d

2
log

1

c
.

Rather than maximizing this expression exactly, we shall ignore the last two terms
and pick d to be the smallest integer such that the sum of the first two terms is
non-negative, i.e.,

d (d+ 2) log d

8
≥ log

1

ε
.

It suffices to find d such that g(d) := d2 log d ≥ 8 log(1/ε). In order to invert g,
let y be sufficiently large and consider finding x such that g(x) = y. We make the
choice x = α

√
y/(log y) and plug this into the expression for g in order to obtain

log g
(
α

√
y

log y

)
= 2 logα + log y − log log y + log log

(
α

√
y

log y

)
= 2 logα + log y + log

1
2

log y − 1
2

log log y + logα

log y︸ ︷︷ ︸
→log(1/2) as y→∞

.

From this expression, we see that provided y is sufficiently large, this expression
is less than log y for α = 0 and greater than log y for α = 3. We conclude that
g−1(y) ≍

√
y/(log y), and therefore that our choice of d satisfies

d ≍
√

log(1/ε)

log log(1/ε)
.
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In particular, since d = o(log(1/ε)), then the condition ε ≤ exp(−cεd) holds for
all sufficiently small ε, and Theorem 14.4.1 holds. Then,

f(d) ≥ −d
2

log log
1

ε
− d

2
log

1

c
≍ −

√(
log

1

ε

) (
log log

1

ε

)
.

This verifies the expression in §14.4.
To justify the simplified expression of the bound that we gave in the informal

statement of Theorem 14.1.3, note that in dimension

d ≲

√
log(1/ε)

log log(1/ε)
(14.23)

we have

log
(( cd

log(1/ε)

)d/2)
=
d

2

(
log d− log log

1

ε
− log

1

c

)
︸ ︷︷ ︸

negative as ε↘0

≳ −
√(

log
1

ε

) (
log log

1

ε

)
.

In other words, we can simplify our bound as follows. For all d ≥ 1 and all ε
smaller than a universal constant, if the condition (14.23) holds, then we have the
lower bound

C (d, 1, ε) ≳
1

ε2d/(d+2) exp(C
√

log(1/ε) log log(1/ε))
.

Otherwise, if the condition (14.23) fails, then we instead have the bound

C (d, 1, ε) ≳
1

ε2 exp(C
√

log(1/ε) log log(1/ε))

≥ 1

ε2d/(d+2) exp(C
√

log(1/ε) log log(1/ε))
.

In either case, we have C (d, 1, ε) ≥ (1/ε)2d/(d+2)−o(1). Together with Theo-
rem 14.4.2 on the univarate case and Lemma 14.2.3 on rescaling, it yields Theo-
rem 14.1.3.

■ 14.7.9 Proof of Theorem 14.4.2

In the univarate case, we can sharpen Theorem 14.4.1 by obtaining a better bound
on the Poincaré constant of πω. We use the following result.
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Theorem 14.7.11 (Muckenhoupt’s criterion). Let π be a probability density on
R and let m be a median of π. Then,

CPI(π) ≍ max
{

sup
x<m

π
(
(−∞, x]

) ∫ m

x

1

π
, sup
x>m

π
(
[x,+∞)

) ∫ x

m

1

π

}
.

Proof. See [BGL14, Theorem 4.5.1].

Lemma 14.7.12 (Improved Poincaré inequality for πω). Suppose that d = 1 and
R ≥ 1. Then, for all ω ∈P2r,R,

CPI(πω) ≲ R2 .

Proof. We use Muckenhoupt’s criterion (Theorem 14.7.11). First, we note that by
Property (P.1), it holds that πω(ω+Br) = 1

2
which implies that ω−r ≤ m ≤ ω+r.

We proceed to check that

sup
x>m

πω
(
[x,+∞)

) ∫ x

m

1

πω
≲ R2 .

The other condition is verified in the same way due to symmetry.
We split into three cases. First, suppose that m < x < ω + r. Then, as

in the proof of Corollary 14.7.8, we have Zω ≤ 2Zinit = 2 π̃init(R \ BR) + 4R ≤
2
√

2π + 4R ≲ R. Then,

πω
(
[x,+∞)

) ∫ x

m

1

πω
≤ Zω (x−m) ≲ Rr ≤ R2 .

Next, suppose that ω + r < x < R. Then,

πω
(
[x,+∞)

) ∫ x

m

1

πω
= π̃ω

(
[x,+∞)

) ∫ x

m

1

π̃ω
≤

(
R− x+

√
π

2

)
(x−m) ≲ R2 .

Finally, suppose that x > R. Then, using standard Gaussian tail bounds,

πω
(
[x,+∞)

) ∫ x

m

1

πω
= π̃ω

(
[x,+∞)

) ∫ x

m

1

π̃ω

≤
[√

2π
(1

2
∧ 1

x−R
)

exp
(
−(x−R)2

2

)]
×

[
R−m+ (x−R) exp

((x−R)2

2

)]
.

If x−R ≤ 1, then this yields

πω
(
[x,+∞)

) ∫ x

m

1

πω
≲ R .
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Otherwise, if x−R ≥ 1, then we obtain

πω
(
[x,+∞)

) ∫ x

m

1

πω
≲

1

x−R exp
(
−(x−R)2

2

) [
R + (x−R) exp

((x−R)2

2

)]
≲ R .

This completes the proof.

We now use the improved Poincaré inequality in order to establish Theo-
rem 14.4.2.

Proof of Theorem 14.4.2. We follow the proof of Theorem 14.4.1. The proofs of
Properties (P.1) and (P.3) remain unchanged.

In the proof of Property (P.2), the equation (14.19) is replaced by

TV2(µ, πω) ≤ cPIR
2ε2

for a different universal constant cPI > 0, using Lemma 14.7.12. Hence, we choose
R2 = 1/(9cPIε

2) in order to verify Property (P.2). Since we require R ≥ cR for
a universal constant cR ≥ 1, this requires ε ≤ exp(−cε) for a universal constant
cε > 0.

Next, we turn towards the sharpened version of Property (P.4). From (14.15),
r is chosen so that

(Ir + 2) r = π̃ω(R \BR) + 2R .

Using (14.11) from Lemma 14.7.4, we have

rIr ≍ exp
(
r2ϕ(0)

)
≳ r .

This implies that

exp
(
r2ϕ(0)

)
≳ (Ir + 2) r ≳ R ,

or r ≳
√

logR ≍
√

log(1/ε). Hence,

|P2r,R| ≥
R

4r
≳

1

ε
√

log(1/ε)
.

By substituting this new bound on the packing number into the information
theoretic argument of Theorem 14.4.1 (see (14.10), where M = |P2r,R|), we obtain
Theorem 14.4.2.
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■ 14.8 Further discussion of the univariate case

In this section, we provide further discussion of algorithms for the univariate case.

Rejection sampling. First of all, we note that the poly(1/ε) lower bounds of Theo-
rems 14.4.1 and 14.4.2 may come as a surprise due to the existence of the rejection
sampling algorithm. We briefly recall rejection sampling here. Let π̃ be an unnor-
malized density, let Zπ :=

∫
π̃ denote the normalizing constant, and let π := π̃/Z

denote the target distribution. Rejection sampling requires knowledge of an upper
envelope µ̃ for π̃, i.e., a function µ̃ satisfying µ̃ ≥ π̃ pointwise. The algorithm pro-
ceeds by repeatedly drawing samples from the density µ := µ̃/Zµ, where Zµ :=

∫
µ̃;

each sample X is accepted with probability π̃(X)/µ̃(X).
It is standard to show (see Theorem 4.4.6) that the accepted samples are drawn

exactly from the target π, and that the number of queries made to π̃ until the
first accepted sample is geometrically distributed with mean Zµ/Zπ. To translate
this into a total variation guarantee, we run the algorithm for N iterations and
output “FAIL” if we have not accepted a sample by iteration N . The probability
of failure is at most (1− Zπ/Zµ)N , so the number of iterations required for the
output of the algorithm to be ε-close to the target π in total variation distance is
N ≥ log(1/ε)/ log(1− Zπ/Zµ).

Although this is a total variation guarantee, rather than a Fisher information
guarantee, it suggests (similarly to §14.5) that log(1/ε) rates are attainable using
rejection sampling. The reason why this does not contradict our lower bounds
in Theorems 14.4.1 and 14.4.2 is that the initialization oracle we consider, which
provides a measure µ0 such that KL(µ0 ∥ π) ≤ K0, is not sufficient to construct an
upper envelope of the unnormalized density π̃.

Indeed, consider instead a stronger initialization oracle which outputs a mea-
sure µ0 such that

max
{

sup ln
µ0

π
, sup ln

π

µ0

}
≤M0 <∞ .

Denote the complexity of obtaining
√
FI(µ ∥ π) ≤ ε over the class of 1-log-smooth

distributions on Rd with this stronger initialization oracle by C∞(d,M0, ε). Then,
the rejection sampling algorithm can be implemented within this new oracle model.
It yields the following.

Proposition 14.8.1 (Fisher information guarantees via rejection sampling). It
holds that

C∞(d,M0, ε) ≤ Õ
(

exp(3M0) log

√
d

ε

)
.



Sec. 14.8. Further discussion of the univariate case 421

Proof. For the algorithm, we use rejection sampling, which requires producing an
upper envelope. Recall that in our oracle model, we can query the value of an
unnormalized version π̃ of π. By replacing π̃ with π̃/π̃(0), we can assume that
π̃(0) = 1. Then,

π̃ =
π̃

π̃(0)
=

π

π(0)
≤ exp(M0)µ0

exp(−M0)µ0(0)
=

exp(2M0)

µ0(0)︸ ︷︷ ︸
:=Zµ0

µ0 .

This shows that µ̃0 := Zµ0 µ0 is an upper envelope for π̃. Also, using π(0) = 1/Zπ,

Zµ0
Zπ

= exp(2M0)
π(0)

µ0(0)
≤ exp(3M0) .

Hence, we can run rejection sampling, where we output a sample from µ0 if the
algorithm exceeds N iterations. Therefore, the law of the output of rejection
sampling is µ = (1− p)π + p µ0, where p = (1− Zπ/Zµ0)N ≤ exp(−NZπ/Zµ0) is
the probability of failure. We calculate

1 + χ2(µ ∥ π) = Eµ
(µ
π

)
= 1− p+ pEµ

(µ0

π

)
≤ 1 + p exp(M0) .

Applying Lemma 14.5.1 with ε2χ = p exp(M0) (assuming that p ≤ exp(−M0)) and
t ≲ 1, we obtain

FI(µQt ∥ π) ≲
p exp(M0) (d+ log(1/p)−M0)

t
+ dt .

We set t ≲ ε2/d so that

FI(µQt ∥ π) ≲
d2 exp(M0) p log(1/p)

ε2
+ ε2 .

In order to make the first term at most ε2/2, we take p = Θ̃(ε4/(d2 exp(M0))). In
turn, this is satisfied provided

N ≥ Zµ0
Zπ

log
1

p
≍ exp(3M0) log

d2 exp(M0)

ε4
,

which proves the desired result.

Hence, under the stronger oracle model, log(1/ε) rates are indeed possible
(albeit with exponential dependence on M0). To see why this does not contradict
the lower bound construction of Theorem 14.4.2, observe that if we take the
initialization oracle to be πinit, then our construction satisfies M0 = r2ϕ(0). By
inspecting the proof of Theorem 14.4.2, one sees that r ≍

√
log(1/ε). Hence, our

construction does not provide a lower bound for C∞(1,M0, ε) for constant M0.
Instead, we obtain the following lower bound.
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Corollary 14.8.2 (Lower bound for the stronger initialization oracle). There
exists a universal constant c > 0 such that for all ε ≤ 1/c, it holds that

C∞
(
1, c log(1/ε), ε

)
≳

1

ε
√

log(1/ε)
.

Note also the following corollary.

Corollary 14.8.3 (High-accuracy Fisher information requires exponential de-
pendence on M0). Suppose that there exists an algorithm which works within the
stronger oracle model and which, for any 1-log-smooth distribution π on R, outputs
a measure µ with

√
FI(µ ∥ π) ≤ ε using N queries, with query complexity

N ≤ f(M0) polylog
(1

ε

)
for some increasing function f : [1,∞)→ R+. Then, there is a universal constant
c′ > 0 such that

f(M0) ≥ Ω̃
(
exp(c′M0)

)
.

Proof. Using Corollary 14.8.2 with M0 = c log(1/ε), we have

f
(
c log

1

ε

)
polylog

(1

ε

)
≥ N ≳

1

ε
√

log(1/ε)
,

or

f
(
c log

1

ε

)
≥ 1

ε polylog(1/ε)
.

Writing this in terms of M0 = c log(1/ε), or ε = exp(−M0/c),

f(M0) ≥
exp(M0/c)

(M0/c)
O(1)

= Ω̃
(

exp
(M0

c

))
which establishes the result.

Hence, we see that there is a fundamental trade-off in the stronger oracle
model: any algorithm must either incur polynomial dependence on 1/ε (e.g.,
averaged LMC), or exponential dependence on M0 (e.g., rejection sampling, see
Proposition 14.8.1).
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The stronger oracle model is strictly stronger. We also observe the following conse-
quence of these observations. On one hand, our lower bound in Thoerem 14.4.2
shows that

C (1, K0 = 1, ε) ≥ Ω
( 1

ε
√

log(1/ε)

)
.

On the other hand, for constant M0, rejection sampling (Proposition 14.8.1) yields

C∞(1,M0, ε) ≤ Õ
(

exp(3M0) log
1

ε

)
.

Hence, the stronger oracle model is indeed stronger: obtaining Fisher information
guarantees is strictly easier with access to an oracle with bounded M0, rather than
an oracle with bounded K0.

On the effect of the radius of the effective support. In our lower bound construction,
the distributions are “effectively” supported on a ball of radius R, where R scales
with 1/ε. Here, we show that this is in fact necessary, by showing that for any fixed
d and R, it is possible to sample from such a distribution in Fisher information
using O(log(1/ε)) queries. The algorithm involves uses a simple grid search.

Proposition 14.8.4 (Sampling from bounded effective support). Suppose that
the target distribution π ∝ exp(−V ) on Rd has the following properties:

1. V (0) = 0.

2. V (x) = 1
2

(∥x∥ −R)2+, for ∥x∥ ≥ R.

3. V is 1-smooth.

Then, there is an algorithm which outputs µ with
√
FI(µ ∥ π) ≤ ε using N queries

to (V,∇V ), where the number of queries satisfies

N ≲ (cR)d + log

√
d

ε
,

where c > 0 is a universal constant.

Proof. We use function approximation to build an upper envelope for π̃ :=
exp(−V ), and then apply rejection sampling. Namely, let N be a 1-net of
BR, and for each x ∈ BR let xN denote a closest point of N to x. Define the
approximation

V̂ (x) :=

{
1
2

(∥x∥ −R)2+ , ∥x∥ ≥ R ,

V (xN ) + ⟨∇V (xN ), x− xN ⟩ − 1
2
∥x− xN ∥2 , ∥x∥ < R .
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By 1-smoothness of V , we have V ≥ V̂ , so that if we let µ̃0 := exp(−V̂ ), then
µ̃0 ≥ π̃. Also, for ∥x∥ < R, we have the bound

µ̃0(x) = exp
(
−V (xN )− ⟨∇V (xN ), x− xN ⟩+

1

2
∥x− xN ∥2

)
≤ exp

(
−V (x) + ∥x− xN ∥2

)
= π̃(x) exp(∥x− xN ∥2) ≤ exp(1) π̃(x) ,

so that Zµ0/Zπ ≲ 1. We now perform rejection sampling using N ′ iterations with
upper envelope µ̃0, outputting a sample from µ0 if N ′ iterations are exceeded.
Tracing through the proof of Proposition 14.8.1, one can show that for the output
µ of rejection sampling, it holds that FI(µQt ∥ π) ≤ ε2 for an appropriate choice
of t. Moreover, the number of iterations of rejection sampling required to achieve
this satisfies N ′ ≲ log(

√
d/ε). Finally, since |N | ≤ (cR)d for a universal constant

c > 0, it requires O((cR)d) queries in order to build the upper envelope µ̃0, which
proves the result.

To summarize the situation, if the effective radius R is known and fixed, then
it is possible to obtain O(log(1/ε)) complexity. However, if there is no a priori
upper bound on the radius R, then the lower bounds of Theorem 14.4.2 and
Corollary 14.8.2 apply.

■ 14.9 Conclusion

In this work, we have provided the first lower bounds for the query complexity of
obtaining Fisher information guarantees for sampling. Due to the scarcity of gen-
eral sampling lower bounds, our bounds are in fact some of the only known lower
bounds for sampling. Our results have a number of interesting implications, which
we discussed thoroughly in previous sections, and they advance our understanding
of the fundamental task of non-log-concave sampling.

To conclude, we highlight a few problems left open in our work. Most notably,
our lower bound in Theorem 14.4.1 does not match the upper bound of averaged
LMC, and it is an important question to close this gap. We also note that our
lower bounds in Theorems 14.4.1 and 14.4.2 do not capture the dependence of K0,
and this is also left for future work.
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Other applications of Wasserstein
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Chapter 15

Bures–Wasserstein barycenters

We study first-order methods to compute the barycenter of Gaussian distributions
with respect to the optimal transport metric. We derive global rates of convergence
for both gradient descent and stochastic gradient descent despite the fact that
the barycenter functional is not geodesically convex. Our analysis overcomes this
technical hurdle by developing a Polyak– Lojasiewicz (PL) inequality, which is
built using tools from optimal transport and metric geometry.

This chapter is based on [Che+20f; Alt+21], joint with Jason M. Altschuler,
Patrik R. Gerber, Tyler Maunu, Philippe Rigollet, and Austin J. Stromme.

■ 15.1 Introduction

Averaging multiple data sources is among the most classical and fundamental
subroutines in data science. However, a modern challenge is that data is often
more complicated than points in Rd. In this chapter, we study the task of averaging
probability distributions on Rd, a setting that commonly arises in computer vision
and graphics [Rab+12; Sol+15], machine learning and statistics [CD14; Ho+17;
SLD18; Dog+19], probability theory [KS94; RU02], and signal processing [Elv+20];
see also the surveys [PC19; PZ19] and the references within.

Namely, consider the following statistical problem. We observe n independent
copies µ1, . . . , µn of a probability measure µ over Rd. Assume furthermore that
µ ∼ P , where P is an unknown distribution over probability measures. We wish
to output a single probability measure on Rd, µ̄n, which represents the average
measure under P in a suitable sense. For example, the measures µ1, . . . , µn may
arise as representations of images, in which case the average of the measures
with respect to the natural linear structure on the space of signed measures is
unsuitable for many applications [CD14]. Instead, we study the Wasserstein
barycenter [AC11], also known as a Fréchet mean, which has been proposed in
the literature as a more desirable notion of average because it incorporates the
geometry of the underlying space.

427
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To formally set up the situation, let P2(Rd) be the set of all (Borel) probability
measures on Rd with finite second moment, and let P2,ac(Rd) be the subset of those
measures in P2(Rd) that are absolutely continuous with respect to the Lebesgue
measure on Rd and thus admit a density. When endowed with the 2-Wasserstein
metric, W2, this set forms a geodesic metric space (P2,ac(Rd),W2). Throughout
this chapter, we assume that P is a distribution over measures that is supported on
a subset of P2,ac(Rd) that consists only of certain multivariate Gaussian measures.
We denote by Pn the empirical distribution of the sample µ1, . . . , µn.

A barycenter of P , denoted b⋆, is defined to be a minimizer of the functional

F (b) :=
1

2
PW 2

2 (b, ·) =
1

2

∫
W 2

2 (b, ·) dP .

A natural estimator of b⋆ is the empirical barycenter b̂n, defined as a minimizer of

Fn(b) :=
1

2
PnW

2
2 (b, ·) =

1

2n

n∑
i=1

W 2
2 (b, µi) .

The many applications of Wasserstein barycenters (see, e.g., [CE10; Rab+12;
CD14; GPC15; RP15; Sol+15; BPC16; SLD18; LLR20]) have inspired significant
research into their mathematical and statistical properties since their introduction
roughly a decade ago [AC11; Rab+12]. For instance, on the mathematical side it
is known that under mild conditions, the barycenter exists, is unique, and admits
a dual formulation related to a multi-marginal optimal transport problem [CE10;
AC11; COO15].

Statistical consistency of the empirical barycenter in a general context was first
established in [LL17] and further work has focused on providing effective rates of
convergence for the quantity W 2

2 (b̂n, b
⋆). A first step towards this goal was made

in [ALP20] by deriving non-parametric rates of the form W 2
2 (b̂n, b

⋆) ≲ n−1/d when
d ≥ 3. Moreover, in the same paper [ALP20], the authors establish parametric
rates of the form W 2

2 (b̂n, b
⋆) ≲ n−1 when P is supported on a space of finite

doubling dimension. An important example with this property arises when P
is supported on mean-zero non-degenerate Gaussian measures. In this case, the
Gaussians can be identified with their covariance matrices, and the Wasserstein
metric induces a distance metric on the space of positive definite matrices. This
distance metric, known as the Bures metric (or the Bures–Wasserstein metric
when measured between probability measures), is equivalent to a Riemannian
metric on the manifold of positive definite matrices, and the resulting Riemannian
structure is known as the Bures manifold [Mod17; BJL19]. The name of the
Bures manifold originates from quantum physics and quantum information theory,
where it is used to model the space of density matrices [Bur69]. In fact, in
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the Bures case, more precise statistical results, including central limit theorems,
are known [AC17; KSS21]. It is worth noting that parametric rates are also
achievable in the infinite-dimensional case under additional conditions. First, it is
not surprising that such rates are achievable over (P2(R),W2) since this space can
be isometrically embedded in a Hilbert space [PZ16; Big+18]. Moreover, it was
shown that, under additional regularity conditions, such rates are achievable for
much more general infinite-dimensional spaces [Le +22], including (P2,ac(Rd),W2)
for any d ≥ 2.

While these results for the empirical barycenter are satisfying from a statisti-
cal perspective, computing this object is challenging because of two fundamental
obstacles. The first is that in general, barycenters can be complicated distribu-
tions which are much harder to represent (even approximately) than the input
distributions. The second is that generically, these problems are computationally
hard in high dimensions. For instance, Wasserstein barycenters and geometric
medians of discrete distributions are NP-hard to compute (even approximately)
in high dimension [AB22].

Algorithms for averaging on the Bures–Wasserstein manifold. Nevertheless, these com-
putational obstacles can be potentially averted in parametric settings. This work
as well as most of the literature [Álv+16; ZP19; Bac+22] on parametric settings
focuses on the commonly arising setting where P is supported on Gaussian dis-
tributions.1 As noted in [Álv+16], the Gaussian case also encompasses general
location-scatter families.

There are two natural families of approaches for designing averaging algorithms
in this setting. Both rely on iterative, first-order algorithms [CD14; Álv+16;
CCS18; ZP19; Bac+22], exploiting the fact that modulo a simple re-centering
of all distributions, the relevant space of probability distributions is isometric to
the Bures–Wasserstein manifold, i.e., the cone of positive semidefinite matrices
equipped with the Bures–Wasserstein metric (background is given in §2.3).

The first approach is simply to recognize the (regularized) Wasserstein barycen-
ter problem as a convex optimization problem over the space of positive semidefi-
nite matrices and apply off-the-shelf methods such as Euclidean gradient descent
or semidefinite programming solvers. However, these methods have received little
prior attention for good reason: they suffer from severe scalability and parameter-
tuning issues (see §15.5.2 for numerics). Briefly, the underlying issue is that these
algorithms operate in the standard Euclidean geometry rather than the natural
geometry of optimal transport.

A much more effective approach in practice is to exploit the geometry of the

1In the setting of Gaussian distributions, the Wasserstein barycenter was first studied in the
1990s [OR93; KS94].
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Bures–Wasserstein manifold via geodesic optimization. This approach is supported
by the influential work of Otto [Ott01] who established that the geometry of
Wasserstein space bears resemblance to a Riemannian manifold. In particular,
one can define the gradient of the functional F , so it does indeed make sense
to consider a gradient descent-based approach towards estimating b⋆. In the
population setting (where the distribution P is known), such an algorithm was
proposed in Álvarez-Esteban et al. [Álv+16], where it was introduced as a fixed-
point algorithm. Álvarez-Esteban et al. prove that the fixed-point algorithm
converges to the true barycenter as the number of iterations goes to infinity. The
consistency results were further generalized in [ZP19; Bac+22] and extended to the
non-population and stochastic gradient case. However, the literature previously
did not provide any rates of convergence for these first-order methods. In fact,
Álvarez-Esteban et al. empirically observed a linear rate of convergence for the
gradient descent algorithm in the Gaussian setting and left open the theoretical
study of this phenomenon for future study. One contribution of this chapter is
to establish a dimension-free rate of convergence (Theorem 15.4.1), and we also
provide multiple extensions including the first rate of convergence for stochastic
gradient descent in this context.

Challenges for geodesic optimization over the Bures–Wasserstein manifold. Although
geodesic optimization is natural for this problem, it comes with several important
obstacles: the non-negative curvature of the Bures–Wasserstein manifold necessi-
tates new tools for analysis, and moreover the barycenter problem is non-convex in
the Bures–Wasserstein geometry. (These two issues are in fact intimately related,
see §15.6.) This prevents applying standard results in the geodesic optimization
literature (see, e.g., [ZS16; Bou23]) since in general it is only possible to prove
local convergence guarantees for non-convex problems.

For the Wasserstein barycenter problem, it is possible to interpret Riemannian
gradient descent (with step size one) as a fixed-point iteration, and through this
lens establish asymptotic convergence [Álv+16; ZP19; Bac+22]. Obtaining non-
asymptotic rates of convergence is more challenging because it requires developing
quantitative proxies for the standard convexity inequalities needed to analyze
gradient descent.

■ 15.1.1 Techniques

Here we briefly sketch the specific technical challenges we face and how we ad-
dress them to analyze Riemannian gradient descent for the Bures–Wasserstein
barycenter problem.
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Figure 15.1: Passes until convergence error 10−r to the barycenter, for r ∈ {3, 5}. This is
dimension independent for Riemannian GD and SGD—consistent with our main results.
Details in §15.4.

Overcoming non-convexity. As we discuss in §15.6, there is a close connection
between the second-order behavior of these objective functionals and the non-
negative curvature of the Bures–Wasserstein manifold. In particular, while non-
negative curvature is used to prove smoothness properties for the three functionals,
it also leads to them all being geodesically non-convex. To circumvent this issue,
we establish gradient domination conditions, also known as Polyak– Lojasiewicz
inequalities [KNS16], which intuitively are quantitative proxies for strong con-
vexity in the non-convex setting. Proving such inequalities requires synthesizing
general optimization principles with specialized arguments based on the theory of
optimal transport. We ultimately show that these inequalities hold with constants
depending on the conditioning of the iterates, i.e., the ratio between the maximum
and minimum eigenvalues of the corresponding covariance matrices.

Overcoming ill-conditioned iterates. So long as smoothness and gradient domination
inequalities hold at the current iterate, standard optimization results guarantee
that the next iterate of gradient descent makes progress. However, the amount of
progress degrades if the iterates are poorly conditioned. Thus the second major
obstacle is to control the regularity of the iterates. Here, the primary technical tool
is shared across the analyses. Informally, it states that if the objective is a sum of
functions, each of whose gradients point towards well-conditioned matrices, then
the gradient descent iterates remain well-conditioned. Formally, this is captured
by the following geometric result, which may be of independent interest. Below,
Sd++ denotes the set of d × d positive definite matrices. See §2.1 and §2.3 for a
review of the relevant geometric concepts, and see §15.8 for the proof, discussion
of tightness, and complementary results.
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Theorem 15.1.1. Let 0 < α ≤ β <∞. Let Q be any distribution over Sd++ with(∫ √
λmin(Σ) dQ(Σ)

)2

≥ α and

∫
λmax(Σ) dQ(Σ) ≤ β .

Then, for any matrix Σ0 with eigenvalues bounded below by α
4

and any 0 ≤ η ≤ α
2β

,

the generalized barycenter of (1 − η) δΣ0 + η Q at Σ0 also has eigenvalues lower
bounded by α

4
.

Using this theorem together with careful analysis of the objective functions,
we establish global convergence guarantees for first-order geodesic optimization.

In an earlier version of [Alt+21], we incorrectly claimed that −
√
λmin and√

λmax are convex along generalized geodesics, which is stronger than Theo-
rem 15.1.1. Here, we fix this issue; see Remark 15.8.3 for a detailed discussion.

■ 15.1.2 Other related work

Averaging on curved spaces. Barycenters on curved spaces have become popular due
to the applications in brain-computer interfaces [CBB17; YBL17], computer vision,
machine learning, and radar signal processing [ABY13]. While their mathematical
properties such as existence and uniqueness are fairly well-understood [Afs11],
their computation is an active area of research [VZ00; Stu03; Vaz09; Yan10;
BI13; Bač14a; OP15]. For the Wasserstein barycenter problem, there have been a
multitude of approaches proposed for both the discrete setting (see, e.g., [CD14;
Ben+15; COO15; Kro+19; Lin+20; AB21; Gum+21; Haa+21; Bor22; Dvi22;
Lin+22]) and the continuous setting (see, e.g., [Li+20; CAD21; FTC21; Kor+21]).

■ 15.2 Preliminaries

We write Sd for the space of symmetric d×d matrices, Sd++ for the open subset of Sd

consisting of positive definite matrices, and Sd+ for the set of positive semidefinite
matrices. We denote by λ1(Σ), . . . , λd(Σ) ≥ 0 the eigenvalues of a matrix Σ ∈ Sd+.
The Gaussian measure on Rd with mean m ∈ Rd and covariance matrix Σ ∈ Sd+
is denoted γm,Σ. We reserve the notation log for the inverse of the Riemannian
exponential map and use instead ln(·) to denote the natural logarithm. The
(convex analysis) indicator function ιC of a set C is defined by ιC(x) = 0 if x ∈ C
and ιC(x) = +∞ otherwise. We denote by id the identity map of Rd.

Given probability measures µ and ν on Rd with finite second moment, the
2-Wasserstein distance between µ and ν is defined as

W 2
2 (µ, ν) := inf

π∈C(µ,ν)

∫
∥x− y∥2 dπ(x, y) , (15.1)
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where C(µ, ν) denotes the set of couplings of µ and ν, i.e., the set of probability
measures on Rd × Rd whose marginals are respectively µ and ν. If µ and ν
admit densities with respect to the Lebesgue measure on Rd, then the infimum
is attained, and the optimal coupling is supported on the graph of a map, i.e.,
there exists a map T : Rd → Rd such that for π-a.e. (x, y) ∈ Rd × Rd, it holds
that y = T (x). The map T is called the optimal transport map from µ to ν.

We refer readers to [Vil03; San15] for an introduction to optimal transport,
and to [Car92] and §2 for background on Riemannian geometry. The Riemannian
structure of optimal transport was introduced in the seminal work [Ott01]; detailed
treatments can be found in [AGS08; Vil09b], see also §2 for a quick overview.

In this chapter, we mainly work with centered Gaussians, which can be identi-
fied with their covariance matrices. (Extensions to the non-centered case are also
discussed in the next sections.) We abuse notation via this identification: given
Σ,Σ′ ∈ Sd++, we write W2(Σ,Σ

′) for the 2-Wasserstein distance between centered
Gaussians with covariance matrices Σ, Σ′ respectively. Throughout, all Gaussians
of interest are non-degenerate; that is, their covariances are non-singular.

