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Abstract

The primary contribution of this thesis is to advance the theory of complexity
for sampling from a continuous probability density over R%. Some highlights
include: a new analysis of the proximal sampler, taking inspiration from the
proximal point algorithm in optimization; an improved and sharp analysis of the
Metropolis-adjusted Langevin algorithm, yielding new state-of-the-art guarantees
for high-accuracy log-concave sampling; the first lower bounds for the complexity of
log-concave sampling; an analysis of mirror Langevin Monte Carlo for constrained
sampling; and the development of a theory of approximate first-order stationarity
in non-log-concave sampling.

We further illustrate the main tools in this work—diffusions and Wasserstein
gradient flows—through applications to functional inequalities, the entropic bar-
rier, Wasserstein barycenters, variational inference, and diffusion models.
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Chapter 1

Introduction

The primary aim of this thesis is to study the complexity of the task of sampling:
given a target probability density m o« exp(—V) on R?, how expensive is it to
generate random variables whose law is close to 7 in suitable metrics? Since the
dawn of the Markov chain Monte Carlo (MCMC) revolution [GS90], sampling
has been the algorithmic cornerstone of Bayesian inference and scientific comput-
ing [RC04; Liu08; Gel+14]. How do we design fast samplers, and how can we
develop a theory of complexity for this task?

The key to both of these questions lies in the remarkable connections between
sampling and the mature field of optimization. Towards the question of algorithm
design, there is a striking parallel between the gradient flow

Xt — —VV(Xt),

the canonical continuous-time dynamics for obtaining a minimizer of V', and the
Langevin diffusion

dX, = —VV(X,)dt +V2dB,, (1.1)

where (B;),~, is a standard Brownian motion, which converges in law to its
stationary distribution 7 o exp(—V). This suggests a first connection between
the two fields in which sampling can be viewed as the “probabilistic counterpart”
to optimization. Whereas in optimization we seek global minimizers of V', in
sampling we must sample from 7 o exp(—V'), thereby exploring regions in which
V' is small, and perhaps unsurprisingly the dynamics (1.1) for sampling is a noisy
version of the gradient flow for optimization.

There is, however, a more profound link, due to the seminal work of [JKO9S].
In this perspective, if we do not track the noisy evolution of the stochastic process
(Xt),5 but instead focus our attention on the evolution of the marginal law p, =
law(X;), then we obtain dynamics on the space P(R?) of probability measures over
R?. Developing a calculus for understanding dynamics on this space introduces
many new technical difficulties, but the price we pay for the increased level

11



12 CHAPTER 1. INTRODUCTION

of abstraction is richly compensated by a deep and newfound intuition for the
Langevin diffusion. Namely, [JKO98] observed that once the space P(R?) is
equipped with an appropriate geometric structure—the geometry arising from
the theory of optimal transport [Vil03]—the marginal law (1), of the Langevin
diffusion becomes a gradient flow for the Kullback-Leibler divergence KL(- || 7).
Thus, the Langevin diffusion is not merely a noisy variant of a gradient flow, but
is in fact exactly a gradient flow from the right perspective!

The motto of this viewpoint can be succinctly summarized as saying that
“sampling is optimization in the space of measures” [Wib18|. Besides its aesthetic
appeal, it has inspired novel analyses of the Langevin diffusion [DMM19] and
has given rise to a flurry of new samplers inspired by algorithms from convex
optimization; for example, in this thesis we study sampling counterparts of the
proximal point method (§4), Nesterov’s accelerated gradient method (§6), and
mirror descent (§8 and §9).

The second question we asked above was the problem of developing a theory of
complexity for sampling. Here too, we draw inspiration from optimization through
the celebrated oracle model of [NY83]. This model, adapted to the context of
sampling, measures the work exerted by an algorithm in terms of the number of
queries made to a first-order oracle for m. Given a query point € R?, the oracle
returns V(z) — V(0) and VV(x). Note that this query model accommodates
applications such as Bayesian inference in which the normalization constant of 7
is unknown, since the oracle outputs can be simulated without this knowledge.
Within this framework, the complexity of sampling of becomes an information-
theoretic question, although it usually carries practical implications for algorithm
design since for most samplers, the computational complexity and the oracle
complexity are tightly related.

Once we adopt the oracle model, it is now possible to ask rather fine-grained
complexity questions for sampling. One question of particular interest in this
work is the following canonical one. Consider the following class of distributions:
7w o< exp(—V'), where V is a-convex and /3 smooth with 0 < o < 8 < 00, and V' is
minimized at 0. What is the minimal number of queries to the first-order oracle
necessary to output a sample which is e-close to 7 in total variation distance?

Despite the extensive literature on MCMC methods, this flavor of complexity
question which aims at truly understanding the intrinsic and non-asymptotic
difficulty of sampling has only been studied in earnest relatively recently with
early works such as [DT12; Dall7b]. This is the starting point of this thesis. In
short, we use inspiration from optimization to design and analyze new samplers
and make progress towards understanding the fundamental complexity problem.

We give an overview of relevant background in §2. In the rest of this introduc-
tory chapter, we summarize the contributions of the thesis.
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Sampling under log-concavity and isoperimetry

§3: Analysis of Langevin Monte Carlo. We begin by studying the basic Langevin
diffusion (1.1), which once discretized becomes the standard Langevin Monte
Carlo (LMC) algorithm

Xikryn = Xin — hVV(Xi) + V2 (B(ks+1)h — Bren) -

Here, the Brownian motion increment B(;i1), — B ~ normal(0, hl,) is easy to
simulate and hence LMC is easily implemented.

Although LMC has been extensively studied in a non-asymptotic context
since [DT12], still several questions about LMC remained unresolved.

e [s it possible to provide guarantees for LMC that hold in more stringent
performance metrics? In particular, the family of Rényi divergences R, (for
g > 1) is particularly strong as it controls many other common divergences
(§2.2.3). Rényi divergences have recently played an important role in the
application of sampling to differential privacy [GT20], and they are also
crucial for obtaining warm starts for high-accuracy samplers in §6.

e Can we obtain guarantees under weaker assumptions? Although [VW19]
obtained a result under a log-Sobolev inequality (LSI), it was unknown how
obtain a guarantee under a Poincaré inequality (PI). Moreover, most analyses
of LMC assume that VV is Lipschitz, which is too restrictive when moving
to the PI setting.

In this chapter, we address these questions by providing a suite of Rényi divergence
guarantees under various assumptions. We prove the first Rényi guarantees under
an LSI by extending the technique of [VW19]. We also develop an argument
based on Girsanov’s theorem that allows for a Latata—Oleszkiewicz inequality
(LOTI), which interpolates between PI and LSI, as well as Holder continuity of
VV (rather than only Lipschitz continuity). Altogether, our results paint a fuller
understanding of the behavior of LMC in various settings.

Besides the results themselves, some of the techniques developed in this chap-
ter are reused later. Namely, we find Lemma 3.6.3 to be particularly useful,
and the Girsanov argument is extended to the underdamped Langevin diffusion
in [Zha+23] and §6.

§4: Analysis of the proximal sampler. The results for LMC, however, suffer from
some notable disadvantages. First, LMC is biased (for any positive h > 0, the
stationary distribution of LMC is not equal to 7); to control the size of the bias,
we must take h polynomially small in the desired accuracy e, which leads to a
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low-accuracy guarantee, that is, the guarantee scales polynomially in 1/e. Second,
the proofs for LMC are lengthy and tedious, and it is unclear if the guarantees
we obtain are sharp. For instance, our complexity guarantee for LMC under a PI
reads (with some simplifications) as O(k?d®/e?), where & is an appropriate notion
of “condition number” for this setting.

Many of these issues are resolved by instead considering the prozimal sam-
pler algorithm of [TP18; LST21c]. In this algorithm, we augment the target
distribution 7 to a joint distribution 7 over R? x R? via

1 2
() oc exp(=V (@) = o lle — )
We then apply Gibbs sampling to 7, yielding the iterates
Yy, ~ 77X (0] X3) = normal( Xy, ki),

1
X e (- ¥2) sc exp(=V() = g - = Vill?).

This algorithm can be understood as a proximal discretization of the Wasserstein
gradient flow of the KL divergence. Just as the proximal point method is well-
known within optimization to be a more stable discretization of the gradient flow,
we shall see that the proximal sampler affords substantial benefits over LMC. For
example, since the proximal sampler is an asymptotically unbiased Markov chain,
we generally it to be geometrically ergodic, leading to a high-accuracy sampler
whose complexity scales as polylog(1/e) w.r.t. the target accuracy e.

In the second step, we must sample from the distribution 7%, known as the
restricted Gaussian oracle (RGO). This introduces a trade-off for the step size
h > 0: if h is large, then the proximal sampler converges faster; however, if h is
small, then the RGO is easier to implement (because it more closely resembles a
Gaussian distribution). We explore different extremes of this trade-off:

e In §4, we consider an extremely small step size h = @(5%[), where 3 is the
Lipschitz constant of VV'| for which the RGO is extremely easy to implement
via rejection sampling.’

e In §6, we consider a large step size h = @(%), for which implementation of
the RGO is non-trivial and requires the use of an auxiliary sampler.

e In §17, diffusion models can morally be considered instantiations of the
proximal sampler with an extremely large step size, for which the proximal

IThe later work of [FYC23] shows that with approzimate rejection sampling, one can take a
much larger step size of h = @(ﬁ).
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sampler converges in one iteration but the “RGQO” is implemented with the
use of deep learning.

Previously, [LST21c] established convergence guarantees for the proximal sam-
pler under strong log-concavity. In §4, we introduce a new interpretation of the
two steps of the proximal sampler as running a Brownian motion forwards and
backwards in time respectively. Through this interpretation, we are able to prove
new convergence results for the proximal sampler under weaker assumptions: un-
der weak log-concavity, and under functional inequalities such as PI, LSI, or more
generally, LOI. More broadly, the high-level message of our analysis is that, simi-
larly to the relationship between the proximal point method and the gradient flow
in optimization, the proximal sampler inherits any favorable convergence rates
enjoyed by the continuous-time Langevin diffusion.

Already with the naive rejection sampling implementation of the RGO, it
yields surprising improvements over LMC; for instance, in the PI setting, the
complexity guarantee for the proximal sampler reads O(kd?log(1/e)) which is
a major improvement w.r.t. every problem parameter. For strongly log-concave
targets, the complexity is O(rdlog(1/¢)).

In the step size regime h = @(é) used for these results, the proximal sampler
is indeed directly comparable to LMC (which also uses step size scaling as 1/d
w.r.t. the dimension d), and its interpretation as a proximal discretization is
satisfying. However, even beyond this regime, the proximal sampler is a strikingly
powerful algorithmic framework for designing faster samplers. Taking h = O( %),
implementation of the RGO amounts to sampling from a certain log-concave
distribution with O(1) condition number? to high accuracy (the latter requirement
arises to prevent accumulation of errors from inexact implementation of the RGO).
Crucially, this is true assuming only that V' is S-smooth. The results of §4 therefore
provide a general reduction of the task of sampling under various assumptions (e.g.,
PI and LSI) to the task of high-accuracy well-conditioned log-concave sampling,
which will be profitably exploited in §6.

§5: Analysis of MALA from a warm start. As discussed above, through the proximal
sampler reduction, the problem of high-accuracy log-concave sampling takes on
special importance, and the next two chapters are dedicated to this problem.

A standard method for obtaining a high-accuracy sampler is to start with
an proposal kernel () and to accept or reject proposed moves according to a
Metropolis—Hastings filter [Met+53; Has70]. When we apply this recipe with the
proposal kernel taken to be one step of LMC, we arrive at the Metropolis-adjusted
Langevin algorithm (MALA) [Bes+95], which remains quite popular in practice:

2The condition number of a distribution 7 oc exp(—V) is the ratio between the smoothness
and strong convexity parameters of V.
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1. Propose Y1 ~ Q(Xk, ) = normal(X, — h VV(Xy), 2h ;).

T(Yitr1) Q(Vat1,Xk) .

2. Accept the proposal (i.e., set Xy = Yy, 1) with prob. 1 A oY)

otherwise, set Xy11 = X.

The non-asymptotic analysis of MALA was carried out in [Dwi+19; Che+20a;
LST20], yielding a complexity of O(kd polylog(1/¢)) in the well-conditioned log-
concave setting.® Suppressing the dependence on & (which is always polylog(1/e)
for a high-accuracy sampler, by definition of “high accuracy”), the complexity of
5(/£d) has also constituted a barrier for other high-accuracy samplers, such as the
Metropolized random walk (MRW) and Metropolized Hamiltonian Monte Carlo
(MHMC) [Che+20a]. In this chapter, we break this barrier for the first time by
improving the complexity of MALA to O(kv/d) (in the regime of small %), under
the additional assumption of a warm start: an initialization for the algorithm
with O(1) Rényi divergence from the target =.

To achieve this result, we introduce a new analysis technique for Metropolis-
adjusted chains based on a projection characterization of the Metropolis—Hastings
filter [BDO1], which reduces the computation of the acceptance probability to
a Girsanov discretization argument similarly to the one carried out in §3. We
complement our results with a lower bound (later refined in [WSC22]) showing
that our complexity bound under a warm start is tight.

The main drawback of this result is the need for a warm start. As shown
in [LST21al, this issue is fundamental rather than merely technical because the
complexity of MALA is @(/{d) without this warm start. Hence, in the next chapter,
we focus on the question of algorithmically obtaining a warm start for MALA.

§6: Algorithmic warm starts for MALA. A natural approach to obtaining the warm
start is to use a low-accuracy sampler. For instance, we consider the underdamped
Langevin diffusion, which is thought to be the sampling analogue of Nesterov’s
accelerated gradient flow (although the acceleration phenomenon x — +/k has not
yet been established for log-concave sampling):

dXt - Pt dt 5
dP, = —-VV(X;)dt —yP,dt + \/2ydB;.
The use of this diffusion is well-motivated: it was shown in [DR20] that once

discretized, the underdamped Langevin Monte Carlo (ULMC) algorithm enjoys
a complexity guarantee of O(k*2d'/?/e), in the Wasserstein metric. For the

3Note that the proximal sampler with rejection sampling implementation of the RGO already
matches this guarantee.
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purposes of a warm start, as we discuss in §6 it is critical to obtain a guarantee
in the stronger Rény: divergence. Nevertheless, this result provides hope that if
the convergence guarantee of ULMC can be “upgraded” to hold in Rényi, then
the overall complexity of MALA with a warm start procured via ULMC would be
O(K*2d"? + kd"/? polylog(1/¢))

This distinction between Wasserstein and Rényi may at first appear innocuous,
but is in fact deeper than it seems. Arguments in the Wasserstein metric are are
considerably simplified through the use of coupling methods, and once we move to
Rényi, we quickly run into long-standing challenges in the analysis of hypocoercive
partial differential equations [Vil09a]. Here, our main innovation is the extension
and judicious use of the shifted divergence method, a technique which originated
in the literature on differential privacy [Fel+18] and recently applied to sampling
in [AT22b]. Together with a suitable adaptation of the Girsanov argument of §3,
we establish the desired Rényi divergence guarantees for ULMC.

Hence, ULMC provides a warm start for MALA, and together it yields a faster
high-accuracy log-concave sampler than was known before. When we further
feed this into the proximal sampler reduction, it sharpens the dependence on
#, leading to the current state-of-the-art complexity of O(kv/dpolylog(1/e)) for
high-accuracy log-concave sampling.* As discussed above, the proximal sampler
reduction also furnishes state-of-the-art results under more general assumptions,
such as for targets satisfying a PI or LSI.

§7: Lower bound in one dimension. Thus far, we have focused on improved algo-
rithmic guarantees for sampling, which provide upper bounds on the complexity
of this task. As put forth in [NY83], however, a true understanding of this com-
plexity also requires matching lower bounds which chart fundamental limitations
shared by all potential algorithms. The problem of establishing such sampling
lower bounds is extremely nascent, and we in fact found no prior work which
directly address this question for log-concave sampling (although there have been
several related approaches, see §7 for a discussion).

In this chapter, we establish the first lower bound for log-concave sampling.
Our main result shows that the query complexity of sampling from densities
m o exp(—V'), where V : R — R is a univariate potential minimized at 0 and
satisfying 1 < V" < gk, is O(loglogk). Despite being restricted to univariate
distributions, and therefore falling short of capturing the dimension dependence of
sampling which is of central interest, our work provides important insights towards
further progress on the lower bound problem. In particular, our lower bound
construction demonstrates the effectiveness of information-theoretic techniques

4The same complexity was arrived at concurrently and independently in [FYC23] via an
approximate rejection sampling implementation of the RGO.
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for this question. The upper bound is achieved via a tailored rejection sampling
algorithm and, similarly to Nesterov’s accelerated gradient method, was only
found due to the presence of the lower bound. It cannot be achieved by existing
MCMC samplers and serves as a reminder that the optimality of our existing
algorithms remains ever in question without a theory of lower bounds.

In subsequent work [Che+23b], we make further progress by settling the com-
plexity of log-concave sampling in any fixed dimension, and for the subclass of
Gaussian distributions, although we omit these results from the thesis.

Constrained sampling and Brascamp-Lieb

In this next part of the thesis, we study mirror Langevin Monte Carlo (MLMC),
which is the sampling analogue of the mirror descent algorithm for optimization,
and which can be used for sampling from distributions with compact support (i.e.,
constrained sampling), as well as poorly conditioned distributions.

§8: Continuous-time analysis of the mirror Langevin diffusion. We begin with a study
of the mirror Langevin diffusion in continuous time. The mirror Langevin diffusion
is determined by the potential V' of the target distribution 7 o< exp(—V), as well
as the choice of a mirror map ¢ : R? — R U {oo}, which is a convex function that
determines the geometry of the algorithm. The diffusion is the solution (X;),., to

Y, =Vo(X,), dY,=-VV(X)dt+vV2[Vie(X)]"*dB,.  (1.2)

Our main observation is that provided that V' is relatively conver w.r.t. ¢,
that is, V2V = a V2¢ for some o > 0, then a well-known functional inequality,
the Brascamp-Lieb inequality, furnishes a spectral gap for the mirror Langevin
diffusion, and hence the diffusion converges rapidly to its stationary distribution 7.
The notion of relative convexity is well-motivated from the convex optimization
literature [BBT17; LFN18].

In particular, when V is strictly convex and we choose ¢ = V', we arrive at
the sampling analogue of Newton’s method from optimization; we refer to the
specialization of (1.2) to this case as the Newton—Langevin diffusion. Here, the
relative convexity condition trivially holds with a = 1, and consequently, the
Newton—Langevin diffusion converges to stationarity exponentially fast with a
rate that is independent of the conditioning of the problem and the dimension.
This is reminiscent of the affine invariance of Newton’s method.

In this chapter, we perform numerical experiments to demonstrate the potential
applicability of this diffusion, and we leave the question of obtaining discretization
bounds to the next chapter.
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§9: Discretization analysis of mirror Langevin Monte Carlo. In this chapter, we take up
the question deferred from the preceding one: how do we obtain non-asymptotic
convergence guarantees for MLMC, in the spirit of part I of the thesis? This ques-
tion is considerably more difficult than the corresponding one for LMC, stemming
from the use of a non-isotropic and spatially dependent diffusion matrix in (1.2).
Consequently, the prior work [Zha+20] did not obtain a satisfactory discretization
result for the mirror Langevin diffusion, since their discretization bounds do not
vanish even as the step size h of the discretization is taken to zero—hence, it is
not possible to achieve any desired target accuracy e from their results.

In [Zha+20], the authors considered the standard Euler-Maruyama discretiza-
tion of (1.2). In our work, we take a different approach and propose a modified
discretization in which we assume that the “null” mirror diffusion (that is, the
diffusion (1.2) with the potential V set to zero) can be exactly simulated. This
is a stringent assumption that limits the applicability of our results in practice,
but it is natural within the oracle model because the “null” mirror diffusion can
be simulated without making additional queries to the potential V. We can view
the situation as follows: even for mirror descent algorithm in optimization, one
must assume that the mirror map is simple enough so that basic operations (e.g.,
computing V¢ and V¢*) can be carried out. In the sampling setting, we require
another algorithmic primitive involving the mirror map, namely, the simulation
of the “null” mirror diffusion.

Once this assumption is made, however, we show that a clean analysis of MLMC
can be carried out following the proof technique of [DMM19]. Appealingly, our
analysis only requires assumptions on ¢ which are natural from the standpoint
of convex analysis: relative convexity and smoothness of V' w.r.t. ¢, relative
Lipschitzness of the gradient of V' w.r.t. ¢, and self-concordance of ¢. We obtain
discretization guarantees which recover state-of-the-art guarantees for LMC as a
special case, and which avoids the aforementioned issue of carrying a bias term
which does not vanish as h 0.

§10: Interlude: two applications of Brascamp-Lieb inequalities. We pause our discus-
sion of sampling in order to explore two interesting consequences of the Brascamp—
Lieb inequality which drives the convergence of mirror Langevin.

In the first application, we resolve an open question of [BE19] by showing that
the entropic barrier for a convex body, which is known to be a self-concordant
barrier for that body, in fact attains the optimal barrier parameter of d, where d
is the ambient dimension. Self-concordant barriers are the cornerstone of interior-
point methods in structured optimization [NN94], and the question of obtaining
optimal and universal self-concordant barriers has been a long-standing one in
that field. Our proof shows that the optimality of the entropic barrier is a direct
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consequence of a certain dimensional refinement of the Brascamp—Lieb inequality.

Next, we give a new proof of Caffarelli’s celebrated theorem on contractive
properties of the optimal transport map [Caf00]; namely, the optimal transport
map from a [-log-smooth distribution to an a-strongly log-concave distribution
is y//a-Lipschitz. Our proof in fact provides an extension of this result to the
entropic optimal transport map, thereby recovering Caffarelli’s original result as
the entropic regularization tends to zero. Key to our proof is the representation
of the Hessians of the entropic optimal dual potentials as covariance matrices, to
which we can apply a dual pair of covariance inequalities: the Brascamp-Lieb
inequality and the Cramér—Rao inequality.

Optimization and sampling without convexity

§11: Dimension-free log-Sobolev inequalities for mixtures. We next aim to study sam-
pling from non-log-concave distributions, which arise commonly in difficult but
practical inference problems. A standard approach to obtaining sampling guaran-
tees in this setting is to assume that the target distribution satisfies a functional
inequality such as an LSI, as was done in §3, §4, and §6. The LSI is a flexible
assumption which covers a wide range of non-log-concave distributions.

One barrier to pursuing this approach is that, surprisingly, the LSI constant
is not tightly characterized even for the canonical non-log-concave example of a
Gaussian mixture. In particular, it was an open question of [Bar+18] to show that
the convolution of a measure with compact support and a Gaussian satisfies an
LSI with a dimension-free constant (depending only on the radius of the support
and the variance of the Gaussian). In this chapter, we resolve this question by
proving a rather general result on the LSI constant of a mixture. Since the LSI
arises as a property of keen interest throughout high-dimensional probability, we
believe this result will be broadly useful.

§12: Lower bounds for stationary points in optimization. Although the LSI yields
guarantees for non-log-concave sampling, they are (unavoidably) poor because
the LSI constant typically scales exponentially in important problem parameters.
This is a manifestation of the fact that non-log-concave sampling is, in the worst
case, computationally hard. The same situation arises in the analogous field of
non-convex optimization, but in that setting there is a general and well-developed
theory on polynomial complexity bounds for obtaining approximate first-order
stationary points, which is the best goal to which we can strive in such generality.

However, even in the mature setting of optimization in which the optimal
complexity of finding stationary points is well-understood in the high-dimensional
regime [Car+20] (and moreover attained by gradient descent), there remain im-
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portant unresolved questions about the low-dimensional complexity of finding
stationary points. This question is motivated by the question of whether there
exists a cutting-plane method for optimization, the resolution to which would
deepen our understanding of the limitations of non-convex optimization.

In this chapter, we make a contribution in this direction by tightly charac-
terizing this complexity in dimension one, in four settings based on whether we
consider deterministic or randomized algorithms, and whether or not the oracle
returns zeroth-order information. One of the surprises of our findings is that gra-
dient descent is already optimal in dimension one among deterministic algorithms
using strictly first-order information, whereas this was previously only known in
dimension Q(1/?).

§13: Sampling upper bounds in the Fisher information metric. Motivated by the theory
of stationary points in non-convex optimization, in this chapter we develop a the-
ory of approximate first-order stationarity for non-log-concave sampling. Taking
inspiration from the interpretation of sampling as minimizing the KL divergence
functional over the space of probability measures endowed with the Wasserstein
geometry, we take as our definition of an e-stationary a point for which the norm
of the Wasserstein gradient of the KL divergence is at most €. This corresponds
to a relative Fisher information bound Fl(u || 7) < &2.

We provide an interpretation of this criterion in terms of the classical notion of
metastability of diffusions. Moreover, mirroring the corresponding result for non-
convex optimization, we show that under the sole assumption of log-smoothness
of 7, averaged LMC attains an e-stationary point in polynomially many queries.
As an interesting corollary, it implies an O(d?/e?) iteration complexity bound for
averaged LMC to reach ¢ total variation error when 7 satisfies a PI, which can be
compared to the results in §3. Overall, our definition of approximate first-order
stationarity for sampling is the foundation for a novel framework for studying the
complexity of non-log-concave sampling which allows for quantitative comparisons
between algorithms, as done in the next chapter.

§14: Sampling lower bounds in the Fisher information metric. Complementing the
results of the previous chapter, here we obtain lower bounds on the complexity
of reaching e-stationarity in sampling. As discussed above, the theory of lower
bounds for sampling is underdeveloped at present, and we view this as a promising
step in this direction.

Among the results of this chapter, we highlight a surprising reduction of non-
log-concave sampling to finding stationary points in non-convex optimization in a
certain regime for the Fisher information. In this regime, it implies that the upper
bound obtained for averaged LMC in the preceding chapter is optimal, whereas
optimality of LMC was not previously known in any setting.
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Other applications of Wasserstein gradient flows

In the last part of the thesis, we adopt a broader outlook and develop further
applications of Wasserstein gradient flows to Wasserstein barycenters, variational
inference, and diffusion models.

§15: Bures—Wasserstein barycenters. In this chapter, we consider the algorithmic
problem of averaging Gaussian distributions in the optimal transport metric. Since
this is an optimization problem with an intrinsic geometric structure, namely the
Wasserstein geometry over the space of Gaussians (called the Bures—Wasserstein
geometry), it is natural to consider Riemannian gradient algorithms for its solu-
tion. In this chapter, we provide the first non-asymptotic convergence guarantees
for such algorithms. In doing so, we develop machinery for general Wasserstein
barycenters (namely, a stability result in Theorem 15.3.3) as well as for optimiza-
tion more generally over the Bures—Wasserstein space (which will be fruitfully
employed in the next chapter).

§16: Gaussian variational inference. Next, we consider variational Bayes, which has
recently emerged as a tractable alternative to MCMC sampling. In this approach,
rather than using MCMC algorithms to sample from the posterior distribution
m o exp(—V), we instead seek the best variational approximation of 7 from
within a simpler class of distributions, hoping that this variational approximation
is accurate enough to yield information about useful summary statistics of m, such
as its mean and covariance. Here, we focus on Gaussian variational inference, in
which the simpler class of distributions is taken to be the class of Gaussians, and
the objective is to find a Gaussian p minimizing the KL divergence KL(p || 7).

Gaussian variational inference is naturally formulated as an optimization prob-
lem over the Bures—Wasserstein space, and in doing so we identify the Wasserstein
geometry over Gaussians as a canonical one for this problem. This is justified
because, as we show in §16, the objective of Gaussian variational inference is con-
vex as soon as V' is. Consequently, by discretizing the Bures—Wasserstein gradient
flow of KL(- || 7), we arrive at a principled algorithm for variational inference for
which we can establish non-asymptotic convergence guarantees.

We can also extend our methodology to variational inference with the more
flexible class of Gaussian miztures, using the geometry introduced in [CGT19;
DD20], albeit with a corresponding loss of theoretical guarantees. Nevertheless,
our algorithm for mixtures of Gaussians (and a more flexible variant thereof which
allows for time-varying weights via the Wasserstein—Fisher-Rao geometry) yields
encouraging results in experiments, providing a proof of concept in favor of our
geometrically motivated approach.
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§17: Theory for diffusion models. We end this thesis with a theoretical study of
diffusion models or score-based generative models (SGMs), which have achieved
state-of-the-art performance for generative modelling. Similarly to the proximal
sampler studied in §4, diffusion models are based on the idea of running a stochastic
process forwards and backwards in time. However, here we take the forward
process to be the Ornstein—Uhlenbeck (OU) process, which is known to converge
exponentially rapidly to the standard Gaussian measure, and we run the process
for a long time such that the resulting algorithm converges to the distribution of
interest in one iteration. The challenge, then, is to find a tractable implementation
of the backwards diffusion.

Unlike the results of the previous chapters, we depart from the oracle model
and instead assume that we have access to L2-accurate estimates of the score func-
tions (the gradients of the log densities) along the forward process. In practice,
such estimates are obtained by training a deep neural network with a score match-
ing objective [Hyv05] using samples from the target distribution (e.g., a database
of natural images). Under this assumption on score estimation error, the main
result of this chapter is that diffusion models can sample from essentially arbi-
trary distributions (including highly non-log-concave distributions or distributions
supported on lower-dimensional subsets) with polynomial complexity.

The catch, of course, is that it is unclear when the assumption of L2-accurate
score estimation is verified in practice, since this requires an understanding of
the generalization performance of neural network training that is currently out of
reach. Nevertheless, our result provides a principled justification for the use of
diffusion models and points towards the importance of going beyond the oracle
model in order to fully tackle the difficult task of non-log-concave sampling.






Chapter 2

Background

M 2.1 Background on optimal transport

We recall here basic background and notation on optimal transport and refer the

reader to [Vil03; AGS08; Vil09b; Sanl5] for more details.

M 2.1.1 Optimal transport costs

Wasserstein distance. Given a Polish space (E,d), we denote by Py(E) the collec-
tion of all (Borel) probability measures p on E such that Ex.,[d(X,y)’] < oo
for some y € E. For two measures u,v € Pa(E), let C(u,v) be set of couplings
between p and v, that is, the collection of probability measures v on £ x E such
that if (X,Y) ~, then X ~ pand Y ~ v.

Definition 2.1.1. Given two probability measures p, v € Po(F), the 2-Wasserstein
distance between p and v s

W2(u,v) = inf /d(x,y)2 dvy(x,y). (2.1)
yEC(p,v)

We are primarily interested in the case when E = R? equipped with the stan-
dard Euclidean metric. Thus, P,(R?) denotes the space of probability measures on
R? with finite second moment, and Py(P2(RY)) denotes the space of measures P on
Po(RY) such that E,.p W2 (10, ) < oo for some, and therefore any, o € Py(R?).
If 1 € Py(R?) is absolutely continuous w.r.t. the Lebesgue measure, we write
b € Py ac(R?), and we similarly define the space Pa(Paac(RY)).

Transport map. Given a measure p and a map T: RY — R? the pushforward Tl p
is the law of T'(X) when X ~ p.

Theorem 2.1.2 (Fundamental theorem of optimal transport). Suppose that pu €
Paac(RY) and v € Po(R?Y). Then, the unique optimal transport plan v* (i.e., the
minimizer in (2.1)) is induced by a transport map T),_,,, in the sense that if X ~ p,
then (X, T, (X)) ~~* (this is known as Brenier’s theorem).

25
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Moreover, T,,_,, is characterized as the (u-a.e. unique) gradient of a con-
vex proper lower semicontinuous function ¢, : R? — R U {oo} such that
(V%%V)#,u = v. We refer to ¢,-,, as the Kantorovich potential, and it is the
solution to the dual optimal transport problem

1 .12 .12 i
s = sw  {fdEgan [ -eya).
¢ RI—-RU{o0}
convex proper LSC
For a, B > 0, if ¢, is a-strongly convex and -smooth, in the sense that for
all 7,y € RY,

% |y — x||2 < Gusw (V) = Pusw(®) = (Vs (), y — r) < g ly — IHZa (2.2)

then we say that the potential ¢, _,, is (o, 8)-regular.

Metric and topological properties. 'The space Py (Rd) endowed with the 2-Wasserstein
distance is a complete separable metric space, i.e., a Polish space. Convergence in
the Wy metric (Wa(un, 1) — 0) is equivalent to weak convergence and convergence
of the second moment (i.e., [ f du, — [ fdp for all bounded continuous functions
frRT= R, and [[-*dpn — [II]1* dpe).

The 2-Wasserstein metric is useful because it lifts the geometry of R? to the
space P(R?) of probability measures over R?; for example, the mapping z + J,
is an isometric embedding of R? into P,(R?). As we discuss shortly, this geometry
is particularly important because it admits a calculus (known as Otto calculus)
which allows for a geometric study of dynamics on Py(R?).

Extension to other costs. More generally, the theory of optimal transport can be
fruitfully developed in the following abstract setting: F;, E, are Polish spaces
and ¢ : By} X By — RU {oo} is a lower semicontinuous cost function; the optimal
transport cost is inf,ee(uw)  ¢(z,y) dy(z,y). The infimum is always realized by
an optimal transport plan. The corresponding dual problem is to maximize the
objective [ fdp+ [ gdv over pairs (f, g) € L'(u) x L*(v) such that f(z)+g(y) <
c(x,y) (for p@v-a.e. x,y € By X Ey). Strong duality holds (the optimal transport
cost equals the value of the dual problem), and the maximizers in the dual problem
also characterized by the notion of c-concavity which generalizes the usual notion

of convexity. Some key examples include:

e When E;, = By = R? and c(z,y) = ||z — y||P for some p > 1, then the
corresponding optimal transport cost is the p-th power of the p- Wasserstein
distance W, (i, v).
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e When E; = E, and c(z,y) = 1{x # y} then the corresponding optimal
transport cost is the total variation distance ||p — v||tv.

e In §9, we also make use of Bregman coupling costs.

M 2.1.2 Riemannian geometry

In this section we give a brief exposition to Riemannian geometry. We refer readers
to [Car92] for a standard introduction.

An n-dimensional manifold M is a topological space which is Hausdorff, second
countable, and locally homeomorphic to R™. A smooth atlas is a collection of
smooth charts {14}, 4 so that each ¢, : U, C M — R" is a homeomorphism from
an open set U, in M, M = |J,c 4 Ua, and such that for all a, o’ € A, 1), 0 Yt is
smooth wherever defined. For a fixed choice of smooth atlas, we declare a function
f: M — R to be smooth if f o1 ! is for each o € A. The manifold together
with a smooth atlas defines a smooth n-dimensional manifold, and we shall always
suppress mention of the atlas. A map f: M — N between two smooth manifolds
is said to be smooth if its composition with smooth charts is.

Given a smooth n-dimensional manifold M and a point p € M, the tangent
space T, M is the equivalence class of all smooth curves : (—¢,e) — M such that
~v(0) = p, where two such curves 7y, are equivalent if, with respect to every
coordinate chart v defined in a neighborhood of p, (¥ 0 v,)(0) = (v 071)'(0). As
such, T),M is a real n-dimensional vector space for each p € M. The cotangent
space at p € M is then the dual to T,M, which we shall denote T;M. The
tangent bundle is the disjoint union 7'M = |_|pe v IpM, and the cotangent bundle
is similarly the disjoint union T*M = |_|pe a Ly M. The smooth structure on M
induces a smooth structure on T'M and T*M, so each is then a 2n-dimensional
smooth manifold in its own right.

A smooth vector field X: M — T'M is then a smooth map p — X, such that
X, € T,M for all p € M, and similarly for a smooth covector field a: M — T*M.
Higher-order tensors are defined similarly: a (p, ¢)-tensor field is a smooth mapping
T: M — (TM)"® (T*M)?. The differential df : M — T*M of a smooth function
f on M is the smooth covector field such that df,: T,M — R obeys df,(v) =
(f ©v)'(0), where v is any curve with tangent vector v € T,M at v(0) = p.

A Riemannian manifold (M, g) is a smooth n-dimensional manifold M with
a smooth metric tensor g: M — T*M ® T*M; at each point of M, this is a
positive definite bilinear form. The metric tensor therefore defines a smoothly
varying choice of inner product on the tangent spaces of M. In addition to giving
rise to notions of length and geodesics, the metric tensor provides a canonical
isomorphism (the Riesz isomorphism) between the tangent space and cotangent
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space: for a vector v € T, M the covector v, € Ty M is defined by v, (w) = g,(v, w).
For a covector v € T7 M the vector v, € T, M is defined as the unique solution of
a(w) = g,(ve, w) for all w € T,M. A smooth vector field X can be accordingly
transformed into a smooth covector field denoted X?, and a smooth covector field
w can be transformed into a smooth vector field w#. The gradient of a function
f: M — R is defined then as Vf = (df)#: in other words, for all p € M and
v € T,M, dfy(v) = (VS (p), v).

We typically write (-,-), instead of g,(-,-), and we write ||-||, for the norm
induced by the metric tensor, i.e., ||v||, = 1/(v,v),. In this notation, the distance
between points p,q € M is defined as

1
dulp.a) = inf / I/ ()l o
0

Y€l (p,q

where I'(p, q) is the collection of all smooth (or piecewise continuous) curves
v:[0,1] — M such that v(0) = p and (1) = ¢. If M is connected, then
the distance djs is indeed a metric. If we additionally assume that (M, dy) is
complete as a metric space then by the Hopf-Rinow theorem the value of the
above minimization problem is attained by at least one curve v: [0,1] — M such
that ¢ — [|7/(¢)||y is constant, which is said to be a constant-speed geodesic.

For any p € M, there always exists an € > 0 such that for any vector v €
T,M with ||v]|, < €, there is a unique constant-speed geodesic v,: [0,1] — M
obeying 7,(0) = p and v,(0) = v.! On the ball B.(0) with radius ¢ and center
0 € T,M (with respect to the norm ||-||,), we can now define the exponential map
exp,: B-(0) = M by v € V, = 7,(1). The exponential map is a diffeomorphism
onto its image, so we can define the inverse mapping log,: exp,(B:(0)) — T,M. If
M is complete, the domain of definition of any constant-speed geodesic v: [0, 1] —
R can be extended to all of R such that at each time -y is locally a constant-speed
minimizing geodesic; in this case, the exponential mapping can be extended
to a mapping exp,: T,M — M. Note, however, that the mapping log, is not
necessarily defined everywhere.

We lastly recall that for fixed ¢ € M and p which does not belong to the cut
locus of ¢ (the set of points for which there exists more than one constant-speed
minimizing geodesic from p),

[Vd3, (. ))(p) = —2log,(q) - (2.3)

In fact, a stronger result holds: there exists a neighborhood U of p such that for any two
points ¢, ¢’ € U, there is a unique constant-speed minimizing geodesic 7: [0, 1] — U joining ¢ to
q'. Such a neighborhood is called a totally normal neighborhood of p.
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This statement has an intuitive meaning: it says that outside of the cut locus of ¢,
the gradient of the squared distance points in the direction of maximum increase.?

M 2.1.3 Riemannian interpretation of Wasserstein space

In this section, we briefly explain the interpretation of the Wasserstein space of
probability measures as a Riemannian manifold. This interpretation is motivated
by the connection between dissipative evolution equations and the theory of
gradient flows on the Wasserstein space, first discovered in [Ott98]; subsequently,
this link was further developed and strengthened in the seminal works [JKOO9S;
Ott01]. Although the paper [JKO98] chronologically precedes [Ott01], the intuition
of the former is based heavily on the work of Otto in the latter paper, in which he
develops the formal® rules governing the calculus which now bears his name. For
more introductory expositions of this subject, we refer to [Vil03, §8] and [Sanl15,
§5]. The task of putting this formal discussion on rigorous footing is undertaken
in [AGS08, §8]. We also note that the Wasserstein space is a length space within the
framework of metric geometry; see [BBIO1] for an introduction to this approach.

Otto calculus endows the space Py ,c(R?) with a formal Riemannian structure
inspired by fluid dynamics. To describe the idea, suppose that (1), is a curve
of probability measures, with s, representing the fluid density at time ¢. Also, let
(vt)>o denote the velocity vector fields governing the dynamics of the particles;
this means that the trajectory ¢ — X, of an individual particle evolves according
to the ODE

X, = u(X,). (2.4)

In probabilistic language, if X is a random variable drawn from the density gy
and it evolves according to (2.4), then X; ~ p, for all ¢ > 0. From this, we can
derive a partial differential equation (PDE) governing the evolution of (1), as
follows: fix a test function ¢ : R? — R (which is bounded, smooth, etc.). Formally,
if the integration by parts is justified, then

) / Odp = B EU(X,) = Ed(X,) = E(VH(X), 0(X,))

= /(Vz/z,vt) dp = —/wdiV@tMt),

2When there are multiple constant-speed minimizing geodesics joining p to ¢, then the
following fact is still true: the squared distance function d3,(-,q) is superdifferentiable at p.
Moreover, for any constant-speed minimizing geodesic 7: [0, 1] — M joining p to ¢, the vector
—27/(0) € T, M is a supergradient of d3,(-,q) at p.

3Here, “formal” is not a synonym for “rigorous”.
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from which we deduce the continuity equation of fluid dynamics:
atut + diV([LtUt) =0. (25)

This PDE can be interpreted in a suitable weak sense: for any smooth test
function ¢ with compact support, the mapping ¢ — [ ¢ dp: should be absolutely
continuous and thus differentiable at almost every ¢ € [0, 1], and its derivative
should satisfy 0 [ du: = [(V), ve) dpse.

Conversely, if (1¢),~, is a sufficiently nice curve, then it is always possible to
find a family of vector fields (v;),», such that the equation (2.5) holds, i.e., we
can interpret (p1),-, as the evolution of a fluid density. Since the vector fields
(Vt)yepo, fully govern the evolution of the curve of measures (Ht)ieo) € Pooac (RY),

we would like to equip Paac(R?) with the structure of a Riemannian manifold
such that (vt),c ) is interpreted as the tangent vectors to the curve (ue)ycp -
However, a problem arises: given a curve <:ut)te[0,1] in Wasserstein space, there
are many choices for the vector fields (vt),c( ;) Which solve (2.5) together with
(Ht)sepo,r- Indeed, if we fix any pair (pu),cpoq), (U)o solving (2.5), then we
obtain another solution by replacing v, with v; + w;, where w; is any vector field
satisfying div(wp;) = 0. This motivates the search for a distinguished family of
vector fields solving (2.5).
To do so, we pick v; to minimize the kinetic energy,

v = argmin{/HthQd,ut

w, - R = R satisfies div(pw;) = —Gtut} .

If iy is regular (admits a density w.r.t. Lebesgue measure), then the minimum is
attained at a gradient vector field: v, = V4, for a function v, : R — R. We are
led to define the tangent space

L2 ()

T,uPQ,ac(Rd) = {quzj | ¢ € Cgo(Rd)}

and endow it with the inner product

This yields a formal Riemannian structure on Py(R%). Moreover, the choice of
picking the vector field with minimal kinetic energy is closely related to the idea of
optimal transport of mass. Indeed, Brenier’s theorem asserts that in the optimal
transport problem of transporting a measure 14 to another measure v, the optimal
transport plan is induced by a transport map, which is the gradient of a convex
function ¢. In other words, if we interpret vy as a collection of particles, then



Sec. 2.1. Background on optimal transport 31

each particle initially moves along the vector field V¢ — id. In particular, taking
Vg = o and v; = pu. for a small € > 0, we expect the tangent vector of (Ht)te[o,l]
at time 0 to be of the form V¢ — id for a convex function ¢. Therefore, it is
equivalent to write [see AGS08, §8] that

TMP2,ac(Rd) ={A (Vo —id): A >0, ¢ € C*(RY), ¢ Convex}LQ(“) .

To complete the story, [BB99] proved that

1
Walpio, i) = inf{ / el dt | () segop (Wi solve (25) . (2.6)

From the lens of Riemannian geometry, this says that the notion of distance
induced by the Riemannian structure is precisely the quadratic Wasserstein dis-
tance, and hence we refer to the space Py ..(R?) equipped with this Riemannian
structure as the Wasserstein space.

Geodesics and generalized geodesics. Given two measures fig, (17 € 7)2730(]1%‘1), there
is a unique constant-speed minimizing geodesic joining g to .

Definition 2.1.3. Given pig, j11 € Paac(R?), the (constant-speed) geodesic joining
Lo to py s the curve

t= [(1—t)id +tT]po, t€[0,1],

where T is the optimal transport mapping from pg to py. This is also known as
displacement interpolation or McCann’s interpolation.

This geodesic has the following interpretation: draw a “particle” Xg ~ g, and
move Xy to T'(Xy) with constant speed for one unit of time along the Euclidean
geodesic (i.e., straight line) joining these endpoints; thus, at time ¢, the particle
is at position X; = (1 —t) Xo +tT(Xp). Then, p; is simply the law of Xj.

Let Ty = (1 —t)id + t T. Since X; = T(X,) — Xo = (T —id) o T, 1(X,), then
along the geodesic we see that (s, vt),c(o,) solves the continuity equation (2.5),
where the vector field is v, = (T —id) o T;"*. This solution achieves the minimum
in the variational problem (2.6).

The geodesic satisfies

Wa(po, pie) = t Wa(po, 1) vt €[0,1]. (2.7)

Moreover, it can be shown that any constant-speed geodesic in Py ,.(R?), that
is, any curve (k)1 C P ac(R?) satisfying (2.7), is necessarily of the form
pe = [(1 —¢)id + ¢ T],po. The tangent vector to (fit),c(o ) at time 0 is the vector
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field T'—id. With this notion of geodesics, the space Pa ..(R?) becomes a geodesic
space [BBIO1].

We also define the notion of a generalized geodesic, which has been used to
prove existence for the minimizing movements scheme for Wasserstein gradient
flows [AGS08]. This notion also turns out to be quite useful for applications; see,
e.g., 89 and §15.

Definition 2.1.4. For any v € Pa..(RY), we define the generalized geodesic with
base v and connecting o to py to be the curve (,ug)se[()’l] where

ty = [(1 = 8) Ty + 8 Tyspuy | 4 -

Observe that the notion of generalized geodesic reduces to that of a geodesic
when v = pg, so that convexity along generalized geodesic is a stronger notion
than convexity along geodesics. We say that a set C C Pa,c(RY) is convex along
geodesics (resp. generalized geodesics) if its indicator function ¢¢ is convex along
geodesics (resp. generalized geodesics). Note that C is convex along generalized
geodesics with base b if and only if the set log,(C) is convex in the usual sense.

Exponential and logarithmic maps. For any b, v e PQ’aC(Rd>, define the map logb :
Paac(RY) — T, P e (RY) by log, (V) == Ty — id. Reciprocally, we define the map
expy : U — Pyae(RY) in some neighborhood U of the origin of T,Ps..(R?) by
expy(v) = (id + v) 4.

In Riemannian geometry, it is common to localize the argument around a
measure /i, which loosely means replacing a measure v with its image log, v in the
tangent space at p. This is convenient because the tangent space at p is embedded
in the Hilbert space L?*(u), and we can leverage Hilbert space arguments (e.g.,
computing inner products). In order to do this one must quantify the distortion
introduced by the map log,, which is morally related to curvature.

Convexity. We are now in a position to define two notions of convexity in Wasser-
stein space. Consider any functional F : Py .. (R?) — (—00, 00] defined over the
Wasserstein space.

Definition 2.1.5. Let o € R. We say that F is a-geodesically convex if for all
tos t1 € Paac(RY), the constant-speed geodesic <Iu5)s€[0,1} from pg to uy satisfies

as(l—s)
2

We say that F is a-convex along generalized geodesics if for all choices v, g, p11 €
Py ac(RY), it holds that

Flps) < (1= 5) Flpo) + 5 F () — W3 (ko m),  for all s €[0,1].

as(l—s)

5 W2(uo, 1),  forall s €[0,1].

Fpg) < (1 =) Flpo) + s F(p1) —
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If we omit mention of the parameter o, then we refer to the case a = 0.

Note that convexity along generalized geodesics is stronger than geodesic
convexity since it requires F to be convex along a larger set of curves.

The interpretation of generalized geodesics is that we linearize Py ,.(R?) on
the tangent space T,Ps..(R?). This means that we replace o with its image
log, pto = T,—,, — id in the tangent space, and similarly for ;. Since the tangent
space is a subset of a Hilbert space, geodesics in the tangent space are described
by straight lines, i.e.,

t |_> (1 - t) TV_>1LLO + tTV—}ul - id .
If we translate back to Py ..(RY), we end up with the curve

Thus, the property of being convex along generalized geodesics can be reformulated
as requiring that

Foexp, : T,Psrac(RY) — R s convex for every v € Py o.(RY). (2.8)

In Euclidean space, convexity of a function f : R? — R is equivalent, via
Jensen’s inequality, to the following statement: for every probability measure P on
R?, it holds that f([ 2 dP(z)) < [ f(z)dP(x). Since the Wasserstein barycenter
(see §15) is the Wasserstein analogue of the mean, we can write a similar definition
on Wasserstein space. Given a probability measure P on Py ..(R?), let bp denote
its Wasserstein barycenter. We say that F : Pa..(RY) — R is convezr along
barycenters if

F(bp) < / F(p)dP(u),  for all P € Py(Paac(R?)).

Similarly, via (2.8), we can define F : Py ,..(R?) — R to be convex along generalized
barycenters if

Foesp, / vdP()) < / F o exp, (v) dP(v)

for all v € Paac(R?) and P € Pa (T, Paac(R?)) .
(2.9)

However, since the tangent space is embedded in a Hilbert space, there is no
difference between (2.8) and (2.9).
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To summarize the relationship between these four concepts:

convex along generalized barycenters <= convex along generalized geodesics
= convex along barycenters

—> geodesically convex .

For a justification of these facts and further discussion, see [AC11].

Curvature. We often use the fact that Pg,ac(Rd) is non-negatively curved in the
sense of Alexandrov. More specifically, we use the fact that for ug,pu,v €
Py ac(RY), if (Ns)se[o,u denotes the constant-speed geodesic connecting pg to puq,
then for all s € [0, 1],

W3 (s, v) > (1= 8) Wi (po, v) + s Wy (pa,v) — s (1= s) Wy (po, ) . (2.10)
Moreover, for any p, v, b € Py ..(R?) it holds that

W2(/1'7 V) < HTb%l/ © T,uﬁb - ldHLQ(N) = ”Tbau - TbHuHLQ(b)

= [[logy, (1) — log, (v)]]p - (2.11)

We note that the use of terminology from Riemannian geometry can be justified
when the measures are regular, see [AGS08|. For our purposes these analogies are
merely employed for better readability and intuition.

JKO scheme. This formal picture already allows one to compute gradients of
functionals defined over P,(R?) and hence to consider gradient flows, as well as
to derive criteria which imply quantitative rates of convergence for these flows.
However, it is a considerable technical undertaking to make the preceding formal
considerations fully rigorous, and this was only accomplished later in the com-
prehensive monograph [AGS08]. Instead, in [JKO98], the authors sidestep this
difficulty by considering an implicit time-discretization scheme which only requires
the metric structure of (Py(R%), W,). For a step size h > 0, define the updates

) 1
[oh 41 i= arg min {]:(M) ton W (1, Mh,k)} ; (2.12)
HEP2(RY)

where F : Po(R?) — R U {oo} is the functional of interest defined over the
Wasserstein space. Note that in optimization, this is known as the “proximal
point method” for minimizing F.

As h ™\, 0, one hopes that we have convergence iy, |¢/n] — jt¢ in a suitable sense,
and then the limiting curve (41;),~, can be interpreted as the Wasserstein gradient
flow of F. This is indeed what [JKO98] showed in a particular, but important case.
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Namely, if 7 oc exp(—V') is a density on R? obeying mild regularity conditions, and
we take the functional to be the KL divergence, F = KL(-||7), then the sequence of
discrete approximations converges to the solution of the Fokker—Planck equation

Oupr = div (1 VIn ). (2.13)

As discussed further in §2.2, the Fokker—Planck equation governs the evolution of
the marginal law of the Langevin diffusion

dX, = —VV(X,)dt + vV2dB,,

where (B;),-, is a standard Brownian motion on R?. Hence, this celebrated result
says that the Langevin diffusion can be interpreted as the Wasserstein gradient
flow of the KL divergence. The implicit discretization (2.12) is now commonly
known as the “JKO scheme” after the authors Jordan, Kinderlehrer, and Otto.
Although the Wasserstein space is not truly a Riemannian manifold, many of
the formal calculations of [Ott01] can now be justified rigorously, under appropriate
technical conditions, due to the extensive theory developed in [AGS08; Vil09b].

M 2.1.4 Optimization over the Wasserstein space

Gradients and gradient flows. Given a functional F : Py ,.(R?) — R, we can define
its Wasserstein gradient formally as follows. The gradient of F at pg is the element
Vo F (i) € Ty Paac(R?) satisfying

3t|t:0]:(,ut) = <VW2]:(M0)7U0>MO (2'14>

for any curve (). With Wasserstein tangent vector vy at time 0; that is,
(1) ;e and (vp),cp solve the continuity equation (2.5) with v, € T}, Paac(RY)
for a.e. t € R. To compute the Wasserstein gradient, suppose that F admits
a first variation 6F(po) : R — R, that is, for any such curve (i), g, we
have 0|0 F (1r) = [ 0F(po) Orli—ops.* By the continuity equation (2.5), we
have Oili—opo = —div(povg). Integrating by parts, we see that (2.14) equals
(VOF (o), v0) uo- Moreover, since VOF (p19) is a gradient vector field, it belongs to
T P2.ac(R?). We conclude that

Vi F(p) = VOF (1) .

Definition 2.1.6. A curve (Mt)tzo C Pa.ac(R?) is a Wasserstein gradient flow of
the functional F : Paac(RY) — RU{oo} if for a.e. t € R, the Wasserstein tangent

4The first variation is only defined up to an additive constant.
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vector to the curve at time t is —Nyw, F (). In light of (2.5), it means that the
following PDE holds:

Oty = diV(Mt VWZ}—(M)) .

The Riemannian gradient descent update for F with step size n starting at p
is given by

pt = exp, (=0 Vi, F () = [id — 0 Vi, F(u)] 4p0-

Note that the step size 1 should be chosen small enough that —n Vy, F(u) lies in
the domain of the exponential map. From the general description of the tangent
space of Wasserstein space, Vy, F(u) is the gradient of a mapping ¢ : R¢ — R;
then, —n Vy, F (1) belongs to the domain of the exponential map if ||-||*/2 — ny
Is convex.

Convexity and smoothness. We say that F is a-convex if
(0%
F(pr) = Fpo) + (Vw, F(110), 108, 411) o + 5 W3 (o, 1), Vio, 1 € Paac(RY),
(2.15)

and [-smooth if

B
F(pr) < Flpo) + (Vw, F (10), 108, f11) o + 5 W3 (ko p1) s Vho, 1 € Paac(RY).

These two properties are formally equivalent to the following statements: for any

constant-speed geodesic (4ut),c(o), one has

O im0 F (1) > a Wy (110, 111) or O im0 F (1) < BWy (1o, 1),

respectively. Also, (2.15) is equivalent to F being a-geodesically convex in the
sense of Definition 2.1.5.

M 2.2 Background on diffusions

We assume familiarity with basic notions from stochastic calculus, see [Le 16;
Str18]. We refer to [BGL14] for further background.

M 2.2.1 Markov semigroup theory and functional inequalities

Diffusions. Diffusion processes play a predominant role in the study of sampling,
and in this work we shall be particularly interested in the Langevin diffusion.
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Definition 2.2.1. Let V : R = R be a C' function such that [ exp(—=V) < oo,
called the potential. The Langevin diffusion associated with V' s the solution
(Xt),>q to the stochastic differential equation (SDE)

dX, = —VV(X,)dt + V2dB, . (2.16)
Here, (By),s, is a standard Brownian motion in R?.

If we assume, as we do in most of this work for discretization purposes, that VV/
is Lipschitz, then according to the standard theory of SDEs there is a unique strong
solution to (2.16). That is, given a filtered probability space (Q,P,.#, (F),5)
supporting a standard Brownian motion (B;),,, there is a unique adapted process
(X¢),5o With continuous sample paths such that (2.16) holds, which is to be

interpreted via stochastic integrals: for all ¢t > 0, X; = X, —fg VV(X,)ds+v2B,.
This process satisfies the strong Markov property.

As we discuss below, the stationary distribution of the Langevin diffusion is
7w < exp(—V'). In the special case when V = %, then the stationary distribution
is standard Gaussian and the diffusion is known as the Ornstein—Uhlenbeck (OU)
process. In this case, the SDE is linear and can be solved in closed form.

Besides the Langevin diffusion, in §6 we will also study the underdamped
Langevin diffusion, which describes motion in a particle well with friction.

Markov semigroups. In order to develop a useful calculus for working with dif-
fusions, it is helpful to abstractly represent them through their actions on test
functions, as captured via the following definition.

Definition 2.2.2. A Markov semigroup is a semigroup of linear operators (P;),s,
acting on a suitable space of functions (containing constant functions) such that:

1. Forallt >0, P1=1.
2. Forallt >0, if f >0, then P.f > 0.

3. We have Py = id, and for all s,t > 0, it holds that Py, = Pyo P, = P, o P,
(semigroup property).

Given a Markov process (X3),,, the corresponding Markov semigroup is given
by P,f(x) = E[f(X;) | Xo = z]. Conversely, there are many results which provide
conditions under which there exists a corresponding Markov process for a given
Markov semigroup () -

Calculus enters the picture once we consider the “time derivative of the semi-
group”. The semigroup property ensures that it suffices to consider this derivative
at time 0, as in the following definition.
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Definition 2.2.3. Given a Markov semigroup <Pt)t207 the infinitesimal generator
£ is defined via

(2.17)

In Definitions 2.2.2 and 2.2.3, we are purposefully vague regarding the class of
functions on which the semigroup acts, as well as the sense in which the limit (2.17)
is taken. This is a rather subtle issue. In order to develop a satisfactory spectral
theory, we would like to consider the space of functions L?(7), where 7 is the
stationary distribution of the corresponding Markov process. However, not all
functions f € L?(r) have sufficient regularity for the limit in (2.17) to exist (e.g.,
in L?(m)). To address this, one can consider £ to be an unbounded operator on
L?(w), meaning that it comes together with a corresponding domain of definition
which is a strict subspace of L?(7). The choice of domain is not obvious, and it
must be done carefully in order to properly define notions such as self-adjointness.
These issues are also handled in [BGL14] through the formalism of a Markov triple
which specifies an algebra of test functions (e.g., compactly supported and smooth
functions). For the sake of this informal introduction, we ignore these issues and
focus on the calculus itself.

For the Langevin diffusion (2.16), the infinitesimal generator is given by

Lf=Af=(VV,Vf).

For standard Brownian motion, the generator is .£ = %A.

The Markov semigroup encodes the dynamics of the Markov process, as shown
by Kolmogorov’s equations: for any test function f, it holds that 0,P,f = Z P, f.
In other words, if we set u; := P, f for all t > 0, then u solves the heat equation
Oyuy = ZLuy, which coincides with the usual heat equation (up to a factor %) for
Brownian motion.

Dually, we can let the semigroup act on probability densities by setting P u
to denote the law of the diffusion at time ¢ when initialized at . This notation
is justified because for any test function f, E f(X;) = ER,f(X,) = [P fdu =
[ f P}p, where Py denotes the adjoint of P, w.r.t. Lebesgue measure. Then, the
dual to the heat equation is 0, Py = Z* P}, where .Z* denotes the Lebesgue
adjoint of .Z. In the case of Langevin diffusion, we have Z*u = Ap+ div(u VV).
Hence, if p; is the marginal of the Langevin diffusion at time ¢, we have the PDE
for the evolution of the probability density, known as the Fokker—Planck equation:

Oy = Apy + div(p, VV) (2.18)

The Fokker—Planck equation readily implies that m o exp(—V') is stationary for
the Langevin diffusion, because .Z*m = 0. Dually, E, Zf = 0 for f.
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Reversibility and integration by parts. In the above discussion, we had to introduce
Py and £* as new operators because the semigroup and generator are typically
not self-adjoint w.r.t. Lebesgue measure. Instead, they are typically self-adjoint
w.r.t. another measure 7, in which case the Markov semigroup is called reversible.