The Wasserstein distance has a closed-form expression for Gaussians:

W 2
2 (Σ,Σ′) = tr

[
Σ + Σ′ − 2 (Σ1/2Σ′Σ1/2)

1/2]
. (15.2)

Also, the optimal transport map from Σ to Σ′ is the symmetric matrix

TΣ→Σ′ = Σ−1/2 (Σ1/2Σ′Σ1/2)
1/2

Σ−1/2 = GM(Σ−1,Σ′) . (15.3)

Above, GM(A,B) := A1/2 (A−1/2BA−1/2)
1/2
A1/2 denotes the matrix geometric

mean between two positive semidefinite matrices [Bha07, §4]. The Wasserstein
distance on Sd++ in fact arises from a Riemannian metric, which was first introduced
by Bures in [Bur69]. Hence, the Riemannian manifold Sd++ endowed with this
Wasserstein distance is referred to as the Bures–Wasserstein space. The geometry
of this space is studied in detail in [Mod17; BJL19]. For completeness, we provide
additional background on the Bures–Wasserstein manifold in §2.3.

■ 15.3 General results for Wasserstein barycenters

In this section, we develop a general machinery to study first-order methods for
optimizing the barycenter functional on Wasserstein space. Establishing fast con-
vergence of first-order methods is intimately related to convexity. Since our setting
is the curved Wasserstein space, we consider geodesic convexity rather than the
usual convexity employed in flat, Euclidean spaces. Geodesic convexity has been
used to study statistical efficiency in manifold-constrained estimation [AMR05;
Wie12] and, more recently, optimization [Bon13; Bač14b; ZS16].
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Barring a direct approach to establishing quantitative convergence guarantees,
the barycenter functional is actually not geodesically convex on the Wasserstein
space. In fact, the barycenter functional may even be concave along geodesics;
see Figure 15.2. As such, it does not lend itself to the general techniques of
geodesically convex optimization. This non-convexity is a manifestation of the
non-negative curvature of (P2(Rd),W2) [AGS08, §7.3].

Fortunately, the optimization literature describes conditions for global conver-
gence of first order algorithms even for non-convex objectives. In this work, we
employ a Polyak– Lojasiewicz (PL) inequality of the form (15.5), which is known
to yield linear convergence for a variety of gradient methods on flat spaces even
in absence of convexity [KNS16]. Theorems 15.3.1 and 15.3.2 below are proved
using modifications of the usual proofs in the optimization literature. Their proofs
make critical use of the non-negative curvature of the Wasserstein space and are
deferred to §15.7.
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Figure 15.2: Example of the non-geodesic convexity of W 2
2 . Displayed is the squared

Bures distance along a Wasserstein geodesic and a Euclidean geodesic. Details are given
in §15.5.4.

In this section, we study the barycenter functional

G(b) :=
1

2
QW 2

2 (b, ·) =
1

2

∫
W 2

2 (b, ·) dQ , (15.4)

for some generic distribution Q with barycenter b̄. This notation allows us to treat
simultaneously the cases where Q = P and Q = Pn, which are the situations of
interest for statisticians. The case when Q is an arbitrary discrete distribution
supported on Gaussian measures has also been studied in the geodesic optimization
literature: [AC11; Álv+16; BJL19; ZP19; WS22].

■ 15.3.1 Gradient descent algorithms over the Wasserstein space

We refer to §2.1 for background on optimal transport.
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■ 15.3.1.1 Gradient descent

Let Q be a probability distribution over (P2,ac(Rd),W2). In the sequel, we focus
on the cases where Q = P , Q = Pn, or Q is a weighted atomic distribution, but
our results apply generically to any Q that satisfy the conditions stated in the
theorems below.

Using the techniques of [AGS08], the gradient of a barycenter functional G
defined in (15.4) may be easily computed [ZP19]. It is given by the following map
from Rd to Rd:

∇G(b) := −Q logb(·) = −
∫

(Tb→µ − id) dQ(µ) .

Denote by b̄ any minimizer of G.
The primary assumption we work with is common in the optimization literature.

We say that G satisfies a Polyak– Lojasiewicz (PL) inequality at b if

∥∇G(b)∥2b ≥ 2CPL [G(b)−G(b̄)] for some CPL > 0 . (15.5)

It follows from (15.12) below that CPL ≤ 1 for any such Q.
The gradient descent (GD) iterates on G are defined as

b0 ∈ suppQ , bt+1 := expbt
(
−∇G(bt)

)
= [id−∇G(bt)]#bt for t ≥ 1 . (15.6)

Note that this method employs a unit step size. This is in agreement with the
observation made in [ZP19] that it leads to the maximum decrement in G.

We show that a PL inequality yields a linear rate of convergence.

Theorem 15.3.1 (Rate of convergence for gradient descent). If G satisfies the
PL inequality (15.5) at all the iterates (bt)t<T , then

G(bT )−G(b̄) ≤ (1− CPL)T [G(b0)−G(b̄)] .

■ 15.3.1.2 Stochastic gradient descent

PL inequalities are also useful in the stochastic setting where we observe n in-
dependent copies µ1, . . . , µn of µ ∼ Q. In this case, we consider the natural
stochastic gradient descent (SGD) iterates defined by

b0 := µ0 ,

bt+1 := expbt
(
−ηt logbt(µt+1)

)
= [id + ηt (Tbt→µt+1 − id)]

#
bt for t = 0, . . . , n− 1 ,

(15.7)
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where ηt ∈ (0, 1) denotes the step size. At each iteration, SGD moves the iterate
along the geodesic between bt and µt+1 by a distance ηt. Under the assumption
of a PL inequality, we show that SGD achieves a parametric rate of convergence.

In the following result, we recall that the variance of Q is defined as

var(Q) :=

∫
W 2

2 (b̄, ·) dQ = 2G(b̄) .

Theorem 15.3.2 (Rates of convergence for SGD). Assume that there exists a
constant CPL > 0 such that the following holds: G satisfies the PL inequality (15.5)
at all the iterates (bt)0≤t≤n of SGD run with step size

ηt = CPL

(
1−

√
1− 2 (t+ k) + 1

C2
PL (t+ k + 1)2

)
≤ 2

CPL (t+ k + 1)
, (15.8)

where we take k = 2/C2
PL − 1 ≥ 0. Then,

EG(bn)−G(b̄) ≤ 3 var(Q)

C2
PLn

.

The parameter k in (15.8) ensures that the step size ηt is well-defined and less
than 1.

■ 15.3.2 Properties of the barycenter functional

Unlike results in generic optimization, this chapter focuses on a specific function
to optimize: the barycenter functional. In fact, this is a vast family of functionals,
each indexed by the distribution Q in (15.4). However, some structure is shared
across this family. In the rest of this section, we extract properties that are
relevant to our optimization questions: a variance inequality, smoothness, as well
as an interated PL inequality. These properties are valid for general distributions
Q over P2(Rd) and are specialized to the Bures manifold in the next section.

■ 15.3.2.1 Variance inequality

Variance inequalities indicate quadratic growth of the barycenter functional around
its minimum. More specifically, we say that Q satisfies a variance inequality with
constant Cvar > 0 if

G(b)−G(b̄) ≥ Cvar

2
W 2

2 (b, b̄) , ∀b ∈ P2,ac(Rd) . (15.9)

In particular, (15.9) implies uniqueness of b̄. The importance of variance inequali-
ties for obtaining statistical rates of convergence for the empirical barycenter was
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emphasized in [ALP20]. In [Le +22], it is shown that an assumption on the regu-
larity of the transport maps from the barycenter b̄ implies a variance inequality.
Specifically, suppose that all of the Kantorovich potentials φb̄→µ for µ ∈ suppQ
are (α, β)-regular in the sense of (2.2). Then, a variance inequality holds with
Cvar = 1− (β − α).

It turns out that a variance inequality holds without needing to assume smooth-
ness of φb̄→µ: assuming that the potential ϕb̄→µ is (α(µ),∞)-regular for each
µ ∈ suppQ yields a variance inequality with Cvar =

∫
α(µ) dQ(µ). The improve-

ment here is critical for achieving global results on the Bures manifold. To formally
state this result, we need the notion of an optimal dual solution for the barycenter
problem. A discussion of this concept, along with a proof of the following theorem,
is given in §15.7.2. We verify that the hypotheses of the theorem hold in the case
when Q is supported on non-degenerate Gaussian measures in §15.9.1.

Theorem 15.3.3 (Variance inequality). Fix Q ∈ P2(P2,ac(Rd)) be a distribution
with barycenter b̄ ∈ P2,ac(Rd). Assume that there exists an optimal dual solution φ
for the barycenter problem w.r.t. b̄ such that, for Q-a.e. µ ∈ P2,ac(Rd), the mapping
φµ is α(µ)-strongly convex for some measurable function α : P2(Rd)→ R+. Then,
Q satisfies a variance inequality (15.9) with constant

Cvar =

∫
α(µ) dQ(µ) .

■ 15.3.2.2 Smoothness

Recall that a convex differentiable function f : Rd → R is β-smooth if

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
β

2
∥y − x∥2 , ∀x, y ∈ Rd . (15.10)

A consequence of β-smoothness is the following inequality, which measures how
much progress gradient descent makes in a single step [Bub15].

f
(
x− β−1∇f(x)

)
− f(x) ≤ − 1

2β
∥∇f(x)∥2 . (15.11)

In fact, only the latter inequality (15.11) is needed for the analysis of gradient de-
scent methods. It was noted, first in [Álv+16, Proposition 3.3] and then in [ZP19,
Lemma 2], that an analogue of (15.11) holds in Wasserstein space for the barycen-
ter functional. Below, we provide a different, more geometric proof of this fact
that emphasizes the collective role of smoothness and curvature. On the way,
we also establish a smoothness inequality (15.12) that is used in the proof of
Theorem 15.3.1 and also ensures that CPL ≤ 1 for any distribution Q supported
on P2,ac(Rd).
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Theorem 15.3.4. For any b0, b1 ∈ P2,ac(Rd) the barycenter functional satisfies
the smoothness inequality

G(b1) ≤ G(b0) + ⟨∇G(b0), logb0 b1⟩b0 +
1

2
W 2

2 (b0, b1) . (15.12)

Moreover, for any b ∈ P2,ac(Rd) and b+ := [id−∇G(b)]#b, it holds:

G(b+)−G(b) ≤ −1

2
∥∇G(b)∥2b . (15.13)

Proof. Let (bs)s∈[0,1] be the constant-speed geodesic between arbitrary b0, b1 ∈
P2,ac(Rd). From the non-negative curvature inequality (2.10), for any s ∈ (0, 1],∫

W 2
2 (bs, µ)−W 2

2 (b0, µ)

s
dQ(µ)

≥
∫

[W 2
2 (b1, µ)−W 2

2 (b0, µ)] dQ(µ)− (1− s)W 2
2 (b0, b1) .

By dominated convergence, the left-hand side converges to∫
∂s|s=0+W

2
2 (bs, µ) dQ(µ) = −2

∫
⟨Tb0→µ − id, Tb0→b1 − id⟩L2(b0) dQ(µ)

= 2 ⟨∇G(b0), logb0(b1)⟩b0 ,

where in the first identity, we used the characterization of [AGS08, Proposition
7.3.6]. Rearranging terms yields (15.12).

Noticing that W 2
2 (b, b+) = ∥−∇G(b)∥2b , Theorem 15.3.4 is now an immediate

consequence of (15.12) applied to b0 = b and b1 = b+.

■ 15.3.2.3 An integrated PL inequality

The main technical hurdle of this work is to provide sufficient conditions under
which the PL inequality holds. The following lemma, proved in §15.7.3, is our
main device to establish PL inequalities.

Lemma 15.3.5. Let Q satisfy a variance inequality with constant Cvar and let
b ∈ P2,ac(Rd) be such that the barycenter b̄ of Q is absolutely continuous w.r.t. b.
Assume further the following measurability conditions: there exists a measurable
mapping ϕ : P2(Rd)× Rd → R ∪ {∞}, (µ, x) 7→ ϕb→µ(x), such that, for Q-almost
every µ ∈ P2,ac(Rd), ϕb→µ : Rd → R ∪ {∞} is a Kantorovich potential for the
optimal transport from b to µ. Then,

G(b)−G(b̄) ≤ 2

Cvar

(∫ 1

0

∥∇G(b)∥L2(bs) ds
)2

,
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where (bs)s∈[0,1] is the constant-speed W2-geodesic beginning at b0 := b and ending

at b1 := b̄.

This lemma can yield a PL inequality in quite general situations, but the
crucial issue is whether these conditions hold uniformly for each iterate in the
optimization trajectory. In the next section, we show how to turn an integrated
PL inequality into a bona fide PL inequality when Q is supported on certain
Gaussian measures.

■ 15.4 Main results for Bures–Wasserstein barycenters

Identifying a centered non-degenerate Gaussian measure with its covariance matrix,
the Wasserstein geometry induces a Riemannian structure on the space of positive
definite matrices, known as the Bures geometry. Accordingly, we now refer to the
barycenter of P as the Bures–Wasserstein barycenter :

Σ⋆ ∈ arg min
Σ∈Sd++

∫
W 2

2 (Σ, ·) dP .

We refer to the introduction for a discussion of the past work on the Bures–
Wasserstein barycenter. We also remark that the case when P is supported on
possibly non-centered Gaussians is easily reduced to the centered case, as we
discuss below.

■ 15.4.1 Bures–Wasserstein gradient descent algorithms

We now specialize both GD and SGD when the distribution of interest is supported
on mean-zero Gaussian measures. In this case, the updates of both algorithms
take a remarkably simple form. To see this, for m ∈ Rd, Σ ∈ SD+ , let γm,Σ denote
the Gaussian measure on Rd with mean m and covariance matrix Σ. The set of
non-degenerate Gaussians constitutes a well-behaved subset of Wasserstein space,
called the Bures–Wasserstein manifold [Bur69; BJL19]. In particular, the optimal
coupling between γm0,Σ0 and γm1,Σ1 has the explicit form

x 7→ Tγµ0,Σ0
→γµ1,Σ1

(x) := m1 + Σ
−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )

1/2
Σ
−1/2
0 (x−m0) . (15.14)

Observe that Tγµ0,Σ0
→γµ1,Σ1

is affine, and thus
∫
Tγµ0,Σ0

→γ dP (γ) is affine.
This means that all of the GD (or SGD) iterates are Gaussian measures, so

it suffices to keep track of the mean and covariance matrix of the current iterate.
For both GD and SGD, the update equation for the descent step decomposes
into two decoupled equations: an update equation for the mean, and an update
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equation for the covariance matrix. Moreover, the update equation for the mean
is trivial, corresponding to a simple GD or SGD procedure on the objective
function m 7→

∫
∥m −m(µ)∥2 dP (µ). Therefore, for simplicity and without loss

of generality, we consider only mean-zero Gaussians throughout this work and we
simply have to write down the update equations for the covariance matrix Σt of
the iterate. They are summarized in Algorithms 15.1 and 15.2 below.

GD is useful for computing high-precision solutions due to its linear conver-
gence (Theorem 15.4.1), and SGD is useful for large-scale or online settings because
of its cheaper updates. Here, Σ0 is the initialization, which can be taken to be
any matrix in the support of P . For SGD, we also require a sequence (ηt)

T
t=1 of

step sizes and a sequence (Kt)
T
t=1 of i.i.d. samples from P .

Algorithm 15.1 GD for Barycenters

procedure Bary-GD(Σ0, η, P, T )
for t = 1, . . . , T do

St ← (1− η) Id + η
∫
GM(Σ−1t−1,Σ) dP (Σ)

Σt ← StΣt−1St

return ΣT

Algorithm 15.2 SGD for Barycenters

procedure Bary-SGD(Σ0, (ηt)
T
t=1, (Kt)

T
t=1)

for t = 1, . . . , T do
Ŝt ← (1− ηt) Id + ηtGM(Σ−1t−1, Kt)

Σt ← ŜtΣt−1Ŝt

return ΣT

Note that whereas SGD requires choosing step sizes, for GD we can simply use
step size 1 in practice, as justified in [ZP19]. However, for our theoretical results,
we will require choosing a step size η < 1 for GD as well.

■ 15.4.2 Convergence guarantees

Denote the barycenter functional by F (Σ) := 1
2

∫
W 2

2 (Σ, ·) dP , and denote the
variance of P by varP := 2F (Σ⋆). We assume that P is supported on matrices
whose eigenvalues lie in the range [λmin, λmax], and we let κ := λmax/λmin denote
the condition number.
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Theorem 15.4.1. Assume that P is supported on covariance matrices whose
eigenvalues lie in the range [λmin, λmax], 0 < λmin ≤ λmax <∞. Let κ := λmax/λmin

denote the condition number. Assume that we initialize at Σ0 ∈ suppP .

1. (GD) Let ΣGD
T denote the T -th iterate of GD (Algorithm 15.1) with step size

η = 1
2κ

. Then,

1

2
√
κ
W 2

2 (ΣGD
T ,Σ⋆) ≤ F (ΣGD

T )− F (Σ⋆) ≤ exp
(
− 3T

64κ5/2

)
{F (Σ0)− F (Σ⋆)} .

2. (SGD) Let ΣSGD
T denote the T -th iterate of SGD (Algorithm 15.2). Then,

with appropriately chosen step sizes,

1

2
√
κ
EW 2

2 (ΣSGD
T ,Σ⋆) ≤ EF (ΣSGD

T )− F (Σ⋆) ≤ 48κ3 varP

T
.

We now elaborate on implications this theorem for both GD and for SGD.
For GD, Theorem 15.4.1 establishes a linear rate of convergence and answers

a question left open in [Álv+16]. Moreover, when applied with P being the
empirical measure and combined with the existing results of [ALP20; KSS21], it
yields a procedure to estimate Wasserstein barycenters at the parametric rate
after a number of iterations that is logarithmic in the sample size n.

For SGD, Theorem 15.4.1 shows that online SGD applied with P being the
population measure yields an estimator ΣSGD

n different from the empirical barycen-
ter that also converges at the parametric rate to the true barycenter of P . When
applied with P being the empirical measure, this leads to an alternative to gradient
descent to estimate the empirical barycenter that exhibits a slower convergence
but that has much cheaper iterations and better lends itself to parallelization.

As far as we are aware, these results provide the first non-asymptotic rates of
convergence for first-order methods on the Bures–Wasserstein manifold.

In Figure 15.3, we present the results an experiment confirming these two
results; see §15.5 for more details and further numerical results.

In fact, using Theorem 15.1.1 we can also relax the conditioning assumption
to an average-case notion of conditioning. This is a significant improvement when
the eigenvalue ranges differ significantly between matrices.

Theorem 15.4.2. Define the quantities

∥λmin∥1/2 :=
(∫ √

λmin(Σ) dP (Σ)
)2

,

∥λmax∥1/2 :=
(∫ √

λmax(Σ) dP (Σ)
)2

,
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Figure 15.3: Left: convergence of SGD on Bures manifold for n = 1000, d = 3, and
b⋆ = γ0,I3 . Right: linear convergence of GD on the same problem.

∥λmax∥1 :=

∫
λmax(Σ) dP (Σ) .

Then, the conclusions of Theorem 15.4.1 hold when replacing κ with the quantity
∥λmax∥1/2/∥λmin∥1/2 everywhere for SGD, or when replacing κ with the quantity
∥λmax∥1/∥λmin∥1/2 everywhere for GD. In particular, the conclusions for SGD
hold when replacing κ with κ⋆ := supΣ∈supp(P ) λmax(Σ)/λmin(Σ) everywhere.

We give the proof of this result in §15.9.3.
We also refer to [Alt+21] for results on computing entropically-regularized

Wasserstein barycenters [Kro18; BCP19; CEK21] and geometric medians on the
Bures–Wasserstein space.

■ 15.4.3 Outline of the proof

For simplicity, we assume that the Gaussians are centered (see previous discussion).
While the centering assumption can be made without loss of generality, our results
require that P is supported on well-conditioned matrices. Under this condition, it
can be shown that the barycenter of P exists and is unique (Proposition 15.9.1).

We begin with a brief outline of the proof.

(i) If we initialize gradient descent (or stochastic gradient descent) at one of the
elements of the support of P , then all of the iterates, all of the elements of
suppP , the barycenter of P , and all of elements of geodesics between these
measures are well-conditioned Gaussians.

(ii) Using Lemma 15.3.5, we establish a PL inequality holds with a uniform
constant for well-conditioned Gaussians.
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(iii) The guarantees for GD and SGD on the Bures manifold follow immedi-
ately from the PL inequality and our general convergence results (Theo-
rems 15.3.1, 15.3.2).

In the sequel, we use geodesic convexity as a key tool to control the iterates of
the gradient descent algorithm. We note that this discussion is not about proving
some sort of geodesic convexity for our objective, which cannot hold in general.
Our main interest in geodesic convexity comes from the following fact: if all of the
elements of the support of P lie in a geodesically convex set S, and we initialize
the algorithm at an element of S, then all of the iterates of stochastic gradient
descent are simply moving along geodesics within this set, and so remain in S.
The same is true for the iterates of gradient descent, provided that we replace
geodesic convexity with convexity along generalized geodesics. Refer to §2.1 for
definitions of these terms. We begin with the following fact.

Lemma 15.4.3. For a measure µ ∈ P2(Rd), let M(µ) :=
∫
x ⊗ x dµ(x). Then,

the functional µ 7→ ∥M(µ)∥op = λmax(M(µ)) is convex along generalized geodesics
on P2(Rd).

Proof. Let Sd−1 denote the unit sphere of Rd and observe that for any e ∈ Sd−1
the function x 7→ ⟨x, e⟩2 is convex on Rd. By known results for geodesic con-
vexity in Wasserstein space (see [AGS08, Proposition 9.3.2]), the functional
µ 7→

∫
⟨·, e⟩2 dµ = ⟨e,M(µ) e⟩ is convex along generalized geodesics in P2(Rd);

hence, so is the functional µ 7→ maxe∈SD−1⟨e,M(µ) e⟩ = ∥M(µ)∥op.

It follows readily from Lemma 15.4.3 that the set

S := {γ0,Σ | Σ ∈ Sd++, ∥Σ∥op ≤ λmax}

is convex along generalized geodesics. Moreover since SGD moves along geodesics
and is initialized at b0 ∈ suppP ⊂ S, then all the iterates of SGD stay in
S. To show that the same holds for GD, observe that the set logbt(S) is convex.
Therefore, − gradF (bt) =

∫
(Tbt→µ− id) dP (µ) ∈ logbt(S) as a convex combination

of elements in this set. This is equivalent to bt+1 = expbt(− gradF (bt)) ∈ S. These
observations control the maximum eigenvalue along GD and SGD.

To control the minimum eigenvalue, we can establish that

S ′ := {γ0,Σ | Σ ∈ Sd++, λmin(Σ) ≥ λmin}

is geodesically convex (Theorem 15.8.1); however, this set is not convex along gen-
eralized geodesics. To analyze GD, we therefore appeal instead to Theorem 15.1.1.
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This completes the first step (i) of the proof. Moving on to step (ii), we
get from Theorem 15.9.4 that F satisfies a PL inequality at all well-conditioned
Gaussians and in particular at all the iterates of both GD and SGD.

Combined with the general bounds in Theorems 15.3.1 and 15.3.2 and the
variance inequality in Theorem 15.9.3, this completes the proof of Theorem 15.4.1.

■ 15.5 Experiments

In this section, we demonstrate the linear convergence of GD, the fast rate of
estimation for SGD, and some potential advantages of averaging SGD by way of
numerical experiments. In evaluating SGD, we also include a variant that involves
sampling with replacement from the empirical distribution.

■ 15.5.1 Comparisons with averaging and SGD with replacement

First, we begin by illustrating how SGD indeed achieves the fast rate of convergence
to the true barycenter on the Bures manifold, as indicated by Theorem 15.4.1.

To generate distributions with a known barycenter, we use the following fact. If
the mean of the distribution (logb⋆)#P is 0, then b⋆ is a barycenter of P . This fact
follows from our PL inequality (Theorem 15.9.4) or also from general arguments
in [ZP19, Theorem 2]. We also use the fact that the tangent space of the Bures
manifold is given by the set of all symmetric matrices [BJL19].

Figure 15.3 shows convergence of SGD for distributions on the Bures manifold.
To generate a sample, we let Ai be a matrix with i.i.d. γ0,σ2 entries. Our random
sample on the Bures manifold is then given by

Σi = expγ0,Id

(Ai + AT
i

2

)
, (15.15)

which has population barycenter b⋆ = γ0,Id . An explicit form of this exponential
map is derived in [MMP18]. We run two versions of SGD. The first variant uses
each sample only once, and passes over the data once. The second variant sam-
ples from Σ1, . . . ,Σn with replacement at each iteration and takes the stochastic
gradient step towards the selected matrix. For the resulting sequences, we also
show the results of averaging the iterates. Specifically, if (bt)t∈N is the sequence

generated by SGD, then the averaged sequence is given by b̃0 = b0 and

b̃t+1 =
[ t

t+ 1
id +

1

t+ 1
Tb̃t→bt+1

]
#
b̃t .

On Riemannian manifolds, averaged SGD is known to attain optimal statistical
rates under smoothness and geodesic convexity assumptions [Tri+18].
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Figure 15.4: Log-log plot of convergence for SGD on Bures manifold for n = 1000, d = 3,
and b⋆ = γ0,I3 . This corresponds to the experiment on the left in Figure 15.3.
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Figure 15.5: Convergence of SGD on Bures manifold. Here, n = 1000, d = 3, and
barycenter given by diag(20, 1, 1). The result displays the average over 100 randomly
generated datasets.

Here, we generate 100 datasets of size n = 1000 in the way specified above
and set σ2 = 0.25. In this experiment, the SGD step size is chosen to be ηt =
2/[0.7 · (t + 2/0.7 + 1)]. The results from these 100 datasets are then averaged
for each algorithm, and we also display 95% confidence bands for the resulting
sequences. As is clear from the log-log plot in Figure 15.4, SGD achieves the fast
O(n−1) statistical rate on this dataset.

The right of Figure 15.3 shows convergence of GD to the empirical barycenter
and true barycenter. We generate samples in the same way as before. This linear
convergence was observed previously by [Álv+16].

In Figure 15.5, we repeat the same experiment, except this time the barycenter
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Figure 15.6: Convergence of SGD on Bures manifold. Here, n = 500, d = 3, and the
distribution is given by (15.15) with Σ⋆ = I3 and σ2 = 0.25. The result displays the
average over 100 randomly generated datasets.

has covariance matrix

Σ⋆ =

20 0 0
0 1 0
0 0 1

 ,

and the entries of Ai are drawn i.i.d. from γ0,1. In this situation, the condition
numbers of the matrices generated according to this distribution are typically
much larger than those centered around γ0,I3 . To account for a potentially smaller
PL constant, we chose ηt = 2/[0.1 · (t + 2/0.1 + 1)]. It is again clear from the
right pane in Figure 15.5 that SGD achieves the fast O(n−1) statistical rate on
this dataset. To account for the slow convergence initially, we only fit this line
to the last 500 iterations. We also note that averaging yields drastically better
performance in this case, which we are currently unable to theoretically justify.

Figure 15.6 shows convergence of SGD with replacement to the empirical
barycenter. We generate n = 500 samples in the same way as in Figure 15.3,
where the true barycenter is I3 and σ2 = 0.25. We calculate the error obtained by
the empirical barycenter by running GD on this dataset until convergence, which
is displayed with the green line. We also calculate the error obtained by a single
pass of SGD, which is given by the blue line. SGD with replacement is then run
for 5000 iterations, and we observe that it does indeed achieve better error than
single pass SGD if run for long enough. SGD with replacement converges to the
empirical barycenter, albeit at a slow rate.
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■ 15.5.2 Comparison with other algorithms

There are two natural competitors of Riemannian GD when minimizing the
barycenter functional: (i) solving an SDP (§15.9.5), and (ii) Euclidean GD (see
§15.9.4 for a description of the Euclidean gradient descent algorithm).

Figure 15.7: Riemannian vs. Euclidean GD. Figure 15.8: Riemannian vs. Euclidean SGD.

In Figure 15.7 we compare Riemannian and Euclidean GD on a random
dataset consisting of n = 50 covariance matrices of dimension d = 50, each
with condition number κ = 1000. The eigenspaces of the matrices are indepen-
dent Haar distributed, and their eigenvalues are equally spaced in the interval
[λmin, λmax] = [0.03, 30]. Qualitatively similar results are observed for other input
distributions; see §15.5.3. We run 50 experiments and plot the average accuracy
cut off at 10−12; X⋆ denotes the best iterate. We omit SDP solvers from the plot
because their runtime is orders of magnitude slower for this problem: using the
Splitting Cone Solver (SCS) [ODo+16], the problem takes ∼15 seconds to solve,
and MOSEK is even slower. We observe that Euclidean GD’s rate of convergence
is very sensitive to its step size, which depends heavily on the conditioning of the
problem. Riemannian GD was the clear winner in our experiments, as its step size
requires no tuning and it always performed no worse (in fact, often significantly
better) than Euclidean GD.

In Figure 15.8 we compare Riemannian and Euclidean SGD. We average
300 × 300 covariance matrices drawn from a distribution whose barycenter is
known to be the identity, see §15.5.3 for details. We observe that Riemannian
SGD typically outperforms Euclidean SGD, sometimes substantially.

We comment on Figure 15.1, which illustrates the dimension independence of
the two Riemannian algorithms, a main result of this work. It plots the number
of passes until convergence W 2

2 (Xt, X
⋆) ≤ 10−r varP to the barycenter X⋆, for

r ∈ {3, 5}. To compare the algorithms on equal footing, the y-axis measures “full
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passes” over the n = 50 matrices: one pass constitutes one iteration of GD, or n
iterations of SGD. We generate the input dataset just as in Figure 15.7. Observe
also the tradeoff between GD and SGD: SGD converges rapidly to low-precision
solutions, but takes longer to converge to high-precision solutions.

■ 15.5.3 Further experiments and details

Reproducibility details. Input generation details for Figures 15.1 and 15.7 are pro-
vided above. For Figure 15.8, recall that we generated matrices from a distribution
whose barycenter is known to be the identity. By [ZP19, Theorem 2], if the mean
of the distribution (logId)#P is 0, then Id is the barycenter of P . In particular,

if Q is a mean zero distribution supported on symmetric matrices that lie in the
domain of the exponential map, then P = (expId)#Q has Id as its barycenter.

In our experiments, we defined Q to be the law of a random matrix with Haar
eigenbasis and uniform eigenvalues from the interval [−(1 − δ), 1 − δ] for a pa-
rameter δ ∈ (0, 1). At the identity, the exponential map takes the simple form
expId S = (Id + S)2 and we see that P is then supported on covariance matrices

with spectrum in [δ2, (2− δ)2]. The figure was generated with δ = 0.1. All exper-
iments were performed using Julia 1.5.1 on a desktop computer running Ubuntu
18.04 with an Intel i7-10700 CPU.

Further empirical comparisons. Here we further investigate the comparison of Rie-
mannian and Euclidean GD done in Figure 15.7 by demonstrating qualitatively
similar results for a variety of synthetic datasets. For each dataset, the measure P
is the empirical measure of n matrices of dimension d×d that are drawn randomly
as follows.