Definition 2.2.4. A Markov semigroup (P),, is reversible w.r.t. a probability
measure 7 if P, defines a self-adjoint operator on L*(w) for all t > 0.

If (P,),sq is reversible w.r.t. 7, then it implies that 7 is the stationary dis-
tribution of the corresponding Markov process. Also, reversibility implies (and
is equivalent to) the generator £ being self-adjoint on L?(r), once “self-adjoint”
is defined appropriately for unbounded operators. As the name suggests, the
property of reversibility indeed implies that the Markov process (started at the
stationary distribution ) has the same law backwards and forwards in time. The
Langevin diffusion is a key example of a reversible diffusion.

For a reversible diffusion, if we instead consider the relative density p; = /7
w.r.t. the stationary distribution 7, then the semigroup coincides with its L?(7)
adjoint and hence the Fokker—Planck equation can be written simply as 0;p; = Zp;
or py = Pipy.

Observe that Kolmogorov’s equation shows that the dynamics of the diffusion
are encoded via a linear PDE involving the generator .Z, and under the condition
of reversibility, the operator .Z is self-adjoint. Hence, we expect to obtain a
spectral theory for . in which £ has real spectrum, and moreover this spectrum
should govern the rate of convergence to stationarity for the diffusion. This is
indeed the case, and the first step is to identify the quadratic form associated with
Z. Actually, it is convenient to consider the form associated with —.% instead.

Definition 2.2.5. Suppose that <Pt)t20 1s a reversible Markov semigroup with
generator £ and stationary distribution w. The Dirichlet energy associated with
£ is the bilinear form

One can show that the Dirichlet energy can be written as &(f, g) = [ T'(f, g) dm,
where T is a bilinear operator called the carré du champ; moreover, I'(f, f) > 0
for any function f. In particular, &(f, f) > 0. For example, for the Langevin
diffusion, we have I'(f, g) = (V f, Vg), which does not depend on the potential V.

The inequality &(f, f) > 0 for all f shows that —% is a positive operator. Con-
stant functions always lie in the kernel of —%; and the infimum of the spectrum
restricted to the orthogonal complement of constant functions (that is, functions
f with E; f = 0) is called the spectral gap of the diffusion.
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Functional inequalities. A functional inequality is an inequality that holds true for
all elements of a suitable function class. Functional inequalities can encode a
wealth of information, with implications ranging from concentration of measure
to rapid mixing of Markov processes.

In the context of sampling, the most well-studied functional inequalities are
the Poincaré inequality (PI) and the log-Sobolev inequality (LSI).

Definition 2.2.6. A probability distribution © on R? satisfies a Poincaré inequal-
ity (PI) with constant Cpy if for all smooth and compactly supported functions
¢: R > R,

var,(9) < Cri E,[[[ Vo] (2.19)

Definition 2.2.7. A probability distribution = on R? satisfies a log-Sobolev in-
equality (LSI) with constant Cs if for all smooth and compactly supported func-
tions ¢ : R = R,

2
2 2 ¢ 2

= < . .
enty(¢?) = By |9 log £ aﬁ?]] < 20151 B[V (2.20)

By taking f = g—ﬁ, the LSI can also be rewritten in the equivalent form

C C

KL 1 7) < 200 B [V 217 = Cis g, [ i 7] = Gt ).

(2.21)

These functional inequalities are classically related to the ergodicity properties
of the Langevin diffusion (3.1). Indeed, if 7; denotes the law of the diffusion at
time ¢, then a PI is equivalent to

2t
2 || 7) < exp<—0—> A(mo | 7),  forallt>0, (2.22)
PI
whereas an LSI is equivalent to
2t
KL(r, || 7) < exp(—C—) KL(mo || 7),  forallt>0. (2.23)
LS
We review information divergences such as KL and y? in §2.2.3 below.
The inequality (2.22) can be understood from the spectral perspective: the

right-hand side of the Poincaré inequality (2.19) is precisely the Dirichlet energy
&(¢p, ¢) for the Langevin diffusion, and hence (2.19) is equivalent to a lower
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bound of C’FTll on the spectral gap for the Langevin diffusion. On the other
hand, the chi-squared divergence x*(m; || 7) is just the squared L?(7) norm of
the projection of the relative density m;/m orthogonal to constant functions, i.e.,
X2(m || ) = [|m/m — 1|15, Therefore, the equivalence between (2.19) and (2.22)
follows from the Fokker—Planck equation and spectral theory. The equivalence
between (2.20) and (2.23) does not admit such a spectral interpretation, but it
follows via a quick calculation using Markov semigroup theory.

Improving upon the prior result of [CLL19], [VW19] showed that the functional
inequalities (2.19) and (2.20) also imply convergence for the Langevin diffusion in
Rényi divergence; see Theorem 3.2.1 in §3.

We next collect together key facts about these functional inequalities. The
following results show that the class of distributions satisfying these inequalities is
larger than the class of strongly log-concave distributions; see [BGL14, Proposition
5.1.3 and Corollary 5.7.2].

Lemma 2.2.8 (Strong log-concavity implies LSI implies PI). Let 7 be a distribu-
tion on R

1. (Bakry—Emery theorem ) If 7 is a-strongly log-concave, then it satisfies an
LST with constant at most 1/cv.

2. If w satisfies an LSIT with constant Cs, then it also satisfies a PI with constant
at most Clg).

The second part of the lemma is standard and follows from linearizing the LSI.
The first part of the lemma (the Bakryf]?]mery theorem) is deeper and we discuss
it further below.

A useful consequence of the LSI is the following sub-Gaussian concentration
inequality for Lipschitz functions, typically established via the Herbst argument;
see [BGL14, Proposition 5.4.1].

Lemma 2.2.9 (LSI implies sub-Gaussian concentration). Suppose that 7 is a
distribution on R? satisfying an LSI with constant Cis). Then, for any L-Lipschitz
function ¢ : R = R and any X € R,

A2Cys L?
E,exp(A (6 — E, ¢)) < exp<%> .
Consequently, for alln >0,
2
n
W{(b - Eﬂ'(b > 77} < exp(_QCLSILQ) :

Similarly, the PI implies subexponential concentration, see [BGL14, §4.4.3].
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Lemma 2.2.10 (PI implies subexponential concentration). Suppose that 7 is a
distribution on R? satisfying a PI with constant Cpy. Then, for any L-Lipschitz
function ¢ : R* — R and any n > 0,

— > < —L> .
{6~ Er > n} < 3exp( I

Next we recall two comparison inequalities which enable proving sampling
guarantees in Wasserstein distance as an immediate corollary of proving sam-
pling guarantees in other metrics—namely KL divergence in the LSI setting, and
chi-squared divergence in the PI setting. Such comparison inequalities are of-
ten called transport inequalities. Specifically, the first result, attributed to Otto
and Villani [OV00], shows that under an LSI, a transportation inequality be-
tween Wasserstein and KL divergence holds (this inequality is often referred to as
Talagrand’s T, inequality).

Lemma 2.2.11 (Otto—Villani theorem). Suppose that 7 is a distribution on R?
satisfying an LSI with constant Cys;. Then, for all distributions p € Pa(R?),

W5 (1, m) < 2Cis KL(p || ) -

The second result shows a similar transport inequality in the PI setting [Liu20].
Under a PI, Talagrand’s T, inequality does not necessarily hold anymore. Never-
theless, a useful transport inequality still holds if one replaces the KL divergence
by the chi-squared divergence.

Lemma 2.2.12 (Quadratic transport-variance inequality). Suppose that 7 is a
distribution on R? satisfying a PI with constant Cpy. Then, for all distributions
n e 7)2 (Rd),

W3 () < 2Cp xP(p || ) -

Finally, we record the following standard second-moment-type bound for
strongly log-concave measures; see, e.g., [DKR22, Proposition 2]. We give a
short proof sketch for the convenience of the reader.

Lemma 2.2.13 (Second moment bound). Suppose that m < exp(—V') is a-strongly
log-concave, with mode at x*. Then, it holds that [||- — z*||*dr < d/a.

Proof. Integration by parts shows that for any smooth function ¢ : R — R of
controlled growth, it holds that E, Z¢ = E.[A¢ — (VV, V)] = 0, where Z is

the generator of the Langevin diffusion. We apply this to ¢(z) == 3 ||z — 2*||?, for

which V¢(z) = x —2* and A¢ = d. By strong convexity of V, (VV (z),z —a*) >
al|lz — 2*||?, and the result follows. O
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Functional inequalities are particularly useful for high-dimensional non-log-
concave sampling because they tensorize (if two measures satisfy the same func-
tional inequality, then their product also satisfies the functional inequality with
the same constant) and they are stable under common operations such as bounded
perturbation (replacing the potential V' with V, with sup |V — ‘7\ < o0), Lips-
chitz mapping (replacing m with Tym where T : R? — R? is Lipschitz and the
pushforward 77 is the distribution of 7'(X) when X ~ ), or taking mixtures
(see §11). We refer to [BGL14] for a comprehensive treatment.

Curvature-dimension condition. The Bakry—Emery theorem in Lemma 2.2.8 is a
celebrated result due to its geometric interpretation, which we briefly describe.
We have already mentioned that associated to a reversible Markov semigroup, we
have a carré du champ operator I', which is a bilinear operator mapping pairs
of functions to functions. One can also define another operator in the same
spirit, called the iterated carré du champ operator and denoted I's. Then, we say
that the Markov diffusion satisfies the curvature-dimension condition CD(«,d) if
To(f, f) = al(f, f) + (Zf)?/d. Although we have not defined the operators T,
I's, as they will not be used in the sequel, the salient point is that the curvature-
dimension condition can be defined solely in terms of the Markov semigroup.

The relevance of the curvature-dimension condition is that the semigroup
associated to the standard Brownian motion on a Riemannian manifold satisfies
CD(a, d) if and only if the Ricci curvature of the manifold is at least « and the
dimension of the manifold is at most d. Thus, as the name indicates, in this context
the curvature-dimension condition encodes curvature and dimension information
in Riemannian geometry. However, since the curvature-dimension condition is
purely written in terms of the Markov semigroup, we can also ask if it holds
for diffusions outside of this Riemannian context; for instance, we can ask if the
Langevin diffusion satisfies this condition. If so, we can interpret it as encoding
abstract geometric properties intrinsic to the Markov process.

It turns out that the Langevin diffusion satisfies CD(«, 00) if and only if
V2V = aly. Hence, the curvature of the potential V acts as a substitute for the
Ricci curvature of the ambient space. In this abstract context, the Bakrny,)mery
theorem asserts that CD(a, 00) with o > 0 implies the validity of an LSI with
constant 1/a.

B 2.2.2 The Langevin diffusion as a Wasserstein gradient flow

We now briefly review the interpretation in [JKO98] of the Langevin diffusion as
a Wasserstein gradient flow.
Let V : RY — R denote the potential, and let m o< exp(—V). Consider the KL
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divergence KL(u || 7), which can be decomposed as a sum

F(p) =KL(u| m) = /Vd,u+/ulnu+constant.

The first term can be interpreted as the potential energy, and the second term
is the (negative) entropy. Recall from §2.1 that the Wasserstein gradient of F is
given by VOF. One can show via direct calculation that dF(p) =V + Inp up
to an additive constant, and we deduce that the Wasserstein gradient of the KL
divergence is

Vi, F(u) = VV + Vinp = vmg.
The Wasserstein gradient flow for the KL divergence is the curve (), with
. Lt
Oty = dlv(,ut VIn ?) )

By comparison with (2.18), we can deduce that the marginal law of the Langevin
diffusion traces out the Wasserstein gradient flow of KL(- || 7). This celebrated
result endows the Langevin diffusion with a geometric interpretation with close
connections to optimization, which is a central theme explored in this thesis.
Namely, since the Langevin diffusion is a gradient flow, we can use the theory of
gradient flows to study its convergence.

The starting point is to investigate the convexity of the objective functional.
Using Otto calculus, one can show that the Hessian of the KL divergence, viewed
as a quadratic form on T, Py ..(R?), formally takes the form

Vi F Wl = [(FVondut [V Lifsda.

In particular, if V*V > aly, then Vi, F(u)[v,v] > aflv]|? and hence F is a-
convex along Wasserstein geodesics. Via general principles for gradient flows (see
§16.8), it implies the following result: if (14;),5q, (#4),5¢ are the marginal laws of
two copies of the Langevin diffusion (but with possibly different initializations)
corresponding to an a-convex potential V', then

Wo (e, vi) < exp(—at) Wa(po, vo) -

This result could also be deduced by a synchronous coupling of the diffusions,
together with Ito’s formula.
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Since Vy, F(1) = VIn(p/7), then the squared norm of the Wasserstein gradi-
ent is given by ||V In(u/7)||%, which is also called the relative Fisher information
FI(z || 7). By general calculation rules for gradient flows,

O KL(pe || ) = _HVIH H = —Fl(u || 7).

From this equality, we see that exponential decay of the KL divergence follows
from the condition FI(y || 7) > 2aKL(p || w) for all p. Recalling (2.21), we see
that this precisely amounts to a LSI with constant 1/c, and thus we obtain (2.23).
In this context, however, the LSI takes on an operational meaning: namely, it
is seen to be the gradient domination or Polyak—Lojasiewicz (PL) inequality
from optimization (see, e.g., [KNS16]). In general, a-convexity implies a PL
inequality, which therefore recovers the Bakry—Emery theorem (Lemma 2.2.8) for
the Langevin diffusion. This perspective was first laid out in [OV00].

Finally, we mention that the Otto—Villani theorem (Lemma 2.2.11), which
asserts that an LSI implies a transport inequality, is also an instantiation of a
general fact from optimization, namely, that a PL inequality implies a quadratic
growth inequality [KNS16].

B 2.2.3 Comparisons between divergences

In this section, we collect together common divergences between probability mea-
sures as well as the relationships between them.

Definition 2.2.14. The total variation (TV) distance between p and 7 is

lp=mllrv =" sup [u(A) =7(A)].

ACR? measurable

Definition 2.2.15. The KL divergence of u from m is

d
KL(un)::/ Hau /“m—“dw

where KL(p || ) is understood to be +00 if i & .
Definition 2.2.16. The chi-squared divergence of u from m is

= (-1 ar= [(E)an-1.

where x*(u || ®) s understood to be +oo if u & .

We also introduce the family of Rényi divergences, which includes both the
KL divergence and the chi-squared divergence as special cases.
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Definition 2.2.17. The Rényi divergence of order q € (1,00) of u from m is

1 du
R = —m| £
| 7) = |

q
La(x)’
where Ry (1 || ) is understood to be +o00 if pn L 7.

Remark 2.2.18 (Special cases of Rényi divergence). The Rényi divergence of
order q = 1 coincides with the KL divergence, 1i.e.,

Ri(pllv) = KL(pllv).

The Rényi divergence of order ¢ = 2 is related to the x? divergence via the formula

Rol | v) = In(1 4 X3 [ ).

The Rényi divergence of order ¢ = oo is given by

dp
Rt | 0) = ||| .

(]l v) Wl )

We repeatedly use the following elementary properties of the Rényi divergence.
Further details about these properties and their proofs can be found in, e.g., the
Rényi divergence survey [EH14] as Theorem 1, Theorem 3, Equation 10, and
Remark 1, respectively.

Lemma 2.2.19 (Data-processing inequality for Rényi divergences). For any Rényi
order ¢ > 1, any Markov transition kernel P, and any probability distributions p,
v, it holds that

Ry(uP [ vP) < Ryl v) -

Lemma 2.2.20 (Monotonicity of Rényi divergences). For any Rényi orders ¢ >
q > 1, and any probability distributions u, v,

Re(pllv) < Rg(pllv).

Lemma 2.2.21 (Rényi divergence between isotropic Gaussians). For any Rényi
order ¢ > 1, any variance o* > 0, and any means v,y € R,

eyl

CRq(normaI(x,aQ[d) H normaI(y,oQId)) 557

Lemma 2.2.22 (Relation to f-divergences). For any Rényi order q € (1,00),
the corresponding function exp((¢ — 1) Ry(- || -)) is an f-divergence, and thus in
particular is jointly conver in its arguments.
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We end this section with one last property of Rényi divergences: the weak
triangle inequality. The name of this property arises from the fact that although
Rényi divergences do not satisfy the triangle inequality, they do satisfy a modified
version of it in which the Rényi order is increased and the bound is weakened by
a multiplicative factor. Since this property does not appear in the aforementioned
survey [EH14] on Rényi divergences, we provide a brief proof for completeness. It
can also be found in, e.g., [Mirl7, Proposition 11].

Lemma 2.2.23 (Weak triangle inequality for Rényi divergence). For any Rényi
order ¢ > 1, any A € (0,1), and any probability distributions p,v,m,

qg—A
Ry(p [l m) < 1 Rapn(p V) + Rig—nya-»nw [ 7).

Proof. Expand R,(u|v) = q_% In [ fg where f = 19/ and g = 9> /w97 and

then apply Holder’s inequality [ fg < ([ fa)l/ “f gb)l/ ’ using Holder exponents
a=1/Aand b=1/(1—-\). O

Under a Poincaré inequality (2.19), the quadratic transport-variance inequality
of Lemma 2.2.12 together with standard comparison inequalities such as Pinsker’s
inequality (see [Tsy09]) imply the comparisons

1
max{ 2 s = w3y, (L4 5o W m), KL ) | < Rofia | 7).

This makes Rényi divergences a convenient family of divergences for proving sam-
pling guarantees, since they imply guarantees in many other common divergences.

B 2.3 Background on the Bures—Wasserstein space

The material from this section is used in §15 and §16.

M 2.3.1 Geometry

We now specialize concepts from §2.1 to the Bures—Wasserstein manifold of cen-
tered non-degenerate Gaussian measures (identified with their covariance matri-
ces), equipped with the Wasserstein metric. Thus, the Bures—Wasserstein manifold
is the space S  of positive-definite symmetric matrices equipped with a certain
Riemannian metric.

The optimal transport problem between Gaussians is discussed in many places,
e.g., [BJL19]. Given two covariance matrices 3, %' € S¢_ | the optimal transport
map between the corresponding centered Gaussians is the linear map

1/2

Ty = D712 (2V20/pn1l/2) 7" =172 (2.24)
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Note that this is a symmetric matrix. Since AX ~ normal(0, AXAT) for X ~
normal(0, ), the fact that Tx_,s» X ~ normal(0,Y’) reduces to the matrix identity
T sy XTx_sv = X', which can be verified by hand. The above formula yields

W5(5, %) = E[| X — Toow X[I*] = E[| X[* + | Toow X |* — 2(X, Ty X))
= tI‘(Z + E, — ZETZ_Q;/) .
(2.25)

From the general description of Wasserstein geodesics, the constant-speed
geodesic (X¢)p ) joining X to X' is given by

= (1= Is+tToos) S (- t) Li+tTsy),  te[0,1].  (2.26)

The tangent space TgSi . is identified with the space S? of symmetric d x d ma-

trices. Given S € TxS% | the tangent space norm of S is given by ||S||r2v0.x)) =

VE[|SX]?] = /(5% %), which we simply denote as ||S|sz. More generally,
given matrices A, B, we write (A, B)y = tr(ATXB). The exponential map® is
expy S = (Ig+S) X (Ig+ S), so that expy,(Ts s — I5) = ¥'. The inverse of the
exponential map is then logy, ¥/ = Ty 5 — 1.

The description of the Bures—Wasserstein tangent space is in accordance with
the general Riemannian structure of Wasserstein space (see [AGS08]). We now
elaborate on other possible conventions, in order to dispel possible confusion.

The space Si . is often studied as a manifold in other contexts, and the tangent
space at any point is usually identified with S¢. It is crucial to realize, however,
that a tangent space is not simply a vector space (or inner product space); a
tangent space also has the interpretation of describing velocities of curves. In
other words, for each tangent vector S, we also need to prescribe which curves
have velocity S. In the usual way of describing the manifold structure of Si 4
this prescription is given as follows. Given a curve (3;),.p C S%,, if 3o denotes
the ordinary time derivative of this curve at time 0, then we declare ¥, to be
the tangent vector of the curve at time 0. Although this prescription is natural,
observe that it conflicts with our description of the tangent space structure of
the Bures—Wasserstein manifold; in particular, for the curve in (2.26), we have
described the tangent vector to this curve (at time 0) to be T 5y — I, but the
ordinary time derivative of this curve is (Ts .y — Ij) ¥ + X (Txs — Iy).

To summarize the discussion in the preceding paragraph: although the usual
description of the tangent space of S‘i + at ¥ and our description of the tangent
space are formally the same, in that they are both identified with S?, they differ in

5Technically the exponential map is only defined if S 4 Iy > 0; this is because if S + I, is not
positive semidefinite, then S + I is not an optimal transport map due to Brenier’s theorem.
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that tangent vectors from the two descriptions give rise to different curves. Note
that if we were to adopt the usual description of the tangent space of Si 4, then
we would have to define the tangent space norm ||-||y differently from above. In
this thesis, we adopt the convention described earlier in this section in order to
preserve the connection with the general setting of optimal transport.

B 2.3.2 Additional useful facts

Here we collect various facts about the Wasserstein metric for easy reference.

1. Euclidean gradient vs. Bures—Wasserstein gradient.

Let F : S‘i + — R be a function. Temporarily denote by D I the usual
Euclidean gradient of F', and we reserve VF for the gradient with respect to
the Bures—Wasserstein geometry. In fact, under our tangent space convention,
these two quantities are related as follows: let (3;),.z denote a curve in S .
We temporarily denote the Euclidean tangent vector (i.e., ordinary time
derivative) to this curve via ¥¥, and the Bures-Wasserstein tangent vector
via ¥BW which are related via ¥ = 2BWY 4 B3BW (see the discussion
above). We can compute the time derivative of F' in two ways:

(VF(20), 285, = Otlimo F(Z0) = (D F(Z0), 36)
= (D F(%0), 2EVS) + SoXEWY) = 2(D F(%0), 2EW)y, .

From this we can conclude that

VE(Y) =2DF(%).

2. Gradient of the squared Wasserstein distance.

For any v € Ps,.(R?), the gradient of the functional W3 (-, v) at pu is
VW22(7 V)(lu) - _2 (T'u,—n/ - 1d> - _2 lOgM U.

This is derived in, e.g., [ZP19]; see also (2.3). In the Bures—Wasserstein
setting, it can be proven via matrix calculus.

3. Inverse of the transport map.

If ¥, € Si +, then the transport map 7%_,s is the inverse matrix for the
transport map Tsy_x. This can be verified from the formula (2.24) using the
symmetry of the geometric mean. More generally, it is a special case of the
convex conjugacy relation between optimal Kantorovich potentials.
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4. Diagonal case.

If 30,3 € 8%, are diagonal matrices, then W3 (2o, ;) = ||E(1)/2 - 21/2“21{8
is the squared Hilbert—Schmidt norm between the square roots. This can
be verified, e.g., from the explicit formula (15.2) using the fact that ¥, and
Y1 commute. Note that in one dimension, all matrices are diagonal. More
generally, these observations extend to when Yy and »; commute.

Similarly, it can be seen from (2.26) that the geodesic is given by
$1/2 _ 1/2 1/2
JT=0 =)+t te|0,1],

which says that the Bures-Wasserstein geodesic between diagonal (or com-
muting matrices) is simply the Euclidean geodesic after applying the square
root map.

. The case of non-zero means.

For any u,v € P»(R%), suppose that the means of these distributions are
m,, and m,,, respectively. Let fi, ¥ denote the centered versions of these
distributions. Then, it holds that

W3 (u,v) = [mu, — mu || + W3 (i, 7).

This can be proven directly from the definition (2.1).

. A lower bound on the Wasserstein distance.

Let p, v € Po(R?). If i and 7 are Gaussian measures with the same moments
up to order two as p and v, respectively, then Wy (p, v) > Wa(i, ) [CMTI6].
This fact also follows from the dual formulation of optimal transport.
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Chapter 3

Analysis of Langevin Monte Carlo

We begin our study of sampling with perhaps the most canonical algorithm for this
task, namely, Langevin Monte Carlo (LMC). Although LMC has been intensively
studied for more than a decade, still the following fundamental question remained
open: what convergence guarantees can be obtained when the target distribution
7 satisfies a Poincaré inequality?

Classically, a Poincaré inequality implies exponential convergence for the
continuous-time Langevin diffusion in the chi-squared divergence.! Using this
fact to provide guarantees for the discrete-time LMC algorithm, however, is con-
siderably more challenging due to the need for working with chi-squared or Rényi
divergences, and prior works have largely focused on strongly log-concave targets.
In this chapter, we provide the first convergence guarantees for LMC assuming
that 7 satisfies either a Latala—Oleszkiewicz or modified log-Sobolev inequality,
which interpolates between the Poincaré and log-Sobolev settings. Unlike prior
works, our results allow for weak smoothness and do not require convexity or dis-
sipativity conditions. The techniques we develop for Rényi discretization analysis
also play a key role for obtaining warm starts in §6.

This chapter is based on [Che+21a], joint with Murat A. Erdogdu, Mufan
(Bill) Li, Ruoqi Shen, and Matthew Zhang.?

B 3.1 Introduction

The task of sampling from a target distribution m o< exp(—V) on R?, known only
up to a normalizing constant, is fundamental in many areas of scientific comput-
ing [Mac03; RC04; Liu08; Gel+14]. As such, there has been a considerable amount
of research dedicated to this task, yielding precise and non-asymptotic algorithmic
guarantees when the potential V' is strongly convex; see, e.g., [Dall7a; DMM109;
Dwi+19; SL19; HBE20; LST20; CLW21]. Many distributions encountered in

!This fact will be revisited in the context of the mirror Langevin diffusion in §8.
2This work also appeared as an extended abstract at COLT 2022 [Che+22c].
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practice, however, are non-log-concave, and it is therefore of central importance to
provide sampling guarantees for such distributions. In this work, we address this
problem by working under the assumption that 7 satisfies a suitable functional
inequality, which we now motivate.

The canonical sampling algorithm, Langevin Monte Carlo (LMC), is based on
a discretization of the continuous-time Langevin diffusion, which is the solution
to the stochastic differential equation

Az, = -VV(Z,)dt +V2dB,. (3.1)

Here, (B:),s, is a standard Brownian motion in R?. Classically, if 7 satisfies a
functional inequality such as a Poincaré inequality or a log-Sobolev inequality,
then the law of the Langevin diffusion (3.1) converges exponentially fast to the
target distribution 7 (see §2.2 for background). Namely, a Poincaré inequality
implies exponential convergence in chi-squared divergence, whereas a log-Sobolev
inequality (which is stronger than a Poincaré inequality) implies exponential
convergence in KL divergence.

The class of measures satisfying a Poincaré inequality is quite large, including
all strongly log-concave measures (due the Bakrny,)mery criterion) and, more
generally, all log-concave measures [KLS95; Bob99; Che2lal. It also includes
many examples of non-log-concave distributions such as Gaussian convolutions
of measures with bounded support (see §11), and it is closed under bounded
perturbations of the log-density. Owing to its broad applicability and its favorable
continuous-time convergence properties, this class of measures is thus a natural
goal for providing quantitative guarantees for non-log-concave sampling.

Sampling guarantees under functional inequalities. Our work is inspired by [VW19],
which advocated the use of a functional inequality paired with a smoothness
condition as a minimal set of assumptions for obtaining sampling guarantees;
in their work, Vempala and Wibisono prove convergence of LMC under a log-
Sobolev inequality. This result was then improved using the proximal Langevin
algorithm under higher-order smoothness in [Wib19] and subsequently extended
to Riemannian manifolds in [LE23].

Despite the appeal of this program, however, the majority of works on non-
log-concave sampling instead make an additional assumption on the growth of
the potential known as a dissipativity condition, see, e.g., [RRT17; EMS18; EH21;
NDC21; EHZ22; Mou+22]. A representative example of such a condition is
(VV(z),z) > allz|| —b for some constants a,b > 0. Although useful for discretiza-
tion proofs, dissipativity conditions are arguably less natural from the standpoint
of the quantitative theory of Markov processes [BGL14], and ultimately redundant
in the presence of an appropriate functional inequality. Other drawbacks include
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the fact that b is typically dimension-dependent, and that dissipativity conditions
are not as stable under perturbations (see §3.4 for an example). Hence, we avoid
such conditions in our work.

In our first main result (Theorem 3.3.4), we assume that the target = satisfies
a Latata—Oleszkiewicz inequality (LOI) with parameter a € [1,2]. The LOI is a
well-studied functional inequality that elegantly interpolates between Poincaré and
log-Sobolev inequalities [LO00]. Notably, the o = 1 case reduces to the Poincaré
inequality, while the v = 2 case reduces to the log-Sobolev inequality; intermediate
values of a enable capturing potentials with growth V(z) ~ ||z||* (see §3.2.2). We
also complement our result by proving a sampling guarantee (Theorem 3.3.6)
under the modified log-Sobolev inequalities considered in [EH21], which is useful
for treating examples in which the LOI constant is dimension-dependent.

Towards weaker notions of smoothness. Since the assumption of a Poincaré inequality
allows for a variety of non-convex potentials with at least linear growth, it is
restrictive to pair this assumption with the gradient Lipschitz assumption which
is usually invoked in the sampling literature. Hence, following [DGN14; Nesl5;
Cha+20; EH21], we instead assume that VV is Holder-continuous with some
exponent s € (0, 1].