1. Haar eigenbasis and linearly spaced eigenvalues in [α, β].

2. Haar eigenbasis and i.i.d. uniform([α, β]) eigenvalues.

3. First split the matrices into 3 groups. Each matrix has Haar eigenbasis and
i.i.d. uniform([α, β]) eigenvalues where [α, β] = 10i × [1, κ] for i ∈ {−2, 0, 2}
depending on its group.

4. Same as method 2 above, except all matrices have the same eigenbasis. (Note
that GD converges in 1 step here since the matrices commute.)

5. Haar eigenbasis and eigenvalues uniform on a set of size m ≤ d, whose
elements are i.i.d. uniform([α, β]).

6. Same as method 5 above, except all matrices use the same eigenvalues.
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Figure 15.9: Comparison of high-precision barycenter algorithms for various types of
synthetic data. Here, the matrices are poorly conditioned ([α, β] = [0.03, 30] whereby
κ = 1000).

7. Mix of all methods above.

Figures 15.9 and 15.10 compare Euclidean and Riemannian GD on the barycen-
ter problem as in Figure 15.7, but now with these 7 different input families. We
average well-conditioned matrices in Figure 15.9, and ill-conditioned matrices
in Figure 15.10. The plots are generated using n = d = 50 and m = d/4. For
Method 7, the 50 matrices are divided into 6 groups of roughly equal size. The
y-axis measures the W 2

2 distance to the best iterate; and the x-axis measures time
in seconds.

In these figures we had to hand-tune the step size for Euclidean GD since the
theoretical step size performs quite poorly. We used the same range of step sizes
(η ∈ {15, 25, 40}) in all plots to demonstrate that the performance of Euclidean
GD is quite sensitive to its step size. In contrast, GD performs well on all inputs
with its (untuned) step size of 1.

■ 15.5.4 Details of the non-convexity example

We consider the example of the Wasserstein metric restricted to centered Gaussian
measures, which induces the Bures metric on positive definite matrices. Even
restricted to such Gaussian measures, the Wasserstein barycenter objective is
geodesically non-convex, despite the fact that it is Euclidean convex [WS22].
Figure 15.2 gives a simulated example of this fact. This figure plots the Bures
distance squared between a positive definite matrix C and points along some
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Figure 15.10: Comparison of high-precision barycenter algorithms for various types of
synthetic data. Here, the matrices are well-conditioned ([α, β] = [1, 2] whereby κ = 2).

geodesic γ, which runs between two matrices A and B. The matrices used in this
example are

A =

[
0.8 −0.4
−0.4 0.3

]
, B =

[
0.3 −0.5
−0.5 1.0

]
, C =

[
0.5 0.5
0.5 0.6

]
,

and γ(t), t ∈ [0, 1], is taken to be the Bures or Euclidean geodesic from A to B
(the Euclidean geodesic is given by t 7→ (1− t)A+ t B). This function is clearly
non-convex, and therefore we cannot assume that there is some underlying strong
convexity (although the Bures distance is in fact strongly geodesically convex for
sufficiently small balls [HGA15]).

■ 15.6 Curvature and the barycenter functional

One of the interesting features of the barycenter problem is that, because it
is defined in terms of the squared distance function, it captures key geometric
features of the underlying space; in fact, this is arguably the reason for the success
of the barycenter for geometric applications. To further discuss this connection, it
is insightful to abstract the situation to computing barycenters on a metric space.

Given a metric space (X, d) and a probability measure P on X, a barycenter
of P is a solution of

minimize
b∈X

FP (b) :=
1

2

∫
d2(b, ·) dP .
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The basic structure required on X in order to study first-order optimization
methods is the presence of geodesics. This is formalized by the notion of a
geodesic space, which is studied in metric geometry; see [BBI01]. Then, we may
define a function F : X → R to be α-strongly convex if for all geodesics (xt)t∈[0,1]
in X, it holds that

F (xt) ≤ (1− t)F (x0) + t F (x1)−
α t (1− t)

2
d2(x0, x1) , for all t ∈ [0, 1] .

It is known that the convexity properties of the barycenter functional FP
are related to the curvature of the space. Here, curvature is interpreted as the
Alexandrov curvature, which is the generalization of sectional curvature to geodesic
spaces, see [BBI01]. Then, the result is that FP is 1-strongly convex for every
probability measure P on X if and only if X has non-positive curvature; see [Stu03]
for precise statements. In fact, the 1-strong convexity of barycenter functionals is
essentially the definition of non-positive curvature in this context.

Consequently, strong results are known for barycenters in non-positively curved
spaces, ranging from basic properties such as existence and uniqueness, to statis-
tical estimation and optimization; for details see the nice article [Stu03].

In contrast, it is well-known that Wasserstein space P2,ac(Rd) (and hence, the
Bures–Wasserstein space) is non-negatively curved [AGS08, Theorem 7.3.2]. This
means, for instance, that convexity and properties related to convexity (such
as the PL inequality employed in §15.9.3) are not automatic for the barycenter
functional in Wasserstein space. On the other hand, we showed that this non-
negative curvature is related to the smoothness of the barycenter functional.

■ 15.7 Proofs for general Wasserstein barycenters

■ 15.7.1 Convergence bounds for GD and SGD under a PL inequality

This subsection gives proofs of the general convergence theorems for GD and
SGD in the present work. Both of these proofs use the non-negative curvature
inequality (2.11). We note that the proof of Theorem 15.3.1 uses the non-negative
curvature implicitly by invoking smoothness, while the use of non-negative curva-
ture is explicit within the proof of Theorem 15.3.2.

■ 15.7.1.1 Proof of Theorem 15.3.1 for GD

Using the smoothness (15.13) and the PL inequality (15.5), it holds that

G(bt+1)−G(bt) ≤ −CPL [G(bt)−G(b̄)] .

It yields G(bt+1)−G(b̄) ≤ (1− CPL) [G(bt)−G(b̄)], which gives the result.
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■ 15.7.1.2 Proof of Theorem 15.3.2 for SGD

Recall the SGD iterations on n+ 1 observations:

b0 := µ0 , bt+1 := [(1− ηt) id + ηt Tbt→µt+1 ]#bt for t = 0, . . . , n ,

where the step size is given by

ηt = CPL

(
1−

√
1− 2 (t+ k) + 1

C2
PL (t+ k + 1)2

)
≤ 2

CPL (t+ k + 1)
,

for some k such that C2
PL (k + 1)

2 ≥ 2k+1. We note that the step size ηt is chosen
to solve the equation

1− 2CPLηt + η2t =
( t+ k

t+ k + 1

)2

.

Using the non-negative curvature (2.11), we get

W 2
2 (bt+1, µ) ≤ ∥logbt bt+1 − logbt µ∥2bt = ∥ηt logbt µt+1 − logbt µ∥2bt

= ∥logbt µ∥2bt + η2t ∥logbt µt+1∥2bt − 2ηt ⟨logbt µ, logbt µt+1⟩bt .

Taking the expectation with respect to (µ, µt+1) ∼ Q⊗2 (conditioning appropriately
on the increasing sequence of σ-fields), we have

EG(bt+1) ≤ E[(1 + η2t )G(bt)− ηt ∥∇G(bt)∥2L2(bt)
] .

Using the PL inequality (15.5),

EG(bt+1) ≤ E
[
(1 + η2t )G(bt)− 2CPLηt [G(bt)−G(b̄)]

]
.

Subtracting G(b̄) and rearranging,

EG(bt+1)−G(b̄) ≤ (1− 2CPLηt + η2t ) [EG(bt)−G(b̄)] +
η2t
2

var(Q) ,

where we recall that var(Q) = 2G(b̄). With the chosen step size, we find

EG(bt+1)−G(b̄) ≤
( t+ k

t+ k + 1

)2

[EG(bt)−G(b̄)] +
2 var(Q)

C2
PL (t+ k + 1)2

.

Or equivalently,

(t+ k + 1)2 [EG(bt+1)−G(b̄)] ≤ (t+ k)2 [EG(bt)−G(b̄)] +
2 var(Q)

C2
PL

.
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Unrolling over t = 0, 1, . . . , n− 1 yields

(n+ k)2 [EG(bn)−G(b̄)] ≤ k2 [EG(b0)−G(b̄)] +
2n var(Q)

C2
PL

,

or, equivalently,

EG(bn)−G(b̄) ≤ k2

(n+ k)2
[EG(b0)−G(b̄)] +

2 var(Q)

C2
PL (n+ k)

. (15.16)

To conclude the proof, recall that from (15.12), we have

G(b0)−G(b̄) ≤ 1

2
W 2

2 (b0, b̄) .

Taking the expectation over b0 ∼ Q we find

EG(b0)−G(b̄) ≤ G(b̄) =
1

2
var(Q) ,

as claimed. Together with (15.16), it yields

EG(bn)−G(b̄) ≤ var(Q)

n+ k

( k2

2 (n+ k)
+

2

C2
PL

)
≤ var(Q)

n

(k + 1

2
+

2

C2
PL

)
.

Plugging in the value of k completes the proof.

■ 15.7.2 Variance inequality: Theorem 15.3.3

We begin this section with a review of Kantorovich duality, which we use to discuss
the dual of the barycenter problem. Then, we present the proof of Theorem 15.3.3.

Given two measures µ, ν ∈ P2(Rd) and maps f ∈ L1(µ), g ∈ L1(ν) such that
f(x) + g(y) ≥ ⟨x, y⟩ for µ-a.e. x ∈ Rd and ν-a.e. y ∈ Rd, it is easy to see that

1

2
W 2

2 (µ, ν) ≥
∫ (∥·∥2

2
− f

)
dµ+

∫ (∥·∥2
2
− g

)
dν .

Kantorovich duality (see e.g. [Vil03]) says that equality holds for some pair f = φ,
g = φ∗ where φ is a proper LSC convex function and φ∗ denotes its convex
conjugate, i.e.,

1

2
W 2

2 (µ, ν) =

∫ (∥·∥2
2
− φ

)
dµ+

∫ (∥·∥2
2
− φ∗

)
dν .

The map φ is called a Kantorovich potential for (µ, ν).
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Accordingly, given b̄ ∈ P2(Rd), we call a measurable mapping φ : P2,ac(Rd)→
L1(b̄), µ 7→ φµ, an optimal dual solution for the barycenter problem if the following
two conditions are met: (1) for Q-a.e. µ, the mapping φµ is a Kantorovich potential
for (b̄, µ); (2) it holds that ∫ (∥·∥2

2
− φµ

)
dQ(µ) = 0 . (15.17)

It is easily seen that these conditions imply that b̄ is the barycenter of Q:

G(b) =
1

2

∫
W 2

2 (b, ·) dQ ≥
∫ [∫ (∥·∥2

2
− φµ

)
db+

∫ (∥·∥2
2
− φ∗µ

)
dµ

]
dQ(µ)

=

∫∫ (∥·∥2
2
− φ∗µ

)
dµ dQ(µ) =

1

2

∫
W 2

2 (b̄, ·) dQ = G(b̄) .

The existence of an optimal dual solution for the barycenter problem is known
in the finitely supported case [AC11], and existence can be shown for the general
case under mild conditions. For completeness, we give a self-contained proof of
the existence of an optimal dual solution in the case where Q is supported on
Gaussian measures in §15.9.1.

Proof of Theorem 15.3.3. By the strong convexity assumption, it holds for Q-a.e.
µ ∈ P2,ac(Rd) and a.e. x ∈ Rd,

φ∗µ(x) + φµ(y) ≥ ⟨x, y⟩+
α(µ)

2
∥y −∇φ∗µ(x)∥2 ,

which can be rearranged into

∥x− y∥2 − α(µ) ∥y −∇φ∗µ(x)∥2 ≥ ∥x∥
2

2
− φ∗µ(x) +

∥y∥2
2
− φµ(y) .

Integrating this w.r.t. the optimal transport plan γµ between µ and b ∈ P2(Rd),

1

2

(
W 2

2 (µ, b)− α(µ)

∫
∥Tµ→b − Tµ→b̄∥2 dµ

)
≥

∫ (∥·∥2
2
− φ∗µ

)
dµ+

∫ (∥·∥2
2
− φµ

)
db .

Observe also that (2.11) implies ∥Tµ→b−Tµ→b̄∥2L2(µ) ≥ W 2
2 (b, b̄). Integrating these

inequalities with respect to Q yields

G(b)− 1

2

(∫
α dQ

)
W 2

2 (b, b̄)
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≥
∫ [∫ (∥·∥2

2
− φ∗µ

)
dµ+

∫ (∥·∥2
2
− φµ

)
db
]

dQ(µ)

=

∫∫ (∥·∥2
2
− φ∗µ

)
dµ dQ(µ) = G(b̄) ,

where in the last two identities, we used (15.17). It finishes the proof.

■ 15.7.3 Integrated PL inequality

The following lemma appears in [LV09, Lemma A.1] in the case of Lipschitz func-
tions. A minor modification of their proof allows to handle locally Lipschitz rather
than only Lipschitz functions. We include the modified proof for completeness.

Lemma 15.7.1. Let (bs)s∈[0,1] be a Wasserstein geodesic in P2(Rd). Let Ω ⊆ Rd

be a convex open subset for which b0(Ω) = b1(Ω) = 1. Then, for any function
f : Rd → R which is locally Lipschitz on Ω, it holds that∣∣∣∫ f db0 −

∫
f db1

∣∣∣ ≤ W2(b0, b1)

∫ 1

0

∥∇f∥L2(bs) ds .

Proof. According to [Vil09b, Corollary 7.22], there exists a probability measure
Π on the space of constant-speed geodesics in Rd such that γ ∼ Π and bs is the
law of γ(s). In particular, it yields∫

f db0 −
∫
f db1 =

∫ [
f
(
γ(0)

)
− f

(
γ(1)

)]
dΠ(γ) .

We can cover the geodesic (γ(s))s∈[0,1] by finitely many open neighborhoods con-
tained in Ω so that f is Lipschitz on each such neighborhood; thus, the mapping
t 7→ f(γ(s)) is Lipschitz and we may apply the fundamental theorem of calculus,
the Fubini–Tonelli theorem, and Cauchy–Schwarz:∫

f db0 −
∫
f db1 =

∫ ∫ 1

0

〈
∇f

(
γ(s)

)
, γ̇(s)

〉
ds dΠ(γ)

≤
∫ 1

0

∫
length(γ)

∥∥∇f(γ(s)
)∥∥ dΠ(γ) ds

≤
∫ 1

0

(∫
length(γ)2 dΠ(γ)

)1/2( ∫ ∥∥∇f(γ(s)
)∥∥2

dΠ(γ)
)1/2

ds

= W2(b0, b1)

∫ 1

0

∥∇f∥L2(bs) ds .

It yields the result.
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Proof of Lemma 15.3.5. By Kantorovich duality [Vil03],

1

2
W 2

2 (b, µ) =

∫ (∥·∥2
2
− ϕµ→b

)
dµ+

∫ (∥·∥2
2
− ϕb→µ

)
db ,

1

2
W 2

2 (b̄, µ) ≥
∫ (∥·∥2

2
− ϕµ→b

)
dµ+

∫ (∥·∥2
2
− ϕb→µ

)
db̄ .

This yields the inequality

G(b)−G(b̄) ≤
∫ (∥·∥2

2
−
∫
ϕb→µ dQ(µ)

)
d(b− b̄) .

Let ϕ̄ :=
∫
ϕb→µ dQ(µ); this is a proper LSC convex function Rd → R ∪ {∞}.

We apply Lemma 15.7.1 with Ω = int dom ϕ̄. Since ϕ̄ is locally Lipschitz on the
interior of its domain and b̄≪ b, then b(Ω) = b̄(Ω) = 1, whence

G(b)−G(b̄) ≤ W2(b, b̄)

∫ 1

0

∥∇ϕ̄− id∥L2(bs) ds

≤
√

2 [G(b)−G(b̄)]

Cvar

∫ 1

0

∥∇ϕ̄− id∥L2(bs) ds .

Square and rearrange to yield

G(b)−G(b̄) ≤ 2

Cvar

(∫ 1

0

∥∇ϕ̄− id∥L2(bs) ds
)2

.

Recognizing that ∇G(b) = id−∇ϕ̄ yields the result.

■ 15.8 Proofs for the geodesic convexity results

■ 15.8.1 Proof of Theorem 15.1.1

See §2.1 and 2.3 for background on the relevant geometric concepts.
We begin by proving that the functionals −

√
λmin and

√
λmax are geodesically

convex. The following argument is implicit in the proofs of [AC11, Theorem 6.1]
and [BJL19, Theorem 8], and we include it for completeness.

Theorem 15.8.1. The functionals −
√
λmin : Sd++ → R and

√
λmax : Sd++ → R

are convex along barycenters.

Proof. If Q is a probability measure on Sd++ with barycenter Σ⋆, then

Σ⋆ =

∫
(Σ⋆ 1/2ΣΣ⋆ 1/2)

1/2
dQ(Σ) ,
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see [AC11, Theorem 6.1]. This implies

λmin(Σ⋆) ≥
∫ √

λmin(Σ⋆ 1/2ΣΣ⋆ 1/2) dQ(Σ) ≥
√
λmin(Σ⋆)

∫ √
λmin(Σ) dQ(Σ) ,

whence √
λmin(Σ⋆) ≥

∫ √
λmin(Σ) dQ(Σ) .

A similar argument applies for
√
λmax.

Remark 15.8.2. This result implies for instance that the set of PSD matrices
with eigenvalues lying in a certain range is geodesically convex.

Since the update for Bures–Wasserstein SGD only involves moving along
geodesics, the above result already suffices to control the eigenvalues of the SGD
iterates. However, the update for Bures–Wasserstein GD entails movement along
generalized geodesics, for which we need the control in Theorem 15.1.1.

Before proving Theorem 15.1.1, however, we provide some intuition for the
proof. Denote by F the barycenter functional F (Σ) := 1

2

∫
W 2

2 (Σ, ·) dQ correspond-
ing to the measure Q and for the sake of intuition, pretend that

√
λmin is differen-

tiable everywhere. Let (Σt)t≥0 denote the gradient flow of F , i.e., Σ̇t = −∇F (Σt).
We observe that the gradient of F can be written as an average, hence

∂t
√
λmin(Σt) = −⟨∇

√
λmin(Σt),∇F (Σt)⟩Σt

=

∫
⟨∇

√
λmin(Σt), logΣt Σ′⟩Σt dQ(Σ′) ,

see Fact 2 in §2.3.2. However, the geodesic concavity of
√
λmin implies that√

λmin(Σ′) ≤
√
λmin(Σt) + ⟨∇

√
λmin(Σt), logΣt Σ′⟩Σt

and therefore

∂t
√
λmin(Σt) ≥

∫ √
λmin(Σ′) dQ(Σ′)︸ ︷︷ ︸

=:
√
α

−
√
λmin(Σt) .

This shows that as soon as λmin(Σt) hits α, then
√
λmin(Σt) is increasing. Thus, the

continuous-time gradient flow for F always has eigenvalues at least α provided that
it is initialized appropriately and

√
λmin is differentiable throughout its trajectory.

To summarize, the geodesic concavity of
√
λmin, together with the expression

for the gradient of F as an average of tangent vectors pointing towards matrices
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in the support of Q, yields eigenvalue control for the continuous-time gradient
flow of F . This argument does not apply directly to the discrete-time GD up-
dates, but nevertheless we show that the eigenvalues of the GD iterates can be
controlled provided that the step size is taken sufficiently small; this is the content
of Theorem 15.1.1.

Proof of Theorem 15.1.1. For 0 ≤ η ≤ 1, let Ση denote the generalized barycenter
of the distribution Qη := (1− η) δΣ0 + η Q. For the average transport map

T̄ :=

∫
TΣ0→Σ dQ(Σ) ,

we have

Ση =
(
(1− η) Id + η T̄

)
Σ0

(
(1− η) Id + η T̄

)
= (1− η)2 Σ0 + η2 T̄Σ0T̄ + η (1− η) (T̄Σ0 + Σ0T̄ ) .

On the other hand, let γΣ(η) denote the geodesic joining Σ0 to Σ at time η. Then,

γΣ(η) =
(
(1− η) Id + η TΣ0→Σ

)
Σ0

(
(1− η) Id + η TΣ0→Σ

)
= (1− η)2 Σ0 + η2 Σ + η (1− η) (TΣ0→ΣΣ0 + Σ0TΣ0→Σ) .

Upon integrating w.r.t. dQ(Σ) and comparing the two expressions, we find that

Ση =

∫
γΣ(η) dQ(Σ) + η2

(
T̄Σ0T̄ −

∫
Σ dQ(Σ)

)
⪰

∫
γΣ(η) dQ(Σ)− βη2 Id .

Next, using the geodesic concavity of
√
λmin and Jensen’s inequality,

λmin

(∫
γΣ(η) dQ(Σ)

)
≥

∫
λmin

(
γΣ(η)

)
dQ(Σ)

≥
∫ (

(1− η)
√
λmin(Σ0) + η

√
λmin(Σ)

)2
dQ(Σ)

≥
(∫ (

(1− η)
√
λmin(Σ0) + η

√
λmin(Σ)

)
dQ(Σ)

)2

≥
(
(1− η)

√
λmin(Σ0) + η

√
α
)2
.

We have established the inequality

λmin(Ση) ≥
(
(1− η)

√
λmin(Σ0) + η

√
α
)2 − βη2 .
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We now search for a value of λ ≥ 0 such that if λmin(Σ0) ≥ λ, then λmin(Ση) ≥ λ.
From the above inequality, it suffices to have(

(1− η)
√
λ+ η

√
α
)2 − βη2 !

≥ λ .

Rearranging this expression, we want

(
√
α−
√
λ) η

!

≥
√
λ+ βη2 −

√
λ =
√
λ
(√

1 +
βη2

λ
− 1

)
.

Applying the inequality
√

1 + x ≤ 1 + x/2, valid for x ≥ 0, it suffices to have

(
√
α−
√
λ) η

!

≥ βη2

2
√
λ
.

We now choose λ = α/4, for which it can be verified that the above inequality
holds for η ≤ α

2β
. This concludes the proof.

Remark 15.8.3. In an earlier version of [Alt+21], we claimed that −
√
λmin and√

λmax are convex along generalized geodesics, which is stronger than the statement
of Theorem 15.1.1. Unfortunately, our proof of this claim was incorrect, as it relied
upon [LL01, Corollary 3.5] which is false as written.2 In fact, we have discovered
a counterexample to our original claim: set

Σ0 :=

[
0.16 0.2
0.2 0.82

]
, ∆ :=

[
0.8 0.4
0.4 0.2

]
, Σ := I2 + Σ

−1/2
0 ∆Σ

−1/2
0 .

Let Q := 1
2
δI2 + 1

2
δΣ and note that Σ ⪰ I2, i.e., Q is supported on matrices with

eigenvalues at least 1. We can compute

TΣ0→I2 = Σ
−1/2
0 ,

TΣ0→Σ = Σ
−1/2
0

(
Σ

1/2
0 (Id + Σ

−1/2
0 ∆Σ

−1/2
0 ) Σ

1/2
0

)1/2
Σ
−1/2
0

= Σ
−1/2
0 (Σ0 + ∆)1/2 Σ

−1/2
0 ,

T̄ =
1

2
Σ
−1/2
0

(
Σ

1/2
0 + (Σ0 + ∆)1/2

)
Σ
−1/2
0 ,

so that the generalized barycenter Σ̄ of Q at Σ0 is

Σ̄ = Σ
−1/2
0

(Σ
1/2
0 + (Σ0 + ∆)1/2

2

)2

Σ
−1/2
0 .

2The “if” direction of the corollary is incorrect: upon taking B = Id, it says that X ⪯ B1/2

implies X2 ⪯ B, which contradicts the well-known fact that the square function is not operator
monotone.
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However, it can be numerically verified that λmin(Σ̄) ≤ 0.993 < 1. This shows that
the set of PSD matrices with eigenvalues at least 1 is not closed under generalized
geodesics. In particular, −

√
λmin is an example of a functional which is convex

along barycenters but not along generalized geodesics, which may be of interest in
its own right. The revised statement of Theorem 15.1.1 fixes this issue, at the cost
of worsening our quantitative results.

We also remark that the above counterexample was obtained as follows. One
can show that the statement

the set of PSD matrices with eigenvalues at least 1 is closed under generalized
geodesics

is equivalent to the statement

for all Σ0 ≻ 0 and all A,B ⪰ Σ0, it holds that(A1/2 +B1/2

2

)2

⪰ Σ0 .

The equivalence between the two statements is obtained by considering the gen-
eralized barycenter of the distribution P := 1

2
δ
Σ
−1/2
0 AΣ

−1/2
0

+ 1
2
δ
Σ
−1/2
0 BΣ

−1/2
0

at Σ0.

Therefore, we discovered our counterexample by finding a counterexample to the
latter statement. Note also the similarity of the second statement with the last
conjecture in [CK85]. In contrast, it was shown in Lemma 15.4.3 that the set of
matrices with eigenvalues at most β is convex along generalized geodesics.

■ 15.8.2 Sharpness of Theorem 15.8.1

We investigate the sharpness of this result in the following sense: for what expo-
nents p ∈ R is it true that the functionals −λpmin, λpmax are geodesically convex? For
instance, the functional λmax was shown to be geodesically convex in Lemma 15.4.3.

In the following theorem, we show that the exponent p = 1/2 in Theorem 15.8.1
is optimal, in the sense that all possible geodesic convexity statements involving
powers of λmin and λmax (except the trivial case p = 0) can be deduced from the
result for p = 1/2.

Theorem 15.8.4. The following diagrams depict the exponents p ∈ R for which
λpmin and λpmax are concave or convex.
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p

convex

concave

λpmin

0 1
2

p

convex

concave

λpmax

0 1
2

The diagram is to be interpreted as follows. If part of the diagram is filled in with
a solid black line, then the corresponding functional is geodesically concave/convex.
If part of the diagram is not filled in, then there exist counterexamples showing
that the functional is not geodesically concave/convex.

Proof. First, we establish the positive results, which follow from composition rules:

• For 0 ≤ p ≤ 1/2, λpmin is the composition of the increasing concave function
(·)2p with the concave function

√
λmin, so it is concave.

• For p ≤ 0, λpmin is the composition of the decreasing convex function (·)2p
with the concave function

√
λmin, so it is convex.

• For p ≥ 1/2, λpmax is the composition of the increasing convex function (·)2p
with the convex function

√
λmax, so it is convex.

Next, we turn towards the negative results. First, recall from Fact 4 in §2.3.2
that if Σ0 and Σ1 are one-dimensional, i.e., they are positive numbers, then the
Bures–Wasserstein geodesic is

Σt =
(
(1− t) Σ

1/2
0 + tΣ

1/2
1

)2
, t ∈ [0, 1] .

Also, in this case, λmin and λmax coincide and equal the identity; we thus abuse
notation slightly in this paragraph by writing λ for both to handle the two cases
simultaneously. Once we reparametrize by the square roots, it is seen that asking
for concavity/convexity of λp is equivalent to asking for usual convexity of (·)2p on
R+. This example rules out: (1) the concavity of λp for p < 0; (2) the convexity
of λp for 0 < p < 1/2; and (3) the concavity of λp for p > 1/2.

To rule out convexity of λpmin for p > 0, consider Σ = diag(ε, 1/ε) for small
ε > 0. The transport map from Σ−1 to Σ is Σ, so from (2.26) the midpoint of
this geodesic is M := (Σ + Σ−1 + 2I2)/4 = (ε + ε−1 + 2)I2/4. In particular, this
implies that λmin(M) ≥ 1/(4ε)≫ ε = max{λmin(Σ), λmin(Σ−1)}. Thus λpmin is not
convex for any p > 0.
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To rule out concavity of λpmax for p > 0, note that for ε sufficiently small, in the
previous example λmax(M) ≈ 1/(4ε) ≪ 1/ε = max{λmax(Σ), λmax(Σ

−1)}. Also,
for any p < 0, the convexity of λpmax would imply the concavity of λ−pmax due to the
composition rules, hence λpmax is not convex.

This covers all cases.

■ 15.8.3 Eigenvalue clipping is a Bures–Wasserstein contraction

Convex sets play an important role in Euclidean optimization because projection
onto a convex set is a contraction (c.f. [Bub15, Lemma 3.1]), and hence projected
gradient descent can be used to solve constrained optimization. Unfortunately, as
the Bures–Wasserstein space is positively curved, we cannot automatically con-
clude that projection onto a geodesically convex set is a projection. Nevertheless,
we can verify by hand the following result. In what follows, define for 0 < β <∞
the operator clipβ : Sd++ → Sd++ in the following way: if Σ =

∑d
i=1 λiuiu

T
i is an

eigenvalue decomposition of Σ, then

clipβ Σ :=
d∑
i=1

(λi ∧ β)uiu
T
i .

Proposition 15.8.5. The operator clipβ is a contraction with respect to the Bures–
Wasserstein metric, i.e., W2(clipβ Σ, clipβ Σ′) ≤ W2(Σ,Σ

′).

To prove this proposition, we first extend the clipping operation to an operator
Rd×d → Rd×d via the singular values; namely, given a singular value decomposition
A =

∑d
i=1 siuiv

T
i , we let clipβ A :=

∑d
i=1(si ∧ β)uiv

T
i .

Proof of Proposition 15.8.5. Fix X, Y ∈ Sd++. It is known (see, e.g., [BJL19]) that

W2(X, Y ) = min
A,B∈Rd×d
AAT=X
BBT=Y

∥A−B∥HS .

Let (Ā, B̄) be a minimizing pair in the above expression. We aim to show

W2(clipβX, clipβ Y ) ≤ ∥clip
√
β Ā− clip

√
β B̄∥HS

?

≤ ∥Ā− B̄∥HS = W2(X, Y ) .

We only have to show the second inequality, and we do so by showing that the
operator clipM : Rd×d → Rd×d satisfies

clipM A = arg min
Ã∈Rd×d, ∥Ã∥≤M

∥A− Ã∥HS , A ∈ Rd×d . (15.18)
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This will prove that clipM is the Euclidean projection onto the closed convex set
{∥·∥ ≤M}, and such a projection is automatically 1-Lipschitz.

Indeed, showing (15.18) is standard. Write A = UΣV T for its singular value
decomposition. Then,

arg min
Ã∈Rd×d, ∥Ã∥≤M

∥Ã− A∥2HS = arg min
Ã∈Rd×d, ∥Ã∥≤M

∥Ã− UΣV T∥2HS

= arg min
Ã∈Rd×d, ∥Ã∥≤M

∥UTÃV − Σ∥2HS

= arg min
Ã∈Rd×d, ∥Ã∥≤M

{ d∑
i=1

{Σ[i, i]− (UTÃV )[i, i]}2 +
∑
i,j∈[d]
i ̸=j

(UTÃV )[i, j]
2
}
.

On the other hand,

min
Ã∈Rd×d, ∥Ã∥≤M

{ d∑
i=1

{Σ[i, i]− (UTÃV )[i, i]}2 +
∑

i,j∈[d], i ̸=j

(UTÃV )[i, j]
2
}

≥
d∑
i=1

{(Σ[i, i]−M)+}
2 ,

with equality attained at the unique minimizer Ã satisfying UTÃV = clipM Σ, i.e.,
Ã = clipM A.

■ 15.9 Proofs for Bures–Wasserstein barycenters

■ 15.9.1 Properties of the Bures–Wasserstein barycenter

Existence and uniqueness of the barycenter in the case where P is finitely sup-
ported follows from the seminal work of Agueh and Carlier [AC11]. We extend
this result to the case where P is not finitely supported.

Proposition 15.9.1 (Gaussian barycenter). Fix 0 < λmin ≤ λmax < ∞. Let
P ∈ P2(P2,ac(Rd)) be such that for all µ ∈ suppP , µ = γm(µ),Σ(µ) is a Gaussian
with λminId ⪯ Σ(µ) ⪯ λmaxId. Let γm̄,Σ̄ be the Gaussian measure with mean
m̄ :=

∫
m(µ) dP (µ) and covariance matrix Σ̄ which is a fixed point of the mapping

S 7→ G(S) :=
∫

(S1/2 Σ(·)S1/2)
1/2

dP . Then, γm̄,Σ̄ is the unique barycenter of P .

Proof. To show that there exists a fixed point for the mapping G, apply Brouwer’s
fixed-point theorem as in [AC11, Theorem 6.1]. To see that γm̄,Σ̄ is indeed a
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barycenter, observe the mapping

φ : (µ, x) 7→ φµ(x) := ⟨x,m(µ)⟩+ 1

2
⟨x− m̄, Σ̄−1/2[Σ̄1/2Σ(µ)Σ̄1/2]

1/2
Σ̄−1/2(x− m̄)⟩

satisfies the characterization (15.17) (so that φ is an optimal dual solution for
the barycenter problem w.r.t. γm̄,Σ̄) using the explicit form of the transport
map (15.14), so γm̄,Σ̄ is a barycenter of P . Uniqueness follows from the variance
inequality (Theorem 15.3.3) once we establish regularity of the optimal transport
maps in Lemma 15.9.2.

Now that we know the barycenter of P is a centered non-degenerate Gaussian,
we abuse notation and treat P as an element of P(Sd++).

Lemma 15.9.2. Suppose that Σ,Σ′ ∈ Sd++ have eigenvalues which lie in the
range [λmin, λmax], and let κ := λmax/λmin denote the condition number. Then, the
eigenvalues of the transport map TΣ→Σ′ lie in the range [1/

√
κ,
√
κ].

Proof. The transport map TΣ→Σ′ is explicitly given in (15.3), and it can be recog-
nized as the matrix geometric mean of Σ−1 and Σ′. Applying a norm bound for
the matrix geometric mean [BG12, Theorem 3], we deduce that

λmax(TΣ→Σ′) ≤ λmax(Σ
′ 1/4Σ−1/2Σ

′ 1/4) ≤ √κ .
The symmetry of Σ and Σ′ together with Fact 3 in §2.3.2 yields the opposite
inequality λmin(TΣ→Σ′) ≥ 1/

√
κ.

Lemma 15.9.2 can also be recovered by applying Caffarelli’s contraction theo-
rem, see §10.2 for a proof.

Theorem 15.3.3 readily yields the following variance inequality. Recall that Σ⋆

denotes the covariance matrix of the barycenter of P ; in an abuse of terminology,
we refer to Σ⋆ itself as the barycenter of P .

Theorem 15.9.3. Assume that the covariance matrices in the support of P have
eigenvalues in the range [λmin, λmax]. Then, F satisfies a variance inequality,

F (Σ)− F (Σ⋆) ≥ 1

2
√
κ
W 2

2 (Σ,Σ⋆) , for all Σ ∈ Sd++ .

■ 15.9.2 A PL inequality on the Bures–Wasserstein manifold

Theorem 15.9.4. Assume that the covariance matrices in the support of P have
eigenvalues in the range [λmin, λmax]. Then, F satisfies a PL inequality at the
matrix Σ:

F (Σ)− F (Σ⋆) ≤ 2
√
κ

λmax

λmin(Σ)
∥∇F (Σ)∥2Σ .
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Proof. Let (b̃s)s∈[0,1] be the constant-speed geodesic between b̃0 := b := γ0,Σ and

b̃1 := b⋆ := γ0,Σ⋆ . Combining Lemma 15.3.5 (with an additional use of the Cauchy–
Schwarz inequality) and Theorem 15.9.3, we get

F (b)− F (b⋆) ≤ 2
√
κ

∫ 1

0

∫
∥∇F (b)∥2 db̃s ds . (15.19)

Define a random variable Xs ∼ b̃s and observe that∫
∥∇F (b)∥2 db̃s = E[∥(M̃ − Id)Xs∥2] ,

where

M̃ =

∫
Σ−1/2(Σ1/2SΣ1/2)

1/2
Σ−1/2 dP (S) .

Moreover, recall that Xs = (1 − s)X0 + sX1 where X0 ∼ b̃0 and X1 ∼ b̃1 are
optimally coupled. Therefore, by Jensen’s inequality, we have for all s ∈ [0, 1],

E[∥(M̃ − Id)Xs∥2] ≤ (1− s)E[∥(M̃ − Id)X0∥2] + sE[∥(M̃ − Id)X1∥2]

≤ λmax

λmin(Σ)
E[∥(M̃ − Id)X0∥2] ,

where in the second inequality, we used the fact that

E[∥(M̃ − Id)X1∥2] = tr
(
Σ⋆ (M̃ − Id)

2) ≤ ∥Σ⋆Σ−1∥op tr
(
Σ (M̃ − Id)

2)
≤ λmax

λmin(Σ)
E[∥(M̃ − Id)X0∥2] .

Together with (15.19), it yields

F (b)− F (b⋆) ≤ 2
√
κ

λmax

λmin(Σ)
E[∥(M̃ − Id)X0∥2]︸ ︷︷ ︸

=∥∇F (b)∥2b

.

■ 15.9.3 Riemannian gradient descent

In this section, we review the strategy of the proof and establish the dimension-free
rates in Theorems 15.4.1 and 15.4.2.

Let F denote the barycenter functional,

F (Σ) :=
1

2

∫
W 2

2 (Σ, ·) dP . (15.20)
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Standard optimization guarantees are often proven under the assumption that the
objective function F is smooth and convex. Since we are considering Riemannian
descent, this should be interpreted as convex and smooth along geodesics, as
in [ZS16]. Unfortunately, the functional F is not geodesically convex (see Fig-
ure 15.2), and so we must look for weaker conditions which still imply convergence
of GD/SGD. A gradient domination condition known as the Polyak– Lojasiewicz
inequality (henceforth PL inequality) was introduced in the non-convex optimiza-
tion literature as an appropriate substitute for strong convexity [KNS16], and it
plays a key role in the analysis.

We have established the following properties of the barycenter functional.

Theorem 15.9.5. Let 0 < λmin ≤ λmax <∞ and write κ := λmax/λmin.

1. The barycenter functional F is 1-geodesically smooth.

2. Assume that the covariance matrices in the support of P have eigenvalues in
the range [λmin, λmax]. Then, F satisfies a variance inequality,

F (Σ)− F (Σ⋆) ≥ 1

2
√
κ
W 2

2 (Σ,Σ⋆) , for all Σ ∈ Sd++ .

3. Assume that the covariance matrices in the support of P have eigenvalues in
the range [λmin, λmax]. Then, F satisfies a PL inequality at the matrix Σ:

F (Σ)− F (Σ⋆) ≤ 2
√
κ

λmax

λmin(Σ)
∥∇F (Σ)∥2Σ .

Geodesic smoothness together with a PL inequality at every iterate are enough
to obtain convergence guarantees for GD/SGD in objective value (i.e., the quantity
F (Σ)− F (Σ⋆)), c.f. Theorems 15.3.1 and 15.3.2. The variance inequality is then
used to deduce convergence of the iterate to Σ⋆.

The main difficulty when applying these results is the assumption required for
the third point: it requires a priori control over the eigenvalues of the iterates
of GD/SGD. This difficulty is addressed via the following strategy: identify a
geodesically convex subset S of the Bures–Wasserstein manifold for which we can
prove uniform bounds on the eigenvalues of matrices in S. Since the iterates of
SGD travel along geodesics, if P is supported in S and the algorithm is initialized
in S, it follows that all iterates of SGD will remain in S. The situation is similar
for GD, except that “geodesics” must be replaced by “generalized geodesics”.

To obtain this control over the eigenvalues, we apply our geometric result
(Theorem 15.1.1) to prove the following result.
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Lemma 15.9.6. Suppose that the covariance matrices in the support of P have
eigenvalues in the range [λmin, λmax], and that we initialize GD (respectively SGD)
at a point in suppP . Then, the iterates of GD with step size at most 1

2κ
(re-

spectively SGD) also have eigenvalues in the range [λmin/4, λmax] (respectively
[λmin, λmax]).

Proof. The result for SGD follows because SGD moves along geodesics and the
set of matrices with eigenvalues in [λmin, λmax] is geodesically convex (Theo-
rem 15.8.1). For GD, we instead invoke the generalized geodesic convexity of
λmax (Lemma 15.4.3) together with Theorem 15.1.1.

We can now prove Theorem 15.4.1.

Proof of Theorem 15.4.1. The proof for SGD follows from Theorem 15.3.2. For
GD, from Theorem 15.9.5 and Lemma 15.9.6, we have the PL inequality

F (ΣGD
t )− F (Σ⋆) ≤ 8κ3/2 ∥∇F (ΣGD

t )∥2ΣGD
t

at any GD iterate ΣGD
t . Also, from the 1-smoothness of the barycenter functional,

we obtain the descent lemma

F (ΣGD
t+1)− F (ΣGD

t ) ≤ −η
(
1− η

2

)
∥∇F (ΣGD

t )∥2ΣGD
t
.

With our step size choice η = 1
2κ

, this becomes

F (ΣGD
t+1)− F (ΣGD

t ) ≤ − 3

8κ
∥∇F (ΣGD

t )∥2ΣGD
t
.

Combining these two inequalities and iterating yields the result for GD.

We now sketch the modifications required to prove Theorem 15.4.2.

Proof of Theorem 15.4.2. We first note that

∥λmax∥1/2
∥λmin∥1/2

=
(∫ λmax(Σ)1/2 dP (Σ)∫

λmin(Σ)1/2 dP (Σ)

)2

≤ sup
Σ∈supp(P )

λmax(Σ)

λmin(Σ)
= κ⋆ .

Above, the inequality follows from rearranging∫ √
λmax(Σ) dP (Σ) ≤

√
κ⋆

∫ √
λmin(Σ) dP (Σ) .

We check that the variance inequality and PL inequality from Theorem 15.9.5
continue to hold under these assumptions.
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Variance inequality. From the geodesic convexity of −
√
λmin and

√
λmax,

the barycenter Σ⋆ of P has eigenvalues in [∥λmin∥1/2, ∥λmax∥1/2]. By modifying
the proof of Lemma 15.9.2 and using Fact 3 in §2.3.2, the transport map TΣ⋆→Σ

has eigenvalues bounded below as

λmin(TΣ⋆→Σ) =
1

λmax(TΣ→Σ⋆)
≥ 1

λmax(Σ⋆ 1/4Σ−1/2Σ⋆ 1/4)
≥ λmin(Σ)1/2

∥λmax∥1/21/2

.

From Theorem 15.3.3, the variance inequality holds for P with constant∫
λmin(TΣ⋆→Σ) dP (Σ) ≥

( ∥λmin∥1/2
∥λmax∥1/2

)1/2

.

PL inequality. Similarly, a modification of the proof of Theorem 15.9.4 shows
that a PL inequality holds at Σ:

F (Σ)− F (Σ⋆) ≤ 2
(∥λmax∥1/2
∥λmin∥1/2

)1/2 ∥λmax∥1/2
λmin(Σ)

∥∇F (Σ)∥2Σ .

Putting it together. The iterates of SGD all have eigenvalues in the range
[∥λmin∥1/2, ∥λmax∥1/2], whereas from Theorem 15.1.1, the iterates of GD with step

size at most
∥λmin∥1/2
2 ∥λmax∥1 all have eigenvalues in the range [∥λmin∥1/2/4, ∥λmax∥1].

■ 15.9.4 Euclidean gradient descent approach

In this section, we describe Euclidean projected gradient and projected stochastic
gradient algorithms for computing Bures–Wasserstein barycenters.

Fix 0 < α ≤ β and denote by Kα,β the subset of covariance matrices whose
spectrum lies within [α, β]. Let F denote the barycenter functional, defined
in (15.20). Let Πα,β : Sd → Kα,β denote the Euclidean projection onto Kα,β.
Given a starting matrix Σ0, the projected gradient descent scheme to minimize
the barycenter functional of a measure P supported on Kλmin,λmax is given by

ΣEGD
n+1 := Πλmin,λmax

(
Σn − ηDF (ΣEGD

n )
)
, n ≥ 0 . (15.21)

Here, D denotes the Euclidean gradient of F . Also, suppose that Σ1, . . . ,Σn are
i.i.d. samples from P . Then, the projected stochastic gradient scheme is

ΣESGD
n+1 := Πλmin,λmax

(
ΣESGD
n − ηn+1

{
Id −GM(Σn+1, (Σ

ESGD
n )

−1
)
})
, n ≥ 0 ,

(15.22)

where for projected SGD we use time-varying step sizes. Convergence analysis for
the iterations (15.21) and (15.22) are provided in [Alt+21].

For the iterations given by (15.21) and (15.22) to be practical, we need the
projection step to be implementable. The following lemma takes care of this.
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Lemma 15.9.7. Let Πα,β : Sd → Kα,β be the projection with respect to the
Frobenius norm. Then

Πα,β(Y ) =
d∑
i=1

[(λi ∧ β) ∨ α] viv
T
i

where Y =
∑d

i=1 λiviv
T
i is an orthogonal eigendecomposition of Y .

Proof. Let Y = QΛQT be an orthogonal eigendecomposition of Y . Since the
Frobenius norm is unitarily invariant, we have

Πα,β(Y ) = arg min
X∈Kα,β

∥X −QΛQT∥2F = arg min
X∈Kα,β

∥QTXQ− Λ∥2F

= Q
(
arg min
X∈Kα,β

∥X − Λ∥2F
)
QT

and the result follows.

■ 15.9.5 SDP formulation

The SDP formulation of the Bures–Wasserstein barycenter is as follows. Suppose
that P is a discrete distribution, P =

∑k
i=1 piδΣi . The Wasserstein distance

between Σ0,Σ1 ∈ Sd++ can be expressed as

W 2
2 (Σ0,Σ1) = min

S∈Rd×d

{
tr(Σ0 + Σ1 − 2S) such that

[
Σ0 S
ST Σ1

]
⪰ 0

}
.

It follows that the barycenter Σ⋆ of P solves the optimization problem

minimize
Σ⋆∈Sd++

S1,...,Sk∈Rd×d

{
tr
(

Σ⋆ − 2
k∑
i=1

piSi

)
such that

[
Σi Si
ST
i Σ⋆

]
⪰ 0 , ∀i ∈ [k]

}
.

■ 15.10 Conclusion

A question for future work is establishing more general conditions under which
the PL inequality holds. In particular, one could examine general conditions
where Lemma 15.3.5 implies a PL inequality. Another path involves studying the
effectiveness of the averaging strategy used in §15.5, which empirically performs
much better when the covariance matrices are poorly conditioned (see Figure 15.5).
Previous results for averaging of stochastic gradient descent on manifolds have
strong geodesic convexity and smoothness assumptions [Tri+18].





Chapter 16

Gaussian variational inference

Along with Markov chain Monte Carlo (mcmc) methods, variational inference (vi)
has emerged as a central computational approach to large-scale Bayesian inference.
Rather than sampling from the true posterior π, vi aims at producing a simple but
effective approximation π̂ to π for which summary statistics are easy to compute.
However, unlike the well-studied mcmc methodology, algorithmic guarantees for
vi are still relatively less well-understood. In this work, we propose principled
methods for vi, in which π̂ is taken to be a Gaussian or a mixture of Gaussians,
which rest upon the theory of gradient flows on the Bures–Wasserstein space of
Gaussian measures. Akin to mcmc, it comes with strong theoretical guarantees
when π is log-concave.

This chapter is based on [Lam+22], joint with Marc Lambert, Francis Bach,
Silvère Bonnabel, and Philippe Rigollet.

■ 16.1 Introduction

This work brings together three active research areas: variational inference, varia-
tional Kalman filtering, and gradient flows on the Wasserstein space.

Variational inference. The development of large-scale Bayesian methods has fu-
elled the need for fast and scalable methods to approximate complex distributions.
More specifically, Bayesian methodology typically generates a high-dimensional
posterior distribution π ∝ exp(−V ) that is known only up to normalizing con-
stants, making the computation even of simple summary statistics such as the
mean and covariance a major computational hurdle. To overcome this limitation,
two distinct computational approaches are largely favored. The first approach
consists of Markov chain Monte Carlo (mcmc) methods that rely on carefully
constructed Markov chains which (approximately) converge to π. For example,
the Langevin diffusion

dXt = −∇V (Xt) dt+
√

2 dBt , (16.1)

471
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where (Bt)t≥0 denotes standard Brownian motion on Rd, admits π as a stationary
distribution. Crucially, the Langevin diffusion can be discretized and implemented
without knowledge of the normalizing constant of π, leading to practical algo-
rithms for Bayesian inference. Recent theoretical efforts have produced sharp
non-asymptotic convergence guarantees for algorithms based on the Langevin
diffusion (or variants thereof), with many results known when π is strongly log-
concave or satisfies isoperimetric assumptions (see, e.g., earlier chapters in this
thesis and references therein).

More recently, Variational Inference (vi) has emerged as a viable alternative to
mcmc [Jor+99; WJ08; BKM17]. The goal of vi is to approximate the posterior π
by a more tractable distribution π̂ ∈ P such that

π̂ ∈ arg min
p∈P

KL(p ∥ π) . (16.2)

A common example arises when P is the class of product distributions, in which
case π̂ is called the mean-field approximation of P . Unfortunately, by definition,
mean-field approximations fail to capture important correlations present in the
posterior π, and various remedies have been proposed, with varied levels of success.
In this work, we largely focus on obtaining a Gaussian approximation to π, that is,
we take P to be the class of non-degenerate Gaussian distributions on Rd [BB97;
See99; HV04; OA09; Zha+18]. The expressive power of the variational model
may be further increased by considering mixture distributions [LKS19a; DD21;
DDP21].

Although the solution π̂ of (16.2) is no longer equal to the true posterior,
variational inference remains heavily used in practice because the problem (16.2)
can be solved for simple models P via scalable optimization algorithms. In
particular, vi avoids many of the practical hurdles associated with mcmc—such
as the potentially long “burn-in” period of samplers and the lack of effective
stopping criteria for the algorithm—while still producing informative summary
statistics. In this regard, we highlight the fact that obtaining an approximation
for the covariance matrix of π via mcmc methods requires drawing potentially
many samples, whereas for many choices of P (e.g., the Gaussian approximation)
the covariance matrix of π̂ can be directly obtained from the solution to the vi
problem (16.2).

However, in contrast with mcmc methods, to date there have not been many
theoretical guarantees for vi, even when π is strongly log-concave and P is taken
to be the class of Gaussians normal(m,Σ). The problem stems from the fact that
the objective in (16.2) is typically non-convex in the pair (m,Σ). Obtaining such
guarantees remains a pressing challenge for the field.
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Variational Kalman filtering. There is also considerable interest in extending ideas
behind variational inference to dynamical settings of Bayesian inference. Consider
a general framework where (πt)t∈T represents the marginal laws of a stochastic
process indexed by time t, which can be discrete or continuous. The goal is to
recursively build a Gaussian approximation to (πt)t∈T .

As a concrete example, suppose that (πt)t≥0 denotes the marginal law of the
solution to the Langevin diffusion (16.1). In the context of Bayesian optimal
filtering and smoothing, [Sär07] proposed the following heuristic. Let (mt,Σt)
denote the mean and covariance matrix of πt. Then, it can be checked (see
§16.6.2) that

ṁt = −E∇V (Xt)

Σ̇t = 2I − E[∇V (Xt)⊗ (Xt −mt) + (Xt −mt)⊗∇V (Xt)]
(16.3)

where Xt ∼ πt. These ordinary differential equations (ODEs) are intractable be-
cause they involve expectations under the law πt of Xt, which is not available to the
practitioner. However, if we replace Xt with a Gaussian Yt ∼ pt = normal(mt,Σt)
with the same mean and covariance as Xt, then the system of ODEs

ṁt = −E∇V (Yt)

Σ̇t = 2I − E[∇V (Yt)⊗ (Yt −mt) + (Yt −mt)⊗∇V (Yt)]
(16.4)

yields a well-defined evolution of Gaussian distributions (pt)t≥0, which we may
optimistically believe to be a good approximation of (πt)t≥0. Moreover, the system
of ODEs can be numerically approximated efficiently in practice using Gaussian
quadrature rules to compute the above expectations. This is the principle behind
the unscented Kalman filter [JUD00].

In the context of the Langevin diffusion, Särkkä’s heuristic (16.4) provides a
promising avenue towards computational vi. Indeed, since π ∝ exp(−V ) is the
unique stationary distribution of the Langevin diffusion (16.1), an algorithm to
approximate (πt)t≥0 is expected to furnish an algorithm to solve the VI prob-
lem (16.2). However, at present there is little theoretical understanding of how
the system (16.4) approximates (16.3); moreover, Särkkä’s heuristic only provides
Gaussian approximations, and it is unclear how to extend the system (16.4) to
more complex models (e.g., mixtures of Gaussians).

Our contributions: bridging the gap via Wasserstein gradient flows. We show that the
approximation (pt)t≥0 in Särkkä’s heuristic (16.4) arises precisely as the gradient
flow of the Kullback–Leibler (KL) divergence KL(· ∥ π) on the Bures–Wasserstein
space of Gaussian distributions on Rd endowed with the 2-Wasserstein distance



474 CHAPTER 16. GAUSSIAN VARIATIONAL INFERENCE

from optimal transport [Vil03]. This perspective allows us to not only understand
its convergence but also to extend it to the richer space of mixtures of Gaussian
distributions, and propose an implementation as a novel system of interacting
“Gaussian particles”. Below, we describe our contributions in greater detail.

Our framework builds upon the seminal work of [JKO98], which introduced
the celebrated JKO scheme in order to give meaning to the idea that the evolving
marginal law of the Langevin diffusion (16.1) is a gradient flow of KL(· ∥ π) on
the Wasserstein space P2(Rd) of probability measures with finite second moments.
Subsequently, in order to emphasize the Riemannian geometry underlying this
result, [Ott01] developed his eponymous calculus on P2(Rd), a framework which
has had tremendous impact in analysis, geometry, PDE, probability, and statistics.

Inspired by this perspective, we show in Theorem 16.3.1 that Särkkä’s approx-
imation (pt)t≥0 is also a gradient flow of KL(· ∥ π), with the main difference being

that it is constrained to lie on the submanifold BW(Rd) of P2(Rd) consisting of
Gaussian distributions, known as the Bures–Wasserstein manifold. In turn, our
result paves the way for new theoretical understanding via the powerful theory of
gradient flows. As a first step, using well-known results about convex function-
als on the Wasserstein space, we show in Corollary 16.3.3 that (pt)t≥0 converges

rapidly to the solution of the vi problem (16.2) with P = BW(Rd) as soon as V
is convex. Moreover, as discussed in §16.4.1, we can apply numerical integration
based on cubature rules for Gaussian integrals to the system of ODEs (16.4), thus
arriving at a fast method with robust empirical performance.

This combination of results brings vi closer to Langevin-based mcmc both on
the practical and theoretical fronts, but still falls short of achieving non-asymptotic
discretization guarantees as pioneered by [Dal17b] for mcmc. To further close
the theoretical gap between vi and the state of the art for mcmc, we propose
in §16.4.2 a stochastic gradient descent (SGD) algorithm as a time discretization
of the Bures–Wasserstein gradient flow. This algorithm comes with convergence
guarantees that establish vi as a solid competitor to mcmc not only from a
practical standpoint but also from a theoretical one. Both have their relative
merits; whereas mcmc targets the true posterior, vi leads to fast computation of
summary statistics of the approximation π̂ to π.

In §16.5, we consider an extension of these ideas to the substantially more
flexible class of mixtures of Gaussians. Namely, the space of mixtures of Gaussians
can be identified as a Wasserstein space over BW(Rd) and hence inherits Otto’s
differential calculus. Leveraging this viewpoint, in Theorem 16.5.1 we derive the
gradient flow of KL(· ∥ π) over the space of mixtures of Gaussians and propose to
implement it via a system of interacting particles. Unlike typical particle-based
algorithms, here our particles correspond to Gaussian distributions, and the col-
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lection thereof to a Gaussian mixture which is better equipped to approximate a
continuous measure. Although we focus on the vi problem in this work, we antic-
ipate that our notion of “Gaussian particles” may be a broadly useful extension
of classical particle methods for PDEs.

Related work. Classical vi methods define a parametric family P = {pθ : θ ∈
Θ} and minimize θ 7→ KL(pθ ∥ π) over θ ∈ Θ using off-the-shelf optimization
algorithms [PBJ12; RGB14]. Since (16.2) is an optimization problem over the
space of probability distributions, we argue for methods that respect a natural
geometry over this space. In this regard, previous approaches to vi using natural
gradients implicitly employ a different geometry [LKS19b; Hua+22; KR22], namely
the reparameterization-invariant Fisher–Rao geometry [AN00]. The application
of Wasserstein gradient flows to vi was introduced earlier in work on normalizing
flows and Stein Variational Gradient Descent (SVGD) [LW16; Liu17].

Our work falls in line with a number of recent papers aiming to place vi on a
solid theoretical footing [ARC16; WB19; Dom20; KJD22]. Some of these works
in particular have obtained non-asymptotic algorithmic guarantees for specific
examples, see, e.g., [CB13]. We also mention that the approach we take in this
paper is closely related to the algorithms and analysis arrived at in [AR20; Dom20;
GPO21]. In particular, [GPO21] derive an algorithm for low-rank Gaussian vi by
seeking a descent condition for the KL divergence, yielding a method resembling
Algorithm 16.1 albeit without quantitative convergence guarantees. Also, [AR20;
Dom20] show that parametrizing the Gaussian by the square root of the covariance
matrix yields convexity and smoothness properties for the Gaussian vi objective,
which in turn allows for applying Euclidean gradient methods. This choice of
parametrization is closely related to the Bures–Wasserstein geometry approach we
take, see §2.3 for background. However, we note that these works do not analyze
the effect of stochastic gradients, which is crucial for implementation.

The connection between vi and Kalman filtering was studied in the static
case by [LBB22b; LBB23], and extended to the dynamical case by [LBB22a],
providing a first justification of Särkkä’s heuristic in terms of local variational
Gaussian approximation. In particular, the closest linear process to the Langevin
diffusion (16.1) is a Gaussian process governed by a McKean–Vlasov equation
whose Gaussian marginals have parameters evolving according to Särkkä’s ODEs.

Constrained gradient flows on the Wasserstein space have also been extensively
studied [CG03; CPR09; TW11; ENS17], although our interpretation of Särkkä’s
heuristic is, to the best of our knowledge, new.



476 CHAPTER 16. GAUSSIAN VARIATIONAL INFERENCE

■ 16.2 Background

In order to define gradient flows on the space of probability measures, we must
first endow this space with a geometry; see §2.1 for more details. Given probability
measures µ and ν on Rd, define the 2-Wasserstein distance

W2(µ, ν) =
[

inf
γ∈C(µ,ν)

∫
∥x− y∥2 dγ(x, y)

]1/2
,

where C(µ, ν) is the set of couplings of µ and ν, that is, joint distributions on
Rd × Rd whose marginals are µ and ν respectively. This quantity is finite as long
as µ and ν belong to the space P2(Rd) of probability measures over Rd with finite
second moments. The 2-Wasserstein distance has the interpretation of measuring
the smallest possible mean squared displacement of mass required to transport
µ to ν; we refer to [Vil03; Vil09b; San15] for textbook treatments on optimal
transport. Unlike other notions of distance between probability measures, such
as the total variation distance, the 2-Wasserstein distance respects the geometry
of the underlying space Rd, leading to numerous applications in modern data
science [see, e.g., PC19].

The space (P2(Rd),W2) is a metric space [Vil03, Theorem 7.3], and we refer
to it as the Wasserstein space. However, as shown by Otto [Ott01], it has a far
richer geometric structure: formally, (P2(Rd),W2) can be viewed as a Riemannian
manifold, a fact which allows for considering gradient flows of functionals on
P2(Rd). A fundamental example of such a functional is the KL divergence KL(·∥π)
to a target density π ∝ exp(−V ) on Rd, for which [JKO98] showed that the
Wasserstein gradient flow is the same as the evolution of the marginal law of
the Langevin diffusion (16.1). This optimization perspective has had tremendous
impact on our understanding and development of mcmc algorithms [Wib18].

■ 16.3 Variational inference with Gaussians

In this section we describe our problem using two equivalent approaches: a vari-
ational approach based on a modified version of the JKO scheme of [JKO98]
(§16.3.1), and a Wasserstein gradient flow approach based on Otto calculus
(§16.3.2). Both lead to the same result (§16.3.3). While the former is more
accessible to readers who are unfamiliar with gradient flows on the Wasserstein
space, the latter leads to strong convergence guarantees (§16.3.4).

■ 16.3.1 Variational approach: the Bures–JKO scheme

The space of non-degenerate Gaussian distributions on Rd equipped with the W2

distance forms the Bures–Wasserstein space BW(Rd) ⊆ P2(Rd). On BW(Rd), the
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Wasserstein distance W 2
2 (p0, p1) between two Gaussians p0 = normal(m0,Σ0) and

p1 = normal(m1,Σ1) admits the following closed form:

W 2
2 (p0, p1) = ∥m0 −m1∥2 + B2(Σ0,Σ1) , (16.5)

where B2(Σ0,Σ1) = tr(Σ0+Σ1−2 (Σ
1
2
0 Σ1Σ

1
2
0 )

1
2 ) is the squared Bures metric [Bur69].

Given a target density π ∝ exp(−V ) on Rd, and with a step size h > 0, we
may define the iterates of the proximal point algorithm

pk+1,h := arg min
p∈BW(Rd)

{
KL(p ∥ π) +

1

2h
W 2

2 (p, pk,h)
}
. (16.6)

Using (16.5), this is an explicit optimization problem involving the mean and
covariance matrix of p. Although (16.6) is not solvable in closed form, by letting
h ↘ 0 we obtain a limiting curve (pt)t≥0 via pt = limh↘0 p⌊t/h⌋,h, which can be
interpreted as the Bures–Wasserstein gradient flow of the KL divergence KL(· ∥π).
This procedure mimics the JKO scheme [JKO98] with the additional constraint
that the iterates lie in BW(Rd), and we therefore call it the Bures–JKO scheme.

■ 16.3.2 Geometric approach: the Bures–Wasserstein gradient flow of the

KL divergence

In the formal sense of Otto described above, BW(Rd) is a submanifold of P2(Rd).
Moreover, since Gaussians can be parameterized by their mean and covariance,
BW(Rd) can be identified with the manifold Rd × Sd++, where Sd++ is the cone of
symmetric positive definite d×dmatrices. Hence, BW(Rd) is a genuine Riemannian
manifold in its own right [see Mod17; MMP18; BJL19], and gradient flows can be
defined using Riemannian geometry [Car92]. See §2.3 for more details. Since the
functional µ 7→ F(µ) = KL(µ∥π) defined over P2(Rd) restricts to a functional over
BW(Rd), we can also consider the gradient flow of F over the Bures–Wasserstein
space; note that this latter gradient flow is necessarily a curve (pt)t≥0 such that
each pt is a Gaussian measure.