An analysis in Rényi divergence. 'We now describe the main technical challenge of this
work. Recall that a log-Sobolev inequality (LSI) implies exponential ergodicity of
the diffusion (3.1) in KL divergence, and consequently the analysis of LMC under a
LSI naturally proceeds with the KL divergence as the performance metric [VW19;
Wib19; LE23]. Similarly, a Poincaré inequality implies exponential ergodicity
of (3.1) in chi-squared divergence, and accordingly we analyze LMC in chi-squared
divergence, or equivalently, in Rényi divergence. In turn, the techniques we develop
for the analysis may be useful for other situations in which only a Poincaré-
type inequality is available, such as the state-of-the-art convergence rate for the
underdamped Langevin diffusion [CLW20] or for the mirror Langevin diffusion
(which we discuss further in §8).

Via standard comparison inequalities, a convergence guarantee in Rényi di-
vergence implies convergence for other common divergences (e.g., total variation
distance, 2-Wasserstein distance, or KL divergence), and is therefore more desir-
able. Of particular interest in this regard is the role of Rényi divergence guarantees
for providing “warm starts” for high-accuracy samplers such as the Metropolis-
adjusted Langevin algorithm (MALA), see §5 and §6.

Unfortunately, working with Rényi divergences introduces substantial new
technical hurdles as it prevents the use of standard coupling-based discretization
arguments; as such, there are not many prior works to draw upon. The con-
vergence of the diffusion (3.1) in Rényi divergence was first proven in [CLL19;
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VW19]. The paper [VW19] also takes a first step towards discretization by in-
troducing a technique based on differential inequalities for the Rényi divergence
for a continuous-time interpolation of LMC. Although this strategy succeeds for
obtaining KL convergence under an LSI, it falls short for Rényi divergence; indeed,
the analysis of [VW19] only holds under the (currently unverifiable) assumption
that the biased stationary distribution of the LMC algorithm satisfies a Poincaré
inequality. Moreover, their result only establishes quantitative convergence of
LMC to its biased limit; to recover a convergence guarantee to 7, this also re-
quires an estimate of the “Rényi bias” (the Rényi divergence between the biased
stationary distribution and 7), which was unresolved. Instead, [GT20] provided
the first Rényi guarantee for LMC by using the adaptive composition theorem
from differential privacy to control the discretization error, albeit suboptimally.
Subsequently, their result was sharpened in [EHZ22| via a two-stage analysis
combining the two papers [VW19; GT20].

In this paper, we first show how to modify the interpolation method of [VW19]
to yield a genuine Rényi convergence guarantee for LMC under an LSI, thereby
yielding a stronger result than [GT20; EHZ22] with a shorter and more elegant
proof. We further extend this to the case when 7 is log-concave, but this technique
is unable to cover the setting of a weaker functional inequality and smoothness
condition. For this, we instead draw inspiration from the stochastic calculus-based
analysis of [DT12] (see also the similar argument in §5). At the heart of our proofs
is the introduction of new change-of-measure inequalities which intriguingly rely
on the very fact that the analysis is carried out in Rényi divergence (and not
any weaker metric). Thus, although the use of Rényi divergences introduces new
technical obstructions, it also provides the key tool for overcoming them.

M 3.1.1 Contributions

Convergence of the diffusion under functional inequalities. Our first contribution is to
establish quantitative Rényi convergence bounds for the Langevin diffusion (3.1)
under the following functional inequalities: (1) the Latata—Oleszkiewicz inequal-
ities (LOI) [LO00], which interpolate between the Poincaré and log-Sobolev in-
equalities (Theorem 3.2.2), and the modified log-Sobolev inequality (MLSI) used
in [EH21] (Theorem 3.2.3). LOI and MLSI have relative merits, and they capture
the tail behavior of the potential, providing an accurate characterization of the
speed of convergence for both the diffusion as well as the LMC algorithm.

Improved guarantees for LMC under an LSI or log-concavity. As our second principal
contribution (Theorem 3.3.1), we provide an elegant proof that under an LSI, the
LMC algorithm (with appropriate step size) achieves €2 error in Rényi divergence
in 5(d/ g?) iterations. This improves upon past works in several respects. First,
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in the LSI case, a Rényi convergence guarantee for LMC was previously unknown;
thus, our work strengthens [VW19] by proving convergence in a stronger metric
(Rényi divergence rather than KL divergence). Second, even when the target 7
is strongly log-concave, our proof is both sharper and significantly shorter than
the prior works [GT20; EHZ22] on Rényi convergence; moreover, our guarantee
for fixed step size LMC does not degrade if the number of iterations is taken too
large. As a corollary, we resolve an open question of [VW19] on the size of the
“Rényi bias” in this setting (see Corollary 3.3.2).

With additional effort, we are able to extend the techniques to the case when
7 is (weakly) log-concave, and we obtain a guarantee with explicit dependence
on the Poincaré constant of m (however, our guarantee is no longer stable); see
Theorem 3.3.3. Our result is the state-of-the-art guarantee for LMC for sampling
from isotropic log-concave targets.

Convergence of LMC under a functional inequality and weak smoothness. Our main
contribution is to provide sampling guarantees assuming that the potential has a
Hoélder-continuous gradient of exponent s € (0, 1] and that 7 either satisfies LOI
(Theorem 3.3.4) or MLSI (Theorem 3.3.6). As noted previously, these assumptions
are considerably more general than what are usually considered in the sampling
literature and do not require dissipativity. In particular, Theorem 3.3.4 completes
the program of [VW19] by establishing the first sampling guarantees for LMC
under a Poincaré inequality and a weak smoothness condition.

Generically, our final rate is O(d®/®) (1+1/s)=1/s /c2/s) where s is the Holder
continuity exponent of VV and « captures the growth of the potential at infinity.
We give a number of illustrative examples in §3.4 and show that our results improve
upon the rates given in [EH21].

M 3.1.2 Notation and organization

Throughout the chapter, 7 o< exp(—V) denotes the target distribution on R?; the
function V : R? — R is referred to as the “potential”. We abuse notation by
identifying a measure with its density (w.r.t. Lebesgue measure on R%). We write
a S band a = O(b) to indicate that a < Cb for a universal constant C' > 0;
also, we use 5() as a shorthand for O(-)log®™®(.). Similar remarks apply to the
notations 2, €, ﬁ, and =, O, o.

The chapter is organized as follows. In §3.2, we begin by reviewing functional
inequalities and their implications for the continuous-time convergence of the
diffusion (3.1) in Rényi divergence. We then state our main theorems on the LMC
algorithm in Section 3.3, and illustrate them with examples in §3.4. We give a
technical exposition of our proof techniques in §3.5 and fill in the details in §3.6.
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We conclude in §3.7 with a discussion of future directions of research.

B 3.2 Functional inequalities and continuous-time convergence

Our focus in this section is the convergence of the continuous-time Langevin
diffusion (3.1) under various functional inequalities. Throughout the paper, we
use Rényi divergences as measures of distance between two probability laws. The
Rényi divergence of order g € (1,00) of p from 7 is defined to be

1 du
R = —m |
Al 7) = 1§

q
mllLa()’

where R, (|| 7) is understood to be o0 if p & . See §2.2.3 for background on
these divergences.

M 3.2.1 Poincaré and log-Sobolev inequalities

In the context of sampling, the most well-studied functional inequalities are the
Poincaré inequality (PI) and the log-Sobolev inequality (LSI); see §2.2 for back-
ground. We recall the basic definitions here. We say that = satisfies a PI with
constant Cpy if, for all smooth functions f : R¢ — R, it holds that

vary(f) < Cpi E-[|Vf[|] (P1)

Similarly, we say that 7 satisfies an LSI with constant Cyg if for all smooth
f:RYI R,

ent(f*) < 2Cis B[V f]|"], (LSI)

where ent,(f?) = E.[f?In(f?/E.(f?))]. By a linearization argument, an LSI
implies a PI with the same constant.

These functional inequalities are classically related to the ergodicity properties
of the Langevin diffusion (3.1). Indeed, if 7; denotes the law of the diffusion at
time ¢, then a PI is equivalent to

2t
X2<7Tt | m) < exp(—o—) X2(7T0 | ), forallt >0,
PI

whereas an LSI is equivalent to

ot
KL(r, || 7) < exp<—@l) KL(mo || 7),  forallt>0.
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Functional inequalities are particularly useful for high-dimensional non-log-concave
sampling because they are preserved under a variety of common operations (see
§2.2). This flexibility is key for capturing a wide variety of non-log-concave settings
encountered in practice.

Before stating the convergence results, we recall from §2.2.3 that

1

max{ 2 s = 3y, (14 5

Wi, m)), KLl m)} < Rolu]| 7).
Note that in the Poincaré case, a T, transportation inequality does not necessarily
hold, so a KL guarantee does not imply a matching W5 guarantee; by working
with Rényi divergences, we are able to provide a unified guarantee for all of these
metrics simultaneously.

Improving upon the prior result of [CLL19], [VW19] showed that these inequal-
ities also imply Rényi convergence for the diffusion.

Theorem 3.2.1 ([VW19, Theorems 3 and 5]). Let ¢ > 2, and let m; denote the
law of the continuous-time Langevin diffusion (3.1) at time t.

1. If w satisfies (LSI), then

2
ORy(me || m) < == Ra(m [l ).

2. If m satisfies (Pl), then

' >
ath<Wt || 7'(') S —L X 1’ Zf:R’CI(Trt H ﬂ-) -
qCPi Ry(me || 7)), if Ry(me || ) <

The above result states that under LSI, the Rényi divergence decays expo-
nentially fast whereas under PI, dissipation can be explained in two phases; an
initial phase of slow decay followed by exponential convergence. Thus, to obtain
Ry(mr || 7) < €2, it suffices to have

(oS00 w2 7 0(on (30 0)

2

under LSI and PI respectively.

B 3.2.2 Latata—Oleszkiewicz inequalities

In order to interpolate between the Poincaré and log-Sobolev cases, we con-
sider a family of functional inequalities known as Latata—Oleszkiewicz inequalities
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(LOI) [LO00]. We say that 7 satisfies an LOI of order o € [1,2] and constant
Cloi(a) if for all smooth f : R¢ — R,

EW(fZ) B Efr(fp)Z/p
p)2(1—1/a)

< Cloi E-[[Vf]%]. (LOI)

sup
pe(1,2) (2 —
An LOI of order 1 is equivalent to a PI, and an LOI of order 2 is equivalent to an
LSI. More generally, an LOI of order o captures measures whose potentials “have
tail growth «”; indeed, two notable examples of distributions satisfying the LOI of
order v are 7(x) o< exp(— 3% |#;]*) and 7(z) o exp(—||z]|*) [LOOO; Bar01]. The
LOI is well-studied because it captures intermediate forms of concentration and is
related to a number of other important inequalities, such as Sobolev inequalities;
we refer readers to [LO00; Bar01; BR03; Cha04; Bou+05; Wan05; BCR06; BCROT;
CGGO7; Gozl0].
As our first result in this section, we extend Theorem 3.2.1 to cover the LOI
case. Our proof, which uses as an intermediary the super Poincaré inequality
introduced in [Wan00], is deferred to §3.6.1.

Theorem 3.2.2. Let ¢ > 2, and let m; denote the law of the continuous-time

Langevin diffusion (3.1) at time t. Suppose that 7 satisfies (LOIl) with order a.
Then, it holds that
1 R e R > 1

at:Rq<7Tt H 71') < — % Q(ﬂ-t “ 7T) ) Zf Q(Wt “ 7T) = 4

BiClow  \Re(mi ™), i Rym | m) <1,

The above theorem can be used to obtain R, (77 || 7) < € whenever

T> Q(qCLOI(a) (RQ(MOZH/Z)Z_/all - +1n é)) ;

we refer to Lemma 3.6.16 for details. We also remark that Theorem 3.2.2 reduces
to Theorem 3.2.1 in the edge cases a = 2 (LSI) and aw = 1 (PI) up to an absolute
constant. For a € (1,2), the initial phase of convergence interpolates between the
slow decay induced by PI and the exponential decay under LSI.

B 3.2.3 Modified log-Sobolev inequalities

In addition, we also consider the modified log-Sobolev inequality (MLSI) used
in [EH21]. The MLSI of order o € [—1,2] states that for all f : R — R with

EW(fQ) =1,

entr(f*) < 20wsi inf (B[ VF7) " @, (14 1)m)"y . (MLS))
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where §(p) and m,(u) for a measure p (not necessarily a probability measure) are
given as

2w ~ _ (12yP/2
)= 2 = [ .

The inequality (MLSI) is a careful refinement of [TV00], and provides convergence
guarantees for both the Langevin diffusion and LMC under various tail growth
conditions [EH21]. It is similar to log-Nash inequalities [BZ99; Zeg01], yet the
main focus of the latter is infinite-dimensional semigroups. We consider (MLSI)
as used in [EH21] since other MLSI-type results are stated by absorbing various
dimension-dependent constants into Cys), and thus they cannot provide sharp
rates for LMC.

For technical reasons, we also pair this assumption with a concentration prop-
erty of the target: for some m > 0 and « € [0, 1],

A e |
m{|||| >m+ A} < Zexp{—(ct '|) 1, for all A > 0. (ovi-tail)

The parameters ag and «; are analogous to the parameter « in the LOI; we refer
to [EH21] and the examples in §3.4 for further discussion.

Similarly to Theorem 3.2.2, we can prove a quantitative continuous-time con-
vergence rate for the Langevin diffusion (3.1) under (MLSI) and (a;-tail). The
proof is deferred to §3.6.5.

Theorem 3.2.3. Suppose that 7 satisfies the conditions (MLSI) and (a4-tail), and
assume that et m, Cyuisi > 1 and that m, Ceil, Roy(mo || ) < d°W. Let (m1),5
denote the law of the continuous-time Langevin diffusion (3.1). Then, it holds
that Ry(mr || 7) < €% for

T > Q(QOI%/ILSI (m + ¢Cait Rag(mo || 7)1/a1)2_a0 polylog W) :

We remark that when oy = a3 = «, the dependence on the Rényi divergence
at initialization in Theorems 3.2.2 and 3.2.3 match up to a logarithmic factor, and
hence LOI and MSLI provide similar results in continuous time. However, as we
discuss in Section 3.4, MLSI is useful for treating certain examples in which the
LOI constant C o) may be dimension-dependent whereas Cyys; is not.

B 3.3 Main results on Langevin Monte Carlo

In this section, we present our main results on the Rényi convergence of LMC.
Denoting the step size with A > 0, the LMC algorithm is defined by the iteration

X(k+1)h = Xy — hVV(th) + V thk, ke N, (LMC)
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where (&),cn 1S @ sequence of i.i.d. standard Gaussian variables. Here, the index-

ing of the LMC iterates is chosen so that the iterate Xy, is comparable to the

continuous-time diffusion (3.1) at time kh. We let g, denote the law of Xyy,.
Our first result deals with the LSI and gradient Lipschitz case.

Theorem 3.3.1. Assume that 7 satisfies (LSI) and that VV is L-Lipschitz; as-
sume for simplicity that Crs;, L > 1 and q > 3. Let uyny, denote the N-th iterate
of LMC with step size h satisfying 0 < h < 1/(192¢°Cys1L?). Then, for all N > Ny,
it holds that

N — Nyh ~
Ry [ 7) < exp(~LE 2 @ ) 4 OangCiaiL?).

4CLs)
where Ny = (% In(q — 1)]. In particular, for h = é(dq#ZL? min(1, %)),
~ 2 L21 2
Ry(p | W) <2, for all N > D1 ogiﬂzz(uo 17) a1 =)

The comparison of Theorem 3.3.1 with [VW19; GT20; EHZ22] is summarized
as Table 3.1. Since our guarantee is stable with respect to the number of iterations
N, we can let N — oo and obtain an estimate on the asymptotic bias of (LMC)
in Rényi divergence; this answers an open question of [VW19].

Corollary 3.3.2. Assume that 7 satisfies (LSI) and that VV is L-Lipschitz;

assume for simplicity that Cys;, L > 1. Let ug}é) denote the stationary distribution
of LMC with step size h satisfying 0 < h < 1/(192¢*C\ s/ L?). Then,

Ry (1 || ) < O(dhqCys1L?).

Source Assumption Metric Complexity  Stable?
[VW19] (LSI) KL (¢=1) dC%L?*/e? v
[GT20] Csl-SLC Rényi d?Cec Lt /et X
[EHZ22] Csl-SLC Rényi  dg*CicL*/e? X
Theorem 3.3.1 (LSI) Rényi dqCEq L? /& v

Table 3.1: We compare the guarantee of Theorem 3.3.1 with prior results, omitting
polylogarithmic factors. “SLC” refers to “strongly log-concave”, and the last column
refers to whether the bound is stable as the number of iterations of LMC tends to
infinity. The complexity bound in the last row is stated for moderate values of ¢; when
q > d/e?, then the dependence on ¢ becomes 5(q2).

Extending the techniques of Theorem 3.3.1, we next give a result for the
log-concave (which implies (Pl)) and gradient Lipschitz case.
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Theorem 3.3.3. Assume that 7 is log-concave (and hence satisfies (P1)) and that
VV is L-Lipschitz. Assume that V' is minimized at 0. Let uyy denote the N-th
. ; . o ~ 22 .

iterate of LMC with step size h satisfying h = @(W min{1, q%, ng}) and
initialized at pg = normal(0, L='1;). Then,

- (d2q30|:2>|L2

5 €L
max{ 1, qe, Wm
In Table 3.2, we compare Theorem 3.3.3 with the prior works [DMM19;
Dwi+19; Che+20a; DKR22]. Compared to these results, Theorem 3.3.3 is only
beaten by the result for modified MALA (for which our result reads O(d?/c?)
whereas the result for modified MALA is O(d?/e3/2)). Moreover, our result is
given in the strongest metric (Rényi divergence). However, better results for the
log-concave case will be obtained in §4 and §6.

Ry (i || 7) < €2 after N = © ) iterations.

e2

Source Algorithm Metric  Complexity
[DMM19] averaged LMC VKL d? /et
[Dwi+19; Che+20a] modified MALA TV d?/e3/?
[DKR22] modified LMC Wy d? /et
[DKR22] modified LMC Wy d?/e®
[DKR22] modified ULMC 4%} d?/e?
[DKR22] modified ULMC Wy d?/ed
Theorem 3.3.3 LMC v/Rényi d?/e?

Table 3.2: We compare guarantees for sampling from an isotropic log-concave distribu-
tion with Cp), L = O(1). MALA refers to the Metropolis-adjusted Langevin algorithm,
whereas ULMC refers to the underdamped Langevin Monte Carlo algorithm.

Subsequently, we consider the general case of an LOI. We also assume weak
smoothness for some s € (0,1] and L > 0:

|VV(z) = VV(y)|| < Lz —yl|* for all z,y € R%. (s-Holder)
We note that the LO order o and the Holder exponent s need to satisfy s+ 1 > a.

Theorem 3.3.4. Assume that the potential satisfies VV (0) = 0, (LOI) of order
o, and (s-Holder). For simplicity, assume that ', m, Cloia), L, Ra(po || 7) > 1
and ¢ > 2; here, m = [|-||dw and 7 is a slightly modified version of © which
is introduced in the analysis (§3.6.4). Then, LMC with an appropriate step size
(given in (3.16)) satisfies Ry (unn || ) < €2 after

dq 2/ OG5 L2 Ry (o | ) (19
c2/s

N:és<
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m* Ro(uo || 7)*
% 1’ 1/552/57 : })

max{ q VR
iterations. Here, és() hides polylogarithmic factors and constants depending only

on s.

We now make a few remarks to simplify the rate. First, although initialization
is more subtle in the non-log-concave case, it is reasonable to suppose that the
quantities Ra(po || 7), Rog—1(po || m) are O(d); we defer a detailed discussion of
initialization to §3.6.6. Next, it is also reasonable to assume® m = O(d), in
which case the third term in the maximum will never dominate. Focusing on
the dependence on the dimension and target accuracy, we therefore obtain the
simplified rate O(d?/®) (1+1/9)=1/s /2/$). in particular, in the smooth (s = 1) case,
the rate is 5(d4/ a=1/¢2). Regarding prior works which handle a wide variety
of growth rates and smoothness conditions for the potential, the closest to the
present work is [EH21], which obtains a rate of O(d®/e+Ha=1h (1+1/5)=1 /22/5) for
potentials of tail growth « satisfying (s-Holder); note that our rate is strictly
better as soon as s < 1 and avoids the jump in the rate at a = 1. We emphasize,
however, that despite the superficial similarity with [EH21], our result is the first
one proven under a purely functional analytic condition on the target (together
with weak smoothness).

Remark 3.3.5. The case o = 1 yields the bound O(d2H/sq +2/sCLF/ [2/s je2/s)
Jor LMC under the Poincaré inequality and weak smoothness. In the case o = 2
and s = 1 (LSI and smooth case), the rate reduces to O(dg*Cis L*/e), which
recovers the guarantee of Theorem 3.53.1 up to the dependence on q.

When the LOI constant Coj) is dimension-dependent, Theorem 3.3.4 may
not give the sharpest rates. We therefore complement Theorem 3.3.4 with a result
assuming (MLSI).

Theorem 3.3.6. Assume that the potential satisfies VV(0) = 0, (MLSI) of or-
der oy, (ai-tail), and (s-Holder). For simplicity, we also consider the regime
e~ m, Cuisi, Crait, L, Ra(po || 7) > 1, ¢ > 2, and m, Cit, Ro(mo || 7) < dOW;
here, 7 is a slghtly modified version of m which is introduced in the analysis
(§3.6.4). Then, LMC with appropriately chosen step size (given in (3.18)) satisfies

Ry(punn || m) < €% after

5 Ranlpo || )
N=6 :
g2/s

3This holds for, e.g., the potentials V (z) = ||z||* for all « € [1,2].
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m* Ry(po || 7)*2

m
X max{1,52/5, —, , ( )(2—ao)/8})
d d Rag (10 || )"

iterations. Here, the é() notation hides polylogarithmic factors as well as con-
stants depending on ayg, a1, q, S, Cvisi, Chail, and L; a more precise statement is
gien in §3.6.5.

For potentials of tail growth o € (1, 2], we can suppose that (MLSI) and (o -tail)
are satisfied with oy = oy = a, where we take m = O(d"/®). Also, assuming
Ra(po || 7), Rag(to || ) = O(d), the rate is then O(d®/) A+1/9)=1/s /22/s) a5 hefore.
As discussed in the next section, the case v = 1 is special and (MLSI) may not
hold with ag = a.

Remark 3.3.7. A number of recent works [DMM19; Cha+20; NDC21; LC22;
Leh22] consider non-smooth and mized-smooth potentials. By incorporating Gaus-
sian smoothing, it seems possible to extend our techniques to cover these settings,
but we do not pursue this direction here.

M 3.4 lllustrative examples

In this section, we illustrate our results on simple examples and compare our
guarantees with prior work.

Example 3.4.1 (tail growth o € (1,2]). Consider the target 7, (x) o< exp(—||z||*)
for a € (1,2], which satisfies (LOI) of order o and (s-Holder) with s = a — 1.
Since 7, satisfies (Pl) with Cp; = ©(d**!) [Bob03], then Theorem 3.3.4 does
not yield a good result. Previously, [EH21] showed that 7, satisfies (MLSI) of
order a, obtaining the complexity O(d®=®)/(=1) /2/(@=1)) {5 achieve e2-accuracy
in KL divergence for this target. From Theorem 3.3.6, we have improved this rate
to 5(((1/52)1/ (a_l)) in Rényi divergence. Since (MLSI) is stable under bounded
perturbations, the same rate holds for appropriately perturbed potentials such as
V(z) = [lz[|* + cos |z]].

Due to the use of the weighted CKP inequality [BV05], their KL bound yields
O(dB=/(@=1) je2a/(a=1)) complexity to reach e accuracy in the W, metric. On
the other hand, Theorem 3.3.6 together with the Poincaré¢ inequality yields the
complexity O(d?(@@=D) /g2/(e=1)) 0 obtain ¢ accuracy in the W, metric. Hence,
we have both improved the rate in W, and proven a new guarantee in W5 which
previously could not be reached at all. &

Example 3.4.2 (tail growth a € (1,2] for smoothed potential). Consider the
target mo () o< exp(—(1 + Hx!|2)a/2), which satisfies (LOI) of order av and (s-Holder)
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with s = 1 (i.e., VV is Lipschitz). Previously, [EH21] obtained the complexity
O(d*=)/2 /g2) in KL divergence and O(d*+e)/e /g2y in W, From Theorem 3.3.6,
we have obtained the rate O(d®#~*)//¢2?) in Rényi divergence and O(d(6=20)/2 /¢2)
in Ws. As before, this rate is stable under suitable perturbations of the potential.

¢

Example 3.4.3 (tail growth o = 1 for smoothed potential). The case of & =1 is
worth considering separately for comparison purposes. Consider the target m (z) o
exp(—+/1+ ||z||?), which satisfies (s-Holder) with s = 1 (i.e., VV is Lipschitz).
Previously, [EH21] showed that m; satisfies (MLSI) with ap = —O(loé =) and
Cwmisi = O(log d); also, 7y satisfies (aq-tail) with ay = 1. Using this, they obtained
the complexity 5(d5 /€%) in KL divergence, whereas Theorem 3.3.6 implies the
same rate in Rényi divergence. We also remark that their rate only holds for
sufficiently small perturbations (e.g., their analysis does not cover the potential
V(z) = ||z|]| + cos||z||) due to the need to preserve a dissipativity assumption,
whereas our result has no such requirement. This highlights a benefit of working
without dissipativity conditions.

Here, Theorem 3.3.3 applies to m; with Cp; = O(d) [Bob03] and yields a rate of
O(d*/e?) in Rényi divergence; in contrast, [DMM19] yields a rate of O(d3/e?) in
KL divergence (started from a distribution with W3 (ug, m1) = O(d?)) for averaged
LMC, and [Dwi+19; Che+20a] yields a rate of O(d3®/e'5) in ||| 1v for modified

MALA, although none of these rates is stable under perturbation. &
Example 3. 4 4 (tail growth a € [1,2] for smoothed product potential). For
r € R let (x); == /1 + 22 Consider the target m,(z) o< exp(—||{z)||%), which

satisfies (LOI) of order « [see LO00] and (s-Holder) with s = 1 (i.e., VV is
Lipschitz). The result of [EH21] implies a complexity of 6(d (4=e)/a /22) in KL
divergence and O(d*+2)/ /£22) in W, for a € (1,2], and O(d® /%) in KL divergence
when a = 1. From Theorem 3.3.4, we have obtained the rate O(d*=®/®/¢2) in
Rényi divergence and hence also W5 for all a € [1,2]; in particular, there is no
jump in the rate at a = 1. &

Example 3.4.5 (LSI case with weakly smooth potential). We also compare the
results when o« = 2 and s € (0,1]. In this case, [Cha+20] obtained the rate
O(d®+9)/s Je2/5) in |- lTv for strongly log-concave distributions, whereas [EH21]
obtained the rate O((d/s2 )1/ ®) in KL divergence for perturbations of strongly
log-concave distributions. In contrast, Theorem 3.3.4 yields the rate O(d/s%/*)
in Rényi divergence under (LSI). An example of such a potential is given by

V(z) = 5 |zl + cos(fl«] ). O
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B 3.5 Technical overview

B 3.5.1 Adapting the interpolation method to Rényi divergences

In the proof of Theorem 3.3.1, we follow the interpolation method of [VW19].
Namely, we introduce the following interpolation of (LMC): for ¢ € [kh, (k + 1)h],

Xy = X — (t — kh) VV(Xin) + V2 (B, — Bpp) (3.2)

where (Bt)tzo is a standard Brownian motion, and let p; denote the law of Xj.
Then, [VW19] derives the following differential inequality for the KL divergence:

3
OKL( | ) < =5 x AB[IVyAIP + EIIVV(X) - WV (X, (33)
Fisher ir?fgrmation discretiz;gon error
where we write p; = %. This inequality is an analogue of the celebrated de

Bruijn identity from information theory for the interpolated process. Assuming
that 7 satisfies (LSI) and that VV is L-Lipschitz, the Fisher information upper
bounds the KL divergence and the discretization error is shown to be of order
O(dh*L?); this then yields a convergence guarantee in KL divergence.

The analogous differential inequality for the Rényi divergence is

SEAIVEAI | Bl (X) IVV(XD) = YV (X))

AR,y || 7) < - 4

q q :
q E-(pt) Ex(pf)
N -~ ~~
Rényi Fisher information discretization error

(3.4)

(See the proof of [EHZ22, Lemma 6]; to make the chapter more self-contained, we
also provide a derivation in Proposition 3.6.2.) Note that the ¢ = 1 case of the
above inequality formally corresponds to (3.3). Next, as shown in [VW19, Lemma
5], the Rényi Fisher information indeed upper bounds the Rényi divergence under
an LSI. However, the discretization term is now far trickier to control.

Write 1 == pi~'/E.(p!). Observing that Ev,(X;) = 1, the discretization
term can be written as an expectation under a change of measure:

discretization error = ¢ E[|[VV (X,) — VV (Xw)|?] .

where E is the expectation under the measure P defined via % = Y (Xy). Also,
using the Lipschitzness of VV', we obtain

IVV(X:) = VV(Xin)I* < 202 L | VV (Xi)|I* + 4L7 || B — Bl
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Hence, our task is to bound the expectation of these two terms under a complicated
change of measure.

Towards that end, consider first the Brownian motion term. Using the Donsker—
Varadhan variational principle, for any random variable X,

EX <KL(P || P)+InEexp X .

Applying this to X = ¢ (|| By — Bu|| — E|| By — Bnl|)” for a constant ¢ > 0 to be
chosen later, we can bound

~ 9~
BB - Bull] < 2EllB, — Bl?) + = Ex
< 2E[|B, — Byl
2 ~
+ = {KUE | B) + nEexp(c(IB, — Bull ~ BIB, - Bul)}.  (35)

Note that the first and third terms in the right-hand side of the above expression
are expectations under the original measure P, and can therefore be controlled;
to ensure that the third term is bounded, we can take ¢ < 1/h. For the second
term, a surprising calculation involving a judicious application of the LSI for m
(see (3.8), (3.9), and (3.10)) shows that it is bounded by h times the Rényi Fisher
information, and can therefore be absorbed into the first term of the differential
inequality (3.4) for h sufficiently small.