■ 16.3.3 Variational inference via the Bures–Wasserstein gradient flow

Using either approach, we can prove the following theorem.

Theorem 16.3.1. Let π ∝ exp(−V ) be the target density on Rd. Then, the
limiting curve (pt)t≥0 where pt = normal(mt,Σt) is obtained via the Bures–JKO
scheme (16.6), or equivalently, the Bures–Wasserstein gradient flow (pt)t≥0 of the
KL divergence KL(· ∥ π), satisfies Särkkä’s system of ODEs (16.4).
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Proof. For the proof using the Bures–JKO scheme, see [Lam+22, Appendix A].
The proof using Otto calculus is presented in §16.7.

This theorem shows that Särkkä’s heuristic (16.4) precisely yields the Wasser-
stein gradient flow of the KL divergence over the submanifold BW(Rd). Equipped
with this interpretation, we are now able to obtain information about the asymp-
totic behavior of the approximation (pt)t≥0. Namely, we can hope that it converges
to constrained minimizer π̂ = arg minp∈BW(Rd) KL(p∥π), i.e., precisely the solution
to the vi problem (16.2). In the next section, we show that this convergence in
fact holds as soon as V is convex, and moreover with quantitative rates.

The solution π̂ to (16.2), and consequently the limit point of Särkkä’s approx-
imation, is well-studied in the variational inference literature [see, e.g., OA09],
and we recall standard facts about π̂ here for completeness. It is known that π̂
satisfies the equations

Eπ̂∇V = 0 and Eπ̂∇2V = Σ̂−1, (16.7)

where Σ̂ is the covariance matrix of π̂ (these equations can also be derived as
first-order necessary conditions by setting the Bures–Wasserstein gradient derived
in §16.7 to zero). In particular, it follows from (16.7) that if ∇2V enjoys the
bounds αI ⪯ ∇2V ⪯ βI for some −∞ ≤ α ≤ β ≤ ∞, then any solution π̂ to the
constrained problem also satisfies β−1 I ⪯ Σ̂ ⪯ (α ∨ 0)−1 I.

■ 16.3.4 Continuous-time convergence

Besides providing an intuitive interpretation of Särkkä’s heuristic, Theorem 16.3.1
readily yields convergence criteria for the system (16.4) which rest upon general
principles for gradient flows. We begin with a key observation. For a functional
F : BW(Rd)→ R ∪ {∞} and α ∈ R, we say that F is α-convex if for all constant-
speed geodesics (pt)t∈[0,1] in BW(Rd),

F(pt) ≤ (1− t)F(p0) + tF(p1)−
α t (1− t)

2
W 2

2 (p0, p1) , t ∈ [0, 1] .

Lemma 16.3.2. For any α ∈ R, if ∇2V ⪰ αI, then KL(· ∥ π) is α-convex on
BW(Rd).

Proof. The assumption that ∇2V ⪰ αI entails that the functional KL(· ∥ π) is
α-convex on the entire Wasserstein space (P2(Rd),W2) [see, e.g., Vil09b, Theorem
17.15]. Since BW(Rd) is a geodesically convex subset of P2(Rd) (see §2.3), then
the geodesics in BW(Rd) agree with the geodesics in P2(Rd), from which it follows
that KL(· ∥ π) is α-convex on BW(Rd).
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Consequently, we obtain the following corollary; see §16.8 for the proof.

Corollary 16.3.3. Suppose that ∇2V ⪰ αI for some α ∈ R. Then, for any
p0 ∈ BW(Rd), there is a unique solution to the BW(Rd) gradient flow of KL(· ∥ π)
started at p0. Moreover:
1. If α > 0, then for all t ≥ 0, W 2

2 (pt, π̂) ≤ exp(−2αt)W 2
2 (p0, π̂).

2. If α > 0, then for all t ≥ 0, KL(pt ∥ π)− KL⋆ ≤ exp(−2αt) {KL(p0 ∥ π)− KL⋆}.
3. If α = 0, then for all t > 0, KL(pt ∥ π)− KL⋆ ≤ 1

2t
W 2

2 (p0, π̂).
Here, KL⋆ := KL(π̂ ∥ π).

The assumption that ∇2V ⪰ αI for some α > 0, i.e., that π is strongly
log-concave, is a standard assumption in the mcmc literature. Under this same as-
sumption, Corollary 16.3.3 yields convergence for the Bures–Wasserstein gradient
flow of KL(· ∥ π); however, the flow must first be discretized in time for implemen-
tation. If we assume additionally that the smoothness condition ∇2V ⪯ βI holds,
then a surge of recent research has succeeded in obtaining precise non-asymptotic
guarantees for discretized mcmc algorithms. In §16.4.2 below, we will show how
to do the same for vi.

■ 16.4 Time discretization of the Bures–Wasserstein gradient flow

We are now equipped with dual perspectives on a dynamical solution to Gaussian
vi: ODE and gradient flow. Each perspective leads to a different implementation.
On the one hand, we discretize the system of ODEs defined in (16.4) using nu-
merical integration. On the other, we discretize the gradient flow using stochastic
gradient descent in the Bures–Wasserstein space.

■ 16.4.1 Numerical integration of the ODEs

The system of ODEs (16.4) can be integrated in time using a classical Runge–
Kutta scheme. The expectations under a Gaussian support are approximated by
cubature rules used in Kalman filtering [AH09]. Moreover, a square root version of
the ODE is also considered to ensure that covariance matrices remain symmetric
and positive. See [Lam+22] for implementation and numerical experiments.

■ 16.4.2 Bures–Wasserstein SGD and theoretical guarantees for VI

Although the ODE discretization proposed in the preceding section enjoys strong
empirical performance, it is unclear how to quantify its impact on the convergence
rates established in Corollary 16.3.3. Therefore, we now propose a stochastic
gradient descent algorithm over the Bures–Wasserstein space, for which useful
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analysis tools have been developed (see §15). This approach bypasses the use
of the system of ODEs (16.4), and instead discretizes the Bures–Wasserstein
gradient flow directly. Under the standard assumption of strong log-concavity and
log-smoothness, it leads to an algorithm (Algorithm 16.1) for approximating π̂
with provable convergence guarantees.

Algorithm 16.1 Bures–Wasserstein SGD

Require: strong convexity parameter α > 0; step size h > 0; mean m0 and
covariance matrix Σ0

for k = 1, . . . , N do
draw a sample X̂k ∼ pk
set mk+1 ← mk − h∇V (X̂k)
set Mk ← I − h (∇2V (X̂k)− Σ−1k )
set Σ+

k ←MkΣkMk

set Σk+1 ← clip1/α Σ+
k

Algorithm 16.1 maintains a sequence of Gaussian distributions (pk)k∈N; here
(mk,Σk) denote the mean vector and covariance matrix at iteration k (see §16.9
for a derivation of the algorithm as SGD in the Bures–Wasserstein space). The
clipping operator clipτ , which is introduced purely for the purpose of theoretical
analysis, simply truncates the eigenvalues from above; see §16.9. Our theoretical
result for vi is given as the following theorem, whose proof is deferred to §16.9.

Theorem 16.4.1. Assume that 0 ≺ αI ⪯ ∇2V ⪯ I. Also, assume that h ≤ α2

60

and that we initialize Algorithm 16.1 at a matrix satisfying α
9
I ⪯ Σµ0 ⪯ 1

α
I.

Then, for all k ∈ N,

EW 2
2 (pk, π̂) ≤ exp(−αkh)W 2

2 (p0, π̂) +
36dh

α2
.

In particular, we obtain EW 2
2 (pk, π̂) ≤ ε2 provided we set h ≍ α2ε2

d
and the number

of iterations to be k ≳ d
α3ε2

log(W2(p0, π̂)/ε).

The upper bound ∇2V ⪯ I is notationally convenient for our proof but not
necessary; in any case, any strongly log-concave and log-smooth density π can be
rescaled so that the assumption holds.

Theorem 16.4.1 is similar in flavor to modern results for mcmc, both in terms
of the assumptions (Hessian bounds and query access to the derivatives1 of V ) and

1A notable downside of Algorithm 16.1 is the requirement of a Hessian oracle for V , which
results in a higher per-iteration cost than typical mcmc samplers.
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the conclusion (a non-asymptotic polynomial-time algorithmic guarantee). We
hope that such an encouraging result for vi will prompt more theoretical studies
aimed at closing the gap between the two approaches.

■ 16.5 Variational inference with mixtures of Gaussians

Thus far, we have shown that the tractability of Gaussians can be readily exploited
in the context of Bures–Wasserstein gradient flows and translated into useful
results for variational inference. Nevertheless, these results are limited by the lack
of expressivity of Gaussians, namely their inability to capture complex features
such as multimodality and, more generally, heterogeneity. To overcome this
limitation, mixtures of Gaussians arise as a natural and powerful alternative;
indeed, universal approximation of arbitrary probability measures by mixtures of
Gaussians is well-known [see, e.g., DD20]. As we show next, the space of mixtures
of Gaussians can also be equipped with a Wasserstein structure which gives rise
to implementable gradient flows.

■ 16.5.1 Geometry of the space of mixtures of Gaussians

We begin with the key observation already made by [CGT19], that any mixture
of Gaussians can be canonically identified with a probability distribution (the
mixing distribution) over the parameter space Θ = Rd× Sd++ (the space of means
and covariance matrices). Explicitly a probability measure µ ∈ P(Θ) corresponds
to a Gaussian mixture as follows:

µ ↔ pµ :=

∫
pθ dµ(θ) , (16.8)

where pθ is the Gaussian distribution with parameters θ ∈ Θ. Equivalently, µ can
be thought of as a probability measure over BW(Rd), and hence the space of Gaus-
sian mixtures on Rd can be identified with the Wasserstein space P2(BW(Rd)) over
the Bures–Wasserstein space which is endowed with the distance (16.5) between
Gaussian measures. Indeed, the theory of optimal transport can be developed with
any Riemannian manifold (rather than Rd) as the base space [Vil09b]. As before,
the space P2(BW(Rd)) is endowed with a formal Riemannian structure, which
respects the geometry of the base space BW(Rd), and we can consider Wasserstein
gradient flows over P2(BW(Rd)).

This framework encompasses both discrete mixtures of Gaussians (when µ is
a discrete measure) and continuous mixtures of Gaussians. In the case when the
mixing measure µ is discrete, the geometry of P2(BW(Rd)) was studied by [CGT19;
DD20]. An important insight of our work, however, is that it is fruitful to consider
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the full space P2(BW(Rd)) for deriving gradient flows, even if we eventually develop
algorithms which propagate a finite number of mixture components.

■ 16.5.2 Gradient flow of the KL divergence and particle discretization

We consider the gradient flow of the KL divergence functional

µ 7→ F(µ) := KL(pµ ∥ π) (16.9)

over the space P2(BW(Rd)). The proof of the following theorem is given in §16.10.

Theorem 16.5.1. The gradient flow (µt)t≥0 of the functional F defined in (16.9)

over P2(BW(Rd)) can be described as follows. Let θ0 = (m0,Σ0) ∼ µ0, and let
θt = (mt,Σt) evolve according to the ODE

ṁt = −E∇ ln
pµt
π

(Yt)

Σ̇t = −E∇2 ln
pµt
π

(Yt) Σt − Σt E∇2 ln
pµt
π

(Yt)
(16.10)

where Yt ∼ normal(mt,Σt). Then θt ∼ µt.

The gradient flow in Theorem 16.5.1 describes the evolution of a particle θt
which describes the parameters of a Gaussian measure, hence the name Gaussian
particle. The intuition behind this evolution is as follows. Suppose we draw
infinitely many initial particles (each being a Gaussian) from µ0. By evolving
all those particles through (16.10), which interact with each other via the term
pµt , they tend to aggregate in some parts of the space of Gaussian parameters
and spread out in others. This distribution of Gaussian particles is precisely the
mixing measure µt, which, in turn, corresponds to a Gaussian mixture. Since
an infinite number of Gaussian particles is impractical, consider initializing this
evolution at a finitely supported distribution µ0, thus corresponding to a more
familiar Gaussian mixture model with a finite number of components:

µ0 =
1

N

N∑
i=1

δ
θ
(i)
0

=
1

N

N∑
i=1

δ
(m

(i)
0 ,Σ

(i)
0 )

↔ pµ0 :=
1

N

N∑
i=1

p
(m

(i)
0 ,Σ

(i)
0 )
.

Interestingly, it can be readily checked that the system of ODEs (16.10) thus
initialized maintains a finite mixture distribution:

µt =
1

N

N∑
i=1

δ
θ
(i)
t

=
1

N

N∑
i=1

δ
(m

(i)
t ,Σ

(i)
t )
,
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where the parameters θ
(i)
t = (m

(i)
t ,Σ

(i)
t ) evolve according to the following interact-

ing particle system, for i ∈ [N ]

ṁ
(i)
t = −E∇ ln

pµt
π

(Y
(i)
t ) , (16.11)

Σ̇
(i)
t = −E∇2 ln

pµt
π

(Y
(i)
t ) Σ

(i)
t − Σ

(i)
t E∇2 ln

pµt
π

(Y
(i)
t ) , (16.12)

where Y
(i)
t ∼ p

θ
(i)
t

. This finite system of particles can now be implemented using

the same numerical tools as for Gaussian vi. Note that due to this property of the
dynamics, we can hope at best to converge to the best mixture of N Gaussians
approximating π, but this approximation error is expected to vanish as N →∞.
Also, similarly to (16.4), it is possible to write down Hessian-free updates using
integration by parts.

The above system of particles may also be derived using a proximal point
method similar to the Bures–JKO scheme, see §16.3.1. Indeed, infinitesimally, it
has the variational interpretation

(θ
(1)
t+h, . . . , θ

(N)
t+h) ≈ arg min

θ(1),...,θ(N)∈Θ

{
KL

( 1

N

N∑
i=1

pθ(i)
∥∥∥ π) +

1

2Nh

N∑
i=1

W 2
2 (pθ(i) , pθ(i)t

)

}
.

Reassuringly, (16.11)–(16.12) reduce to (16.4) when µ0 = δ(m0,Σ0) is a point
mass, indicating that the theorem provides a natural extension of our previous
results. However, although the model (16.8) is substantially more expressive than
the Gaussian vi considered in §16.3, it has the downside that we lose many of
the theoretical guarantees. For example, even when V is convex, the objective
functional F considered here need not be convex; see §16.11. We nevertheless
validate the practical utility of our approach in experiments in [Lam+22].

Unlike typical interacting particle systems which arise from discretizations of
Wasserstein gradient flows, at each time t, the distribution pµt is continuous. This
extension provides considerably more flexibility—from a mixture of point masses
to a mixture of Gaussians—compared to interacting particle-based algorithms
hitherto considered for either sampling [LW16; Liu17; Che+20d; DNS23], or
solving partial differential equations [Car+11; Car+12; Bon+15; CB16; CCP19;
Cra+23].

■ 16.5.3 Time-varying weights with the Wasserstein–Fisher–Rao geometry

One notable shortcoming of the system (16.11)–(16.12) is that the weights of the
mixture are held fixed, which can inhibit the Gaussian particles from quickly
moving between separated modes of π. It is therefore desirable to design a
principled algorithm which also allows for the mixture weights to be updated.
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Towards this end, in §16.12 we derive the gradient flow of the KL divergence
with respect to the Wasserstein–Fisher–Rao geometry [LMS16; Chi+18; LMS18],
which yields an interacting system of Gaussian particles with changing weights.
The equations are given as follows: at each time t, the mixing measure is the
discrete measure

µt =
N∑
i=1

w
(i)
t δ(m(i)

t ,Σ
(i)
t )
.

Let Y
(i)
t ∼ p

m
(i)
t ,Σ

(i)
t

, and let r
(i)
t =

√
w

(i)
t . Then, the system of ODEs is given by

ṁ
(i)
t = −E∇ ln

pµt
π

(Y
(i)
t ) ,

Σ̇
(i)
t = −E∇2 ln

pµt
π

(Y
(i)
t ) Σ

(i)
t − Σ

(i)
t E∇2 ln

pµt
π

(Y
(i)
t ) ,

ṙ
(i)
t = −

(
E ln

pµt
π

(Y
(i)
t )− 1

N

N∑
j=1

E ln
pµt
π

(Y
(j)
t )

)
r
(i)
t .

We have implemented these equations and their empirical performance is encour-
aging. However, a fuller investigation of algorithms for vi with changing weights
is beyond the scope of this work and we leave it for future research.

■ 16.6 Background on Otto calculus

We refer to §2.1 and §2.3 for the main background.

■ 16.6.1 The Bures–Wasserstein space

The space of non-degenerate Gaussian distributions equipped with the W2 metric
is known as the Bures–Wasserstein space, after [Bur69]. We denote this space as
BW(Rd). Background on the geometry of BW(Rd) is given in §2.3; here, we recall
some notions in order to fix notation when dealing with non-centered Gaussians.

Given m ∈ Rd and Σ ≻ 0, we denote by pm,Σ the Gaussian on Rd with mean m
and covariance Σ. Conversely, for a non-degenerate Gaussian p we write (mp,Σp)
for its mean and covariance. Via this correspondence, we can therefore identify
the space of non-degenerate Gaussians with the manifold Rd × Sd++, where Sd++

denotes the cone of positive definite matrices. Abusing notation, we will do so
whenever there is no danger of confusion.

Suppose that pm0,Σ0 , pm1,Σ1 ∈ BW(Rd). Then, the optimal transport map from
p0 := pm0,Σ0 to p1 := pm1,Σ1 is

∇φ(x) = m1 + Σ
−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )

1/2
Σ
−1/2
0 (x−m0) .
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Observe that ∇φ is an affine map. Since the pushforward of a Gaussian via an
affine map is also Gaussian, it follows from Definition 2.1.3 that the constant speed
geodesic (pt)t∈[0,1] joining p0 to p1 also lies in BW(Rd). In other words, BW(Rd) is

a geodesically convex subset of P2(Rd).
The tangent vector to the geodesic at time 0 is always an affine map of the

form x 7→ a + S (x − mp0), where a ∈ Rd and S is a symmetric matrix. The
tangent space is

TpBW(Rd) = {x 7→ a+ S (x−mp) | a ∈ Rd, S ∈ Sd} ,
which can therefore be identified with pairs (a, S) ∈ Rd × Sd. With this abuse of
notation, if (a, S), (a′, S ′) ∈ TpBW(Rd), then

⟨(a, S), (a′, S ′)⟩p =

∫
⟨a+ S (x−mp), a

′ + S ′ (x−mp)⟩ dp(x)

= ⟨a, a′⟩+ ⟨S,ΣpS
′⟩ . (16.13)

Specializing the notions from §2.1, we obtain

logp(q) =
(
mq −mp, Σ−1/2p (Σ1/2

p ΣqΣ
1/2
p )

1/2
Σ−1/2p − I

)
,

expp(a, S) =
(
mp + a+ (S + I) (· −mp)

)
#
p

= normal
(
mp + a, (S + I) Σp (S + I)

)
.

Here, expp(a, S) is defined if S ≻ −I.
This definition of the tangent space is consistent with the Wasserstein space,

in that we have the inclusion TpBW(Rd) ↪→ TpP2(Rd), but the abuse of notation
TpBW(Rd) = Rd×Sd can sometimes cause confusion. Indeed, if (pt = pmt,Σt)t∈[0,1]
is a constant-speed geodesic in BW(Rd), and the tangent vector at time 0 is (a, S),

pt = expp0
(
t (a, S)

)
= normal

(
mp + ta, (tS + I) Σp (tS + I)

)
.

In particular, Σt ̸= Σ0 + t (S − I), and

ṁ0 = a , (16.14)

Σ̇0 = SΣ0 + Σ0S . (16.15)

Although we derived the equations (16.14) and (16.15) for geodesic curves, they
also hold for any curve (pt)t≥0 with tangent vector equal to (a, S) at time 0. Using
this, we can derive an expression for the Bures–Wasserstein gradient ∇BWf of a
function f : Rd × Sd++ → R. By definition, this satisfies, for any curve (mt,Σt)t≥0
with tangent vector (a, S) at time 0,

⟨∇BWf(m0,Σ0), (a, S)⟩pm0,Σ0
= ∂t

∣∣
t=0
f(mt,Σt) .



486 CHAPTER 16. GAUSSIAN VARIATIONAL INFERENCE

Write (ā, S̄) = ∇BWf(m0,Σ0). Then, we want

⟨ā, a⟩+ ⟨S̄,Σ0S⟩ = ⟨∇mf(m0,Σ0), ṁ0⟩+ ⟨∇Σf(m0,Σ0), Σ̇0⟩
= ⟨∇mf(m0,Σ0), a⟩+ 2 ⟨∇Σf(m0,Σ0),Σ0S⟩ ,

where ∇m, ∇Σ denote the usual Euclidean gradients. Hence, by identification,
we conclude that the Bures–Wasserstein gradient of f is related to the Euclidean
gradient of f via

∇BWf(m,Σ) =
(
∇mf(m,Σ), 2∇Σf(m,Σ)

)
. (16.16)

■ 16.6.2 Evolution of the mean and covariance along the Fokker–Planck

equation

It is known that the Wasserstein gradient of F := KL(· ∥ π) is

∇W2F(µ) = ∇ ln
µ

π
. (16.17)

See, e.g., [AGS08, Theorem 10.4.13]. Also, as shown by [JKO98], the Langevin
diffusion is the gradient flow of KL(· ∥ π). In Otto calculus, this means that the
law (πt)t≥0 of the Langevin diffusion obeys the continuity equation (2.5) with
velocity vector field vt = −∇W2F(πt) = −∇ ln(πt/π), which is consistent with the
Fokker–Planck equation (2.13).

According to the particle interpretation (2.4) of dynamics in the Wasserstein
space, if x0 ∼ π0 and

ẋt = vt(xt) = −∇ ln
πt
π

(xt) ,

then xt ∼ πt. Note that (xt)t≥0 is not the Langevin diffusion (16.1) as it is the
solution to a deterministic ODE (albeit with random initial condition), but the
marginal law of (xt)t≥0 agrees with that of the Langevin diffusion. This provides
a convenient tool for calculating the evolution of the mean and covariance along
the Fokker–Planck equation, as we now demonstrate.

The evolution of the mean is

ṁt = ∂t Ext = E ẋt = −E∇ ln
πt
π

(xt) .

Since E∇ lnπt(xt) = 0 (which is verified via integration by parts), and π ∝
exp(−V ), this can also be written as

ṁt = −Eπt ∇V .
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Next, for the evolution of the covariance,

∂t E(xt ⊗ xt) = E(xt ⊗ ẋt + ẋt ⊗ xt)
= −E

(
xt ⊗∇ ln

πt
π

(xt) +∇ ln
πt
π

(xt)⊗ xt
)

∂t E(xt)⊗ E(xt) = mt ⊗ E(ẋt) + E(ẋt)⊗mt

= −E
(
mt ⊗∇ ln

πt
π

(xt) +∇ ln
πt
π

(xt)⊗mt

)
which yields

Σ̇t = −E
(
(xt −mt)⊗∇ ln

πt
π

(xt) +∇ ln
πt
π

(xt)⊗ (xt −mt)
)
.

Integration by parts yields∫
(• −mt)⊗∇ lnπt dπt +

∫
∇ ln πt ⊗ (• −mt) dπt

=

∫
(• −mt)⊗∇πt +

∫
∇πt ⊗ (• −mt) = −2I .

Hence,

Σ̇t = 2I − Eπt [∇V ⊗ (• −mt) + (• −mt)⊗∇V ] .

This verifies equation (16.3). The equations in this section can also be derived
using Itô calculus.

■ 16.7 Proofs via Otto calculus

Our aim in this section is to derive the Wasserstein gradient flow of the KL
divergence KL(· ∥ π) constrained to lie in the Bures–Wasserstein space of non-
degenerate Gaussian measures.

Since the Bures–Wasserstein space can be formally viewed as a submanifold
of the Wasserstein space, it leads to two natural approaches for computing the
constrained gradient flow. In the first approach, we take the Wasserstein gradient
of KL(·∥π) and we compute the orthogonal projection onto the tangent space of the
Bures–Wasserstein space. In the second approach, we note that the geometry of
the Bures–Wasserstein space has been studied in its own right [see, e.g., BJL19] and
in particular, the explicit expression (16.16) for the Bures–Wasserstein gradient is
known. We can therefore view KL(· ∥π) as a functional over BW(Rd) and compute
its gradient directly using (16.16).
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■ 16.7.1 Orthogonal projection approach

First, we justify why computing the orthogonal projection of the P2(Rd) gradient
gives the same result as computing the intrinsic gradient on BW(Rd). Let F be
any functional on P2(Rd). By definition, the BW gradient ∇BWF satisfies

∂tF(pt) = ⟨∇BWF(pt), vt⟩pt (16.18)

for any curve (pt)t∈R in BW(Rd) with tangent vectors (vt)t∈R. Here, ∇BWF(pt) ∈
TptBW(Rd). On the other hand, since (pt)t≥0 is also a curve in P2(Rd) and the

Riemannian structure of BW(Rd) is consistent with that of P2(Rd), the definition
of the gradient in P2(Rd) yields

∂tF(pt) = ⟨∇W2F(pt), vt⟩pt .

Note that the orthogonal projection

projTptBW(Rd)∇W2F(pt) = arg min
w∈TptBW(Rd)

∥w −∇W2F(pt)∥2pt

is characterized as the unique element of TptBW(Rd) satisfying

⟨projTptBW(Rd)∇W2F(pt), v⟩pt = ⟨∇W2F(pt), v⟩pt

for all v ∈ TptBW(Rd). Thus, (16.18) holds with

∇BWF(p) = projTpBW(Rd)∇W2F(p) .

This argument clearly works for arbitrary Riemannian submanifolds.
Next, we compute the projection of the P2(Rd) gradient of the KL divergence.
Using the formula (16.17) for the P2(Rd) gradient of the KL divergence and the

description of the tangent space to BW(Rd) in §16.6.1 and (16.13), the projected
gradient (ā, S̄) ∈ Rd × Sd is such that for all (a, S) ∈ Rd × Sd,∫ 〈

∇ ln
p

π
(x), a+ S (x−mp)

〉
dp(x) = ⟨(ā, S̄), (a, S)⟩p = ⟨ā, a⟩+ ⟨S̄,ΣpS⟩ .

Using ∇p(x) = −Σ−1p (x−mp) p(x) and integration by parts,∫ 〈
∇ ln

p

π
(x), a+ S (x−mp)

〉
dp(x)

=
〈
Ep∇ ln

p

π
, a
〉

+

∫ 〈
ΣpS∇ ln

p

π
(x),Σ−1p (x−mp)

〉
dp(x)
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=
〈
Ep∇ ln

p

π
, a
〉
−
∫ 〈

ΣpS∇ ln
p

π
(x),∇p(x)

〉
dx

=
〈
Ep∇ ln

p

π
, a
〉

+

∫
div

(
ΣpS∇ ln

p

π

)
(x) dp(x)

=
〈
Ep∇ ln

p

π
, a
〉

+
〈
Ep∇2 ln

p

π
,ΣpS

〉
.

Hence,

(ā, S̄) =
(
Ep∇ ln

p

π
, Ep∇2 ln

p

π

)
. (16.19)

Using the fact that Ep∇ ln p = 0, this can also be written

(ā, S̄) = (Ep∇V, Ep∇2V − Σ−1p )

which corresponds to the affine map

x 7→ Ep∇V + (Ep∇2V − Σ−1p ) (x−mp) . (16.20)

If (pt = pmt,Σt)t≥0 evolves according to the constrained gradient flow, then
using the expression for the projected Wasserstein gradient together with (16.14)
and (16.15),

ṁt = −Ept ∇V ,

Σ̇t = 2I − Σt Ept ∇2V − Ept ∇2V Σt .

The sign in the above equations comes from the fact that we perform steepest
descent in Bures–Wasserstein descent, i.e., the tangent vector to the curve at time
t is − projTptBW(Rd)∇W2F(pt).

The system of equations we have derived here differs from the system (16.4),
but we can check that they agree using integration by parts. Indeed,

Σ̇t = 2I − Σt

∫
∇2V dpt −

∫
∇2V dpt Σt

= 2I + Σt

∫
∇pt ⊗∇V +

∫
∇V ⊗∇pt Σt

= 2I + Σt

∫
∇ ln pt ⊗∇V dpt +

∫
∇V ⊗∇ ln pt dpt Σt

= 2I − Ept [(• −mt)⊗∇V +∇V ⊗ (• −mt)] .
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■ 16.7.2 Alternate proof using direct Bures–Wasserstein calculation

In the second approach, we view F as a functional on BW(Rd). Explicitly,

F(m,Σ) =

∫
pm,Σ ln

pm,Σ
π

.

Using (16.16),

∇BWF(m,Σ) =
(
∇mF(m,Σ), 2∇ΣF(m,Σ)

)
=

(∫
∇mpm,Σ ln

pm,Σ
π

, 2

∫
∇Σpm,Σ ln

pm,Σ
π

)
. (16.21)

Furthermore, using the identities

∇mpm,Σ(x) = −∇xpm,Σ(x) and ∇Σpm,Σ(x) =
1

2
∇2
xpm,Σ(x) (16.22)

for the Gaussian distribution, integration by parts verifies that (16.21) agrees
with (16.19).

■ 16.8 Proof of Corollary 16.3.3

Corollary 16.3.3 is a consequence of general and well-known principles for gradient
flows. To emphasize this generality, we will consider an abstract α-convex differ-
entiable functional F defined over a geodesically convex subset of a Riemannian
manifold; this ensures that the logarithmic map is well-defined in the following
calculations. We assume that F is minimized at p⋆; by adding a constant to F,
we can assume inf F = 0. Let d denote the distance function on the manifold. If
(pt)t≥0, (qt)t≥0 are two solutions to the gradient flow for F, then

∂td
2(pt, qt) = 2 ⟨logpt(qt),∇F(pt)⟩pt + 2 ⟨logqt(pt),∇F(qt)⟩qt .

(The reader who is unfamiliar with Riemannian geometry should keep in mind
that in Euclidean space, logp(q) = q − p.) Next, the α-convexity of F implies

F(pt) ≥ F(qt) + ⟨∇F(qt), logqt(pt)⟩qt +
α

2
d2(pt, qt) ,

F(qt) ≥ F(pt) + ⟨∇F(pt), logpt(qt)⟩pt +
α

2
d2(pt, qt) .

Adding these equations and rearranging yields

∂td
2(pt, qt) ≤ −2α d2(pt, qt) .
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By Grönwall’s inequality, it implies

d2(pt, qt) ≤ exp(−2αt) d2(p0, q0) .

This inequality has two consequences. First, for any α ∈ R, p0 = q0 implies
pt = qt: the solution to the gradient flow is unique. Second, if α > 0, then we can
set qt = p⋆ for all t ≥ 0 to deduce exponential contraction of the gradient flow to
the minimizer p⋆, which is the first statement of Corollary 16.3.3.

To obtain convergence in functional values, observe that by definition of the
gradient flow, we have on the one hand that

∂tF(pt) = −∥∇F(pt)∥2pt . (16.23)

On the other hand, if α > 0, the convexity inequality and Young’s inequality
respectively, yield

0 = F(p⋆) ≥ F(p) + ⟨∇F(p), logp(p
⋆)⟩p +

α

2
d2(p, p⋆) (16.24)

≥ F(p)− 1

2α
∥∇F(p)∥2p −

α

2
∥logp(p

⋆)∥2p︸ ︷︷ ︸
=d2(p,p⋆)

+
α

2
d2(p, p⋆)

and hence ∥∇F(p)∥2 ≥ 2αF(p). Substituting this into (16.23) and applying
Grönwall’s inequality again, we deduce

F(pt) ≤ exp(−2αt)F(p0) .

Finally, suppose α = 0. We consider the Lyapunov functional

Lt := tF(pt) +
1

2
d2(pt, p

⋆) .

Differentiating in time,

∂tLt = F(pt)− t ∥∇F(pt)∥2pt + ⟨logpt(p
⋆),∇F(pt)⟩pt .

On the other hand, applying the convexity inequality in (16.24) with α = 0 yields
∂tLt ≤ 0. Hence, Lt ≤ L0, and

F(pt) ≤
d2(p0, p

⋆)

2t
.
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■ 16.9 Proof of Theorem 16.4.1

In this section, we use the Riemannian exponential and logarithmic maps, as
discussed in §16.6.1. Also, let F := KL(· ∥ π) denote the KL divergence.

For τ > 0, the eigenvalue clipping operation is defined as

clipτ : Σ =
d∑
i=1

λiuiu
T
i 7→ clipτ Σ :=

d∑
i=1

(λi ∧ τ)uiu
T
i . (16.25)

In the proof of Theorem 16.3.1 in §16.7, we showed that the BW gradient is

gp := ∇BWF(p) =
(
Ep∇V, Ep∇2V − Σ−1

)
(16.26)

where Σ is the covariance matrix of p. Here, the first component of the gradient
governs the evolution of the mean, whereas the second component governs the
evolution of the covariance; see §16.6.1. We propose to estimate the gradient
in (16.26) via a sample,

ĝp :=
(
∇V (X̂), ∇2V (X̂)− Σ−1

)
, X̂ ∼ p .

By comparing Algorithm 16.1 and the definition of the exponential map in §16.6.1,
one can check that for p+k := pmk+1,Σ

+
k

and2 h ≤ 1

p+k = exppk(−hĝk) ,

where ĝk ∈ TpkBW(Rd) is the stochastic gradient

ĝk(x) = ∇V (X̂k) + (∇2V (X̂k)− Σ−1k ) (x−mk) .

Thus, aside from the eigenvalue clipping operation (which is harmless, due to
Proposition 15.8.5), Algorithm 16.1 is exactly a stochastic gradient descent scheme
on BW(Rd). Note also that from the definition of the exponential map in §2.1,
the update can also be written at the particle level: if Xk ∼ pk is independent of
ĝk, then

X+
k := Xk − h ĝk(Xk) ∼ p+k . (16.27)

In the next lemma, we obtain a uniform control on the smallest eigenvalues of
the covariance matrices of the iterates.

Lemma 16.9.1. Assume that 0 ≺ αI ⪯ ∇2V ⪯ I holds and h ≤ α2/60. Also, in
Algorithm 16.1, assume that Σk ⪰ α

9
I. Then, Σ+

k ⪰ α
9
I.

2This latter requirement is needed because BW(Rd) has a finite injectivity radius.
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Proof. Since the statement of the lemma only involves the covariance matrices,
we can suppose that all of the mean vectors are zero.

The key is to write Σ+
k as a generalized Bures–Wasserstein barycenter at Σk

for an appropriate distribution. Recall that

Σ+
k =

(
I + hΣ−1k − h∇2V (X̂k)

)
Σk

(
I + hΣ−1k − h∇2V (X̂k)

)
. (16.28)

Note that Σ−1k is the optimal transport map from the Gaussian p0,Σk to p0,Σ−1
k

.3

Hence, we write

hΣ−1k − h∇2V (X̂k) = h (Σ−1k − I) + h (I −∇2V (X̂k))

= h logΣk
(Σ−1k ) + h logΣk

(Σ̃)

where we defined the matrix Σ̃ = (2I −∇2V (X̂k)) Σk (2I −∇2V (X̂k)). To check
that this is valid, we need 2I −∇2V (X̂k) ⪰ 0, i.e., ∇2V (X̂k) ⪯ 2I, which follows
from ∇2V ⪯ I.

We have shown that

Σ+
k = expΣk

(∫
logΣk

(Σ) dP (Σ)
)

where

P = (1− 2h) δΣk + h δΣ−1
k

+ h δΣ̃ = (1− 2h) δΣk + 2h
(1

2
δΣ−1

k
+

1

2
δΣ̃
)
.

This is precisely the definition of a generalized Bures–Wasserstein barycenter.
Next, suppose that Σk ⪰ λI for some λ > 0. Since Σk ⪯ α−1I, and I ⪯

2I −∇2V (X̂k) ⪯ 2I,

α I ⪯ Σ−1k ⪯
1

λ
I , and λ I ⪯ Σ̃ ⪯ 4

α
I .

Then, Theorem 15.1.1 implies the following. If we define the quantities

λ− :=
(1

2

√
α +

1

2

√
λ
)2

, λ+ :=
1

2

1

λ
+

1

2

4

α
,

then for step sizes 2h ≤ λ−
2λ+

and if Σk ⪰ λ−
4
I, we also have Σ+

k ⪰ λ−
4
I. To use

this result, let us choose λ such that λ−
4

= λ; it can be seen that this holds with

λ = α
9
. Since λ+ = 13

2α
, the step size condition then translates into h ≤ 2α2

117
, for

which it suffices to have h ≤ α2

60
.

3This observation was also used in the analysis of Bures–Wasserstein gradient descent for
entropically regularized barycenters in [Alt+21].
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We also recall that the eigenvalue clipping operation is a Bures–Wasserstein
contraction (see Proposition 15.8.5).

We now turn towards the proof of Theorem 16.4.1. In the proof, we let

Fk := σ(X̂0, X̂1, X̂2, . . . , X̂k−1)

be the σ-algebra generated by the random samples up until iteration k.

Proof of Theorem 16.4.1. Conditioned on Fk, and independently of X̂k, let Xk ∼
pk and Z ∼ π̂ be optimally coupled; let Ē denote the expectation taken w.r.t.
(Xk, Z). Using Proposition 15.8.5, the fact that Σ̂ ⪯ 1

α
I (see discussion in §16.3.3),

and (16.27), we have

E[W 2
2 (pk+1, π̂) | Fk] ≤ E[W 2

2 (p+k , π̂) | Fk]

≤ E
[
Ē[∥Xk − h ĝk(Xk)− Z∥2]

∣∣ Fk

]
= E

[
Ē[∥Xk − Z∥2 − 2h ⟨ĝk(Xk), Xk − Z⟩+ h2 ∥ĝk(Xk)∥2]

∣∣ Fk

]
= W 2

2 (pk, π̂)− 2h Ē⟨gk(Xk), Xk − Z⟩+ h2 E
[
Ē[∥ĝk(Xk)∥2]

∣∣ Fk

]
,

where we abbreviated gk := gpk . From strong convexity of KL(· ∥ π) on BW(Rd)
(Lemma 16.3.2),

Ē⟨gk(Xk), Xk − Z⟩ ≥ KL(pk ∥ π)− KL(π̂ ∥ π) +
α

2
W 2

2 (pk, π̂)

≥ αW 2
2 (pk, π̂) .

Thus,

E[W 2
2 (pk+1, π̂) | Fk] ≤ (1− 2αh)W 2

2 (pk, π̂) + h2 E
[
Ē[∥ĝk(Xk)∥2]

∣∣ Fk

]︸ ︷︷ ︸
=:err

.

It remains to bound the error term.
Recall that

ĝk(Xk) = (∇2V (X̂k)− Σ−1k ) (Xk −mk) +∇V (X̂k) .

We bound the terms one by one. First,

Ē[∥Σ−1k (Xk −mk)∥2] = tr(Σ−1k ) ≤ 9d

α

where we used Lemma 16.9.1. Next, since ∇2V ⪯ I by assumption,

Ē[∥∇2V (X̂k) (Xk −mk)∥2] ≤ Ē[∥Xk −mk∥2] = tr(Σk) ≤
d

α
.
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Lastly, let Ẑ ∼ π̂ be optimally coupled with X̂k. By the optimality condition for
π̂ (§16.3.3), we know that E∇V (Ẑ) = 0. Applying the Poincaré inequality for π̂
(which holds because π̂ is strongly log-concave, see Lemma 2.2.8)

Ē[∥∇V (X̂k)∥2] ≤ 2 Ē[∥∇V (Ẑ)∥2] + 2 Ē[∥X̂k − Ẑ∥2]

≤ 2

α
Eπ̂[∥∇2V ∥2HS] + 2W 2

2 (pk, π̂)

≤ 2d

α
+ 2W 2

2 (pk, π̂) .

Collecting the terms,

err ≤ 36d

α
+ 6W 2

2 (pk, π̂) .

From the assumption h ≤ α2

60
.

E[W 2
2 (pk+1, π̂) | Fk] ≤ (1− αh)W 2

2 (pk, π̂) +
36dh2

α
.

Iterating this bound proves the result.

■ 16.10 Proof of Theorem 16.5.1

In order to present the proof of Theorem 16.5.1, we first review relevant facts
about the Wasserstein space over a Riemannian manifold (M, g). We refer readers
to [Vil09b] for an in-depth treatment.

Similarly to the Euclidean setting, we can define the space of probability
measures over M with finite second moment,

P2(M) :=
{
µ ∈ P(M)

∣∣∣ ∫ d2(p0, ·) dµ <∞ for some p0 ∈M
}
,

where d denotes the induced distance on M. We equip P2(M) with the 2-
Wasserstein metric

W 2
2 (µ, ν) :=

[
inf

γ∈C(µ,ν)

∫
d2(x, y) dγ(x, y)

]1/2
,

which makes (P2(M),W2) into a metric space. Moreover, at each regular measure
µ ∈ P2(M), we can define the tangent space

TµP2(M) := {∇ψ | ψ ∈ C∞c (M)}L
2(µ)
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equipped with the inner product

⟨v, w⟩µ :=

∫
gp
(
v(p), w(p)

)
dµ(p) ,

which endows (P2(M),W2) with the structure of a formal Riemannian manifold.
Curves (µt)t≥0 in P2(M) are still described by the continuity equation

∂tµt + div(µtvt) = 0 (16.29)

where now vt is an element of the tangent bundle TM and div denotes the
divergence operator on the Riemannian manifold. Equation (16.29) is to be
interpreted in the weak sense, i.e., for any test function φ :M→ R,

∂t

∫
φ dµt =

∫
g(∇φ, vt) dµt . (16.30)

If (µt)t≥0 is a smooth curve such that µt admits a density ρt w.r.t. the Riemannian
volume measure, then this is equivalent to the partial differential equation (PDE)

∂tρt = div(ρtvt) .

As before, the continuity equation admits a particle interpretation: if p0 ∼ µ0

and (pt)t≥0 evolves via the ODE

ṗt = vt(pt) , (16.31)

then pt ∼ µt for all t ≥ 0.
Given a functional F : P2(M)→ R∪ {∞} defined over the Wasserstein space,

its gradient at µ is, by definition, the element ∇W2F(µ) ∈ TµP2(M) such that:
for all curves (µt)t∈R satisfying the continuity equation (16.29) with µ0 = µ, it
holds that

∂t
∣∣
t=0

F(µt) = ⟨∇W2F(µ), v0⟩µ =

∫
g
(
∇W2F(µ), v0

)
dµ .

Using the continuity equation (16.30), it follows by direct identification that

∇W2F(µ) = ∇δF(µ) ,

where δF(µ) :M→ R, the first variation of F at µ, is defined up to an additive
constant and satisfies

∂t
∣∣
t=0

F(µ) =

∫
δF(µ) ∂t

∣∣
t=0
µt .
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A gradient flow of F is a curve (µt)t≥0 which satisfies the continuity equation (16.29)
with velocity vector field vt = −∇W2F(µt), which in turn admits the particle
interpretation (16.31).

We now consider the functional

F(µ) := KL(pµ ∥ π)

and compute its first variation. Let m denote the Riemannian volume measure;
let (ρt)t∈R be a smooth curve of densities ρt = dµt

dm
. Since

F(µ) =

∫
V dpµ +

∫
pµ ln pµ

=

∫∫
V dpθ ρ(θ) dm(θ) +

∫∫
ln
(∫

pθ′ ρ(θ′) dm(θ′)
)

dpθ ρ(θ) dm(θ)

then

∂tF(µt) =

∫∫
V dpθ ρ̇t(θ) dm(θ) +

∫∫ ∫
pθ′ ρ̇t(θ

′) dm(θ′)∫
pθ′ ρt(θ′) dm(θ′)

dpθ ρt(θ) dm(θ)

+

∫∫
ln
(∫

pθ′ ρ(θ′) dm(θ′)
)

dpθ ρ̇t(θ) dm(θ)

=

∫∫
(V + ln pµt + 1) dpθ ρ̇t(θ) dm(θ) .

From this,

δF(µ) : θ 7→
∫

(V + ln pµ + 1) dpθ =

∫
ln

pµ
π

dpθ + 1 .

Next, we compute the Bures–Wasserstein gradient using (16.16) and (16.22):

∇BWδF(µ)(m,Σ) =
(∫

ln
pµ
π
∇mpm,Σ, 2

∫
ln

pµ
π
∇Σpm,Σ

)
=

(∫
∇ ln

pµ
π

dpm,Σ,

∫
∇2 ln

pµ
π

dpm,Σ

)
.

Finally, to derive the system of ODEs (16.10), we combine the above expression
for the Wasserstein gradient of F together with the particle interpretation (16.31)
and the equations (16.14) and (16.15) for dynamics on the BW space.

■ 16.11 Lack of convexity of the KL divergence for mixtures of Gaussians

In this section, we provide counterexamples for the lack of convexity of the objec-
tive functional µ 7→ F(µ) = KL(pµ ∥ π) on the space P2(BW(Rd)).
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First, we point out that even when π is strongly log-concave, the functional
F can be badly behaved. For example, if π = p0,1 = N (0, 1) is a Gaussian
of variance 1, then we can write it as a Gaussian mixture in many ways: π =∫
N (m, a) dν1−a(m) for any a ∈ [0, 1], where νa = N (0, a). In particular, the set of

minimizers of F is not a singleton, and includes all of the measures νa⊗δa ((m,σ2)
is a random pair with independent components, where m ∼ normal(0, 1− a) and
σ2 = a almost surely) for a ∈ [0, 1] (as well as all convex combinations—i.e.,
mixtures—thereof).

Next, we give an explicit example which demonstrates the lack of convexity of
the entropy functional µ 7→ H(pµ) :=

∫
pµ ln pµ. This can be understood as the

KL divergence with zero potential (V = 0). Note that the entropy functional H
is convex on P2(Rd) [AGS08, Section 9.4], but our claim is that its composition
with the map µ 7→ pµ is not convex on P2(BW(Rd)).

In one dimension let µ0 = N (0, 1) ⊗ δ1 and µ1 = N (0, τ 2) ⊗ δ1. In words,
a random pair (m0, σ

2
0) drawn from µ0 satisfies m0 ∼ N (0, 1) and σ2

0 = 1, and
similarly for µ1. What is the optimal coupling of µ0 and µ1? Clearly σ2

0 = σ2
1 = 1 is

the trivial coupling, and since the Bures–Wasserstein distance over the means is the
same as the Euclidean distance between the means, we want the usual W2 optimal
coupling between normal(0, 1) and normal(0, τ 2); it follows that m1 = τm0. Hence,
the Bures geodesic between is {(mt, σ

2
t ) = ((1− t+ tτ)m0, 1)}t∈[0,1]; equivalently

the (Bures–)Wasserstein geodesic between µ0 and µ1 is{
µt = normal

(
0, (1− t+ tτ)2

)
⊗ δ1

}
t∈[0,1] .

Next, recall that the Gaussian mixture pµt is the law of X drawn in the
two-stage procedure: first we draw (mt, σ

2
t ) ∼ µt, and given (mt, σ

2
t ) we draw

X ∼ pmt,σ2
t
. Thus,

pµt =

∫
pm,σ2 dµt(m,σ

2) =

∫
pm,1 dν(1−t+tτ)2(m) = p0,1+(1−t+tτ)2 .

Hence,

H(pµt) =

∫
pµt ln pµt = −1

2
ln(2πe)− 1

2
ln
(
1 + (1− t+ tτ)2

)
.

Then, the convexity of t 7→ H(pµt) is equivalent to the convexity of the function
t 7→ − ln(1 + (1− t+ tτ)2), which fails when, e.g., τ = 1/2; in that case, the
function is, in fact, concave on the interval [0, 1].

■ 16.12 The Wasserstein–Fisher–Rao gradient flow

Similarly to the setting in §16.5, here we identify probability measures µ over the
Bures–Wasserstein space with the corresponding Gaussian mixture pµ. The aim
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of this section is to derive the gradient flow of the KL divergence µ 7→ KL(pµ ∥ π),
except we now equip the space P2(BW(Rd)) with the Wasserstein–Fisher–Rao
geometry [LMS16; Chi+18; LMS18]. Deriving the gradient flow with respect to
this geometry leads to dynamics for a system of interacting Gaussian particles in
which the weight of each particle is also updated at each iteration.

■ 16.12.1 Background on Wasserstein–Fisher–Rao geometry

Here we briefly summarize the relevant background on the Wasserstein–Fisher–
Rao (WFR) geometry. The WFR metric is also called the Hellinger–Kantorovich
metric by some authors.

The Fisher–Rao metric. The Fisher–Rao metric is a metric on the space M+(Rd)
of positive measures (not necessarily probability measures). It is the induced
metric on M+(Rd) if we enforce that the mapping µ 7→ √µ (defined for smooth
probability densities µ) is an isometry into L2(Rd). This means that

d2FR(µ0, µ1) =

∫
(
√
µ0 −

√
µ1)

2 ,

and if µ0 and µ1 are probability measures then this is known to statisticians (up
to a constant factor) as the squared Hellinger distance. (If we apply the analogous
procedure to discrete probability measures, then this amounts to identifying the
simplex with a subset of the unit sphere.) The Fisher–Rao metric is well-studied
in the field of information geometry [AN00; Ay+17].

Next, we describe the Riemannian geometry underlying the Fisher–Rao metric.
Consider a curve t 7→ µt of positive measures with time derivative µ̇. Since the
Fisher–Rao metric endows the square root of the density with a Hilbert metric,
we place endow the time derivative of the square root,

√̇
µ = µ̇/(2

√
µ), with the

Hilbert norm ∥µ̇/(2√µ)∥L2(Rd). Thus, the norm at the tangent space TµM+(Rd)
is given by

∥µ̇∥2µ =

∫
µ̇2

4µ
.

Actually, because we are working with positive measures (called unbalanced
measures to distinguish from the usual optimal transport problem which requires
the measures to have the same total mass), this kind of geometry is useful for
studying problems in which the total mass changes over time. For example,
PDEs of the form ∂tµt = αtµt are called reaction equations because they describe,
e.g., how the concentration of a chemical changes over time in reaction to the
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environment. Motivated by this application, we parameterize µ̇ via µ̇ = αµ, in
which case the norm is

∥α∥2µ =
1

4

∫
α2 dµ . (16.32)

Wasserstein geometry. We recall from §2.1 that Wasserstein geometry is motivated
by a completely different class of PDEs, namely transport equations encoded by
the continuity equation

∂tµt + div(µtvt) = 0 ,

which describe the evolving law of a particle xt tracing out an integral curve of
the family of vector fields: ẋt = vt(xt). The Riemannian structure is obtained by
equipping the tangent space TµP2(Rd) with the norm

∥v∥2µ =

∫
∥v∥2 dµ .

Wasserstein–Fisher–Rao geometry. Next we combine the two geometric structures,
which can model transport-reaction equations such as

∂tµt + div(µtvt) = αtµt . (16.33)

The tangent space norm is then given by the combination combination

∥(α, v)∥2µ =

∫
(α2 + ∥v∥2) dµ .

(At this point some authors add a factor 1
4

in front of the α2, which is natural in
view of (16.32). This is convenient for studying geometric properties of the space,
but it is not necessary for our purposes.) As in the pure Fisher–Rao case, this is
a metric on the space of positive measures M+(Rd).

It induces the distance

WFR2(µ0, µ1) := inf
{∫ 1

0

∥(αt, vt)∥2µt dt
∣∣∣ (µt, αt, vt)t∈[0,1] solves (16.33)

}
.

One can show that the tangent space to M+(Rd) consists of pairs (α, v) for
which α = u and v = ∇u for some function u : Rd → R. Thus, compared
to the Wasserstein metric in which the tangent space norm is the Ḣ1(µ) norm
∥u∥Ḣ1(u) = ∥∇u∥L2(µ), the Wasserstein–Fisher–Rao metric has the interpretation

of completing the tangent space norm to the full Sobolev norm H1(µ).
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Constraining the dynamics to lie within probability measures. In order to have our dy-
namics stay on the space of probability measures, we follow [LLN19] and consider
instead the equation

∂tµt + div(µtvt) =
(
αt −

∫
αt dµt

)
µt ,

which now conserves mass. The tangent space norm is modified to read

∥(α, v)∥2µ =

∫ [(
α−

∫
α dµ

)2

+ ∥v∥2
]

dµ .

Particle interpretation. The particle interpretation of the WFR geometry is more
complicated to state than for the Wasserstein geometry, but it can be done. Instead
of considering a particle x, we consider a pair (x, r) consisting of a particle x ∈ Rd

and a number r > 0 (this number is actually interpreted as the square root of the
mass of the particle). The pair (x, r) should be thought of as an element of the
cone space C(Rd) := (Rd × R+)/(Rd × {0}) (in other words, we take the space
Rd × R+ and identify all of the points with zero mass which sit at the “tip of the
cone”). The cone space is the natural setting for WFR geometry; for example,
one can introduce a metric on C(Rd) and show that the WFR distance is an
optimal transport problem w.r.t. this metric. We will not go into such detail, but
nevertheless we introduce the cone space because is important for the particle
interpretation of WFR dynamics.

Curves of measures (µt)t∈[0,1] in the WFR geometry admit a particle interpre-

tation in terms of trajectories on C(Rd). Namely, the equation (16.33) can be
interpreted as follows. There exists a curve of measures t 7→ µ̃t over the cone
space C(Rd), such that if r : C(Rd) → R+ denotes the mapping (x, r) 7→ r, and
x : C(Rd)→ Rd maps (x, r) 7→ x, then

µt = x#(r2µ̃t) .

Moreover, if we draw (x0, r0) ∼ µ̃0 and follow the ODEs

ẋt = vt(xt) ,

ṙt =
(
αt(xt)−

∫
αt dµt

)
rt ,

then (xt, rt) ∼ µ̃t. Here the notation ∼ is an (egregious) abuse of notation because
µ̃t is not a probability measure; by (x, r) ∼ µ̃ more precisely we mean that
µ̃t = (ODEt)#µ̃0 where ODEt is the solution mapping (x0, r0) 7→ (xt, rt) to the
above system of ODEs at time t.
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To make this interpretation more concrete, we specialize to the case of discrete
measures. Suppose that we start at a probability measure

µ0 =
N∑
i=1

w
(i)
0 δx(i)0

.

Then, we lift to the cone space:

µ̃0 =
N∑
i=1

δ
(x

(i)
0 ,

√
w

(i)
0 )

=
N∑
i=1

δ
(x

(i)
0 ,r

(i)
0 )

where we set r
(i)
t =

√
w

(i)
t . Next, we follow the ODEs

ẋ
(i)
t = vt(x

(i)
t ) ,

ṙ
(i)
t =

(
αt(x

(i)
t )−

N∑
j=1

w
(j)
t αt(x

(j)
t )

)
r
(i)
t .

Upon projecting back to the base space, we obtain another discrete measure

µt =
N∑
i=1

w
(i)
t δx(i)t

=
N∑
i=1

(r
(i)
t )2 δ

x
(i)
t
.

As a sanity check, we check that these dynamics ensure that µt is a probability
measure for all t. The time derivative of the sum of the weights is

∂t

N∑
i=1

w
(i)
t = 2

N∑
i=1

r
(i)
t ∂tr

(i)
t = 2

N∑
i=1

(r
(i)
t )2

(
αt(x

(t)
i )− Eµt αt

)
= 2

( N∑
i=1

w
(i)
t αt(x

(t)
i )− Eµt αt

)
= 0 .

■ 16.12.2 Derivation of the gradient flow

Next, we derive the Wasserstein–Fisher–Rao gradient flow of the functional
µ 7→ F(µ) := KL(pµ ∥ π) on the space (P2(BW(Rd)),WFR) of Gaussian mixtures
equipped with the Wasserstein–Fisher–Rao metric (over the Bures–Wasserstein
space). The WFR gradient of F, ∇WFRF(µ), is the pair

∇WFRF(µ) =
(
∇BWδF(µ), δF(µ)−

∫
δF(µ) dµ

)
.
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This result is essentially stated as [LLN19, Proposition A.1], although we have
generalized the formula to hold when the base space is no longer Rd. Note also
that we have already calculated the first variation of F, as well as the BW gradient,
in §16.10.

The interpretation of the formula is that in the gradient flow of F, we have a
particle (m,Σ) associated with some mass w evolving according to

ṁ = −Epm,Σ∇ ln
pµ
π
,

Σ̇ = −ΣEpm,Σ∇2 ln
pµ
π
− Epm,Σ ∇2 ln

pµ
π

Σ ,

ṙ = −
(
Epm,Σ ln

pµ
π
− Epµ ln

pµ
π

)
r ,

where r =
√
w. The interpretation may be clearer in the discrete case, so suppose

that we initialize the dynamics at a discrete measure

µ0 =
N∑
i=1

w
(i)
0 δ(m(i)

0 ,Σ
(i)
0 )
.

Next we solve the coupled system of ODEs, for i ∈ [N ],

ṁ(i) = −Ep
m(i),Σ(i)

∇ ln
pµ
π
,

Σ̇(i) = −Σ(i) Ep
m(i),Σ(i)

∇2 ln
pµ
π
− Ep

m(i),Σ(i)
∇2 ln

pµ
π

Σ(i) ,

ṙ(i) = −
(
Ep

m(i),Σ(i)
ln

pµ
π
− Epµ ln

pµ
π

)
r(i) ,

where r(i) =
√
w(i) and

µt =
N∑
i=1

w
(i)
t δ(m(i)

t ,Σ
(i)
t )
.

Since the normalization constant of π cancels out in the above equations, they are
implementable without this knowledge.

■ 16.13 Conclusion

Using the powerful theory of Wasserstein gradient flows, we derived new algo-
rithms for vi using either Gaussians or mixtures of Gaussians as approximating
distributions. The consequences are twofold. On the one hand, strong convergence
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guarantees under classical conditions contribute markedly to closing the theoret-
ical gap between mcmc and Gaussian vi. On the other hand, discretization of
the Wasserstein gradient flow for mixtures of Gaussians yields a new Gaussian
particle method for time discretization which, unlike classical particle methods,
maintains a continuous probability distribution at each time.

We conclude by briefly listing some possible directions for future study. For
Gaussian variational inference, our theoretical result (Theorem 16.4.1) can be
strengthened by weakening the assumption that π is strongly log-concave, or by
developing algorithms which do not require Hessian information for V .

Towards the first question, we remark that (similarly to the analysis in §9),
the KL divergence objective functional can be viewed as composite optimization
consisting of the sum of a potential energy term that is convex and smooth
(provided V is) and a convex but non-smooth entropy term. This observation has
motivated the study of proximal gradient methods over the Wasserstein space,
which are generally not implementable [SKL20]. However, the proximal operator
for the entropy turns out to be implementable in closed form over the Bures–
Wasserstein space, motivating the development of proximal gradient methods for
Gaussian vi; we pursue this further in the work [Dia+23].

Code for the experiments is available at https://github.com/marc-h-lambert/
W-VI.

https://github.com/marc-h-lambert/W-VI
https://github.com/marc-h-lambert/W-VI


Chapter 17

Theory for diffusion models

We provide theoretical convergence guarantees for score-based generative models
(SGMs) such as denoising diffusion probabilistic models (DDPMs), which consti-
tute the backbone of large-scale real-world generative models such as DALL·E
2. Our main result is that, assuming accurate score estimates, such SGMs can
efficiently sample from essentially any realistic data distribution. In contrast
to prior works, our results (1) hold for an L2-accurate score estimate (rather
than L∞-accurate); (2) do not require restrictive functional inequality conditions
that preclude substantial non-log-concavity; (3) scale polynomially in all relevant
problem parameters; and (4) match state-of-the-art complexity guarantees for dis-
cretization of the Langevin diffusion, provided that the score error is sufficiently
small. We view this as strong theoretical justification for the empirical success of
SGMs. We also examine SGMs based on the critically damped Langevin diffusion
(CLD). Contrary to conventional wisdom, we provide evidence that the use of the
CLD does not reduce the complexity of SGMs.

This chapter is based on [Che+23a], joint with Sitan Chen, Jerry Li, Yuanzhi
Li, Adil Salim, and Anru R. Zhang.

■ 17.1 Introduction

Score-based generative models (SGMs) are a family of generative models which
achieve state-of-the-art performance for generating audio and image data [Soh+15;
HJA20; DN21; Kin+21; Son+21a; Son+21b; VKK21]. One notable example of
an SGM are denoising diffusion probabilistic models (DDPMs) [Soh+15; HJA20],
which are a key component in large-scale generative models such as DALL·E
2 [Ram+22]. As the importance of SGMs continues to grow due to newfound
applications in commercial domains, it is a pressing question of both practical and
theoretical concern to understand the mathematical underpinnings which explain
their startling empirical successes.

As we explain in more detail in §17.2, at their mathematical core, SGMs consist

505
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of two stochastic processes, which we call the forward process and the reverse
process. The forward process transforms samples from a data distribution q (e.g.,
natural images) into pure noise, whereas the reverse process transforms pure noise
into samples from q, hence performing generative modelling. Implementation of
the reverse process requires estimation of the score function of the law of the
forward process, which is typically accomplished by training neural networks on
a score matching objective [Hyv05; Vin11; SE19].

Providing precise guarantees for estimation of the score function is difficult, as
it requires an understanding of the non-convex training dynamics of neural network
optimization that is currently out of reach. However, given the empirical success
of neural networks on the score estimation task, a natural and important question
is whether or not accurate score estimation implies that SGMs provably converge
to the true data distribution in realistic settings. This is a surprisingly delicate
question, as even with accurate score estimates, as we explain in §17.2.1, there
are several other sources of error which could cause the SGM to fail to converge.
Indeed, despite a flurry of recent work on this question [De +21; BMR22; De 22;
Liu+22; LLT22; Pid22], prior analyses fall short of answering this question, for
(at least) one of three main reasons:

1. Super-polynomial convergence. The bounds obtained are not quantitative
(e.g., [De +21; Liu+22; Pid22]), or scale exponentially in the dimension and
other problem parameters [BMR22; De 22], and hence are typically vacuous
for the high-dimensional settings of interest in practice.

2. Strong assumptions on the data distribution. The bounds require strong
assumptions on the true data distribution, such as a log-Sobelev inequality (LSI)
(see, e.g., [LLT22]). While the LSI is slightly weaker than log-concavity, it ulti-
mately precludes the presence of substantial non-convexity, which impedes the
application of these results to complex and highly multi-modal real-world data
distributions. Indeed, obtaining a polynomial-time convergence analysis for
SGMs that holds for multi-modal distributions was posed as an open question
in [LLT22].