The expectation of the drift term ||[VV (Xj4)[|? under the change of measure
can also be handled via similar methods, but this can be bypassed via a duality
principle for the Fisher information; see Lemma 3.6.3. We also remark that
naively, this proof incurs a cubic dependence on ¢, but this can be sharpened via
an argument based on hypercontractivity (Proposition 3.6.4).

In the above proof outline, the LSI for 7 plays a crucial role in the arguments.
In Theorem 3.3.3, we show that the method can be somewhat extended to the case
when 7 does not satisfy an LSI, but is instead assumed to be (weakly) log-concave.
In this case, we show that with an appropriate Gaussian initialization, the law iy,
of the iterate Xy, of (LMC) satisfies an LSI, albeit with a constant which grows
with the number of iterations (Lemma 3.6.5). In turn, this fact together with a
suitable modification of the preceding proof strategy also allows us to obtain a
convergence guarantee in this case (see §3.6.3 for details).

B 3.5.2 Controlling discretization error via Girsanov’s theorem

In the general case of a weaker functional inequality and smoothness condition,
the preceding arguments do not apply. Instead, we start with the weak triangle



Sec. 3.5. Technical overview 69

inequality for the Rényi divergence (when ¢ > 2; see Lemma 2.2.23):

Ro(pr | ) S Rog(pir || 77) + Raga (|| ) -

Here, (f1t),>, is the law of the interpolated process (3.2), whereas (7;),, is the
law of the continuous-time Langevin diffusion (3.1) initialized at a draw from .
The second term is handled via the continuous-time convergence results, either
under the LOI (Theorem 3.2.2) or under the MLSI (Theorem 3.2.3), and the crux
of the proof is to control the first term (the discretization error).

The discretization error Ro,(pr || 7r) was controlled in the prior works [GT20;
EHZ22] via the adaptive composition theorem, albeit under stronger assump-
tions (strong convexity/dissipativity). Briefly, this theorem controls the Rényi
divergence between the paths of the interpolated and original (continuous-time)
processes by summing up the contribution to the Rényi divergence in each in-
finitesimal time step. In turn, due to the Brownian motion driving the SDEs, this
reduces to a computation of the Rényi divergence between Gaussians. Making
this approach rigorous, however, requires first applying it to the discrete-time algo-
rithm and then performing a cumbersome limiting argument. Here, we streamline
this technique by instead invoking Girsanov’s theorem from stochastic calculus.

First, the data-processing inequality (Lemma 2.2.19) implies that Ra,(pr ||
mr) < Roy(Pr || Qr), where Pr and @) are measures on path space representing
the laws of the trajectories (on the interval [0, 7) of the interpolated and diffusion
processes respectively. Next, Girsanov’s theorem provides a closed-form formula

for the Radon—Nikodym derivative %, which leads to the inequality
1 o [T 2
Rog(Pr || Qr) < m InEexp <4C] IVV(Ze) = VV(Zaynyn)l dt) )
- 0

where (Z;),, is the continuous-time Langevin diffusion (3.1). The use of Gir-
sanov’s theorem for deriving quantitative estimates on the discretization error in
this manner was likely first introduced in [DT12] for the KL divergence. However,
to the best our knowledge, this work is the first to adapt the Girsanov technique
to provide a complete Rényi convergence result for LMC.

Controlling the discretization error over an interval [0, k] corresponding to a
single iteration of LMC is straightforward using the tools of stochastic calculus
(see also the calculation in §5). Extending this to the full time interval [0,7] is
more challenging; indeed, if we bound the discretization error on [h,2h] condi-
tional on (Z),(o » then the resulting bound depends on | Z1]|?, which prevents
us from straightforwardly iterating the one-step discretization bound. To ad-
dress this, we instead control intermediate error terms conditioned on the event
Esr = maxyen, kh<r || Zin|| < Rst, and Rsr is chosen so that P(E57) > 1 — 9.
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Subsequently, we can use Lemma 3.6.10 to remove the conditioning, and hence
providing a bound on Ry, (Pr || Qr) if Rsr does not grow too fast in 1/§; in
particular, it is required that Rsr < +/log(1/6).4

The requirement on Ry is equivalent to requiring that for each ¢ € [0, 7], the
random variable Z; has sub-Gaussian tails. Observe however that the stationary
distribution m may not have sub-Gaussian tails under our assumption of an LOI
(indeed, in the Poincaré case, m may only have subexponential tails). Nevertheless,
if the initialization uo has sub-Gaussian tails, then for each ¢ € [0, 7] it may still
be the case that m; has sub-Gaussian tails. This turns out to be true, but it is
quite non-trivial to prove without any dissipativity conditions on the potential V,
and therefore constitutes our primary technical challenge.

To overcome this challenge, we introduce a novel technique based on compari-
son of the diffusion (3.1) with an auxiliary Langevin diffusion (7;),, corresponding
to a modified stationary distribution #. The distribution 7 is constructed to have
sub-Gaussian tails. To transfer the sub-Gaussianity of 7 to m;, we apply the
following change of measure inequality: for probability measures p and v, and
any event £ C R?,

u(B) = v(B)+ [ 16 (5~ 1) dv < v(E) + VEU ) V(E),
where the last inequality is the Cauchy-Schwarz inequality. This simple inequality
states that in order to control the probability of an event E under a measure p in
terms of its probability under v, it suffices to control the chi-squared divergence
between p and v. Applying this to our context, we can establish sub-Gaussian tail
bounds for m; if we can control the Rényi divergences Ro(m; || 7:) and Ro (7 || 7);
the former is again controlled via Girsanov’s theorem. We stress that the auxiliary
process (7¢),~, is introduced only for analysis purposes and does not affect the
implementation of the algorithm.
The details of this strategy are carried out in Section 3.6.4.

B 3.6 Proofs

B 3.6.1 Proof of Theorem 3.2.2

In this section, we prove Theorem 3.2.2 on the Rényi convergence of the continuous-
time Langevin diffusion (3.1) under an LOI. Using capacity inequalities as an
intermediary, [BCR06; Goz10] established the equivalence of LOI with other
functional inequalities such as modified Sobolev inequalities. For our purposes,

4See, however, §6 for an alternative approach.
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it is instead convenient to work with super Poincaré inequalities, which were
introduced in [Wan00].

We say that 7 satisfies a super Poincaré inequality with function 5 : R, — R,
if for all smooth f : RY — R,

E.(f?) < B(s)E[|VF?] + s (E|f])?  forall s>1. (3.6)
For a € [1,2], define the function f, : Ry — R, via

96CLoi(a)
Pa(s) = 2-2/a
In(e + s)
Then, it is known that (LOI) with order « implies a super Poincaré inequality

with function f,, [see Goz10, Remark 5.16]. The following proof is inspired by the
proof of [VW19, Theorem 5].

Proof of Theorem 3.2.2. From [VW19, Lemma 6], we have

CAEIVE)

R (my || ) = ,
S L X7
where p; == %. Applying the super Poincaré inequality (3.6) with f = pf/ % and
B = B, yields
1 S 2
E_ [|V a/2y(2 > E, (p?) — E, q/2
[H (Iot )H ] - ﬂa(s) (pt) 6&(3){ (pt >}
1 S
D) exp{(q — 1) Ry(m || m)} — 5.0) exp{(q — 2) Rgpa(m || )} .

Using the fact that R,/» < R,, we can further lower bound this by

exp{(g — 1) Ry(m [| ™)}
Bal(s)

(1 — sexp{—Ry(m || m)}) -

E (V)% > (1 - sexp{—Ry(m || m)})

Ex(p7)
Bals)

We now distinguish two cases. If R (m || m) > 1, then we choose s =
s exp{Ry(m || 7)}, yielding

) In(e + & expRy(m || m)* "
OR(m || 7)) < ————— = — ? -
Ry || ) < aBa(s) 48qCLoi(a)
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1

_—R e T 2—2/04'
68¢CLoi(a) ome | 7)

Otherwise, if R, (7 || 7) < 1, then we choose s = 1, yielding

4 2
OR, (|| ) < — 1 —exp{—R,(m || m)}) < — R (me || 7
Rl ) 7) < == (1= exp=Ry{m | M)}) € =25 R )
1
- R (7 || ),
68qCLOI(a) Q( t || )
where we used the elementary inequality 1 — exp(—x) > x/2 for x € [0, 1]. O

M 3.6.2 Proof of Theorem 3.3.1

Throughout this section, recall the notation p; := % and v, = pI~! JE.(p]).

We begin by proving the differential inequality (3.4). Although this has ap-
peared in the previous works [VW19; EHZ22|, we include the proofs for the sake
of completeness.

Proposition 3.6.1. Let (1), denote the law of the interpolation (3.2) of LMC.
Then, fort € [kh, (k + 1)h],

dpu
Oppe = d1v({V1nd— +E[VV (X)) — VV(Xy) | Xe =]} ) -
Proof. For s,t € Ry, let juy5(- | X,) denote the conditional law of X; given X, and

let 115 denote the joint law of (X, X;). Conditioned on Xy, the Fokker—Planck
equation for the interpolation (3.2) takes the form

Oty (- | Xin) = Apuagion (- | Xien) + div(VV (X)) frepon (- | Xin)) -
Taking the expectation over Xy, yields
Oty = Apyy + div(VV ) + /diV({VV(-’Bk:h) = VV )} pgen(- | ) dpswn ()
= div(V1n P ) + div ([ {9V (@) = TV dpaelann | ) ()
= div(VIn dpe ) + div({E[VV (Xin) | Xe =] = VV} ).

dm
Combining the two terms yields the result. O
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Proposition 3.6.2. Let (11),5, denote the law of the interpolation (3.2) of LMC.
Also, let py = % and Oy = p?~' ) Ex(p?). Then, fort € [kh, (k + 1)h],

3 BV ()17
R ) < —=
Sl ) = = R )

Proof. For brevity, in this proof we write A, = E[VV(Xy,) | Xy = -] = VV.
Elementary calculus together with Proposition 3.6.1 yields

+ B[ (X) [VV(Xe) = VV (X)) [I°] -

ORy (i | ) = [y o,

= m /pf1 div({VInp, + A} i)

q

= U= DED /(V(Pg ), VInp, + Ay) dp

CEAITGE)IP + 2Bl (V0. 201}

Ex (i)
For the second term, Young’s inequality implies
2-1 2
—E,, [Pg/ <V(Pg/ ), A

- / / AN ) (V(22) (20), IV () — YV (20)) e, | 20) e (dze)

=[] o ) (V) 0, TV (1) = TV (@) s )
= — B (0 (V) (X0), TV (Xi) — VV (X))
< 5o BTGP+ S B (X0 VY (Xw) = TV (X

Substituting this into the previous expression completes the proof. O

Next, we formulate a lemma to control the expectation of [|[VV|[* under a
change of measure. Although this is not strictly necessary for the proof, it stream-
lines the argument.

Lemma 3.6.3. Assume that VV s L-Lipschitz. For any probability measure p,
we have

du du
EIVVIP) < 4[|V T[] + 242 = E,[||VIn '] + 24L.
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Proof. Let £ denote the infinitesimal generator of the Langevin diffusion (3.1),
e, Zf = Af — (VV,Vf). Observe that £V = AV — ||[VV|®.. Applying
integration by parts and recalling that E, . f = 0 for any f,

d
E.[[VV|?] = -E, 2LV +E,AV < —/zv (ﬁ —1)dr +dL

_ /(vv, vy dn L

_o [ ¥y v,/ ®
_2/< - VWV dﬂ}derdL
1 dp 2
< SEIVVIP]+ 2B ||V 5[] +dL.

Rearrange this inequality to obtain the desired result. O]

We are now ready to give the proof of Theorem 3.3.1. In order to emphasize
the main ideas, we first present a proof which incurs a suboptimal dependence on
q and explain how to sharpen the argument afterwards.

Proof of Theorem 3.53.1. As encapsulated in the differential inequality of Proposi-
tion 3.6.2, the crux of the proof of Theorem 3.3.1 is to control the discretization
error term E[yy(Xy) |[VV(Xy) — VV (X)) |?] for t € [kh, (k + 1)h]. Since VV
is L-Lipschitz, we have ||[VV(X;) — VV(X)||? < 2L2 (t — kh)? |[VV (X)) |? +
4L%||B; — Biyll*. However, it is more convenient to have a bound in terms of
IVV (Xy)|| rather than ||[VV (Xg)]|, so we use

IVV (X < 9V (X0 + LIIX: = X
< [V (X + L [V V(X + VIL || B, — Byl

If h <1/(3L), we can rearrange this inequality to obtain

3L

3
IVV(Xin) || < 5 IVV (X))l + NG

HBt - Bth ’

SO

IVV (X)) = VV(Xin)|I”
< L% (t — kh)?||VV(X)||> + (18h2L* + 4L?) || B, — By ||?
< L% (t — kh)*||VV(X)||> + 6L? | B, — By

We will control the two error terms in turn.
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For the first error term, applying Lemma 3.6.3 to the measure vy, yields

d E.[pf IV In(p])|?
By 19V 7] < By [ [ V(0 ) 1) + 2z = B (prggmu | gar

ARV ()
E.(pf)

+2dL.

Note the calculation

qa/2
( t%)lf] ARV

E,. [¢¢ ||V In(v E. () , (3.7)

which will be used below as well.
For the second error term, we apply the Donsker—Varadhan variational princi-
ple as in (3.5).

Elt)(X:) | Be — Binll”]
< 2E[||B: — B |’]

2 ~
+ E {KL P H ]P)) + lnEeXp(C(HBt — Bth — EHBt — Bth)Q)}

< 2d(t —kh) + {KL ]P’ | P) + 1n]Eexp( (I|1B: — Bgn|| — E|| B — Bth)2)} ,

where ¢ = ¢;(X;). Due to Gaussian concentration, if we set ¢ = W then
(IlB: = Benll — E|[ B — Bal))”
E <2
P 8(t — kh) =
c.f. [BLM13, §2.3, Theorem 5.5]. Next, using the LSI for 7, we compute
q—1 q
= Pi q—1 P
KL(P || P) = Ey,,,, Intpy = Ey,,,, In = Ey, . In
t it t it — t it _1.q/(g—1)
By (pi ) q E,,(pi~H"™
(3.8)
q—1 P} 1 -1
=—1{Ey,,,In — — InE,, (pf
T Y R b
>0
q—1
< W KL(¢¢per || ) (3.9)
q— 1) S d,u
< @Ewt (|9 1w ) )

2q
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_2(¢— 1) Cusi E[[V(0{)[17]
q E-(pf) ’
where the last equality is (3.7). We have proved

E[t(X:) | Be — Byl

320 (g — 1) Cist B[V (o)),
q Er (/)t)

E.[|V(p!)]?]

EW(Pt)

Finally, collecting together the error terms and applying Proposition 3.6.2, we
see that

(3.10)

< 2d (t — kh) + +(161n2) (t — kh)

< 14d (t — kh) + 32hCiey

3 B[V (o)1 ) 2 (AE[IV (o)
R, (s || ™) < =2 1 9qL%(t — kh 1 2dI
alp ) E. (o) O S X 7) }
/2712
2 B E- V(e )]
+6gL {14d (6 = k) +320Cusy = -0 }
Assuming for simplicity that Cis;, L > 1, then h < 1/(192¢*Ci5L?) implies
q/2
DR || ) < —= E{IIV(pi I +18dqL? (t — kh)® + 84dqL? (t — kh)
q Eﬂ(ﬂt)

S_

Ry || ) + 18dgL? (t — kh)? + 84dqL? (t — kh)
2qC\s

where the last line uses the fact that 7 satisfies LSI [see VW19, Lemma 5]. This
then implies the differential inequality

t —kh t — kh
8t{eXp(2qCLSI) Ry || )} < exp( > CLSI) {18dqL? (t — kh)® + 84dqL? (t — kh)}

< 19dqL? (t — kh)® + 85dqL? (t — kh) .

Integrating this inequality over ¢ € [kh, (k + 1)h] yields the recursion

h 19 85
Ry (piis1yn || ™) < exp(—W) Ry(pn || 7) + = dh*qL? + == dh*qL*

< exp(— Ry (pen || ©) + 43dh*qL* .

QQCLSI)
[terating this yields

Nh
2qCLS|)
which completes the proof. O

Ry(pinn || ) < exp(— Ry(po || ™) + 86dhq*Crs1 L2,
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We now outline the hypercontractivity argument to improve the dependence
on q.

Proposition 3.6.4 (Hypercontractivity). Let (), denote the law of the inter-
polation (3.2) of LMC. Also, let q(t) =14 (qo — 1) exp ﬁw fort >0, and write
pr =t )y = pg(t)_l/Ew(pf(t)). Then, fort € [kh, (k + 1)h],

1 t 2 (q(t) — 1) E[|IV(p!"")|?]
8t<—1n / ()dﬂ) <= B
+(qt) — 1) E[y (X)) [VV (X)) — VV (X [17].-

Proof. Using calculus together with Proposition 3.6.1, we compute the derivative
in time as in Proposition 3.6.2, only now taking into account the additional time-
dependent function ¢. Since the calculation is very similar to Proposition 3.6.2,
we only record the final result:

) (ﬁ In / p1® d7r>

I 01 v (t) entr (pf”)
=y T e b e
3(g(t) — 1) EL[IV (o)1
T ) E.(p{")
B B 2, q(t) ent, (pf")
+(q(t) — D E[(X0) [VV(X,) VV(X’““”“q@ympg%’

where ¢ is the derivative of ¢, we write A, = E[VV (Xy) | Xy = -] — VV, and the
entropy functional is defined in §3.2. Applying (LSI),

Q(t) enta(pf”) _ 20O BRIV ()2 _ a(t) = 1 E[IV ("))
< = 2
a(t)* Ex(p{") a(t)* Ex(p{") a0 Bl
where the last equality follows from our choice of ¢. O

Proof of Theorem 3.3.1. Initial waiting phase. Let ¢ > 3. We apply Propo-
sition 3.6.4 with g9 = 2 and for t < Noh, where Ny = [2 8 1n(g — 1)]. As
in the earlier proof of Theorem 3.3.1, we take h < 1/(192¢>C\s1L?); note that,
d < q(Nogh) < 2¢. The bound on the error term from the previous proof implies

8t<$ln / pi® dw) < 18dg(t) L3 (t — kh)? + 84dq(t)L2 (t — kh).
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Integrating this over ¢ € [kh, (k + 1)h] yields

1 1
D) In / Pl dr = D) In / pIFR) 4 < 12dh3GLP + 84dh>GL?
< 85dh*GL>.

[terating this yields

1 1
a(Noh) ln/ i dr = 3 m/ ph dr < 85dh*gL*No < 170dhqCisiL* Ing.

Remainder of the convergence analysis. After shifting the time indices
and applying the preceding proof of Theorem 3.3.1 with ¢ = 2,

3 = 3
Ra(pvinyn | ) < 2 ln/P?N+NO)h dr < 1 Rao(pn || ™) 4 255dhqCrsiL? Inq

3 Nh
< - exp(——) :RQ(/J/O || 7T) + 258dhCLS|L2 + 255thOLS|L2 Inqg
4 4C\s)
Nh _ 91
< exp(———) Ra(po || 7) + 513dhqCrsiL* Ing.
4Cs
This completes the proof. O

M 3.6.3 Proof of Theorem 3.3.3

To prove Theorem 3.3.3, we show that the iterates of LMC satisfy (LSI) with a
growing constant.

Lemma 3.6.5. Assume that V is convex and VV is L-Lipschitz. Let (fixn)en
denote the law of the iterates of LMC initialized at uy = normal(0, L='1;) and
run with step size h < 1/L. Then, the LSI constant Cys\(pgn) of pxn satisfies
CLSI(Mkh) S L+ 2kh.

Proof. With the condition on the step size, id — h VV is a contraction. Using
standard facts about the behavior of the log-Sobolev constant under contrac-
tions [BGL14, Proposition 5.4.3] and convolutions [see, e.g., Cha04], we obtain

Cusi(pgs1yn) < Cusi((id = hVV) ypun) + 20 < Cusi(prn) + 2.

The result follows via iteration. O

We are now ready to prove Theorem 3.3.3, which builds upon the proof of
Theorem 3.3.1.
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Proof of Theorem 3.3.3. Using the differential inequality of Proposition 3.6.2, as-
suming h < 1/(3L), we want to control the error term

El(Xe) |VV (X)) — VV(Xin)|?]
< 9L (t — kh)? Efiby(Xy) [|[VV(X0)||?] + 6L% E[vyy(Xe) | B: — Bial*],

see the first proof of Theorem 3.3.1. For the first term, an application of
Lemma 3.6.3 again yields

E.[|V(pi")]?]

+2dL .
Ex(pf)

E[y:(Xy) HVV(Xt)Hz] < 4

For the second term, the Donsker—Varadhan variational principle (3.5) implies
E[(Xy) | B — Benl|?] < 2d (t — kh) + 16 (t — kh) {KL(]TD | P) +1n2}.

Now comes a key difference in the proof: in Theorem 3.3.1, we bounded KL(P||P) <
% KL(¢sp1 || ) and applied the LSI for w. Here, we instead use KL(P || P) =

KL (¢ || p1¢) and apply the LSI from Lemma 3.6.5 which worsens over time. We
thus obtain

E.[|V(pi")]?] E [V (of™)I”]
Ew(ﬂt) E (Pt)

Let N denote the total number of iterations that we run LMC. Collecting
together all of the error terms and using Proposition 3.6.2, we see that

KL(P || P) < 2Cisi(n) <2(L+2(k+1)h)

3 B[V (o) AE [V (o))

ORyfpu | 7) £ == =g C T+ 9L (¢~ k) { E (o +2dL}
q/2 2
+6qL2{14d(t—kh) +32h (L + 2NR) Hgip ))” ]}.

Assuming h < m min{1, qL2} it yields

1 E. a/2y 12
Ry (e || ) < Vip 7 I +18dqL? (t — kh)® 4 84dqL* (t — kh)
q E~(pt)
< _qT {1 — exp(=Ry(ue || 7))} + 18dgqL? (t — kh)* + 84dqL? (t — kh),

where the last inequality follows from [VW19, Lemma 17].
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We now split the analysis into two phases. In the first phase, we consider
t < Noh, where Ny is the largest integer such that R, (g || 7) > 1. Then,

1
Ry (s || ) < —=—— + 18dqL® (t — kh)® + 84dqL? (t — kh) .
2qCpy

Integration yields

Ro(tgervyn | 7) = Repn || 7) < + 6dh’qL® + 42dh*qL?

B 2qCp
h

S —
2qCpy

+43dh3qL? .

Ifh < m, then we deduce that R, (pn || 7) < Ry(po || ) — %, and hence
that the first phase ends after at most Ny < 4¢Cp iR, (110 || 7)/h iterations.
In the second phase, we consider ¢ such that R,(y || 7) < 1. Using 1 —

exp(—z) > x/2 for x € [0, 1], in this phase we have the inequality

1
DRy (e || 7) < ~5eCe Ryt || ) + 18dqL? (t — kh)* + 84dqL? (t — kh).
Pl

As in the proof of Theorem 3.3.1, it implies

N —Nyg—1)h
Ry(pnn || m) < eXp(—< 2q00p| ) ) Ry(pnorn || ™) + 88dhg*Cp L2
(N —No—1)h 2 72
< - 88dhq”Cp L~ .
< exp( 24Cr )+ q"Cpi

To make this at most €, we take h < zand N > No+ 1+ 2ch.>. In(2/¢).

176dq2£C'p .
From Lemma 3.6.17, we see that R,(uo || ) = O(d), so that N = @(%).
Substituting this into our earlier constraints on h, we see that if we take

~ 3 . 1 dCP|
h = @<— 17 ) ) )
dq20p|L2 mln{ qe € }
then the iteration complexity is
~ rd*PCE L? el
e L=
. max{ qe aCo }

This completes the proof. O
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M 3.6.4 Proof of Theorem 3.3.4

M 3.6.4.1 Girsanov's theorem and change of measure

As discussed in Section 3.5.2, we will use the Girsanov’s theorem, stated below in
a form which is convenient for our purposes.

Theorem 3.6.6 (Girsanov’s theorem, [Wks03, Theorem 8.6.8]). Consider stochas-
tic processes (1),0, (b )i=0; <b?>t20 adapted to the same filtration. Let Pr and
Qr be probability measures on the path space C([0,T]; R?) and (Xt);s evolves
according to

dX, = bl dt +v2dB  under Py,

dX, =2 dt +v2dB®  under Qr,

where BY is a Pp-Brownian motion and B? is a Qp-Brownian motion. Assume
that Novikov’s condition

1 T
EQr exp(:l/ 167 —b?HZdt) <
0

holds. Then,
dPT <1 /T P Q Q 1/T P Q112
T _exp(— [ WP —b2.dBY —= | IBF —b dt).
A0y Xp \/§ ; <t t t> 1 J, ”t t”

Remark 3.6.7. In our applications of Girsanov’s theorem, although we do not
check Nowikov’s condition explicitly, the validity of Novikov’s condition follows
from the proof.

Actually, we only need the following corollary.
Corollary 3.6.8. For any event £ and q > 1,

]EQT[(%)Q ]Lg] < \/E[exp<q2 /0T||bf - b?IIth> 15] )

T

provided that Novikov’s condition holds:

T
EQTeXp<q2/ ||bf—b?||2dt> < 00.
0
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Proof. Applying the Cauchy—Schwarz inequality,

dPr .,
10, Ll

T T
= E9r [exp(%/o <bf—b?,dBtQ>—%/ ||bf_b?||2dt) 15}
\/IEQT [exp(( / HbP—bQH2dt> 14
T
[ exp(vay [ 0F 18,08 - / JoF 522t
0

EQT [(

< \/IEQT [exp(q2 /0T||bf — th||2dt> ﬂg} )

where we used It0’s lemma to show that the underlined term equals 1; this step
requires checking that the exponential local martingale is a bona fide martingale,
which is implied by Novikov’s condition. O

Next, we state and prove the change of measure principle described in §3.5.2.
This lemma will be invoked repeatedly in the main arguments.

Lemma 3.6.9 (Change of measure). Let u, v be probability measures and let E
be any event. Then,

WE) < v(E) + /X3l v)v(E).
In particular, if i and v are probability measures on R and
vl = Ro+n} < Cexp(=cn®)  for alin >0,

where C' > 1, then

2

1 &
M{HH > Ry + EfRz(ﬂ | v) +?7} < 2C’exp(—%) foralln > 0.

Proof.

W(B) =B+ [ 16 (L~ 1) dv <v(E) + VU ) o(E),

where the last inequality is the Cauchy—-Schwarz inequality.
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For the second statement, applying the change of measure principle to £ =
{lI-Il = Ro + 1} yields

p{IFl > R+ 7} < Cexp(—ci?) +/C exp{—(cii? — Ro(u || 1)) }.

Now take 77 = /1 Ro(pu || v) + 1. O

Finally, we use the following lemma used to remove the conditioning on events.

Lemma 3.6.10 ([GT20, Lemma 14]). Let Y > 0 be a random variable. Assume
that for all 0 < 0 < 1/2 there exists an event Es with probability at least 1 — ¢ such
that E[Y? | &] < % for some & < 1. Then, EY < 4\/v.

M 3.6.4.2 Sub-Gaussianity of the Langevin diffusion
In this section, we introduce a modified distribution: for v, R > 0,

focexp(=V),  V(z)=V(z)+ % (lz] — R)? . (3.11)

Here, (||z|| — R)i is interpreted as max{||z| — R,0}*. Although # and V depend

on the parameters v and R, we will suppress this in the notation for simplicity.
Note that by construction, V = V on the ball B (0, R) of radius R centered at the
origin. Also, the probability measure 7 has sub-Gaussian tails. We record this
and other useful facts below.

Lemma 3.6.11 (properties of the modified potential). Let & and V be defined as
in (3.11). Assume that VV(0) = 0 and that VV satisfies (s-Holder). Then, the

following assertions hold.

1. (sub-Gaussian tail bound) Assume that R is chosen so that m(B(0, R)) > 1/2.
Then, for alln > 0,

m?
{1 > R+n} < QGXP(—T) :
2. (gradient growth) The gradient V'V satisfies

IVV (@)l < L+ (L+7)lz].

Proof. 1. We can write

Jexp(=V)

exp(L (I = R)? dm = — .
J oG - r)ar = 70 =



84 CHAPTER 3. ANALYSIS OF LANGEVIN MONTE CARLO

Next, we bound
Jexp(=V)
Jexp(=V)

by our assumption on R. The sub-Gaussian tail bound follows from Markov’s
inequality via

N | —

— [exp(=3 (M- B2) dr = (B0, B) =

# = R 2 ) < #{esn (] (11— R2) 2 exp 2} < 20xp(- 20

2. First, note that [|[VV(z)|| < Liz||®* < L(1 + ||z]|), using VV(0) = 0
and (s-Holder). Then,

IVV @)l < IVV (@)l + 7 (lzll = R)y < L+ (L+7) |zl

]

Throughout this section, we will assume that R > max{1,2m}, where m :=
[l dm, so that the sub-Gaussian tail bound in Lemma 3.6.11 is valid.

We now begin transferring the sub-Gaussianity of 7 to m;. First, we establish
sub-Gaussian tail bounds for 7, where (7;),-, is the law of the continuous-time
Langevin diffusion -

dZ, = —VV(Z,)dt + v2dB, (3.12)

with potential V, initialized at Xg ~ L40-

Lemma 3.6.12. Let (%),5, denote the modified diffusion (3.12) with potential

V. Assume that h < 1/(2(L+ 7)) and R > max{1,2m}. Then, for all § € (0,1),
with probability at least 1 — 6,

32
sup || Z]| < R+4h(L+ ) R+1/—ng[L0||7T \/96dh+ ln—
te[0,Nh) )

Proof. Apply the change of measure principle (Lemma 3.6.9) together with the
sub-Gaussian tail bound in Lemma 3.6.11 to see that with probability at least

1—96,
5 2 . 4 4
| Zkall SR‘F\/—RQ(M | 7) 4+ 4/ —In—.
v v o0
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Since the Rényi divergence is decreasing along the diffusion (3.12), then Ro(7 ||

7) < Ro(po || 7). Therefore, a union bound implies that with probability at least
19,

2 . 4 4N
T 1 Znll < R+ ;932(#0 | 7) + 5 . (3.13)

Next, for ¢t < h,
t
| Zkntt — Zinll < / IVV(Zingr) || dr + V2 || Bunst — B
0
t
<L+ (L+9) [ 1Zunsrl|dr + VE | Bunss — Bun
0

t
<L+ (L+9) (M Zal+ [ 1Zunsr = Zilldr) + V2| Bunss = Bl
0
where we used Lemma 3.6.11. Gronwall’s inequality implies

sup HZkh+t - Zkh”
t€[0,h]

< (WL + h(L+7) | Zenll + V2 s | Binit — Biall) exp(h (L +7))
te[0,h

< 2L 4 2h (L + ) | Zin|| + V8 up || Benst — Bl
tel0,h

provided h < 1/(2(L + v)). Now, a union bound shows that
P{ sup, HZ}|| >}
te

< IP’{ max HZth > R'}

k=0,1,...,
N—-1

+ P{ sup || Zinst — Zin|| > n— R, max Zih SR’}
2P 2 Ve = il s, 1]

<P, 150 > 7

+ZIP’{ S sup 1Bunss — Binll > 17— R’—2hL—2h(L+7)R’}.

Taking R' = R+ \/% Ra(po || )+ \/% In 2 and applying a standard bound on the
tail probability of Brownian motion (Lemma 3.6.21) shows that with probability
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at least 1 — 4, if R > 1,

N
sup || Z <R’+2hL+2h(L+7)R’+\/48dhln6—
te[0,Nh]
/8 8N
<R+4h(L+~)R+ —332M0||7r \/96dh—|— IDT

after simplifying some terms. O

Next, we control the Rényi divergence between m; and 7;, which ultimately
allows us to transfer the sub-Gaussianity to .

Proposition 3.6.13. Let T':= Nh. Let Qr, QT be the measures on path space
corresponding to the original diffusion (3.1) and the modiﬁed diffusion (3. 12)
respectively, both initialized at po. Assume that h < 3 mln{ T d} and v < s+
Also, suppose that R > max{1,2m} and Ro(po || 7) 2 1. Then,

3072T :

h(L+~)* R
d

Proof. For all 0 < 0 < 1/2, let & denote the event that the conclusion of
Lemma 3.6.12 holds, i.e.,

Re(Qr || Qr) < + 5Rs (110 || 7#) In(8N) .

Es = { sup || 2] < R5}

t€[0,Nh]

T 32,8V

Then, we know that P(&) > 1 — 0. Applying Girsanov’s theorem in the form of
Corollary 3.6.8,

with

d@Qr 4 1 NP
() 1e] < o WE [esp 16/ [VV () - VY ()2 ar) 1,
1
= mB[e (1622 [ (12 - B2 ar) 1)

8N
< (38472h2 (L +7)* R? + 192y Ry (1o || 7) + (230442dh + 7687) In T> T.
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In order to apply Lemma 3.6.10 and remove the conditioning, we require the
ondltlon 2304v2dhT + 768yT < 1. This can be achieved by taking v < %= and
h < 3d. Then, Lemma 3.6.10 implies

dQr
Ro(Qr | Qr) = E[(3 5 )’]

< In8+ (1929%h% (L + )% R + 96 Ra (1o || 7)

+ (1152v*dh + 3847) In(8N)) T
h? (L +~)® R? dh1n(8N)

T T
2 2

b (L+7v)°R

- d
where we have combined terms using Ry (po||7) > 1 to simplify the final bound. O

3072T

<In& +

+ Ro(po || 7) + + In(8N)

+5Ra (o [| ) In(8N)

Proposition 3.6.14. Let (Z;),5, denote the continuous-time diffusion (3.1) ini-
tialized at po. Assume that h < 3 min{;—r=, L} and m,Ry(po || 7) > 1. Then,
for all § € (0,1/2), with probability at least 1 — 6,

L max 1 Zin || < 2m + 490/ TRy (p10 || 7) In(8N)
230hY2m (L 4+ T—1) T2 1
+ T +1604/7 In 5

Proof. Recall from the proof of Lemma 3.6.12 that with probability at least 1 — 9,

AN
_max ||Zkh||<R+ —ng (o || ) + ” ln—

(see (3.13)). Equivalently,

where we write T .= Nh.

2

2 .
P{,_max, 12l 2 R+~ Raluio | ) + 0} < AN exp(~ 1)

Applying the change of measure principle (Lemma 3.6.9) again to Q)7 and QT with
the choice v = and R = 2m reveals that for all 6 € (0,1/2), with probability
at least 1 — 4,

3072T

2 . 4 A 8., 8N
rnax “Zth <R+\/;R2(HO | 7T)+\/§~(R2<QT | Qr) + ;hl—

k=01,..., )
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< 2m + 490/ TRy (110 || 7) In(8N)

230 2m (L + T—1) T2 1
+ 7 +1604/T'In <,

after simplifying the bound. O

B 3.6.4.3 Bounding the discretization error

In this section, we prove our main bound on the discretization error.

Proposition 3.6.15. Let (1),~, denote the law of the interpolated process (3.2)
and let (m;),~, denote the law of the continuous-time Langevin diffusion (3.1),
both initialized at po. Assume that VV satisfies VV (0) = 0 and (s-Holder). For
simplicity, assume that e™*,m, L, T, Ry(po || #) > 1 and q > 2. If the step size h
satisfies

1/s

~ 1 d d
h<05<— ' {17—7_7—}>7
- dql/sL2/sT1/s min ql/sgl/s ms :RQ(,UO || 7a_)s/Q

where the notation O, hides constants depending on s as well as polylogarithmic
factors, then for T = Nh,

Ry(pr || 7r) < €.

Proof. Let P, () denote the measures on path space corresponding to the inter-
polated process (3.2) and the continuous-time diffusion (3.1) respectively, both
initialized at pgo. Also, let

1 T
Gt = E/O <VV<ZT) — VV(ZU»/}LJ h), dBT>
1 T
-1 [ IV =z Par.

where (Z;),5, is the continuous-time diffusion (3.1). By applying Girsanov’s
theorem (Theorem 3.6.6) and It6’s formula, we obtain

dPp
dQr

REOT [( )] =1 =Eexp(¢Gr) — 1

Cqlg-1) (T 2
=22 exp(qGy) |VV(Z) = VV(Z 1)) dt
0

4
< T [ \fElep@aG BNV (Z) — 9V Zgn ) .
(3.14)
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We bound the two expectations in turn. From Corollary 3.6.8 and (s-Holder),

t
Eexp(29Gy) < \/Eexp(4q2/ IVV(Z:) = VV(Zye )2 dr)
0

t
< \/Eexp<4q2L2/ T dr)
0

and we control this term by conditioning on the event

Espn = { max || Z;| < Rg},

§=0,1,....k—1

where

230hY2m (L + T4 TY/? 1
Rs = 2m + 490/ TRy (110 || 7) In(8N) + ‘“(dlg ) + 160 Tlng.

By Proposition 3.6.14, we know that P(&; ) > 1 — .

One step error. We first consider the error over an interval [0, 4] conditionally
on Zj, corresponding to a single step of the LMC algorithm. This step requires
bounding the exponential moment of sup,c( [|1Z: — Zol|**, which is a slightly
tedious exercise in stochastic calculus; hence, we postpone the calculation to

§3.6.7. We quote the final result here: assuming that h < 1/(d*¢*L?)"/"*,
Lemma 3.6.22 implies

h
lnEexp<8q2L2/ | Z: — Zo||* dt) < InEexp(8hq’L* sup | Z; — Zo|*)
0

te[0,h]
5 h25+1q2L25+2 (1 + ||Zo||252) + d5h5+1q2L2.

Iterating the bound. Let (%), denote the filtration and introduce the
shorthand notation H; == [}z, — @,/a4||*® dr. By conditioning on F(x_1), we
can apply the one step bound to derive the bound

InElexp{8¢*L*Hyy} Ilgéth}
< lnE[eXp{8q2L2H(N,1)h
+ ORI PL* 2 (14 (| Zoe—an*) + dB TP L) } L, ]
< 1HE[eXp{8q2L2H(N—1)h} :H‘gé,(N—l)h]
+ O(h2s+1q2L2s+2 (1 + R%SQ) + dshs+1q2L2) '
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[terating this recursion yields
In Elexp{8¢°L*Hnn} L, v,] S WEPLP P2 RE T + d°h? LT .

where we recall T := Nh. In order to apply Lemma 3.6.10 to remove the condi-
tioning, we require the step size to satisfy h <, 1/(¢g"/*LEHD/sT(*+1/(29))  where
the notation < hides a constant depending only on s. Applying the lemma,
InE exp{4¢*L*Hy}
S 1 +dshsq2L2T
+ h2sq2L28+2T

W ?m(L+T7") T1/2>252

X (m + /TRy (1o || #) In(3N) + 7

We pause here to give a remark which may clarify the proof. The +1 term
above arises for two reasons. First, Lemma 3.6.10 requires a bound on the
conditional expectation Elexp{8¢*L?*Hyy} | Esnn] whereas we have bounded
Elexp{8¢*L*Hyy} 1g, \,]; passing from the latter to the former incurs a factor of
2 (for § < 1/2). Second, the conclusion of Lemma 3.6.10 also contributes a factor
of 4. This shows that the application of Lemma 3.6.10 inherently adds a constant
to the bound on the logarithm of the expectation. This also explains why, at
the beginning of this proof in (3.14), we first applied [td’s formula to exp(¢Gr)
rather than applying Lemma 3.6.10 to Eexp(¢qGr) directly. If we had done the
latter, then it would not be possible to make the Rényi divergence R,(Pr || Q1)
arbitrarily small with an appropriate choice of h.

We now choose h in order to make E exp{4¢?L* Hy,} < 1. This is accomplished
by taking

1 d d(2s+2)/(s+2) })

~ , d
< O Garepargers M Ro(po || )27 w2/

(3.15)
The last term in the minimum can also be eliminated from consideration; indeed,
if d?s5+2)/(s+2) /m2s/(s+2) > 1 then it is not active in the minimum. Otherwise,
raising this expression to the power (s +2)/2 > 1,

d(25+2)/(s+2) ds—l—l d

> > —.
m2s/(s+2)  — ms T ms

Controlling the remaining term. Next, we must bound the difference
E[|VV(Z,) = V'V (Z)||*] for t € [kh, (k+1)h]. Although this can also be handled
directly via stochastic calculus, we will deduce the bound from Lemma 3.6.22 to
avoid repeating work. This yields

Elexp(M | Z: — Zin||*) | Zin) S 1,
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provided that A is chosen as

1 1
= A .
dshs h2s [2s (1 + ||Zkh||282)

A

In turn, it implies the tail bound

P{IZ: — Zinll™ > 0 | Zin} S exp(=Av/n)
which is integrated to yield

1
VEIIVV(Z) — VV(Zu)||Y] < L2VE[Z: — Zin|| %] S L*4/E 2

5dshsL2+h28L25+2\/1+E[||Zkh||452],

Integrate the sub-Gaussian tail bound from Proposition 3.6.14 to obtain

h32 m252 L252 T52 )

VU Bl Zea|1#] < O (" 4 T R | 1) + 222

Finishing the proof. Combining together the previous steps, we have proven

dP
o[y -
< 5<d5hsq2L2T
$2...252 1252 g2
4 R RLT (m282 i ngng(,uo H 7%)52 n h%"m ds[; T )) ‘

The step size condition from (3.15) makes the right-hand side of the above expres-
sion < 1. Taking logarithms,

Ry(Pr || @r)

< 5<dshSQL2T + hQSqL2s+2T (m232 4 TSQRQ(/,LO H 7?()82 +

hs2 m252 L252 Ts2
7))

We now choose h to make the Rényi divergence at most 2. By similar reasoning
as before, it suffices to take

82/8

~ d d
h <O (grprrr il o e )
- 0 dql/sLQ/sTl/s min ms IRQ(,UO ” 7})5/2

This completes the proof. O
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M 3.6.4.4 Finishing the proof

Finally, we use Theorem 3.2.2 on the continuous-time convergence of the Langevin
diffusion (3.1) in Rényi divergence under an LOI. Together with our discretization
bound, it will imply Theorem 3.3.4.

Lemma 3.6.16. Let (m;),-, denote the law of the continuous-time diffusion (3.1)
initialized at g, and assume that w satisfies (LOI) with order «. If

R et 1
T > 68qCLoi(w) ( q(,u02||/a)_ ] +1In §> ,

we obtain R, (mr || 7) < 2.

Proof. Recall from Theorem 3.2.2 that

OhRy(m || ) <

___1 o J Ralme ] )2 A Ry (|| ) > 1,
68¢CLol(a) Ry(me || ), if Ry(m || m) <1.

In general, if R : R, — R, satisfies the ODE R’ = —CR” for some 3 € (0, 1),
then a calculation shows that

R(t) = {RO)"F —c(1- )t} 7.

Thus, if a < 2, we obtain R (mg, || 7) < 1 at time

~ 68¢CLoi(a)

2/a=1
TO_—2/a—1 {Rq(po [ ) 1}.

Observe that as o — 2, then Ty — 68¢CLoi2) In Ry(po || 7) which recovers the
continuous-time convergence under (LSI). Then, at time

1
T="1T,+ 68qCLo|(a) In -
g

we obtain R, (77 || ) < &2 O

Proof of Theorem 3.3.4. Let (t:),~, denote the marginal law of the interpolated
process (3.2) and let (7)., denote the law of the continuous-time Langevin
diffusion (3.1), both initialized at uo. By the weak triangle inequality (when
q > 2; Lemma 2.2.23), we can bound

Re(pnn || ™) S Rog(punvn || *vn) + Rog1(mnn || 7) -
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For T := Nh, we can make the second term at most €%/2 if we choose

T = 0(qC1oi(a) Rag—1(po || 1)** )

by Lemma 3.6.16. Then, by Proposition 3.6.15, we can make the first term at
most ¢%/2 taking

&) ( e (3.16)
NGOl oy L Raga (o || ) |
1 d d
Xmin{l, s /2}). (3.17)
qetT mE Ry (o || 7)°

Then, the total number of iterations of LMC is

N = Z _ (:j <dq1+2/sC'Eg|1(£f)L2/s :R2q_1<,u0 H 71')(2/0‘_1)(14-1/5)
_— h — S 82/8
m’ R2(HO || 7@(_)3/2
X 1 1/s.2/s —}) |
max{ ,q ' TeT”, R -
This completes the proof. ]

B 3.6.5 Proof of Theorems 3.2.3 and 3.3.6

We first prove the continuous-time convergence for the Langevin diffusion (3.1)

under (MLSI) and (a4-tail).
Proof of Theorem 3.2.3. From [VW19, Lemma 6], we have

A EIVE))
q Eﬂ(pf) 7
dm

where p, = . Following the calculations of [VW19, Lemma 5] and apply-
ing (MLSI) to f? = p{/ Ex(p{),

OrRy(me || w) =

4 B[ V()P 4 ( ent, () >1/<15<p»
¢ Ec(h) T a0 \2Cwsi Ex(pf) Wy ((1+ pf/ Ex(pf)) w)° P
> 1 (entw(p?) ) /130
T qChs (1 + pf) m) @) Y En(pf)
1 _
> Ry(me || 7T)l/(l i(p))

~ 0 1-46
1Cius (1 + o) )70
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£25(0)/(1—5(p)) A
> — m ||
[y ol (1 ) 700

as long as R,(m || ) > 2. Next, we bound the moments. It is a standard
/p «

~Y

exercise [see Verl8, Exercise 2.7.3] to show that (a;-tail) implies m,(7)
m + Cii p'/®'. Also, by a slight modification of the change of measure principle
(Lemma 3.6.9), we can show that ﬁip(pfﬂ)l/p S m+Chail Ro(pim || 77)1/‘”1 + Clait p 1,
and that Re(pim || 7) S qReg(me || m) < qRoy(mo || 7). Therefore,
~ 5(p)/(1=6(p)) _ ~ 5(p)/(1—6 ~ 5(p)/(1—6
mp((l + p?) 7r) P P < m, () (p)/(1=6(p)) + 1, (pi) (p)/(1=6(p))
o a1 2—0) (1+ao/(p—ao))
< Am + O Rag(mo || 1)/ + Crap/ery™ R
Using the assumption that m, Ciai, Ra (o || m) < d°W, for p 2 log d,
~ k) 1-6 o a 2—q
m, (1 + pf) ) WIAE) < L 4 qCran Rog(mo || T + Cran 1} .

Together, it implies that R, (77 || 7) < £* whenever

02 aq o 2—q jz T T
r= Q<qg42/l(zL>)Sl {m + ¢Clait Rag (70 || )/ + Crap/*1} " In %) .

Next, choosing p < In(d/e?), we obtain €% > 1, so that

a1 a1 2—ao R, (7 s
T > Q(gChus {m + ¢Cuan Rag(mo || )"/ + Coan In(d /%) '} I Ralmo [ ) )),

completing the proof. O
With the continuous-time result in hand, it is now straightforward to combine

it with the discretization result (Proposition 3.6.15) from the previous section.

Proof of Theorem 3.3.6. Let (1),~, denote the marginal law of the interpolated
process (3.2) and let (7;),5, denote the law of the continuous-time Langevin
diffusion (3.1), both initialized at uo. By the weak triangle inequality (when
q > 2; Lemma 2.2.23), we can bound

Ro(pnn || 7) S Rog(pwvn | 7vn) + Rag-1(mnn || 7) -

For T := Nh, we can make the second term at most £%/2 if we choose

2—ag

T = é(qcl%/lLSI {m + ¢Chail Roy (120 || 77)1/&1} )
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by Theorem 3.2.3. Then, by Proposition 3.6.15, we can make the first term at
most £2/2 taking

h=0,( il
g O O L Ry g | )
1/
X ming 1 ; i d (:RQQ(MO H 7T) / 1)(27040)/5
e 1/sg2/s7 ms’ ~A\S/27 m ’
1 Ra (o || 7)
(3.18)

Then, the total number of iterations of LMC is

T
N =—
h
_ (dq (14+(3—ap) (1+s) /sC H‘1/5 Cvt(:”—ao)(l-Fl/S)Lz/s Roq (110 || 71.)(2*040)(1“/8)/@1
s 52/5
% max{l §/5e2s m_’ Ra (o || 7T) ’ ( m 1 )(Q—ao)/s}) ‘
d d Rag (10 || )1
This completes the proof. n

M 3.6.6 Initialization

In this section, we give bounds on the Rényi divergence at initialization. We begin
with the convex case.

Lemma 3.6.17. Suppose that V is convex with V(0) = 0 and VV (0) =0, and as-
sume that V'V is L-Lipschitz. Let m :== [||-||dw. Then, for 1o = normal(0, L~'1,),

d
Roo(pio || 7) <2+ 5 In(2m>L) .

Proof. We can write

o _ Jexp(—V)  Jesp(=V =6 ]-|?)
w52 = sup V(o) = 5 o1} o 0
(3.19)

for some 9 > 0 to be chosen later. We bound the three ratios in turn. First,

exp{V(2) ~ 3 a]]?} <1
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using V' (z) < L||z||*/2. Next,

Jexp(=V =4 |-]I?)
Jexp(=V)

— [exp(=5 1) dr > exp(~a5m) w(( | < 2m}

1
> 5 exp(—40m?)

by Markov’s inequality. Finally, since V' > 0,

Jop(V =011) _ Jep(=011) _ (L ya
(QTE/L)d/2 — (27E/L)d/2 .

Taking 6 = 1/(4m?), we obtain

20

d
Roo(po || m) = Insup <oy B In(2m?L) ,
m

which is O(d), up to a logarithmic factor. O
We next extend this result to the general case.

Lemma 3.6.18. Suppose that VV (0) = 0 and that VV satisfies (s-Holder) with
constant L > 0. Let m == [||-| drw. Then, for o = normal(0, (2L)"1,),

d
Roo(pio || 7) <2+ L+ V(0) —minV + 5 In(4m?L) .

Proof. We consider the same decomposition as in (3.19). First, for some A € [0, 1],
we have

V(z) = V(0)| = (VV(Az), 2)| < [[VV(Ax) = VV(0)| [l2]| < L.
Therefore,

exp{V(z) — L [[z]*} < exp{V(z) = V(0) + V(0) — L ||=[|"}
< exp{V(0) + L|z["** — L|2[*} < exp{V'(0) + L}

using ¢ < 1+ ¢% for all t > 0. Next,

Jexp(=V = §-?)
Jexp(=V)

1
> 5 exp(—4dm?)

as before. Lastly,

Jexp(=V =0 |}|") _ exp(=minV) [exp(=d|-|[*)
(x/L)"” N (r/L)"”

= exp(—min V) (%)d/2 .
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This yields
d
Roo(tto || m) = Insup Bocotvry V(0) —minV + 5 In(4m?L) ,
7r
with the choice § = 1/(4m?). O

In order to obtain an initialization with Ra, (10 || ) = O(d), the lemma requires
finding a stationary point x € R? such that the optimality gap V(z) — minV is
not too large, i.e., of order O(d). Since VV satisfies (s-Holder), it suffices to find a
stationary point which lies in a ball of radius O(d"/(+*)) centered at the minimizer
of V. Based on this result, it seems reasonable to assume that the initialization
typically satisfies Roo(po || m) = O(d).

Actually, in the setting of Theorem 3.3.4, we also need a bound on the Rényi
divergence Ro(po || 7), where 7 is a slight modification of 7 (see Section 3.6.4).
The following lemma is proven just as in Lemma 3.6.18, so the proof is omitted.

Lemma 3.6.19. Suppose that VV(0) =0 and that VV satisfies (s-Holder) with
constant L > 0. For some v > 0, let V(x) = V(x) + 3 (||z| — R)i, and let
o exp(—V). Also, let th:= [||-| d&t. Then, for o = normal(0, (2L + )" I,),

d .
Roolpo || 7) <2+ L+ % +V(0) —minV + §1n(4m2L) :

From the tail bound in Lemma 3.6.11, we can deduce an upper bound for m
as follows

In Proposition 3.6.14, we eventually Eake v roughly of order 1/d < v < 1,~and
R <m. Hence, if L+V(0)—minV = O(d) and m < d°M) | then Roo (0| 7) = O(d).

B 3.6.7 Additional technical lemmas

In this section, we collect together technical lemmas which appear in the proofs
of §3.6.4. The proofs rely on standard arguments from stochastic calculus.

We first present a bound on the moment generating function of the supremum
of a one-dimensional Brownian motion using the reflection principle.
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Lemma 3.6.20. Let (By) 520 be a standard one-dimensional Brownian motion.
For h, A >0, such that A\ < 5; the following holds:

> 1+ 2hA

Eexp()\ sup |Bs]®) < T on

s€[0,h]

Proof. The reflection principle [KS91, Proposition 6.19, 2.2.6] states that for every
t > 0, it holds that

P(sup By >t) =2P(B), >1).
s€[0,h]

As a result, we have that

P(sup |Bs|* >t) =P(sup |Bs > \/%)
s€[0,h)] s€[0,h]

<]P’(supB >\/_)+IP’( inf B < \/_)

s€(0,h] s€[0,h

= 4P(By > V1) < 2exp(—%) .

Thus,

Eexp()\ sup |BS|2> =1 —1—)\/ exp(At) P(sup |B,|* >t)dt
0

s€[0,h] s€[0,h]
00 1 — 2h\ )
< 142X - t)dt =1 . O
=i /0 (== —1) T o

Lemma 3.6.21. Let (By),5, be a standard Brownian motion in R?. Then, if
A>0and h <1/(4)),

Eexp(\ sup [|B|*) < exp(6dh)).

te[0,h]

In particular, for alln >0,
2

IP’{ st] | B:|| > 77} < Sexp( 6dh)

Neat, for s € (0,1) and 0 < X < 1/(12dh)’,

Eexp(A sup [|By|**) < exp(144d°h°X) .
te[0,h]
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Proof. The first statement follows from Lemma 3.6.20, and the second follows
from the first by taking A = 1/(6dh) and applying Markov’s inequality.
We now turn towards the proof of the third statement. Using the tail bound

1/s

2s _77
P{sup 1B = n} < 3exp(—g)

we now bound E exp(Asup,¢(o 5 || Bel|**)-

Eexp()\ sup ||Bt||25) =1+ )\/ exp()\n)IP’{ sup ||Bt||25 > 77} dn
te|0,h] 0 te[0,h]

0o 1/s
Ui
<143\ An — dn.
<1+3 /0 exp(n 6dh> n

Split the integral into whether or not n > (12dh)\)s/ (1=9) " For the first part,

(12dh)*/ (=)
A / exp() dny < (12dh)* "IN exp{(12dh)*/TINY (-9}
0
< 3(12dh)¥ 0= \1/(=9)

provided that A < 1/(12dh)°. For the second part, using the change of variables
T =n'*/(12dh),

00 77l/s 00 nl/s
4 /(12dh)\)s/<15) exp(An - Gdh) dn=A /(12dhA)5/“S) exp (- 12dh) i
< (12dh)*s) /Oo %__:) dr
0 T
— (12dh)*sAT(s) = (12dh)°AT(1 + s)
< (12dh)°),

where we used Gautschi’s inequality to obtain I'(1 4+ s) < 1. We have proven

Eexp(A sup || By]**) <149 (12dh)*/ "INV 13 (12dh)° A < 1+ 144d°h° A,
te[0,h]

which implies the result. O

Lemma 3.6.22. Let (Z;),5, denote the continuous-time Langevin diffusion (3.1)
started at Zy, and assume that the gradient VV' of the potential satisfies VV (0) = 0
and (s-Holder). Also, assume that h < 1/(6L) and X\ < 1/(96d°h®). Then,

Eexp(\ sup [|Z: — Zo|[**) < exp{8h*L* (14 || Zo]|*") A + 1152d°h°\} .
te[0,h]
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Proof. Let f(t) = sup,cjoq |12 — Zo|*>. Then, for 0 <t < h, since [|[VV (z)|| <
Lj=]*,

t
12 — Zo|? = H—/ VV(Z)dr + V2 B,
0

2 t
< 2t/ IVV(Z) |2 dr + 4| By
0
t
< 4t/ IVV(Z,) = VV(Zo)|P dr + 422 ||V V (Zo)|2 + 4| B
0
t
< 4tL2/ | Z, — Zo||* dr + 462 L? || Zo||** + 4 || By||?
0

t
< 4tL2/ 12, — Zo|2dr + 42212 (1 + || Zo|) + 4| B2,
0

which yields

t
f(t) < 4L (1 + || Zo||*) + 4 sup || B,||? +4tL2/ f(r)dr.
] 0

rel0,t

Gronwall’s inequality yields

) < (A2 (14 | ]1) + 4 sup 13, exp(2n°L)
rel0,

< 8h*L? (1 + || Zo||*) + 8 sup || B,
r€[0,h]

using h < 1/(6L). It also yields

sup 12, — Zo||** < 8R*L* (1+ | Z]*") +8 sup || B>

te[0,h] r€[0,h]

The result now follows from Lemma 3.6.21. O

B 3.7 Conclusion

In this work, we have given a suite of sampling guarantees for the LMC algorithm
which assume only that a functional inequality and a smoothness condition hold.
In particular, no such guarantees were previously known beyond the LSI case
considered in [VW19]. Consequently, we have resolved the open questions of
estimating the Rényi bias of LMC (Corollary 3.3.2) and establishing quantitative
convergence guarantees for LMC under a Poincaré inequality. Our results and
techniques are also of interest because they work with a stronger metric (namely,
Rényi divergence) than what is usually considered in the sampling literature.
To conclude, we list a few directions for future research.
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e [t is not clear how sharp our bounds are, and it is worth investigating whether
our techniques can be improved.

e As discussed in the introduction, obtaining guarantees in Rényi divergence is
useful for applications to differential privacy, as well as for obtaining warm
starts for high-accuracy algorithms. Hence, we ask whether Rényi conver-
gence guarantees can be proved for more sophisticated algorithms, such as
randomized midpoint discretizations [SL19; HBE20].

In follow-up work [Zha+23] with Matthew Zhang, Mufan (Bill) Li, Krishnaku-
mar Balasubramanian, and Murat A. Erdogdu, I have also extended the techniques
in this chapter to study the underdamped Langevin Monte Carlo (ULMC) algo-
rithm. The strongly log-concave case of these results will be presented in §6, where

it will be applied to provide a warm start for the Metropolis-adjusted Langevin
algorithm (MALA).






Chapter 4

Analysis of the proximal sampler

In the previous chapter, we obtained new sampling guarantees for LMC under
isoperimetry, albeit at the expense of somewhat involved calculations. Moreover,
there are notable weaknesses of the LMC algorithm itself. For instance, it is
biased: its stationary distribution for positive step size h > 0 does not equal the
desired target m, and consequently the step size must be chosen appropriately
small to control the size of this bias.

To overcome these issues, we ask the following question: since LMC can be
interpreted as a discretization of the Wasserstein gradient flow for the KL diver-
gence, are there better methods of implementing this flow? In this chapter, we
study the proximal sampler algorithm of [TP18; LST21c| based on a novel inter-
pretation as an alternating iteration of Brownian motion forward and backward
in time. It leads to new convergence bounds which then translate into improved
sampling guarantees under isoperimetry, with simpler proofs than §3.

This chapter is based on [Che+22b], joint with Yongxin Chen, Adil Salim, and
Andre Wibisono.

B 4.1 Introduction

We again study the problem of sampling from a target density 7% o exp(—V) on
R?, which enjoys surprising and deep connections with the field of optimization.
Indeed, the standard Langevin algorithm can be viewed as a gradient flow of the
Kullback—Leibler (KL) divergence on the space of probability measures equipped
with the geometry of optimal transport (see §2.2), a perspective which has led
to new analyses [DMM19; SR20] and algorithms [Per16; Zha+20; DL21; Ma+21]
inspired by the theory of convex optimization.