3. Strong assumptions on the score estimation error. The bounds require
that the score estimate is L∞-accurate (i.e., uniformly accurate), as opposed
to L2-accurate (see, e.g., [De +21]). This is particularly problematic because
the score matching objective is an L2 loss (see §17.2 for details), and there are
empirical studies suggesting that in practice, the score estimate is not in fact
L∞-accurate (e.g., [ZC23]). Intuitively, this is because we cannot expect that
the score estimate we obtain in practice will be accurate in regions of space
where the true density is very low, simply because we do not expect to see
many (or indeed, any) samples from such regions.
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Providing an analysis which goes beyond these limitations is a pressing first step
towards theoretically understanding why SGMs actually work in practice.

Concurrent work. The concurrent and independent work of [LLT23] also obtains
similar guarantees to our Corollary 17.3.5.

■ 17.1.1 Our contributions

In this work, we take a step towards bridging theory and practice by providing a
convergence guarantee for SGMs, under realistic (in fact, quite minimal) assump-
tions, which scales polynomially in all relevant problem parameters. Namely, our
main result (Theorem 17.3.4) only requires the following assumptions on the data
distribution q, which we make more quantitative in §17.3:

A1 The score function of the forward process is L-Lipschitz.

A2 The second moment of q is finite.

A3 The data distribution q has finite KL divergence w.r.t. the standard Gaussian.

We note that all of these assumptions are either standard or, in the case of A2,
far weaker than what is needed in prior work. Crucially, unlike prior works, we do
not assume log-concavity, an LSI, or dissipativity; hence, our assumptions cover
arbitrarily non-log-concave data distributions. Our main result is summarized
informally as follows.

Theorem 17.1.1 (Informal, see Theorem 17.3.4). Under assumptions A1-A3,

and if the score estimation error in L2 is at most Õ(ε), then with an appropriate
choice of step size, the SGM outputs a measure which is ε-close in total variation
(TV) distance to q in Õ(L2d/ε2) iterations.

We remark that our iteration complexity is actually quite tight: in fact,
this matches state-of-the-art discretization guarantees for the Langevin diffusion,
see [VW19] and §3.

We find Theorem 17.1.1 to be quite surprising, because it shows that SGMs
can sample from the data distribution q with polynomial complexity, even when q
is highly non-log-concave (a task that is usually intractable), provided that one has
access to an accurate score estimator. This answers the open question of [LLT22]
regarding whether or not SGMs can sample from multimodal distributions, e.g.,
mixtures of distributions with bounded log-Sobolev constant. In the context of
neural networks, our result implies that so long as the neural network succeeds at
the learning task, the remaining part of the SGM algorithm based on the diffusion
model is principled, in that it admits a strong theoretical justification.
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In general, learning the score function is also a difficult task. Nevertheless,
our result opens the door to further investigations, such as: do score functions
for real-life data have intrinsic (e.g., low-dimensional) structure which can be
exploited by neural networks? A positive answer to this question, combined with
our sampling result, would then provide an end-to-end guarantee for SGMs.

More generally, our result can be viewed as a black-box reduction of the task
of sampling to the task of learning the score function of the forward process, at
least for distributions satisfying our mild assumptions. As a simple consequence,
existing computational hardness results for learning natural high-dimensional dis-
tributions like mixtures of Gaussians [DKS17; Bru+21; GVV22] and pushforwards
of Gaussians by shallow ReLU networks [DV21; Che+22a; CLL22] immediately
imply hardness of score estimation for these distributions. To our knowledge this
yields the first known information-computation gaps for this task.

Arbitrary distributions with bounded support. The assumption that the score function
is Lipschitz entails in particular that the data distribution has a density w.r.t.
Lebesgue measure; in particular, our theorem fails when q satisfies the manifold
hypothesis, i.e., is supported on a lower-dimensional submanifold of Rd. But this
is for good reason: it is not possible to obtain non-trivial TV guarantees, because
the output distribution of the SGM has full support. Instead, we show in §17.3.2
that we can obtain polynomial convergence guarantees in the Wasserstein metric
by stopping the SGM algorithm early, under the sole assumption that that data
distribution q has bounded support. Since any data distribution encountered in
real life satisfies this condition, our results yield the following compelling takeaway:

Given an L2-accurate score estimate, SGMs can sample from (essentially) any
data distribution.

This constitutes a powerful theoretical justification for the use of SGMs in practice.

Critically damped Langevin diffusion (CLD). Using our techniques, we also investigate
the use of the critically damped Langevin diffusion (CLD) for SGMs, which was
proposed in [DVK22]. Although numerical experiments and intuition from the
log-concave sampling literature suggest that the CLD could potentially speed up
sampling via SGMs, we provide theoretical evidence to the contrary: in §17.3.3,
we conjecture that SGMs based on the CLD do not exhibit improved dimension
dependence compared to the original DDPM algorithm.

■ 17.1.2 Prior work

We now provide a more detailed comparison to prior work, in addition to the
previous discussion above.
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By now, there is a vast literature on providing precise complexity estimates for
log-concave sampling; see, e.g., the book draft [Che23] for an exposition to recent
developments. The proofs in this work build upon the techniques developed in
this literature. However, our work addresses the significantly more challenging
setting of non-log-concave sampling.

The paper [De +21] provides sampling guarantees for the diffusion Schrödinger
bridge [Son+21b]. However, as previously mentioned their result is not quantita-
tive, and they require an L∞-accurate score estimate. The works [BMR22; LLT22]
instead analyze SGMs under the more realistic assumption of an L2-accurate score
estimate. However, the bounds of [BMR22] suffer from the curse of dimensionality,
whereas the bounds of [LLT22] require q to satisfy an LSI.

The recent work of [De 22], motivated by the manifold hypothesis, considers a
different pointwise assumption on the score estimation error which allows the error
to blow up at time 0 and at spatial ∞. We discuss the manifold setting in more
detail in §17.3.2. Unfortunately, the bounds of [De 22] also scale exponentially in
problem parameters such as the manifold diameter.

After the first version of this work appeared online, we became aware of two
concurrent and independent works [Liu+22; LLT23] which share similarities with
our work. Namely, [Liu+22] uses a similar proof technique as our Theorem 17.3.4
(albeit without explicit quantitative bounds), whereas [LLT23] obtains similar
guarantees to our Corollary 17.3.5 below. The follow-up work of [CLL23] further
improves upon the results in this chapter.

We also mention that the use of reversed SDEs for sampling is also implicit in
the interpretation of the proximal sampler algorithm [LST21c] given in §4, and the
present work can be viewed as expanding upon the theory of §4 using a different
forward channel (the OU process).

■ 17.2 Background on SGMs

Throughout this chapter, given a probability measure p which admits a density
w.r.t. Lebesgue measure, we abuse notation and identify it with its density function.
Additionally, we will let q denote the data distribution from which we want to
generate new samples. We assume that q is a probability measure on Rd with
full support, and that it admits a smooth density. (See, however, §17.3.2 on
applications of our results to the case when q does not admit a density, such as
the case when q is supported on a lower-dimensional submanifold of Rd.) In this
case, we can write the density of q in the form q = exp(−U), where U : Rd → R
is the potential.

In this section, we provide a brief exposition to SGMs, following [Son+21b].
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■ 17.2.1 Background on denoising diffusion probabilistic models (DDPM)

Forward process. In denoising diffusion probabilistic modelling (DDPM), we start
with a forward process, which is a stochastic differential equation (SDE). For
clarity, we consider the simplest possible choice, which is the Ornstein–Uhlenbeck
(OU) process

dX̄t = −X̄t dt+
√

2 dBt , X̄0 ∼ q , (17.1)

where (Bt)t≥0 is a standard Brownian motion in Rd. The OU process is the
unique time-homogeneous Markov process which is also a Gaussian process, with
stationary distribution equal to the standard Gaussian distribution γd on Rd. In
practice, it is also common to introduce a positive smooth function g : R+ → R
and consider the time-rescaled OU process

dX̄t = −g(t)2 X̄t dt+
√

2 g(t) dBt , X0 ∼ q , (17.2)

but in this work we stick with the choice g ≡ 1.
The forward process has the interpretation of transforming samples from the

data distribution q into pure noise. From the well-developed theory of Markov
diffusions, it is known that if qt := law(Xt) denotes the law of the OU process at
time t, then qt → γd exponentially fast in various divergences and metrics such as
the 2-Wasserstein metric W2; see [BGL14].

Reverse process. If we reverse the forward process (17.1) in time, then we obtain a
process that transforms noise into samples from q, which is the aim of generative
modelling. In general, suppose that we have an SDE of the form

dX̄t = bt(X̄t) dt+ σt dBt ,

where (σt)t≥0 is a deterministic matrix-valued process. Then, under mild condi-
tions on the process (e.g., [Föl85; Cat+22]), which are satisfied for all processes
under consideration in this work, the reverse process also admits an SDE descrip-
tion. Namely, if we fix the terminal time T > 0 and set

X̄←t := X̄T−t , for t ∈ [0, T ] , (17.3)

then the process (X̄←t )t∈[0,T ] satisfies the SDE

dX̄←t = b←t (X̄←t ) dt+ σT−t dBt ,

where the backwards drift satisfies the relation

bt + b←T−t = σtσ
T
t ∇ ln qt , qt := law(X̄t) . (17.4)
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Applying this to the forward process (17.1), we obtain the reverse process

dX̄←t = {X̄←t + 2∇ ln qT−t(X̄
←
t )} dt+

√
2 dBt , X̄←0 ∼ qT , (17.5)

where now (Bt)t∈[0,T ] is the reversed Brownian motion.1 Here, ∇ ln qt is called the
score function for qt. Since q (and hence qt for t ≥ 0) is not explicitly known, in
order to implement the reverse process the score function must be estimated on
the basis of samples.

Score matching. In order to estimate the score function ∇ ln qt, consider minimiz-
ing the L2(qt) loss over a function class F ,

minimize
st∈F

Eqt [∥st −∇ ln qt∥2] , (17.6)

where F could be, e.g., a class of neural networks. The idea of score matching,
which goes back to [Hyv05; Vin11], is that after applying integration by parts for
the Gaussian measure, the problem (17.6) is equivalent to the following problem:

minimize
st∈F

E
[∥∥∥st(X̄t) +

1√
1− exp(−2t)

Zt

∥∥∥2]
, (17.7)

where Zt ∼ normal(0, Id) is independent of X̄0 and we set X̄t = exp(−t) X̄0 +√
1− exp(−2t)Zt, in the sense that (17.6) and (17.7) share the same minimiz-

ers. We give a self-contained derivation in §17.2.3 for the sake of completeness.
Unlike (17.6), however, the objective in (17.7) can be replaced with an empirical

version and estimated on the basis of samples X̄
(1)
0 , . . . , X̄

(n)
0 from q, leading to

the finite-sample problem

minimize
st∈F

1

n

n∑
i=1

∥∥∥st(X̄(i)
t ) +

1√
1− exp(−2t)

Z
(i)
t

∥∥∥2

, (17.8)

where (Z
(i)
t )i∈[n] are i.i.d. standard Gaussians independent of the data (X̄

(i)
0 )i∈[n].

Moreover, if we parametrize the score function as st = − 1√
1−exp(−2t)

ẑt, then the

empirical problem is equivalent to

minimize
ẑt∈−
√

1−exp(−2t)F

1

n

n∑
i=1

∥∥ẑt(X̄(i)
t )− Z(i)

t

∥∥2
,

1For ease of notation, we do not distinguish between the forward and the reverse Brownian
motions.
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which has the illuminating interpretation of predicting the added noise Z
(i)
t from

the noised data X̄
(i)
t .

We remark that given the objective function (17.6), it is most natural to assume
an L2(qt) error bound Eqt [∥st −∇ ln qt∥2] ≤ ε2score for the score estimator. If st is
taken to be the empirical risk minimizer for an appropriate function class, then
guarantees for the L2(qt) error can be obtained via standard statistical analysis,
as was done in [BMR22].

Discretization and implementation. We now discuss the final steps required to ob-
tain an implementable algorithm. First, in the learning phase, given samples
X̄

(1)
0 , . . . , X̄

(n)
0 from q (e.g., a database of natural images), we train a neural net-

work on the empirical score matching objective (17.8), see [SE19]. Let h > 0
be the step size of the discretization; we assume that we have obtained a score
estimate skh of ∇ ln qkh for each time k = 0, 1, . . . , N , where T = Nh.

In order to approximately implement the reverse SDE (17.5), we first replace
the score function ∇ ln qT−t with the estimate sT−t. Then, for t ∈ [kh, (k + 1)h]
we freeze this coefficient in the SDE at time kh. It yields the new SDE

dX←t = {X←t + 2 sT−kh(X
←
kh)} dt+

√
2 dBt , t ∈ [kh, (k + 1)h] . (17.9)

Since this is a linear SDE, it can be integrated in closed form; in particular,
conditionally on X←kh, the next iterate X←(k+1)h has an explicit Gaussian distribution.

There is one final detail: although the reverse SDE (17.5) should be started at
qT , we do not have access to qT directly. Instead, taking advantage of the fact that
qT ≈ γd, we instead initialize the algorithm at X←0 ∼ γd, i.e., from pure noise.

Let pt := law(X←t ) denote the law of the algorithm at time t. The goal of this
work is to bound TV(pT , q), taking into account three sources of error: (1) the
estimation of the score function; (2) the discretization of the SDE with step size
h > 0; and (3) the initialization of the algorithm at γd rather than at qT .

■ 17.2.2 Background on the critically damped Langevin diffusion (CLD)

The critically damped Langevin diffusion (CLD) is based on the forward process

dX̄t = −V̄t dt ,

dV̄t = −(X̄t + 2 V̄t) dt+ 2 dBt .
(17.10)

Compared to the OU process (17.1), this is now a coupled system of SDEs, where
we have introduced a new variable V̄ representing the velocity process. The
stationary distribution of the process is γ2d, the standard Gaussian measure on
phase space Rd × Rd, and we initialize at X̄0 ∼ q and V̄0 ∼ γd.
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More generally, the CLD (17.10) is an instance of what is referred to as the
kinetic Langevin or the underdamped Langevin process in the sampling literature.
In the context of log-concave sampling, the smoother paths of X̄ leads to smaller
discretization error, thereby furnishing an algorithm with Õ(

√
d/ε) gradient com-

plexity (as opposed to sampling based on the overdamped Langevin process, which

has complexity Õ(d/ε2)), see [Che+18b; SL19; DR20; Ma+21] and §6. In the
recent paper [DVK22], Dockhorn, Vahdat, and Kreis proposed to use the CLD as
the basis for an SGM and they empirically observed improvements over DDPM.

Applying (17.4), the corresponding reverse process is

dX̄←t = −V̄ ←t dt ,

dV̄ ←t =
(
X̄←t + 2 V̄ ←t + 4∇v ln qT−t(X̄

←
t , V̄

←
t )

)
dt+ 2 dBt ,

(17.11)

where qt := law(X̄t, V̄t) is the law of the forward process at time t. Note that the
gradient in the score function is only taken w.r.t. the velocity coordinate. Upon
replacing the score function with an estimate s, we arrive at the algorithm

dX←t = −V ←t dt ,

dV ←t =
(
X←t + 2V ←t + 4 sT−kh(X

←
kh, V

←
kh )

)
dt+ 2 dBt ,

for t ∈ [kh, (k + 1)h].

■ 17.2.3 Derivation of the score matching objective

In this section, we present a self-contained derivation of the score matching objec-
tive (17.7) for the reader’s convenience. See also [Hyv05; Vin11; SE19].

Recall that the problem is to solve

minimize
st∈F

Eqt [∥st −∇ ln qt∥2] .

This objective cannot be evaluated, even if we replace the expectation over qt with
an empirical average over samples from qt. The trick is to use an integration by
parts identity to reformulate the objective. Here, C will denote any constant that
does not depend on the optimization variable st. Expanding the square,

Eqt [∥st −∇ ln qt∥2] = Eqt [∥st∥2 − 2 ⟨st,∇ ln qt⟩] + C .

We can rewrite the second term using integration by parts:∫
⟨st,∇ ln qt⟩ dqt =

∫
⟨st,∇qt⟩ = −

∫
(div st) dqt
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= −
∫∫

(div st)
(
exp(−t)x0 +

√
1− exp(−2t) zt

)
dq(x0) dγd(zt) ,

where γd = normal(0, Id) and we used the explicit form of the law of the OU
process at time t. Recall the Gaussian integration by parts identity: for any
vector field v : Rd → Rd,∫

(div v) dγd =

∫
⟨x, v(x)⟩ dγd(x) .

Applying this identity,∫
⟨st,∇ ln qt⟩ dqt = − 1√

1− exp(−2t)

∫
⟨zt, st(xt)⟩ dq(x0) dγd(zt)

where xt = exp(−t)x0 +
√

1− exp(−2t) zt. Substituting this in,

Eqt [∥st −∇ ln qt∥2] = E
[
∥st(Xt)∥2 +

2√
1− exp(−2t)

⟨Zt, st(Xt)⟩
]

+ C

= E
[∥∥∥s(Xt) +

1√
1− exp(−2t)

Zt

∥∥∥2]
+ C ,

where X0 ∼ q and Zt ∼ γd are independent, and we set Xt := exp(−t)X0 +√
1− exp(−2t)Zt.

■ 17.3 Results

We now state our assumptions and our main results.

■ 17.3.1 Results for DDPM

For DDPM, we make the following mild assumptions on the data distribution q.

Assumption 17.3.1 (Lipschitz score). For all t ≥ 0, the score ∇ ln qt is L-
Lipschitz.

Assumption 17.3.2 (Second moment bound). We assume m2
2 := Eq[∥·∥2] <∞.

Assumption 17.3.1 is standard and has been used in the prior works [BMR22;
LLT22]. However, unlike [LLT22], we do not assume Lipschitzness of the score
estimate. Moreover, unlike [De +21; BMR22], we do not assume any convexity or
dissipativity assumptions on the potential U , and unlike [LLT22] we do not assume
that q satisfies a log-Sobolev inequality. Hence, our assumptions cover a wide
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range of highly non-log-concave data distributions. Our proof technique is fairly
robust and even Assumption 17.3.1 could be relaxed (as well as other extensions,
such as considering the time-changed forward process (17.2)), although we focus
on the simplest setting in order to better illustrate the conceptual significance of
our results.

We also assume a bound on the score estimation error.

Assumption 17.3.3 (Score estimation error). For all k = 1, . . . , N ,

Eqkh [∥skh −∇ ln qkh∥2] ≤ ε2score .

This is the same assumption as in [LLT22], and as discussed in §17.2.1, it is a
natural and realistic assumption in light of the derivation of score matching.

Our main result for DDPM is the following theorem.

Theorem 17.3.4 (DDPM). Suppose that Assumptions 17.3.1, 17.3.2, and 17.3.3
hold. Let pT be the output of the DDPM algorithm (§17.2.1) at time T , and
suppose that the step size h := T/N satisfies h ≲ 1/L, where L ≥ 1. Then, it
holds that

TV(pT , q) ≲
√

KL(q ∥ γd) exp(−T )︸ ︷︷ ︸
convergence of forward process

+ (L
√
dh+ Lm2h)

√
T︸ ︷︷ ︸

discretization error

+ εscore
√
T︸ ︷︷ ︸

score estimation

.

Proof. See §17.5.

To interpret this result, suppose that KL(q ∥ γd) ≤ poly(d) and m2 ≤ d.
Choosing T ≍ log(KL(q ∥ γd)/ε) and h ≍ ε2

L2d
, and hiding logarithmic factors,

TV(pT , q) ≤ Õ(ε+ εscore) , for N = Θ̃
(L2d

ε2

)
.

In particular, in order to have TV(pT , q) ≤ ε, it suffices to have score error

εscore ≤ Õ(ε).

We remark that the iteration complexity of N = Θ̃(L
2d
ε2

) matches state-of-
the-art complexity bounds for the Langevin Monte Carlo (LMC) algorithm for
sampling under a log-Sobolev inequality (LSI), see [VW19] and §3. This provides
some evidence that our discretization bounds are of the correct order, at least
with respect to the dimension and accuracy parameters, and without higher-order
smoothness assumptions.
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■ 17.3.2 Consequences for arbitrary data distributions with bounded sup-

port

We now elaborate upon the implications of our results under the sole assumption
that the data distribution q is compactly supported, supp q ⊆ B(0, R). In par-
ticular, we do not assume that q has a smooth density w.r.t. Lebesgue measure,
which allows for studying the case when q is supported on a lower-dimensional
submanifold of Rd as in the manifold hypothesis. This setting was investigated
recently in [De 22].

For this setting, our results do not apply directly because the score function
of q is not well-defined and hence Assumption 17.3.1 fails to hold. Also, the
bound in Theorem 17.3.4 has a term involving KL(q ∥ γd) which is infinite if q
is not absolutely continuous w.r.t. γd. As pointed out by [De 22], in general we
cannot obtain non-trivial guarantees for TV(pT , q), because pT has full support
and therefore TV(pT , q) = 1 under the manifold hypothesis. Nevertheless, we
show that we can apply our results using an early stopping technique.

Namely, consider qt the law of the OU process at a time t > 0, initialized
at q. Then, we show in Lemma 17.5.7 that, if t ≍ ε2W2

/(
√
d (R ∨

√
d)) where

0 < εW2 ≪
√
d, then qt satisfies Assumption 17.3.1 with L ≲ dR2 (R ∨

√
d)

2
/ε4W2

,
KL(qt ∥ γd) ≤ poly(R, d, 1/ε), and W2(qt, q) ≤ εW2 . By substituting q by qt into
the result of Theorem 17.3.4, we obtain Corollary 17.3.5 below.

Taking qt as the new target corresponds to stopping the algorithm early:
instead of running the algorithm backward for a time T , we run the algorithm
backward for a time T − t (here, T − t should be a multiple of the step size h).

Corollary 17.3.5 (Compactly supported data). Suppose that q is supported on
the ball of radius R ≥ 1. Let t ≍ ε2W2

/(
√
d (R ∨

√
d)). Then, the output pT−t of

DDPM is εTV-close in TV to the distribution qt, which is εW2-close in W2 to q,
provided that h is chosen appropriately according to Theorem 17.3.4 and

N = Θ̃
(d3R4 (R ∨

√
d)4

ε2TV ε
8
W2

)
and εscore ≤ Õ(εTV) .

Observing that both the TV and W1 metrics are upper bounds for the bounded
Lipschitz metric dBL(µ, ν) := sup{

∫
f d(µ− ν)

∣∣ f : Rd → [−1, 1] is 1-Lipschitz},
we immediately obtain the following corollary.

Corollary 17.3.6 (Compactly supported data, BL metric). Suppose that q is
supported on the ball of radius R ≥ 1. Let t ≍ ε2/(

√
d (R ∨

√
d)). Then, the

output pT−t of the DDPM algorithm satisfies dBL(pT−t, q) ≤ ε, provided that
the step size h is chosen appropriately according to Theorem 17.3.4 and N =
Θ̃(d3R4 (R ∨

√
d)4/ε10) and εscore ≤ Õ(ε).
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Finally, if the output pT−t of DDPM at time T − t is projected onto B(0, R0)
for an appropriate choice of R0, then we can also translate our guarantees to the
standard W2 metric, which we state as the following corollary.

Corollary 17.3.7 (Compactly supported data, W2 metric). Suppose that q is
supported on the ball of radius R ≥ 1. Let t ≍ ε2/(

√
d (R ∨

√
d)), and let pT−t,R0

denote the output of DDPM at time T − t projected onto B(0, R0) for R0 = Θ̃(R).
Then, it holds that W2(pT−t,R0 , q) ≤ ε, provided that the step size h is chosen

appropriately according to Theorem 17.3.4, N = Θ̃(d3R8 (R ∨
√
d)4/ε12), and

εscore ≤ Õ(ε).

Note that the dependencies in the three corollaries above are polynomial in all
of the relevant problem parameters. In particular, since the last corollary holds
in the W2 metric, it is directly comparable to [De 22] and vastly improves upon
the exponential dependencies therein.

■ 17.3.3 Results for CLD

In order to state our results for score-based generative modelling based on the
CLD, we must first modify Assumptions 17.3.1 and 17.3.3 accordingly.

Assumption 17.3.8. For all t ≥ 0, the score ∇v ln qt is L-Lipschitz.

Assumption 17.3.9. For all k = 1, . . . , N ,

Eqkh [∥skh −∇v ln qkh∥2] ≤ ε2score .

If we ignore the dependence on L and assume that the score estimate is
sufficiently accurate, then the iteration complexity guarantee of Theorem 17.3.4 is
N = Θ̃(d/ε2). On the other hand, recall from §17.2.2 that based on intuition from
the literature on log-concave sampling and from empirical findings in [DVK22], we
might expect that SGMs based on the CLD have a smaller iteration complexity
than DDPM. We establish the following theorem.

Theorem 17.3.10 (CLD). Suppose that Assumptions 17.3.2, 17.3.8, and 17.3.9
hold. Let pT be the output of the SGM algorithm based on the CLD (§17.2.2) at
time T , and suppose that the step size h := T/N satisfies h ≲ 1/L, where L ≥ 1.
Then, there is a universal constant c > 0 such that

TV(pT , q ⊗ γd) ≲
√

KL(q ∥ γd) + FI(q ∥ γd) exp(−cT )︸ ︷︷ ︸
convergence of forward process

+ (L
√
dh+ Lm2h)

√
T︸ ︷︷ ︸

discretization error

+ εscore
√
T︸ ︷︷ ︸

score estimation error

where FI(q ∥ γd) is the relative Fisher information FI(q ∥ γd) := Eq[∥∇ ln(q/γd)∥2].
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Note that the result of Theorem 17.3.10 is in fact no better than our guar-
antee for DDPM in Theorem 17.3.4. Although this is possibly an artefact of
our analysis, we believe that it is in fact fundamental. From the form of the
reverse process (17.11), the SGM based on CLD lacks a certain property (that
the discretization error should only depend on the size of the increment of the
X process, not the increments of both the X and V processes) which is crucial
for the improved dimension dependence of the CLD over Langevin in log-concave
sampling. Hence, in general, we conjecture that under our assumptions, SGMs
based on the CLD do not achieve a better dimension dependence than DDPM.

We provide evidence for our conjecture via a lower bound. In our proofs of
Theorems 17.3.4 and 17.3.10, we rely on bounding the KL divergence between
certain measures on the path space C([0, T ];Rd) via Girsanov’s theorem. The
following result lower bounds this KL divergence, even for the setting in which
the score estimate is perfect (εscore = 0) and the data distribution q is Gaussian.

Theorem 17.3.11. Let pT be the output of the SGM algorithm based on the
CLD (§17.2.2) at time T , where the data distribution q is the standard Gaussian
γd, and the score estimate is exact (εscore = 0). Suppose that the step size h
satisfies h ≤ 1

10
. Then, for the path measures P T and Q←T of the algorithm and

the continuous-time process (17.11) respectively, it holds that

KL(Q←T ∥ P T ) ≥ dhT .

Theorem 17.3.11 shows that in order to make the KL divergence between the
path measures small, we must take h ≲ 1/d, which leads to an iteration complexity
that scales linearly in the dimension d. Theorem 17.3.11 is not a proof that SGMs
based on the CLD cannot achieve better than linear dimension dependence, as
it is possible that the output pT of the SGM is close to q ⊗ γd even if the path
measures are not close, but it rules out the possibility of obtaining a better
dimension dependence via our Girsanov-based proof technique. We believe that it
provides compelling evidence for our conjecture, i.e., that under our assumptions,
the CLD does not improve the complexity of SGMs over DDPM.

We remark that in this section, we have only considered the error arising from
discretization of the SDE. It is possible that the score function for the SGM
with the CLD is easier to estimate than the score function for DDPM, providing
a statistical benefit of using the CLD. Indeed, under the manifold hypothesis,
the score ∇ ln qt for DDPM blows up at t = 0, but the score ∇v ln qt for CLD is
well-defined at t = 0, and hence may lead to improvements over DDPM. We do
not investigate this question here and leave it as future work.

We omit the proofs of the results for CLD from this thesis and we refer to the
paper [Che+23a] for the details and proofs.
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■ 17.4 Technical overview

We now give a technical overview for the proof for DDPM (Theorem 17.3.4). The
proof for CLD (Theorem 17.3.10) follows along similar lines.

Recall that we must deal with three sources of error: (1) the estimation of the
score function; (2) the discretization of the SDE; and (3) the initialization of the
reverse process at γd rather than at qT .

First, we ignore the errors (1) and (2), and focus on the error (3). Hence, we
consider the continuous-time reverse SDE (17.5), initialized from either γd or from
qT . Let the law of the two processes at time t be denoted p̃t and qT−t respectively;
how fast do these laws diverge away from each other?

The two main ways to study Markov diffusions is via the 2-Wasserstein distance
W2, or via information divergences such as the KL divergence or the χ2 divergence.
In order for the reverse process to be contractive in the W2 distance, one typically
needs some form of log-concavity assumption for the data distribution q. For
example, if ∇ ln q(x) = −x/σ2 (i.e., q ∼ normal(0, σ2Id)), then for the reverse
process (17.5) we have

dX̄←T = {X̄←T + 2∇ ln q(X̄←T )} dt+
√

2 dBt =
(
1− 2

σ2

)
X̄←T dt+

√
2 dBt .

For σ2 ≫ 1, the coefficient in front of X̄←T is positive; this shows that for times
near T , the reverse process is actually expansive, rather than contractive. This
poses an obstacle for an analysis in W2. Although it is possible to perform a W2

analysis using a weaker condition, such as a dissipativity condition, it typically
leads to exponential dependence on the problem parameters (e.g., [De 22]).

On the other hand, the situation is different for an information divergence d.
By the data-processing inequality, we always have

d(qT−t, p̃t) ≤ d(qT , p̃0) = d(qT , γ
d) .

This motivates studying the processes via information divergences. We remark
that the convergence of reversed SDEs has been studied in the context of log-
concave sampling in §4 for the proximal sampler algorithm [LST21c], providing
the intuition behind these observations.

Next, we consider the score estimation error (1) and the discretization error
(2). In order to perform a discretization analysis in KL or χ2, there are two salient
proof techniques. The first is the interpolation method of [VW19] (originally for
KL divergence, but extended to χ2 divergence in §3), which is the method used
in [LLT22]. The interpolation method writes down a differential inequality for
∂td(qT−t, pt), which is used to bound d(qT−(k+1)h, p(k+1)h) in terms of d(qT−kh, pkh)
and an additional error term. Unfortunately, the analysis of [LLT22] required
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taking d to be the χ2 divergence, for which the interpolation method is quite
delicate. In particular, the error term is bounded using a log-Sobolev assumption
on q, see §3 for further discussion. Instead, we pursue the second approach, which
is to apply Girsanov’s theorem from stochastic calculus and to instead bound the
divergence between measures on path space; this turns out to be doable using
standard techniques. This is because, as noted in §3, the Girsanov approach is
more flexible as it requires less stringent assumptions.2

To elaborate, the main difficulty of using the interpolation method with an
L2-accurate score estimate (Assumption 17.3.3) is that the score estimation error
is controlled by assumption under the law of the true process (17.5), but the
interpolation analysis requires a control of the score estimation error under the
law of the algorithm (17.9). Consequently, the work of [LLT22] required an
involved change of measure argument in order to relate the errors under the two
processes. In contrast, the Girsanov approach allows us to directly work with the
score estimation error under the true process (17.5).