Among the algorithms in the optimization toolkit, we focus on prozimal
methods. Classically, proximal methods are used to minimize composite ob-
jectives of the form f + g, where g is smooth and convex and f is non-smooth
but simple enough to allow for evaluation of the proximal map prox; : y —

103
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arg min, cpa{f(z) + 5 ||z —y||*}. However, the setting of our investigation is more
closely related to the minimization of a non-composite objective f, for which the
proximal method is known as the prozimal point algorithm [Mar70; Roc76].

As a natural first step towards developing a proximal point algorithm for
sampling, one can combine the proximal map with the standard Langevin algo-
rithm, leading to the prozimal Langevin algorithm. This algorithm was introduced
in [Per16] and analyzed in the papers [Ber18; Wib19; SR20]. Although these results
are encouraging, the analogy between optimization methods and Langevin-based
algorithms is imperfect because the discretization of the latter leads to asymptotic
bias, a feature which is typically not present in optimization (see [Wib18] for a
thorough discussion).

Remarkably, a new proximal algorithm for sampling was proposed recently
in [LST21c] which overcomes this issue via a novel Gibbs sampling approach.
Briefly, the proximal sampler is a sampling algorithm which assumes access to
samples from an oracle distribution, known as the restricted Gaussian oracle
(RGO); the RGO is a sampling analogue of the proximal map from optimization.
Under this assumption, as well as the additional assumption that the target 7%
is strongly log-concave, [LST21c] proved that the proximal sampler converges
exponentially fast to 7% in total variation distance. In their paper, the proximal
sampler was used as a reduction framework to improve the condition number
dependence of other sampling algorithms. Indeed, the RGO is a better condi-
tioned distribution than the target distribution, so that implementing the RGO is
easier than solving the original sampling task. In turn, the reduction framework
allowed them to establish improved complexity results for a variety of structured
log-concave sampling problems. We review the proximal sampler and its imple-
mentability in §4.2.2.

Our contributions. Prior to our work, the convergence of the proximal sampler
was only known in the case when 7% oc exp(—V) is strongly log-concave. In this
chapter, we greatly expand the classes of targets to which the proximal sampler
is applicable by providing new convergence guarantees.

First, we consider the case when V' is weakly convex. We show that after k
iterations, the proximal sampler outputs a distribution whose KL divergence to the
target is O(1/k). Our proof is analogous to, and is inspired by, the corresponding
guarantee for minimizing a weakly convex function (in particular, the O(1/k) rate
matches the optimization result).

Next, we assume that 7% satisfies a functional inequality, e.g., a Poincaré
inequality or a log-Sobolev inequality. Such functional inequalities have been
employed in the sampling literature as tractable settings for non-log-concave
sampling; see [VW19] and §3. For these distributions, we show that the proximal
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sampler converges to the target in Rényi divergence (or any other weaker metric,
such as KL divergence) with a rate that matches the known convergence rates for
the continuous-time Langevin diffusion under the same assumptions.

In each of these settings, if we additionally assume that VV is Lipschitz, then
the RGO is implementable, as it becomes a smooth strongly log-concave distribu-
tion. Hence, we obtain new sampling guarantees for gradient Lipschitz potentials
when the target is weakly log-concave or satisfies a functional inequality. In all
cases, our results are stronger than known results in the literature. Subsequent
works have also considered implementability of the RGO under weaker smoothness
conditions [GLL22; LC22; LC23].

Finally, we clarify the connection between the proximal sampler and the prox-
imal point algorithm in optimization in the following ways: (1) We show that
convergence proofs for the proximal sampler can be translated to yield conver-
gence proofs for the proximal point algorithm. As a consequence, we obtain a new
convergence guarantee for the proximal point method under a gradient domination
condition with optimal rate, which is (to the best of our knowledge) a new result.
(2) We show that the RGO can be interpreted as a proximal mapping on the
Wasserstein space.

Other related work. Sampling algorithms which are conceptually similar or di-
rectly related to the proximal sampler have been previously proposed in the
literature [GC11; Mar+16; TP18; VPD22]. The RGO has also been considered
as an adjoint of the heat semigroup in [KP21], which was then used in the recent
breakthrough on the KLS conjecture in [KL22]. After the first version of our
work appeared online, our result under LSI (Theorem 4.3.3) was recovered via the
framework of localization schemes in [CE22].

Organization. The rest of the chapter is organized as follows. We begin with
background on the proximal sampler in §4.2. We then give our main results in
§4.3. In particular, we state our new convergence guarantees for the proximal
sampler in §4.3.1, and we give applications of our results in §4.3.2. We then
describe the connections between the proximal sampler and the proximal point
method in §4.3.3. All proofs are given in §4.4.

Finally, we conclude and list open directions in §4.6.

B 4.2 Background and notation

M 4.2.1 Divergences between probability measures

Throughout the paper, we abuse notation by identifying a probability measure
with its density w.r.t. Lebesgue measure.
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We recall the following divergences between probability measures, see §2.2.3
for further background. For a probability measure p < 7, we define the KL
divergence, the chi-squared divergence, and the Rényi divergence of order g > 1
respectively via

. . ) 1 P!
KLl = [ o102, olm = [£ -1, yplm) = s [ 2,

with Ry = KL. We recall that for 1 < ¢ < ¢’ < oo, we have the monotonicity
property R, < Ry, and that Ry = In(1 + x?).
We also define the 2-Wasserstein distance between p and 7 to be

Wip.m) = inf [lle =yl dy(wn),

where C(p, ) is the set of couplings of p and T, i.e., joint distributions on R¢ x R4
whose marginals are p and 7.

M 4.2.2 The proximal sampler

Our goal is to sample from a target probability distribution 7% on R? with density
7% o exp(—V) and finite second moment, where V: R? — R is the potential.

Following [L.ST21c], we define the joint target distribution 7w on R? x R? with
(Lebesgue) density

m(x,y) exp(—V(x) — % ||z — y\|2> ,

where A > 0 is the step size of the algorithm.

Observe that the X-marginal of 7 is equal to the original target distribution
7%, whereas the conditional distribution of Y given X is Gaussian: 7" X (- | z) =
normal(z, hI). Therefore, the Y-marginal is the convolution of 7% with a Gaussian,
¥ = 7% % normal(0, hI). The perspective that we adopt in our proofs is that ¥
is obtained by evolving 7% along the heat flow for time h.

The conditional distribution of X given Y is the “regularized” distribution

1
X\Y o - o 2
TN (@] y) o, exp( V() o7 llz yl?).

The restricted Gaussian oracle (RGO) is defined as an oracle that, given
y € R?, outputs a random variable distributed according to 7' (- | ). We also
write 7XY (- | y) = XY=,



Sec. 4.3. Results for the proximal sampler 107

Proximal sampler: The proximal sampler is initialized at a point X, € RY and
performs Gibbs sampling on the joint target 7r. That is, the proximal sampler
iterates the following two steps:

1. From X}, sample Y; | X; ~ 7VX(- | X}) = normal(Xy, hI).
2. From X}, sample X, | Vi ~ 75V (- | Y3).

The first step consists in sampling a Gaussian random variable centered at Xj,
and is therefore easy to implement. The second step calls the RGO at the point
Y, and requires a suitable implementation, as we discuss below.

As is well-known from the theory of Gibbs sampling, the iterates (Xp, Y),cn
form a reversible Markov chain with stationary distribution 7. That is, the
proximal sampler is an unbiased sampling algorithm, unlike algorithms based on
discretizations of stochastic processes such as the unadjusted Langevin algorithm.
This is because the proximal sampler is an idealized algorithm in which we assume
exact access to the RGO. For our applications, we implement the RGO via
rejection sampling; see §4.3.2 for details and §4.3.4 for an explicit example in the
Gaussian case. We develop faster implementations for the RGO in §6.

M 4.3 Results for the proximal sampler

M 4.3.1 New convergence results for the proximal sampler

In this section, we describe our new convergence results for the proximal sampler
under various assumptions, beginning with the strongly log-concave and weakly
log-concave cases, and then proceeding to targets satisfying functional inequalities
which allow for non-log-concavity.

M 4.3.1.1 Strong log-concavity

We start by recalling the W, contraction result from [LST21c]' for the proximal
sampler under strong log-concavity.

Theorem 4.3.1 ([LST21b, Lemma 2]). Assume that 7% o< exp(—V) is a-strongly
log-concave (i.e., V is a-strongly convex), where o > 0. For any h > 0 and for
any two initial distributions pi, py, after k iterations of the proximal sampler
with step size h, the respective distributions p;X, py satisfy the bound

W2(p8(7 ﬁOX)

(4.1)

1See the arXiv version [LST21b] for the proof.
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Although this result was stated in [LST21b] as a convergence result rather
than a contraction, the latter is implicit in the proof. From the proof of [LST21b],
one can also read off a convergence guarantee in KL divergence, although this will
be a corollary of our result in §4.3.1.3.

We revisit Theorem 4.3.1 in §4.4.2 and provide a proof which more closely
resembles a classical convergence proof of the proximal point algorithm. We use
Wasserstein subdifferential calculus.

We note that this is the sampling analogue of the classical fact that the proximal
map for an a-strongly convex function with step size h is a ﬁ—contraction. In
§4.5.1, we give a new proof of this fact about the proximal point method by
translating the proof of [LST21b] into optimization.

B 4.3.1.2 Log-concavity

The preceding result does not yield convergence when a = 0. We provide a
new convergence guarantee for the weakly convex case which mirrors a Lyapunov
analysis of gradient flows for convex functions.

Theorem 4.3.2. Assume that % o< exp(=V) is log-concave (i.e., V is convez).
For the k-th iterate pi of the prozimal sampler,

W3 (pg . m)
kh '
Proof. §4.4.3. ]

KL(py [ 7) <

M 4.3.1.3 Log-Sobolev inequality

Recall from §2.2 that a probability distribution 7 satisfies the log-Sobolev inequal-
ity (LSI) with constant 1/a > 0 (1/a-LSI) if for any probability distribution p,
the following inequality holds:

KL(p | ) < 5 Filp]| 7). (4.2)

Here Fl(p || m) is the Fisher information of p w.r.t. 7. Recall that strong log-
concavity implies LSI, and that LSI is equivalent to the gradient domination
condition for relative entropy KL(- || 7); see also §4.3.3.1.

Theorem 4.3.3. Assume that 7% oc exp(—=V) satisfies 1/a-LSI. For any h > 0
and any initial distribution pf, the k-th iterate p;y of the prozimal sampler with
step size h satisfies

KL(pg || =)

KL(p || 7)) < —9 12—~
G I < =

(4.3)
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Furthermore, for all ¢ > 1:
R X X
:Rq(pi{ || ﬂ_X) S Q<p0 H ;Tk/> .
(1+ ah)™
Proof. §4.4.4. O]

M 4.3.1.4 Poincaré inequality

Recall from §2.2 that a probability distribution 7 satisfies the Poincaré inequality
(PI) with constant 1/ > 0 (1/a-PI) if for any smooth compactly supported
function ¢ : R? — R, the following inequality holds:
1
vare (1) < — B [[[ V][] (4.5)

Recall also that 1/a-LSI implies 1/a-PIL.

Theorem 4.3.4. Assume 7% o< exp(=V) satisfies 1/a-PI. For any h > 0 and
any initial distribution pi, the k-th iterate piy of the prozimal sampler with step
size h satisfies

20X || X
X (oo |l m
el 17 < A follh)%) . (4.6)
Furthermore, for all ¢ > 2, if we set
. q X || X
Co = m (mq(ﬂo [ 7%) — 1) )
then
R (X || 7X) — 2k In(1+ah) ’ if k< c ’
Rl %) < 4 o) T s (47)
1/(1 + ah)?FRo)/a if k> [co] .
Proof. §4.4.5. O]

M 4.3.1.5 Latata—Oleszkiewicz inequality

We next consider a family of functional inequalities which interpolate between PI
and LSI. A probability distribution 7 satisfies the Latala—Oleszkiewicz inequality
(LOI) of order r € [1,2] and constant 1/a > 0 ((r,1/a)-LOI) if for any smooth
bounded function v : R? — R, the following inequality holds:

vary . (1) — sup E.[¢?] _EW[W:]WP
)2(1—1/7’) pe(1,2) (2 . p)?(l—l/'r’)

sup

1
< = Eq VY7
pe(12) (2—p «
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This inequality was introduced in [LO00], and sampling guarantees for the Lan-
gevin algorithm under LOI were given in §3. The LOI for » = 1 is equivalent to
PI and the LOI for r = 2 is equivalent to LSI, up to absolute constants. Generally
speaking, (r, a)-LOI captures targets m o< exp(—V') such that the tails of V' grow
as ||||" at infinity.

Theorem 4.3.5. Assume 7 oc exp(—V) satisfies (r,1/a)-LOI with r € [1,2).
For any h > 0, q¢ > 2, and any initial distribution py, the k-th iterate piX of the
proximal sampler with step size h satisfies

— . N r/(2—r) )
(R | )2/ — CLDpel )T g <,

X | X 63¢
Re(pie | 7) < /(1 + T80 £ Tl
(4.8)
where
RANCY 1??5(1 Tany Fale | ).
(For r =2, we can instead use Theorem 4.3.3.)
Proof. §4.4.6. O

To interpret the result, suppose that R,(pi || #*) = O(d) at initialization and
that h < 1/a. Then, the theorem states that after an initial waiting period of
[co] = O(d*™1/h) iterations, in which the Rényi divergence decays to O(1), the
Rényi divergence decays exponentially thereafter. This interpolates between a
waiting time of O(d/h) under PI (r = 1; Theorem 4.3.4) and a waiting time of
O((logd)/h) under LSI (r = 2; Theorem 4.3.3).

M 4.3.2 Applications of the convergence results

We start with a corollary of Theorem 4.3.2. Suppose that f is f-smooth, i.e., V f
is -Lipschitz. Then, provided + > 3, the RGO 7% is strongly-log-concave, with
condition number (1 + gh)/(1 — fh) < O(1). We can implement the RGO via
rejection sampling.

Rejection sampling: Given a target distribution # oc exp(—V), where V is a-
strongly convex, perform the following steps.

1. Compute the minimizer x* of V.

2. Repeat until acceptance: draw a random Variab~le Z ~ N(z*,a 'I) and
accept it with probability exp(=V(Z) + V(z*) + § | Z — =*||?).
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The resulting sample is distributed according to 7, and one can show that the
expected number of iterations of the algorithm is bounded by #%2 with & = f3 Jae
and § is the smoothness of V; see, e.g., §4.4.7.

We apply this to V given by V(z) = V(z) + & |lv — y[|*>. The algorithm
above requires exact minimization of V, which we assume for simplicity (since it
is well-known how to efficiently minimize a strongly convex and smooth function).
With the choice h < ﬁ, the expected number of iterations is O(1). Combining
this implementation of the RGO with Theorem 4.3.2, we obtain:

Corollary 4.3.6. Suppose ™~ oc exp(—V') where V is convex and 3-smooth. Take

h =< é and implement the RGO with rejection sampling as described above. Then,

the prozimal sampler outputs py with KL(pX || 7*) < 2 and the expected number
of calls to an oracle for V is O(Bd W3 (pi, m%)/e?).

More precisely, our algorithm requires access to an oracle of V' which can
evaluate V' and compute the proximity operator for V.

We now compare this rate with others in the literature. Let my denote the
second moment of 7¥. For example, my = O(d) for a product measure, and
my, = O(d?) when V(z) = /1+ ||z]|2. It is reasonable to assume that the
Poincaré constant o of 7% is O(my/d) and that W2(p{, 7%) = O(my). With
these simplifications, our complexity is O(Bdmy/e?); averaged LMC achieves
O(Bdm,/e*) [DMM19]; MALA achieves O(3%/2d"/?m3/?/e3/2) albeit in the TV
distance [Dwi+19; Che+20a]; and LMC achieves O(32m2/¢%) in the stronger
Rényi metric (§3). Since all these complexity results also hold in terms of the
total variation distance, our result is arguably the best one for this setting (at
least, if dimension dependence is the primary consideration).

Similarly, implementing the RGO with rejection sampling in Theorem 4.3.5
yields the following corollary:

X

Corollary 4.3.7. Suppose % oc exp(—=V') where V is B-smooth and 7% satisfies
1

(r,1/a)-LOL Take h < 35 and implement the RGO with rejection sampling as
described above. Then, the prozimal sampler outputs py with R,(pi || 7%) < &2

and the expected number of calls to an oracle for V is

O( 22 (5 17 V10g 1))
« €

Even for the special case of a Poincaré inequality and smoothness, the first

sampling guarantee under these assumptions is the one in §3. Let us write & :== 5/«

for the “condition number” and assume R,(py || %) = O(d) (see, e.g., §3.6.6).

Then, our complexity is O(idq (d*"* v log(1/¢))), whereas Theorem 3.3.4 gives
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a complexity bound for LMC of order 5(/%2d4/ "~1¢3/?). We note that our result
is the first high-accuracy guarantee for this setting (i.e., the complexity depends
polylogarithmically on €). Moreover, even in the low-accuracy regime € < 1, our
complexity of 6(/%d2/ "q) is always better (e.g., in the Poincaré case r = 1, our
rate is O(&d%q) whereas Theorem 3.3.4 yields O(#2d3¢%)), although we note that
Theorem 3.3.4 handles the more general weakly smooth case.

Surprisingly, the same strategy of rejection sampling also applies to non-smooth
potentials. In [LC22], it was shown that when the above rejection sampling is
applied to V(z) = V(2) + & ||z — y[|* with V being a convex and M-Lipschitz
function, if A < 1/(16M?3d), the expected number of iterations of the algorithm is
bounded above by 2. Moreover, the result is insensitive to the inexactness of the
minimizer of V [LC22]. Combining it with Theorem 4.3.2 and Theorem 4.3.4 we
establish another corollary:

Corollary 4.3.8. Suppose 1% o< exp(—=V) where V is convex and M -Lipschitz.

Take h =< MLZd and implement the RGO with rejection sampling as described above.

1. Applying Theorem 4.5.2, we deduce that the prozimal sampler outputs py
with KL(pX || %) < €% and the expected number of calls to an oracle for V is
O(M?dW3(pg ,m%)/€?).

2. Applying Theorem 4.3.4 (using the fact that log-concave measures satisfy 1/a-
PI for some a > 0), we deduce that the prozimal sampler outputs py with
Ry (pE || 7X) < &2 and the expected number of calls to an oracle for V is
O(*ZH (Ry(pg || ) V log(1/¢)).

We make the same simplifications as above to compare the rates. Our com-
plexity (from the second part of Corollary 4.3.8) is O(M?my (d V log(1/¢))),
whereas [DMM19] achieves O(M?*m,/e?) in KL divergence and [L.C22] achieves
O(M2dm,/e) in total variation distance. In particular, when my = O(d), our
result is substantially better.

We summarize the ways in which the proximal sampler improves upon the
standard discretized Langevin algorithm.

1. Under weaker assumptions on the target 7%, such as a Poincaré inequality,
the analysis of the Langevin algorithm is affected in two ways: first, the
continuous-time convergence of the diffusion is slower; and second, the dis-
cretization analysis becomes much more challenging. In contrast, although
the ideal proximal sampler also converges more slowly under weaker assump-
tions, the second issue is no longer present. In particular, regardless of the
isoperimetric assumption on 7%, as soon as VV is Lipschitz we can imple-
ment the RGO via rejection sampling, yielding a simple analysis with strong
convergence guarantees.
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2. Related to the first point, it is currently not known how to perform a dis-
cretization analysis of the Langevin algorithm with linear dependence on the
condition number & = g under 1/a-LSI or 1/a-PI. Our results therefore

constitute the first O(#) guarantees for such distributions.

3. When implemented via rejection sampling, the proximal sampler provides
a new approach to obtaining high-accuracy guarantees for sampling (i.e.,
complexity guarantees with dependence polylog(1/¢) on the accuracy €). The
simplicity of the analysis makes it an attractive alternative to Metropolis—
Hastings algorithms, whose analysis is often involved.

4. Finally, we mention that when the RGO is implemented via the Metropolized
random walk [Dwi+19], the resulting algorithm only uses zeroth-order queries
to f, which is crucial for certain applications (e.g., Bayesian inverse problems).

B 4.3.3 On the relation between the proximal sampler and the proximal

point algorithm

The proximal sampler is motivated by the proximal point method in optimization.
Recall that in optimization, the proximal point method for minimizing f is the
iteration of the proximal mapping

prox(y) = argmin { f(2) + o=l — y1*} (19)
z€R4

with some step size h > 0. Formally, using the analogy between optimization and
sampling (in optimization, wish to minimize f; in sampling we wish to sample
from exp(—V')); the RGO can be viewed as the sampling analogue of the proximal
mapping in which we sample from a regularized version of the target 7.

In this section, we establish a more precise correspondence between the prox-
imal sampler algorithm (for sampling from exp(—V')) and the proximal point
method (for minimizing f).

B 4.3.3.1 Convergence under LSI/PL

We recall that LSI for 7 o exp(—V) is equivalent to the statement that the
relative entropy KL(- || ) satisfies the gradient domination condition (or the
Polyak-Lojasiewicz (PL) inequality) in the Wasserstein metric [OV00]. Thus, in
the optimization setting, the analogous assumption to LSI is that f satisfies PL.

We recall f satisfies the PL inequality with constant 1/a > 0 (1/a-PL) if for
all z € RY,

IVf(@)I* > 2a(f(x) = f*),
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where f* = inf f. The PL inequality allows for mild non-convexity of f, yet still
implies exponential convergence of gradient flow or proximal point method for
minimizing f; see for example [KNS16].

In light of our convergence guarantee for the proximal sampler under LSI in
Theorem 4.3.3, it is natural to ask whether there is an analogous result for the
proximal point method under PL. We answer this affirmatively via the following
theorem. We note that a less careful proof of the argument gives the suboptimal

1

contraction factor Tran; to the best of our knowledge, we are not aware of another
2

reference which obtains the optimal contraction factor under PL [AB09]

Theorem 4.3.9. Suppose that f : R — (—o0, +00] is differentiable and satisfies
1/a-PL and let x' € prox,,(x). Also, write f* = inf f. Then, it holds that

ﬂw—ﬁsafa?wm—ﬁy

Proof. §4.5.2. O

M 4.3.3.2 RGO as a proximal operator on Wasserstein space

Consider y € R%. Noting that 7¥"=¥(dz) o, exp(—3- ||z — y[|*) #*(dz) and
using [AGS08, Remark 9.4.2] we have

_ 1
KL(p™ || 7%) = KL(p™ | 7*7=Y) — / 57 1z = ylP dp™ (2) + C(y),

where C(y) is a constant depending only on . Using arg min KL(- || 7¥Y=¥) =

7XI¥=v_the RGO can be expressed as
1
w0 = angmin (KL |7 + 5 [ eyl dp @)}
pXG'PQ(Rd) 2h

1
= argmin {KL(p || 7) + = WE(p%,8,)} .
pX (=20 (]Rd) 2h

(4.10)

Thus, by replacing the Euclidean distance by the Wasserstein distance, 7X¥=¥ =

ProxX, ki (.=x)(dy). We use this fact in §4.4.2 to provide a new proof of the con-
traction of the proximal sampler under strong log-concavity (Theorem 4.3.1).
The proximal operator over the Wasserstein space is also known as the JKO
scheme [JKO98], and hence the proximal sampler can be viewed as a method of
implementing the proximal discretization of the Wasserstein gradient flow while

*The optimality of our bound can be obtained by considering f(z) = =/
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having access only to a “restricted” proximal operator (we are only able to evaluate
the proximal operator on Dirac measures d, for y € R?).

See [Che+22b] for an alternative interpretation of the proximal sampler as an
entropically-regularized JKO scheme.

B 4.3.4 Example: Gaussian case

Suppose that the target distribution is normal(0, %), i.e., V(z) = § (z, 5 '2). In

this case we can compute the iterations of the proximal sampler explicitly.
If we initialize the proximal sampler at

P = normal(mqg, ¥o) ,
then some calculations show that

pr = normal(my, ¥j + hI),

X
Pice1 = normal(myey1, Spy1)

where?

Miy1 =2 (8 +hl) " my,
S =S (S 4+AD) T (S A (S +RD) TS+ RS (S 4+ R

Specializing to the case where ¥ = I, h = 1, and we initialize at normal(0, o21),
we obtain

o3 1]

T (4.11)

ok — 1] =

In particular, the contraction factor m in Theorem 4.3.3 is sharp.

M 4.4 Proofs for the proximal sampler

M 4.4.1 Techniques

At a high level, our proofs proceed by considering the change in KL divergence
or Rényi divergence when we apply the following two operations to the law pX
of the iterate and the target 7%: (1) we simultaneously evolve the two measures

3We can also notice that my41 = prox,y (mg), i.e., the means of the distributions follow the
proximal point algorithm for V. Moreover, my — 0 = arg min V' which is the mean of the target
distribution.
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along the heat flow for time h, and then (2) we apply the RGO to the resulting
measures.

For the first step, we formulate a remarkably general lemma in §4.4.1.1 which
shows that the computation of the time derivative of any ¢-divergence along the
simultaneous heat flow is similar (in a precise sense) to the analogous computation
when studying the continuous-time Langevin diffusion. It is this property that
allows us to apply functional inequalities which are usually used for the Langevin
diffusion, such as the Poincaré and log-Sobolev inequalities, in order to study the
convergence of the proximal sampler.

In the second step, we are applying the same operation (of sampling from the
RGO) to each measure, so the data-processing inequality implies that the KL
divergence or Rényi divergence can only decrease. Combined with the previous
step, it is sufficient to prove a convergence guarantee for the proximal sampler;
however, the rate turns out to be suboptimal. In order to recover the optimal rate,
we introduce an argument based on the Doob h-transform (described in §4.4.1.2)
to obtain contraction in the second step as well, using the backward version of
our general lemma (see §4.4.1.3). We summarize our technique in §4.4.1.4.

B 4.4.1.1 Lemma on the simultaneous heat flow

Let @, be a ¢-divergence for some convex function ¢, i.e.

@.(p) = Ex[0(£)].
We assume that ¢ is regular enough to justify the interchange of differentiation
and integration and to perform integration by parts; this is satisfied for all of our
applications.
We will use the following result in each forward step of the proximal sampler.
This is a generalization of [VW19, Lemma 16].

Lemma 4.4.1. Let (,uf()tzo be the law of the continuous-time Langevin diffusion
with target distribution 7%, and define the dissipation functional D, x via the time
derivative of ®.x along the diffusion:

X X
Dox (11X) = 0,0, x (X)) = ]Eutx<v(¢/ o i—tX),Vlog i_tx> .

If (pXQt)tZO and (WXQt)tZO evolve according to the simultaneous heat flow,

1 1
athQt = 5 A(PXQt) ) aHTXQt = 5 A(WXQt) )

then

1

O Prxg, (X Q) = —3 D,xq, (0¥ Q).
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Proof. On one hand, we know that (X )i>o satisfies the Fokker—Planck equation

X
Oty = div(p Vin W_tx)

so that
X
0D x (1) /gb ut /qb Mt d1v Vlnu—tx)
T

:_/<v[¢ (ﬁ;{)] Vin >ut .

On the other hand, writing p;* := p*Q; and 7% = 7%XQ; for brevity, along the
simultaneous heat flow we compute

2(9t<I>xpt _2/¢p—X 8tt——5’t7rt +2/¢_X 8t7T£X
e

pX
= / ¢'(1x) (dw< pi Vinp) — ﬁx div(m Vin "))
t

X X
P 1% P P
:_/<V[¢/($)],Vlnﬂ%{>pgx+/<V#,V1nﬂ§>¢/( zX)mX
X X
P x\ Pty _Xx
_/< ixavlnﬂ-t >¢(7Tt )Trt

Remark 4.4.2. A similar statement holds if we replace the ¢-divergence @
with any function 1 o @, of the ¢-divergence. This allows us to cover the Rényi
divergence introduced in §4.2.

M 4.4.1.2 Doob’s h-transform

Doob’s h-transform is a useful method to analyze the properties of a diffusion
process conditioned on its value at some terminal time point. Consider a general



118 CHAPTER 4. ANALYSIS OF THE PROXIMAL SAMPLER

diffusion process modeled by the stochastic differential equation (SDE)
dZt = b(t, Zt) dt + O'(t, Zt) dBt s ZO ~ o , (412)

where (B),», denotes a standard Wiener process. Assume that b(¢, z) and o(t, z)
are piecewise continuous with respect to ¢ and Lipschitz continuous with respect
to z so that the above SDE (4.12) has a unique solution. The Doob h-transform
characterizes the process conditional on its terminal value Z;, summarized in the
following lemma [SS19].

Lemma 4.4.3. Let (Zt)ogth be the process (4.12) conditioned to satisfy Zr = z.
Then, the process satisfies the following SDE backwards in time:

A

AZ, = [b(t, Z,) — o(t, Z)) o(t. Z,)' VInp(Z)] dt + o(t, Z,) dB, ,

where pi; is the marginal distribution of Z; in (4.12) and the SDE is started with
ZT = Z.
Equivalently, if we define the SDE
AZ7 = [-W(T = t,Z7) + o(T — t, Z7) o(T — t, Z7) T VI pr_(Z7)) dt

i (4.13)
+0'(T—t,Zt<_)dBt,

started at Z& = z, then at time T the law of Z§ is the conditional distribution
of Zy given Zp = z.
M 4.4.1.3 Lemma on the simultaneous backward heat flow

We present the following backward version of Lemma 4.4.1, which we use in
each backward step of the proximal sampler. We assume the same set up as in
Lemma 4.4.1. Namely, let ®,(p) = E-[¢(2)] be a ¢-divergence for some convex
function ¢, i.e.,

Dr(p) = Eq[6(5)]
and let

Dﬁm:E&v@wgyvmﬁ>

™

so that D, is the dissipation of ®, along the Langevin dynamics with target 7.