Notation

Stochastic processes and their laws.

• The data distribution is q = q0.

• The forward process (17.1) is denoted (X̄t)t∈[0,T ], and X̄t ∼ qt.

• The reverse process (17.5) is denoted (X̄←t )t∈[0,T ], where X̄←t := X̄T−t ∼ qT−t.

• The SGM algorithm (17.9) is denoted (X←t )t∈[0,T ], and X←t ∼ pt. Recall that

we initialize at p0 = γd, the standard Gaussian measure.

• The process (X←,∞,qTt )t∈[0,T ] is the same as (X←t )t∈[0,T ], except that we initial-

ize this process at qT rather than at γd. We write X←,∞,qTt ∼ p∞,qTt .

Conventions for Girsanov’s theorem. When we apply Girsanov’s theorem, it is conve-
nient to instead think about a single stochastic process, which for ease of notation
we denote simply via (Xt)t∈[0,T ], and we consider different measures over the path

space C([0, T ];Rd).
The three measures we consider over path space are:

• Q←T , under which (Xt)t∈[0,T ] has the law of the reverse process (17.5);

2After the first draft of this work was made available online, we became aware of the concurrent
and independent work of [Liu+22] which also uses an approach based on Girsanov’s theorem.
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• P∞,qTT , under which (Xt)t∈[0,T ] has the law of the SGM algorithm initialized

at qT (corresponding to the process (X←,∞,qTt )t∈[0,T ] defined above).

We also use the following notion from stochastic calculus [Le 16, Definition 4.6]:

• A local martingale (Lt)t∈[0,T ] is a stochastic process s.t. there exists a se-
quence of non-decreasing stopping times Tn → T s.t. Ln = (Lt∧Tn)t∈[0,T ] is a
martingale.

Other parameters. We recall that T > 0 denotes the total time for which we run
the forward process; h > 0 is the step size of the discretization; L ≥ 1 is the
Lipschitz constant of the score function; m2

2 := Eq[∥·∥2] is the second moment
under the data distribution; and εscore is the L2 score estimation error.

■ 17.5 Proofs

■ 17.5.1 Preliminaries on Girsanov’s theorem and a first attempt at apply-

ing Girsanov’s theorem

First, we recall a consequence of Girsanov’s theorem that can be obtained by
combining Pages 136–139, Theorem 5.22, and Theorem 4.13 of [Le 16].

Theorem 17.5.1. For t ∈ [0, T ], let Lt =
∫ t
0
bs dBs where B is a Q-Brownian

motion. Assume EQ
∫ T
0
∥bs∥2 ds < ∞. Then, L is a Q-martingale in L2(Q).

Moreover, if

EQ E(L)T = 1 , where E(L)t := exp
(∫ t

0

bs dBs −
1

2

∫ t

0

∥bs∥2 ds
)
, (17.12)

then E(L) is also a Q-martingale and the process

t 7→ Bt −
∫ t

0

bs ds (17.13)

is a Brownian motion under P := E(L)T Q, the probability distribution with density
E(L)T w.r.t. Q.

If the assumptions of Girsanov’s theorem are satisfied (i.e., the condition
in (17.12)), we can apply Girsanov’s theorem to Q = Q←T and

bt =
√

2 (sT−kh(Xkh)−∇ ln qT−t(Xt)) , (17.14)
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where t ∈ [kh, (k + 1)h]. This tells us that under P = E(L)T Q
←
T , there exists a

Brownian motion (βt)t∈[0,T ] s.t.

dBt =
√

2 (sT−kh(Xkh)−∇ ln qT−t(Xt)) dt+ dβt . (17.15)

Recall that under Q←T we have a.s.

dXt = {Xt + 2∇ ln qT−t(Xt)} dt+
√

2 dBt , X0 ∼ qT . (17.16)

The equation above still holds P -a.s. since P ≪ Q←T (even if B is no longer a
P -Brownian motion). Plugging (17.15) into (17.16) we have P -a.s.,3

dXt = {Xt + 2 sT−kh(Xkh)} dt+
√

2 dβt , X0 ∼ qT .

In other words, under P , the distribution of X is the SGM algorithm started at
qT , i.e., P = P∞,qTT = E(L)T Q

←
T . Therefore,

KL(Q←T ∥ P∞,qTT ) = EQ←T ln
dQ←T

dP∞,qTT

= EQ←T ln E(L)−1T (17.17)

=
N−1∑
k=0

EQ←T

∫ (k+1)h

kh

∥sT−kh(Xkh)−∇ ln qT−t(Xt)∥2 dt , (17.18)

where we used EQ←T Lt = 0 because L is a martingale.
The equality (17.17) allows us to bound the discrepancy between the SGM

algorithm and the reverse process.

■ 17.5.2 Checking the assumptions of Girsanov’s theorem and the Girsanov

discretization argument

In most applications of Girsanov’s theorem in sampling, a sufficient condition
for (17.12) to hold, known as Novikov’s condition, is satisfied. Here, Novikov’s
condition writes

EQ←T exp
(N−1∑
k=0

∫ (k+1)h

kh

∥sT−kh(Xkh)−∇ ln qT−t(Xt)∥2 dt
)
<∞ , (17.19)

and if Novikov’s condition holds, we can apply Girsanov’s theorem directly. How-
ever, under Assumptions 17.3.1, 17.3.2, and 17.3.3 alone, Novikov’s condition need

3We still have X0 ∼ qT under P because the marginal at time t = 0 of P is equal to
the marginal at time t = 0 of Q←T . That is a consequence of the fact that E(L) is a (true)
Q←T -martingale.
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not hold. Indeed, in order to check Novikov’s condition, we would want X0 to
have sub-Gaussian tails for instance.

Furthermore, we also could not check that the condition (17.12), which is
weaker than Novikov’s condition, holds. Therefore, in the proof of the next
Theorem, we use a approximation technique to show that

KL(Q←T ∥ P∞,qTT ) = EQ←T ln
dQ←T

dP∞,qTT

≤ EQ←T ln E(L)−1T (17.20)

=
N−1∑
k=0

EQ←T

∫ (k+1)h

kh

∥sT−kh(Xkh)−∇ ln qT−t(Xt)∥2 dt . (17.21)

We then use a discretization argument based on stochastic calculus to further
bound this quantity. The result is the following theorem.

Theorem 17.5.2 (Discretization error for DDPM). Suppose that the Assump-
tions 17.3.1, 17.3.2, and 17.3.3 hold. Let Q←T and P∞,qTT denote the measures
on path space corresponding to the reverse process (17.5) and the SGM algorithm
with L2-accurate score initialized at qT . Assume that L ≥ 1 and h ≲ 1/L. Then,

TV(P∞,qTT , Q←T )2 ≤ KL(Q←T ∥ P∞,qTT ) ≲ (ε2score + L2dh+ L2m2
2h

2)T .

Proof. We start by proving

N−1∑
k=0

EQ←T

∫ (k+1)h

kh

∥sT−kh(Xkh)−∇ ln qT−t(Xt)∥2 dt ≲ (ε2score + L2dh+ L2m2
2h

2)T .

Then, we give the approximation argument to prove the inequality (17.20).
Bound on the discretization error. For t ∈ [kh, (k + 1)h], we decompose

EQ←T [∥sT−kh(Xkh)−∇ ln qT−t(Xt)∥2] (17.22)

≲ EQ←T [∥sT−kh(Xkh)−∇ ln qT−kh(Xkh)∥2] (17.23)

+ EQ←T [∥∇ ln qT−kh(Xkh)−∇ ln qT−t(Xkh)∥2] (17.24)

+ EQ←T [∥∇ ln qT−t(Xkh)−∇ ln qT−t(Xt)∥2] (17.25)

≲ ε2score + EQ←T
[∥∥∥∇ ln

qT−kh
qT−t

(Xkh)
∥∥∥2]

+ L2 EQ←T [∥Xkh −Xt∥2] . (17.26)

We must bound the change in the score function along the forward process.
If S : Rd → Rd is the mapping S(x) := exp(−(t− kh))x, then qT−kh = S#qT−t ∗
normal(0, 1 − exp(−2 (t − kh))). We can then use [LLT22, Lemma C.12] with
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α = exp(t− kh) = 1 +O(h) and σ2 = 1− exp(−2 (t− kh)) = O(h) to obtain∥∥∥∇ ln
qT−kh
qT−t

(Xkh)
∥∥∥2

≲ L2dh+ L2h2 ∥Xkh∥2 + (1 + L2)h2 ∥∇ ln qT−t(Xkh)∥2

(17.27)

≲ L2dh+ L2h2 ∥Xkh∥2 + L2h2 ∥∇ ln qT−t(Xkh)∥2 (17.28)

where the last line uses L ≥ 1.
For the last term,

∥∇ ln qT−t(Xkh)∥2 ≲ ∥∇ ln qT−t(Xt)∥2 + ∥∇ ln qT−t(Xkh)−∇ ln qT−t(Xt)∥2
(17.29)

≲ ∥∇ ln qT−t(Xt)∥2 + L2 ∥Xkh −Xt∥2 , (17.30)

where the second term above is absorbed into the third term of the decomposi-
tion (17.26). Hence,

EQ←T [∥sT−kh(Xkh)−∇ ln qT−t(Xt)∥2]
≲ ε2score + L2dh+ L2h2 EQ←T [∥Xkh∥2]

+ L2h2 EQ←T [∥∇ ln qT−t(Xt)∥2] + L2 EQ←T [∥Xkh −Xt∥2] .

Using the fact that under Q←T , the process (Xt)t∈[0,T ] is the time reversal of the

forward process (X̄t)t∈[0,T ], we can apply the moment bounds in Lemma 17.5.3
and the movement bound in Lemma 17.5.4 to obtain

EQ←T [∥sT−kh(Xkh)−∇ ln qT−t(Xt)∥2]
≲ ε2score + L2dh+ L2h2 (d+ m2

2) + L3dh2 + L2 (m2
2h

2 + dh)

≲ ε2score + L2dh+ L2m2
2h

2 .

Approximation argument. For t ∈ [0, T ], let Lt =
∫ t
0
bs dBs where B is a

Q←T -Brownian motion and we define

bt =
√

2 {sT−kh(Xkh)−∇ ln qT−t(Xt)} , (17.31)

for t ∈ [kh, (k + 1)h]. We proved that EQ←T
∫ T
0
∥bs∥2 ds ≲ (ε2score + L2dh +

L2m2
2h

2)T < ∞. Using [Le 16, Proposition 5.11], (E(L)t)t∈[0,T ] is a local mar-
tingale. Therefore, there exists a non-decreasing sequence of stopping times
Tn ↗ T s.t. (E(L)t∧Tn)

t∈[0,t] is a martingale. Note that E(L)t∧Tn = E(Ln)t where

Ln
t = Lt∧Tn . Since E(Ln) is a martingale, we have

EQ←T E(Ln)T = EQ←T E(Ln)0 = 1 ,



Sec. 17.5. Proofs 525

i.e., EQ←T E(L)Tn = 1.

We apply Girsanov’s theorem to Ln
t =

∫ t
0
bs 1[0,Tn](s) dBs, where B is a Q←T -

Brownian motion. Since EQ←T
∫ T
0
∥bs 1[0,Tn](s)∥2 ds ≤ EQ←T

∫ T
0
∥bs∥2 ds < ∞ (see

the last paragraph) and EQ←T E(Ln)T = 1, we obtain that under P n := E(Ln)T Q
←
T

there exists a Brownian motion βn s.t. for t ∈ [0, T ],

dBt =
√

2 {sT−kh(Xkh)−∇ ln qT−t(Xt)}1[0,Tn](t) dt+ dβnt . (17.32)

Recall that under Q←T we have a.s.

dXt = {Xt + 2∇ ln qT−t(Xt)} dt+
√

2 dBt , X0 ∼ qT . (17.33)

The equation above still holds P n-a.s. since P n ≪ Q←T . Combining the last two
equations we then obtain P n-a.s.,

dXt = {Xt + 2 sT−kh(Xkh)}1[0,Tn](t) dt

+ {Xt + 2∇ ln qT−t(Xt)}1[Tn,T ](t) dt+
√

2 dβnt ,
(17.34)

and X0 ∼ qT . In other words, P n is the law of the solution of the SDE (17.34).
At this stage we have the bound

KL(Q←T ∥ P n) = EQ←T ln E(L)−1Tn = EQ←T
[
−LTn +

1

2

∫ Tn

0

∥bs∥2 ds
]

= EQ←T
1

2

∫ Tn

0

∥bs∥2 ds ≤ EQ←T
1

2

∫ T

0

∥bs∥2 ds

≲ (ε2score + L2dh+ L2m2
2h

2)T , (17.35)

where we used that EQ←T LTn = 0 because L is a Q←T -martingale and Tn is a
bounded stopping time [Le 16, Corollary 3.23]. Our goal is now to show that we
can obtain the final result by an approximation argument.

We consider a coupling of (P n)n∈N, P
∞,qT
T : a sequence of stochastic processes

(Xn)n∈N over the same probability space, a stochastic process X and a single
Brownian motion W over that space s.t.4

dXn
t = {Xn

t + 2 sT−kh(X
n
kh)}1[0,Tn](t) dt

+ {Xn
t + 2∇ ln qT−t(X

n
t )}1[Tn,T ](t) dt+

√
2 dWt ,

and

dXt = {Xt + 2 sT−kh(X
n
kh)} dt+

√
2 dWt ,

4Such a coupling always exists, see [Le 16, Corollary 8.5].
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with X0 = Xn
0 a.s. and X0 ∼ qT . Note that the distribution of Xn (resp. X) is

P n (resp. P∞,qTT ).
Let ε > 0 and consider the map πε : C([0, T ];Rd)→ C([0, T ];Rd) defined by

πε(ω)(t) := ω(t ∧ T − ε) .

Noting that Xn
t = Xt for every t ∈ [0, Tn] and using Lemma 17.5.5, we have

πε(X
n) → πε(X) a.s., uniformly over [0, T ]. Therefore, πε#P

n → πε#P
∞,qT
T

weakly. Using the lower semicontinuity of the KL divergence and the data-
processing inequality [AGS08, Lemma 9.4.3 and Lemma 9.4.5], we obtain

KL((πε)#Q
←
T ∥ (πε)#P

∞,qT
T ) ≤ lim inf

n→∞
KL((πε)#Q

←
T ∥ (πε)#P

n) (17.36)

≤ lim inf
n→∞

KL(Q←T ∥ P n) (17.37)

≲ (ε2score + L2dh+ L2m2
2h

2)T . (17.38)

Finally, using Lemma 17.5.6, πε(ω)→ ω as ε→ 0, uniformly over [0, T ]. Therefore,
using [AGS08, Corollary 9.4.6], KL((πε)#Q

←
T ∥ (πε)#P

∞,qT
T )→ KL(Q←T ∥P∞,qTT ) as

ε↘ 0. Therefore,

KL(Q←T ∥ P∞,qTT ) ≲ (ε2score + L2dh+ L2m2
2h

2)T . (17.39)

We conclude with Pinsker’s inequality (TV2 ≤ KL).

■ 17.5.3 Proof of Theorem 17.3.4

We can now conclude our main result.

Proof of Theorem 17.3.4. We recall the notation from §17.4. By the data process-
ing inequality,

TV(pT , q) ≤ TV(PT , P
∞,qT
T ) + TV(P∞,qTT , Q←T ) ≤ TV(qT , γ

d) + TV(P∞,qTT , Q←T ) .

Using the convergence of the OU process in KL divergence [see, e.g., BGL14,
Theorem 5.2.1] and applying Theorem 17.5.2 for the second term,

TV(pT , q) ≲
√

KL(q ∥ γd) exp(−T ) + (εscore + L
√
dh+ Lm2h)

√
T ,

which proves the result.
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■ 17.5.4 Auxiliary lemmas

In this section, we prove some auxiliary lemmas which are used in the proof of
Theorem 17.3.4.

Lemma 17.5.3 (Moment bounds for DDPM). Suppose that Assumptions 17.3.1
and 17.3.2 hold. Let (X̄t)t∈[0,T ] denote the forward process (17.1).

1. (moment bound) For all t ≥ 0,

E[∥X̄t∥2] ≤ d ∨m2
2 .

2. (score function bound) For all t ≥ 0,

E[∥∇ ln qt(X̄t)∥2] ≤ Ld .

Proof. 1. Along the OU process, we have X̄t
d
= exp(−t) X̄0 +

√
1− exp(−2t) ξ,

where ξ ∼ normal(0, Id) is independent of X̄0. Hence,

E[∥X̄t∥2] = exp(−2t)E[∥X∥2] + {1− exp(−2t)} d ≤ d ∨m2
2 .

2. This follows from the L-smoothness of ln qt [see, e.g., VW19, Lemma 9]. We
give a short proof for the sake of completeness.

If Ltf := ∆f − ⟨∇Ut,∇f⟩ is the generator associated with qt ∝ exp(−Ut),

0 = Eqt LtUt = Eqt ∆Ut − Eqt [∥∇Ut∥2] ≤ Ld− Eqt [∥∇Ut∥2] .

Lemma 17.5.4 (Movement bound for DDPM). Suppose that Assumption 17.3.2
holds. Let (X̄t)t∈[0,T ] denote the forward process (17.1). For 0 ≤ s < t with
δ := t− s, if δ ≤ 1, then

E[∥X̄t − X̄s∥2] ≲ δ2m2
2 + δd .

Proof. We can write

E[∥X̄t − X̄s∥2] = E
[∥∥∥−∫ t

s

X̄r dr +
√

2 (Bt −Bs)
∥∥∥2]

≲ δ

∫ t

s

E[∥X̄r∥2] dr + δd ≲ δ2 (d+ m2
2) + δd

≲ δ2m2
2 + δd ,

where we used Lemma 17.5.3.
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We omit the proofs of the two next lemmas as they are straightforward.

Lemma 17.5.5. Consider fn, f : [0, T ] → Rd s.t. there exists an increasing
sequence (Tn)n∈N ⊆ [0, T ] satisfying the conditions

• Tn → T as n→∞,

• fn(t) = f(t) for every t ≤ Tn.

Then, for every ε > 0, fn → f uniformly over [0, T − ε]. In particular, it holds
that fn(· ∧ T − ε)→ f(· ∧ T − ε) uniformly over [0, T ].

Lemma 17.5.6. Consider f : [0, T ] → Rd continuous, and fε : [0, T ] → Rd s.t.
fε(t) = f(t ∧ (T − ε)) for ε > 0. Then fε → f uniformly over [0, T ] as ε→ 0.

■ 17.5.5 Proof of Corollary 17.3.7

Proof of Corollary 17.3.7. ForR0 > 0, let ΠR0 denote the projection onto B(0, R0).
We want to prove that W2((ΠR0)#pT−t, q) ≤ ε. We use the decomposition

W2((ΠR0)#pT−t, q) ≤ W2((ΠR0)#pT−t, (ΠR0)#qt) +W2((ΠR0)#qt, q) .

For the first term, since (ΠR0)#pT−t and (ΠR0)#qt both have support contained
in B(0, R0), we can upper bound the Wasserstein distance by the total variation
distance. Namely, [Rol22, Lemma 9] implies that

W2((ΠR0)#pT−t, (ΠR0)#qt) ≲ R0

√
TV((ΠR0)#pT−t, (ΠR0)#qt) +R0 exp(−R0) .

By the data-processing inequality,

TV((ΠR0)#pT−t, (ΠR0)#qt) ≤ TV(pT−t, qt) ≤ εTV ,

where εTV is from Corollary 17.3.5, yielding

W2((ΠR0)#pT−t, (ΠR0)#qt) ≲ R0

√
εTV +R0 exp(−R0) .

Next, we take R0 ≥ R so that (ΠR0)#q = q. Since ΠR0 is 1-Lipschitz, we have

W2((ΠR0)#qt, q) = W2((ΠR0)#qt, (ΠR0)#q) ≤ W2(qt, q) ≤ εW2 ,

where εW2 is from Corollary 17.3.5. Combining these bounds,

W2((ΠR0)#pT−t, q) ≲ R0

√
εTV +R0 exp(−R0) + εW2 .

We now take εW2 = ε/3, R0 = Θ̃(R), and εTV = Θ̃(ε2/R2) to obtain the desired
result. The iteration complexity follows from Corollary 17.3.5.
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■ 17.5.6 Regularization

Lemma 17.5.7. Suppose that supp q ⊆ B(0, R) where R ≥ 1, and let qt denote
the law of the OU process at time t, started at q. Let ε > 0 be such that ε≪

√
d

and set t ≍ ε2/(
√
d (R ∨

√
d)). Then,

1. W2(qt, q) ≤ ε.

2. qt satisfies

KL(qt ∥ γd) ≲
√
d (R ∨

√
d)

3

ε2
.

3. For every t′ ≥ t, qt′ satisfies Assumption 17.3.1 with

L ≲
dR2 (R ∨

√
d)

2

ε4
.

Proof. 1. For the OU process (17.1), we can write

X̄t := exp(−t) X̄0 +
√

1− exp(−2t)Z ,

where Z ∼ normal(0, Id) is independent of X̄0. Hence, for t ≲ 1,

W 2
2 (q, qt) ≤ E

[∥∥(1− exp(−t)
)
X̄0 +

√
1− exp(−2t)Z

∥∥2]
=

(
1− exp(−t)

)2 E[∥X̄0∥2] +
(
1− exp(−2t)

)
d ≲ R2t2 + dt .

We now take t ≲ min{ε/R, ε2/d} to ensure that W 2
2 (q, qt) ≤ ε2. Since

ε≪
√
d, it suffices to take t ≍ ε2/(

√
d (R ∨

√
d)).

2. For this, we use the short-time regularization result in [OV01, Corollary 2],
which implies that

KL(qt ∥ γd) ≤
W 2

2 (q, γd)

4t
≲
W 2

2 (q, δ0) +W 2
2 (γd, δ0)

t
≲

√
d (R ∨

√
d)

3

ε2
.

3. Using [MS22, Lemma 4], along the OU process,

1

1− exp(−2t)
Id −

exp(−2t)R2

(1− exp(−2t))2
Id ≼ −∇2 ln qt(x) ≼

1

1− exp(−2t)
Id .

(17.40)
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With our choice of t, it implies

∥∇2 ln qt′∥op ≲
1

1− exp(−2t′)
∨ exp(−2t′)R2

(1− exp(−2t′))2
≲

1

t
∨ R

2

t2

≲
dR2 (R ∨

√
d)

2

ε4
.

■ 17.6 Conclusion

In this work, we provided the first convergence guarantees for SGMs which hold
under realistic assumptions (namely, L2-accurate score estimation and arbitrarily
non-log-concave data distributions) and which scale polynomially in the problem
parameters. Our results take a step towards explaining the remarkable empirical
success of SGMs, at least under the assumption that the score function is learned
with small L2 error.

The main limitation of this work is that we did not address the question of
when the score function can be learned well. In general, studying the non-convex
training dynamics of learning the score function via neural networks is challenging,
but we believe that the resolution of this problem, even for simple learning tasks,
would shed considerable light on SGMs. Together with the results in this paper,
it would yield the first end-to-end guarantees for SGMs.

In another direction, and in light of the interpretation of our result as a
reduction of the task of sampling to the task of score function estimation, we ask
whether there are situations of interest in which it is easier to learn the score
function (not necessarily via a neural network) than it is to (directly) sample.
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tween isoperimetric and Sobolev-type inequalities”. In: Mem. Amer.
Math. Soc. 129.616 (1997), pp. viii+111.

[Bha07] Rajendra Bhatia. Positive definite matrices. Princeton Series in Ap-
plied Mathematics. Princeton University Press, Princeton, NJ, 2007,
pp. x+254.

[BI13] Dario A. Bini and Bruno Iannazzo. “Computing the Karcher mean
of symmetric positive definite matrices”. In: Linear Algebra Appl.
438.4 (2013), pp. 1700–1710.
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[Bou+05] Stéphane Boucheron, Olivier Bousquet, Gábor Lugosi, and Pascal
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[Bub15] Sébastien Bubeck. “Convex optimization: algorithms and complex-
ity”. In: Foundations and Trends® in Machine Learning 8.3-4 (2015),
pp. 231–357.

[Bur69] Donald Bures. “An extension of Kakutani’s theorem on infinite prod-
uct measures to the tensor product of semifinite w∗-algebras”. In:
Trans. Amer. Math. Soc. 135 (1969), pp. 199–212.

[Bur73] Donald L. Burkholder. “Distribution function inequalities for mar-
tingales”. In: Ann. Probability 1 (1973), pp. 19–42.

[BV05] François Bolley and Cédric Villani. “Weighted Csiszár–Kullback–Pin-
sker inequalities and applications to transportation inequalities”. In:
Ann. Fac. Sci. Toulouse Math. (6) 14.3 (2005), pp. 331–352.

[BZ99] Lorenzo Bertini and Bogus law Zegarlinski. “Coercive inequalities for
Gibbs measures”. In: J. Funct. Anal. 162.2 (1999), pp. 257–286.

[CAD21] Samuel Cohen, Michael Arbel, and Marc P. Deisenroth. “Estimat-
ing barycenters of measures in high dimensions”. In: arXiv preprint
2007.07105 (2021).

[Caf00] Luis A. Caffarelli. “Monotonicity properties of optimal transporta-
tion and the FKG and related inequalities”. In: Comm. Math. Phys.
214.3 (2000), pp. 547–563.



BIBLIOGRAPHY 541
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[Gui+09] Arnaud Guillin, Christian Léonard, Liming Wu, and Nian Yao. “Tra-
nsportation-information inequalities for Markov processes”. In: Prob-
ab. Theory Related Fields 144.3-4 (2009), pp. 669–695.

[Gum+21] Sergey Guminov, Pavel Dvurechensky, Nazarii Tupitsa, and Alexan-
der Gasnikov. “On a combination of alternating minimization and
Nesterov’s momentum”. In: Proceedings of the 38th International
Conference on Machine Learning. Ed. by Marina Meila and Tong
Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR,
July 2021, pp. 3886–3898.

[GV22] Khashayar Gatmiry and Santosh S. Vempala. “Convergence of the
Riemannian Langevin algorithm”. In: arXiv preprint 2204.10818
(2022).



BIBLIOGRAPHY 557

[GVV22] Aparna Gupte, Neekon Vafa, and Vinod Vaikuntanathan. “Contin-
uous LWE is as hard as LWE & applications to learning Gaussian
mixtures”. In: 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science—FOCS 2022. IEEE Computer Soc., Los Alami-
tos, CA, [2022] ©2022, pp. 1162–1173.

[GW01] Fu-Zhou Gong and Feng-Yu Wang. “Heat kernel estimates with ap-
plication to compactness of manifolds”. In: Q. J. Math. 52.2 (2001),
pp. 171–180.

[GWS21] Suriya Gunasekar, Blake Woodworth, and Nathan Srebro. “Mirror-
less mirror descent: a natural derivation of mirror descent”. In: Pro-
ceedings of the 24th International Conference on Artificial Intelli-
gence and Statistics. Ed. by Arindam Banerjee and Kenji Fukumizu.
Vol. 130. Proceedings of Machine Learning Research. PMLR, Apr.
2021, pp. 2305–2313.

[Haa+21] Isabel Haasler, Axel Ringh, Yongxin Chen, and Johan Karlsson.
“Multimarginal optimal transport with a tree-structured cost and
the Schrödinger bridge problem”. In: SIAM J. Control Optim. 59.4
(2021), pp. 2428–2453.

[Han16] Ramon van Handel. Probability in high dimension. 2016.

[Has70] W. Keith Hastings. “Monte Carlo sampling methods using Markov
chains and their applications”. In: Biometrika 57.1 (1970), pp. 97–
109.

[HBE20] Ye He, Krishnakumar Balasubramanian, and Murat A. Erdogdu.
“On the ergodicity, bias and asymptotic normality of randomized
midpoint sampling method”. In: Advances in Neural Information
Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020,
pp. 7366–7376.

[HBE22] Ye He, Krishnakumar Balasubramanian, and Murat A. Erdogdu.
“Heavy-tailed sampling via transformed unadjusted Langevin algo-
rithm”. In: arXiv preprint 2201.08349 (2022).

[HGA15] Wen Huang, Kyle A. Gallivan, and Pierre-Antoine Absil. “A Broyden
class of quasi-Newton methods for Riemannian optimization”. In:
SIAM J. Optim. 25.3 (2015), pp. 1660–1685.

[Hil14] Roland Hildebrand. “Canonical barriers on convex cones”. In: Math.
Oper. Res. 39.3 (2014), pp. 841–850.



558 BIBLIOGRAPHY

[Hin18] Oliver Hinder. “Cutting plane methods can be extended into noncon-
vex optimization”. In: Proceedings of the 31st Conference on Learn-
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asymptotic bounds for sampling algorithms without log-concavity”.
In: Ann. Appl. Probab. 30.4 (2020), pp. 1534–1581.

[MN19] Gonzalo Mena and Jonathan Niles-Weed. “Statistical bounds for
entropic optimal transport: sample complexity and the central limit
theorem”. In: Advances in Neural Information Processing Systems.
Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
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ations with an introduction to Gibbs measures. Vol. 162. Graduate
Studies in Mathematics. American Mathematical Society, Providence,
RI, 2015, pp. xiv+318.

[RS18] Julien Roussel and Gabriel Stoltz. “Spectral methods for Langevin
dynamics and associated error estimates”. In: ESAIM. Mathematical
Modelling and Numerical Analysis 52.3 (2018), pp. 1051–1083.
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Ed. by Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet.
Vol. 75. Proceedings of Machine Learning Research. PMLR, July
2018, pp. 2093–3027.

[Wib19] Andre Wibisono. “Proximal Langevin algorithm: rapid convergence
under isoperimetry”. In: arXiv preprint 1911.01469 (2019).

[Wie12] Ami Wiesel. “Geodesic convexity and covariance estimation”. In:
IEEE Trans. Signal Process. 60.12 (2012), pp. 6182–6189.

[WJ08] Martin J. Wainwright and Michael I. Jordan. “Graphical models,
exponential families, and variational inference”. In: Foundations and
Trends® in Machine Learning 1.1-2 (2008), pp. 1–305.

[WL20] Yifei Wang and Wuchen Li. “Information Newton’s flow: second-
order optimization method in probability space”. In: arXiv preprint
2001.04341 (2020).

[WS17] Blake Woodworth and Nathan Srebro. “Lower bound for random-
ized first order convex optimization”. In: arXiv preprint 1709.03594
(2017).

[WS22] Melanie Weber and Suvrit Sra. “Projection-free nonconvex stochastic
optimization on Riemannian manifolds”. In: IMA J. Numer. Anal.
42.4 (2022), pp. 3241–3271.



580 BIBLIOGRAPHY

[WSC22] Keru Wu, Scott Schmidler, and Yuansi Chen. “Minimax mixing
time of the Metropolis-adjusted Langevin algorithm for log-concave
sampling”. In: Journal of Machine Learning Research 23.270 (2022),
pp. 1–63.

[Wu00] Liming Wu. “Uniformly integrable operators and large deviations for
Markov processes”. In: J. Funct. Anal. 172.2 (2000), pp. 301–376.

[WW16] Feng-Yu Wang and Jian Wang. “Functional inequalities for convo-
lution probability measures”. In: Ann. Inst. Henri Poincaré Probab.
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