Lemma 4.4.4. Let % be a probability distribution and let 7 be a joint density for
(X,Y) with Y obtained from X by running the heat flow for time h. Let 7% be
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the conditional distribution of X given Y under m, and let 7 denote the marginal
distribution of Y. Then, for each t € [0, h], there ezists a channel Q; that maps
probability measures to probability measures, with the following properties: (1) Q¢
15 the identity channel; (2) Qh maps a probability measure p¥ to the the measure

pY Qi (x f7rX|Y (z | y) p¥ (dy); (3) for every t, 7™ Qf = w*normal(0, (h —t)I);
and (4) for every p¥ ,

1
O®vgr (P QF) = —3 Do (p Q).

The channel is obtained from the Doob h-transform. To give intuition for the
construction, consider the process dZ; = dB; started at Z, ~ 7%, i.e., Brownian
motion initialized from 7%. Then, the joint target distribution 7 of the proximal
sampler can be expressed as w = law(Zy, Z;,), and consequently we have 7% Y=y —
law(Zy | Zn, = y). If we define the time reversal Z;~ = Z;_;, then we can also
express this as XY=V = law(Z | Z5~ = y); moreover, the reversed process
(Z) )1eqon satisfies the SDE given in Lemma 4.4.3. Hence, we can take p@Q; =
law(Z;~ | Z§ ~ p) and use calculus in order to prove the result.

Proof. Let m = 7% * normal(0,¢I). We define Qi as follows: given p¥, we set
pY Qi to be the law at time ¢ of the SDE

Az =Vinm_(Z7)dt +dB;, (4.14)

started at 26_ ~ p¥. According to Lemma 4.4.3 applied to the Brownian motion
process (started at 7%), the channels (Qf )<, satisfy properties (1), (2), and
(3). It remains to verify (4). In the proof, we write 7f~ = 7V Qf and pi~ == p¥ Qf
for brevity. Note that m,_, = 7~ by construction, and we have the Fokker-Planck
equations:

1 1
Oy = —div(m; Vinm ) + EAWf = - Anf,

2
— : — — 1 — : — /)Z_ 1 —
Op; = —div(p; Vinnm) + §Apt = div(p; VIn F) - éAPt :
¢

Hence,

20,8, (o —2/¢%
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+—

—o [ $(PL) div(pe v n P
qs(ﬂ.te) IV(pt n,ﬂ.e)

t

—/(ﬁ’(%) (ap = 2= an) +/¢(%) Arf

t

szTr;— (pi~) by Lemma 4.4.1

_ _2/<v[¢f(£)]7v1n£> P+ Do (pF)

Ty Ty

= —2Dr-(p; ) + D (p ) = =D (p7) - O

M 4.4.1.4 General strategy of the proofs

Suppose that we want to understand the change in the ¢-divergence ®,x (py) after
one iteration of the proximal sampler, compared to the ¢ divergence ®, x (p{) at
initialization. We split the analysis into two steps.

1. Forward step: In the first step, we draw Yy | Xo ~ normal(Xy, hl).

This creates a joint distribution p, with the correct conditionals: péf X = pYIx,

Therefore, the ¢-divergence of the joint distribution is equal to the initial
¢-divergence of the X-marginal: ®(p,) = ®,.x(pY).

Consider the Y-marginal Yy ~ py. Observe that pi = pi * normal(0, hl)
is the output pi = pj of the heat flow 9;p; = %Aﬁt at time t = h starting
from po = py’. We denote this by py = py Qn, Where (Q1),5, denotes the

heat semigroup. Similarly, we write the Y-marginal of the target as 7% =

7% % normal(0, hI) = 7¥XQy,.

In particular, (pyQ;),5o and (7% Q¢),, evolve following the simultaneous
heat flow.

By Lemma 4.4.1, along the simultaneous heat flow,

1

at(Dﬂ'XQt (pé(Qt> = _5 Dﬂ'XQt (pé(Qt>

where D.(-) denotes the dissipation functional for the ¢-divergence along the
Langevin dynamics. Hence, a lower bound on D, x(), (pXQy) leads to an upper
bound on

Oy (pé/) — O.x (pé() - q)WXQh (pé(Qh) — drx (p()){) :

2. Backward step: In the second step, we draw X, | Yy ~ 7XV=Y0,
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This time, we consider the backward heat flow and apply Lemma 4.4.4, which
yields the Doob channels (Qf )y,<, With pi* = py Q5 and 7% = 77 Q; .
Lemma 4.4.4 implies that

1
2

Observe that this is almost symmetric with the forward step! In particular,
a lower bound on D v g« (py Qf) leads to an upper bound on

®rx (p{(> — $py (p(lJ/) = q)ﬂYQ;L_ (ngfT) — Dy (pé/) :

i@y o (py QF ) = —= Davr (05 QF) -

Combining the two steps allows us to understand each iteration of the proximal
sampler algorithm.

B 4.4.2 Convergence under strong log-concavity

Suppose that A is a set-valued mapping on R? which is strongly monotone, in the
sense that

(A(x) — A(y),x —y) > a|lz —y|? for all 2,y € R%,

Suppose that 2’ € x — hA(2’) and ¢ € y — hA(y"). Then, by expanding out
the square, one can easily show that |2/ — ¢/||* < m |z — y||?>. In particular,
by applying this to the subdifferential A = 0f, where f is a-strongly convex,
one immediately obtains the fact that the proximal point algorithm is a Hﬁ'
contraction. In this section, we translate this proof to the sampling setting.

Recall from (4.10) that #XV=¥ = prox,;(d,), where F' = KL(- || 7%) is a-
geodesically strongly strongly convex [AGS08, Equation 10.1.8]. Then, from the
first-order optimality conditions on Wasserstein space [see AGS08, Lemma 10.1.2],
we have

1
0 € OF (nXV=v) 4 7 (id — y), XV =V as., (4.15)
where OF denotes the Wasserstein subdifferential of F.

Proof of Theorem 4.3.1. First, let y, 3 € R% Then, from (4.15):

id € y — hOF (n*1Y=v) nXV=v_as. (4.16)
id € § — hOF(nXIY=7) XY=V as. (4.17)

Let T be the optimal transport map from 7X¥=¥ to XY=V We rewrite (4.17) as

T cij—hoF(@XV=%)oT, XY=V a5 (4.18)
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X|Y:y)

We now abuse notation and write OF (7 for an element of the subdiffer-

ential. Then, using (4.16) and (4.18), #X=v.a.s.,
1T —id|* = [|g — yl* — 20 (OF (xX" ) o T — 9F (x*I"=), T — id)
— W |OF (m*Y=0) o T — oF (x*V=v)| 2.

Integrating with respect to 7XY=Y_ and using the geodesic strong convexity of
F [AGS08, Equation 10.1.8],

WQQ(WXIY%/’ WX\Y=ﬂ>

< fly — g2 — 20R W=, 7XV=0) o212 WXy, 7 XV =5

Therefore,

, 1
W2 7TX|Y:y’ﬂ_X\Y:y < _ a2
5 ( ) < 0t ahy? ly — 7l

The rest of the argument is concluded as in [LST21b, Lemma 2]. We provide
the details here for completeness. First, along the proximal sampler, we have
Wa(pd, py ) < Wa(pit, pit) because the heat flow is a Wasserstein contraction (see
§4.4.1.4 for the notation). Next, let v denote an optimal coupling of p} and py ,
and for all y,y € R? let 7, ; denote an optimal coupling of 7% Y=y and 7X"=9
We check that the measure ¥(dz, dz) = v(dy, dy) vy.5(dz, dZ) is a valid coupling
of pf and p;¥. To check that, for instance, the first marginal of 4 is pi¥, we take
a bounded measurable function v : R? — R and calculate

/w A(dz, dz) //@D v(dy, dy) vy.5(dz, dz)
/ / () y(dy, dg) =¥ =v(dx)
— [[ v (@) o) = [ o) (@),

and similarly the second marginal of 4 is pi*. Therefore,
2o < [l =2l 3, d) = [ [lle = a7 3(dp,d) 2(da,da)

= [ W)y
1 2 _ 1 20 Y Y
Sm ly — 9| V(dy,dy)ZWWQ(Po,Po),

which completes the proof. O
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M 4.4.3 Convergence under log-concavity

For a probability distribution p with smooth relative density 2, the Fisher infor-
mation of p with respect to 7 is
2 s
3 [
™ p

Filp | 7) = [ p|[Viog
Recall that Fisher information is the dissipation of KL divergence along the
Langevin dynamics.

P 2] . (4.19)

Proof of Theorem 4.3.2. We follow the strategy and notation of §4.4.1.4.

1. Forward step: By log-concavity of 7%¥Q; (since log-concavity is preserved
by convolution [SW14]), the convexity of KL(- || 7¥Q;) along Wasserstein
geodesics [AGS08, Theorem 9.4.11] yields the inequality

0 =KL(7*Q: || 7 Qy)

Py Q@
> KL(ﬁOXQt || WXQt) + E(Xt,Yz)NOPT( Q. FXQt)<V log 0 ¢!

TXQy
where OPT(+, ) is used to denote the optimal transport plan. Hence,

(X3),Y: — Xy)

Eyxa [HVIO Po o e ” } W3 (po Qe ™ Qr) = KL(p5 Qs | WXQt)Q- (4.20)

[

=Fl(pp" Qt||7fXQt)
So, by Lemma 4.4.1 and (4.20),
1 KL(py @ || WXQt>2
2 WE(pXQumXQy)

Also, observe that t — W2(p{fQy, 7™ Q;) is decreasing because the heat flow
is a Wy contraction (which can be proven directly quite easily). Solving this
differential inequality yields

0 KLY Qu | 77 Q) = — FItoF Q0 | 7°Q) <

1 1 1 h

— > + .
KL(py [|7Y)  KL(py @Qn | 75Qn) — KL(pg || 7X)  2W3 (o, 7%)

2. Backward step: By Lemma 4.4.4 and (4.20),

1 KL(py QF || 7 QF)”
2 Wi p} Qt Q)

1
O KL(po @ | 7 Q) = =5 Fllpg @ 177 Q) <
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By (4.13), the channels (@), can be modeled by the diffusion
dZt =Vin ﬂ-hft(Zt) dt -+ dBt

Since Inmj,_; is concave, with a standard coupling argument, one can show
that ¢t — Wa(pl QF, 7Y Q) is decreasing. Hence,

Walpy Qi 7 QF) < Walpy Q5. 7 QF) = Walpy . m7) < Wa(p, 7).

Therefore, we deduce that

1 1 1 h

— > + .
KL(p{ | 7%)  KL(py Q5 1| 7Y Q) — KL(py || 7Y) — 2W3(pi, m¥)

Finally, we iterate this inequality and recall that W3 (pX, 7%) < WZ(p, 7¥)
for all £ € N (see Theorem 4.3.1 for a = 0). It quickly yields

1 . 1 L kh
KL(pi I =%) — KL(pg | ¥) ~ W3 (pg, %)

or

]

XX KL(pg || #) W3 (o, )
KLk 17%) < T KX 1 7 2o X = kho
I+ (Po ||7T )/W2(100>7T )

The above proof can be compared to the O(1/t) convergence of the objective
gap for the gradient flow ¢ — x, of a convex function f : R? — R, which follows
from differentiating the Lyapunov function ¢t — 2t {f(x;) — f(2*)} + ||z; — 2*||?,
where x* = arg min f.

B 4.4.4 Convergence under LSI

We recall the following definitions. For a probability distribution p with smooth
relative density 2, the Rényi information of p with respect to 7 of order ¢ > 1 is

Flu(o | 7) = g Ed(@q[(ﬂw)\y}ﬁu |

p

Note that Fl; = FI, where Fl is the Fisher information (4.19). Recall that by
definition, 7 satisfies 1/a-LSI if for all p, FI(p || 7) > 2aKL(p || 7). One can show
this also implies for all ¢ > 1:

Fl(p || 7) > %@ﬂw |, (4.21)
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see [VW19, Lemma 5]. Just as Fisher information is the dissipation of KL diver-
gence along the Langevin dynamics, Rényi information is the dissipation of Rényi
divergence along the Langevin dynamics.

Proof of Theorem /.3.3. We will prove the following one-step improvement lemma
for Rényi divergence of order ¢ > 1: For any initial distribution pf, after one
iteration of the proximal sampler with step size h > 0, the resulting distribution
py satisfies

Ralpp | 7*)
(1+ ah)*
Iterating this lemma for £ iterations yields the desired convergence rate in the

theorem. The result for KL divergence is the special case ¢ = 1.
We follow the strategy and notation of §4.4.1.4.

Re(py || 7) <

(4.22)

1. Forward step: By Lemma 4.4.1, along the simultaneous heat flow,

1 ¢
atqu(Pth || WXQt) = _5 qu(pé(Qt || WXQt) < —% qu(ngt || WXQt)

where by (4.21), the last inequality holds if 7¥Q; is 1/as-LSI. Since 7%
satisfies 1/a-LSI by assumption, recall that 7% Q; = 7% xnormal(0, t]) satisfies

1/y-LST with a; = (£ + 7 = T Integrating, we get

Re(py Qi | 75 Q1) < exp(=Ar) Ry(pg | 77)
where A; = %fg asds = %fot ®_ds = 1In(1 + at). Therefore, after the

1+as — g
forward step,

Ry | 77) = Re(pp Qn | 75 Qn) <

Roloo |1 77)
(1+ ah)'d
2. Backward step: By Lemma 4.4.4, along the simultaneous backwards heat
flow, it holds that
1
ORy(po Q1 |77 QF7) = =5 Fly(pe @1 [ 77 Q1)
p—
< == Raley QT 770

where the last inequality holds since 7¥ Q;~ = mxnormal(0, (h—#)I) is 1/,
LSI. Therefore, just as in the forward step, integration yields

X e “ « Rq(py | 7)
R ™) =R YQ 7TYQ QAU | Iy
q(P1 | ) q(Po h i) (1 h)l/q

Combining the two steps above yields the desired contraction rate in (4.22). [
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M 4.4.5 Convergence under Pl

The dissipation of the chi-squared divergence along the Langevin dynamics is
2
=
T

Proof of Theorem 4.53.4. We follow the strategy and notation of §4.4.1.4.

Fle(p || 7) = QEW[

1. Forward step: Along the simultaneous heat flow, Lemma 4.4.1 yields
1
ath(Pé(Qt | WXQt) -9 Fl;@(ﬂ?@t | WXQt) )

OR Q1 | 7¥ Q) = —5 Flu( Q1 7 Q).

Since 7 satisfies 1/a-PI, then 7%Q; satisfies 1/a;-PI with a; =
plying this yields

Ap-

_a
1+at”

O (P Qu 1 75Qu) = 2 FLa(p¥ Q0 [ 75Q1) < o (¥ Q1 [ 75Q)

2

and therefore

2( X X
(o || )
oy | 7)) = X2 (py Qn || ™5 Qn) < o i v

upon integration.

Next, from [VW19, Lemma 17], 1/a;-PI implies

OR (i @ 75 Q) = 5 PP Q | 7 Q)

< —% {1 - exp(—Ry(p¥ Qu [ 75 Q).

We split into two cases. If R, (pg ||7X) > 1, then as long as R, (o Q|| 7 Q;) >
1 we can use the inequality 1 — exp(—z) > % for x > 1, so that

atqu<pé(Qt I WXQt) < —%-

Integrating, we obtain

In(1 +ah)> Vi

Ro(p} 17 = Rl Qu | 7¥Qn) < (Kol 7% = =
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In the second case, if R,(py || #¥) < 1, then we use 1 — exp(—x) > % for

x € [0, 1] to obtain

M

atqu(Pé(Qt || WXQt) < _% qu(Pé(Qt H WXQt) .

Integrating,

- Ry |7

Rylpo | 77) = Re(p Qn | 7 Qn) (1+ah)?

2. Backward step: Along the simultaneous backward heat flow, Lemma 4.4.4
next yields

1

Ox*(po QF I 7 Q7) = =5 Fle(pg QF [ 77 Q1)
1

ORe(py Qi |17 Q) = =5 Fla(pp Q1 177 Q1)

Using entirely analogous arguments as in the forward step, we obtain

X*(oo | 7)

2/ X X 20 Y N+ Y n«
T = T (? <

for the chi-squared divergence,

In(1+ ah
%, (o7 | 7) = R Q1 7 Q) < (Rl 7~ ) v
for the Rényi divergence if R,(p¢ || #¥) > 1, and
Rq(py | 7)
R pX 7_{_X =R pYQ<— 7T_YC?<— < AR I
o(pr [177) = Ryl Qi [ 7 Q3) (0t am

it R, (o} || 7)< 1.

B 4.4.6 Convergence under LOI

Before giving the convergence proof under LOI, we recall the following property
of the behavior of LOI under convolution.

Lemma 4.4.5. Suppose that g satisfies (r,1/ag)-LOI and py satisfies (r,1/aq)-
LOIL Then, po * py satisfies (r,1/ag + 1/aq)-LOL
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Proof. Let Xg ~ pp and X; ~ pq be independent. Then, we can write
vary uoe (V) = E[@(WF(Xo + X1))] — P(E[YP(Xo + X1)])

where ®(z) := 2%?. One can then deduce the conclusion of the lemma easily from
the subadditivity of the ®-entropy [BLM13, Theorem 14.1]. O

Proof of Theorem 4.3.5. We follow the strategy and notation of §4.4.1.4.

1. Forward step: Along the simultaneous heat flow, Lemma 4.4.1 yields
1
atqu(Pé(Qt | WXQt) ) qu(ﬂé(Qt I WXQt) :

Since 7% satisfies (r,1/a)-LOT and N(0,tI) satisfies (r',¢)-LOI for any 1’ €
[1,2] [see LO0O, Corollary 1], then by Lemma 4.4.5, 7~ Q; satisfies (r,1/ay)-

LOI with oy = 1fat.

Next, from Theorem 3.2.2, (r,1/ay)-LOI implies

OR Q1 | T¥Q0) = — 5 Flu (@1 | 7 Q)

o R QUITQ)TT R Qi Q) = 1,
— 136¢ Rq(ﬂ?@t [ WXQt)a qu(Pé(Qt I WXQt) <1.

We split into two cases. If R,(pg ||7X) > 1, then as long as R, (p Qi|| 7 Q;) >
1, we have

0 Ry (pQy || 7XQ)" " = (2 ) O Rg (5 Q1 || Q)

TR Q|| TXQ)T
2
<156 C )
1369 *r

and therefore

2/r—1
Relpo I 7)

= Ry(p5 Qu || 7 Qu)""!
< (qu(pé( ” 7TX)z/r_l _@/r=1)h@+ ah)) Vi

136¢
In the second case, if R,(pf || 7*) < 1, then

ay

DR, (P Qe || ¥ Q) < 1364 Re(pi Qr || T¥Q4) -

Integrating,

Ry(pg |1 7)

Ry(py [ 77) = Rylpg Qn | 7¥ Q) < (L + o) 70509
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2. Backward step: Along the simultaneous backward heat flow, Lemma 4.4.4
next yields

— — 1 — —
&5qu(ng,5 H WYQt ) = ) qu(/)())/Qt H WYQt ) .

Using entirely analogous arguments as in the forward step, we obtain

2/r—1 2/r—1

Re(pr [175)"" " = Relpp @i Il 7" Q3y)
r— 2/r —1)In(1 + ah)

< Yo Yy\2/r=1 (

< (Ry(l 1 7) 6 Jvi

if R,(py || #¥) > 1, and

Ry(p5 | 7)

:Rq(f){( | WX) = :Rq(PE)/Q}? I 77Y(°21?) < (1+ ah)1/(136q)

if Rg(pg [I77) < 1.

B 4.4.7 Rejection sampling implementation of the RGO

The following result on rejection sampling is standard, and we include it for the
sake of completeness.

Theorem 4.4.6. Suppose we have query access to the unnormalized target p = pZ,
supported on Z°, and that we have an upper envelope ¢ > p. Let q denote the
corresponding normalized probability distribution and write Z, for the normalizing
constant, i.e., ¢ = qZ,. Then, rejection sampling with acceptance probability p/q
outputs a point distributed according to p, and the number of samples drawn from
q until a sample is accepted follows a geometric distribution with mean Z,/Z,.

Proof. Since § is an upper envelope for p, then p(X)/¢(X) < 1is a valid acceptance
probability. Clearly, the number of rejections follows a geometric distribution. The
probability of accepting a sample is given by

P(accept) = /% % q(dx) = %/%p(dx) = %.

Let X1, X5, X3,... be a sequence of i.i.d. samples from ¢ and let Uy, Us, Us, ...
be i.i.d. uniform[0,1]. Let A C 2" be a measurable set, and let X be the output
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of the rejection sampling algorithm. Partitioning by the number of rejections, we
may write

_ S IGONS P(Xni1)
]P(X S A) = ;P(Xn+l eA U, > qN(—)(Z)VZ € [n]a Unt1 < Q(XnJrl))
o0 ﬁ(Xn 1 ﬁ(Xl) "
= ZP(XHH €A Unn < q(—+> P(Ul ~ d(X1)>

M 4.5 Optimization proofs inspired by the proximal sampler

M 4.5.1 Alternative proof of the contractivity of the proximal map
The following theorem is well-known in optimization.

Theorem 4.5.1. Let f : R? — R be a-strongly convex and differentiable. Then,
the prorimal mapping

_ 1
proxy,;(y) = arg min {f(w) + 57 |z — yll2}
z€R4

5 a Hah—contmctwn.

Here, we give a new proof of the theorem which translates the convergence
proof of the proximal sampler in [LST21b] to optimization.

We recall that a-strong convexity implies the 1/a-PL inequality (or gradient
domination inequality)

IV f(z)||* > 20 {f(x) — min f} for all z € R?,

which in turn implies the 1/a-quadratic growth inequality
f(x)—mian%Hx—az*HQ for all + € R?,

with 2* = argmin f, see [OV00; BB18].
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Proof of Theorem 4.5.1. Let f,(z) == f(2) + 5= ||z — z||, and define f, similarly.
Then, by definition,

' = prox, (=) = argmin f, ,
y' = prox,(y) = argmin f, .

Since f, is (o + %)—strongly convex, then by applying the quadratic growth and
PL inequalities,

/ 1112 2 ! / 1 N\ [12
2" —y'||" < m{fz(y ) — fo(2))} < m |V fa(v)]]
1 , 1 9
:m“vf(y)+ﬁ(y—$)“
1 1, 1, S S
_m“_ﬁ(y_y)+ﬁ(y_x)ll _—(1+ah)2 | Y|

where the last line uses the optimality condition V f(y') 4 + (' —y) = 0 from the
definition of ¥/’ m

By comparing with the proof of [LST21b, Lemma 2], we see that f, is analogous
to KL(- || #X¥=¥) for the proximal sampler.

At first glance, it may appear that the proof above only requires a PL inequality,
and not strong convexity. However, this is not the case, as it in fact requires that
f, satisfies 1/(a+1/h)-PL for all y € R%, which does not follow from (for example)
the assumption that f satisfies 1/a-PL.

M 4.5.2 Optimal contraction factor for the proximal point method under PL

Our proof uses the Hopf-Lax semigroup, guided by the following intuition. There is
an analogy between the standard algebra (+, x) and the tropical algebra (inf, +);
see, e.g., [Bac+92, Section 9.4] or [ABS21, Lecture 16]. The following table
describes these analogies.

(+, X) (inf, +)
convolution inf-convolution
Fourier transform convex conjugate
diffusion gradient flow
heat equation = Hamilton—-Jacobi equation
heat semigroup Hopf-Lax semigroup

As described in §4.4.1.4, our proofs for the proximal sampler involve computing
the time derivative of ¢ — KL(py' Q; || 7¥Q;) where (7*Q¢),so, (95 Q)i are
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simultaneously evolving according to the heat flow. In what follows, we will
consider the time derivative of ¢t — fi(x;), where f; is the Moreau envelope of f.

Proof of Theorem 4.3.9. Let us define, for t > 0,
1 .
fiz(2) = f(2) + % |z — |2, xy = argmin fi, . (4.23)

Then z; = prox,;(r) and x + f;.(x) is the Moreau envelope of f. Recall the
optimality condition

Vf(xt)—i—%(a:t—x)zo.

The Moreau envelope satisfies the Hamilton—Jacobi equation

) 1
3tft,:c($t) = <vft,:c(xt)7xt> o2 ||95t - $||2
——
=0
Using the PL inequality,
a 1
Ocfra(xe) = —m (e m [y — ]|
_ 2
< _ _ *
= 2t(1+ t)Ht (ﬁt) f}
which yields
O fra(xe) — [} < — o(me) — [}

Integrating this yields*

frolen) = 1 < 1) = FYeo(~ [ ()= 1.

Hence,

dt)
1+ ot 1+ ah

1 h
@) = Y2 6 = 4 o o = ol = @) = 4+ 5 IV )P
> f(@') = fF+ah{f(@) - [} =1+ ah){f(&) - f}.
This completes the proof. n

1—|—ah

4Denote by ( ?L)tZO the Hopf-Lax semigroup defined by QI f(x) = f;.(2;). One can
check that QL f(z*) = f ( *) where x* = argmin f. So, we can rewrite this inequality as

QM1 (x) — QM (a") < (i 1/ (@) — J(a)}.
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B 4.6 Conclusion

In this chapter, we have studied in detail the proximal sampler of [TP18; LST21c¢].
In particular, we have given new convergence proofs under weaker assumptions
than what were previously considered, allowing for a much wider class of distri-
butions beyond log-concavity. In some cases, our proofs are inspired by convex
optimization; in others, they show a remarkable parallel with the continuous-time
theory of the Langevin diffusion under isoperimetry. Additionally, we have drawn
more precise links between the proximal sampler and the proximal point method
in optimization.
We conclude by listing a few directions for future study.

1. Is there an extension of the theory we have developed to the problem of
sampling from composite potentials 7% oc exp(—f — g)?

2. Is there an accelerated version of the proximal sampler?

Additionally, since the complexity of the proximal sampler hinges on the
complexity of the subroutine used to implement the RGO, this represents a
potential avenue towards better sampling guarantees. In this chapter, we have only
considered a simple rejection sampling implementation for the RGO. In the next
two chapters, we shall develop a faster implementation based on the Metropolis-
adjusted Langevin algorithm, which ultimately leads to improved complexities
over the ones obtained in this chapter by a factor of v/d. In the concurrent and
independent work [FYC23], similar improvements were obtained via approximate
rejection sampling implementations of the RGO.






Chapter 5

Analysis of MALA
from a warm start

In §4, we studied the proximal sampler which is an unbiased sampling algorithm
(with perfect implementation of the RGO) and hence leads to high-accuracy
sampling guarantees. Another method for designing unbiased samplers is to add
a Metropolis—Hastings filter step; when applied to LMC, it yields the Metropolis-
adjusted Langevin algorithm (MALA). In the strongly log-concave case, the results
of §4 match the existing complexity guarantees for MALA [Dwi+19; Che+20a;
LST20]; in particular, the dimension dependence of both algorithms scale as 6(d)

In this chapter, we break the 5(61) barrier by showing that the dimension
dependence of MALA improves to 6(\/3) under a warm start; moreover, we show
via lower bounds that for MALA, this rate is tight. The question of algorithmically
obtaining a warm start for MALA to take advantage of this faster rate will be
addressed in §6.

This chapter is based on [Che+21b], joint with Chen Lu, Kwangjun Ahn,
Xiang Cheng, Thibaut Le Gouic, and Philippe Rigollet.

B 5.1 Introduction

The class of Metropolis—Hastings (MH) adjusted algorithms [Met+53; Has70],
which includes the Metropolized random walk (MRW) algorithm, the Metropolis-
adjusted Langevin algorithm (MALA), and Metropolized Hamiltonian Monte
Carlo (MHMC), is particularly popular for sampling in practice. As such, their
convergence properties are of central theoretical and practical interest. More
specifically, with the ever-growing size of sample spaces, a precise characterization
of how dimension affects convergence rates is a necessary step to develop a better
understanding and, ultimately, practical guidelines for this suite of algorithms. In
this chapter, we address this pressing question by characterizing the dimension
dependence of MALA over a natural class of distributions from a warm start.

135
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Formally, we consider the task of sampling from a target distribution 7 sup-
ported on R?, with density m(x) o exp(—V (x)), where V : R? — R is a strongly
convex and smooth potential. Here, [RGG97] initiated the study of dimension
dependence of MRW by means of an asymptotic framework: namely, when 7 is
a product distribution, a scaling limit exists for MRW as the dimension tends to
infinity with a dimension-dependent step size h ~ d~!, thereby suggesting that the
number of steps needed for MRW to reach stationarity is on the order of d. Sub-
sequently, [RR9I8] [see also PST12] extended the scaling limit approach to MALA,
suggesting that the dimension dependence for MALA is d'/? for sufficiently regular
potentials and step size h ~ d~/3. Beyond its theoretical beauty, this result has
had a tremendous practical impact by guiding the choice of step size for MALA
even for distributions far beyond the scope of their seminal paper. Understanding
the applicability of this result, and ultimately the optimal rate of convergence of
MALA, requires a careful inspection of the framework laid out in [RR98]. It turns
out that it is rather limited in several aspects. Perhaps most notably, it requires
7 to be a product distribution, which excludes distributions with complex depen-
dence structures that are now routinely encountered in high-dimensional statistics.
Moreover, it applies only to potentials V' with higher-order regularity; this is not a
mere technical artefact since the limit acceptance probability of MALA as d — oo
involves the third derivative of V. Finally, the asymptotic nature of the scaling
limit result only suggests dimension dependence in the asymptotic limit as d — oo,
so it potentially washes away important effects that may arise for finite d.

Thus it is natural to investigate the rate of convergence of MALA from a
perspective that is now customary in the machine learning and optimization
literature: by establishing non-asymptotic rates of convergence that hold uniformly
over natural classes of target distributions which go beyond product distributions.
We begin with the simplest and most natural setting and ask:

What is the optimal dimension dependence of the mixing time of MALA
uniformly over the class of a-strongly convex and S-smooth potentials?

Interestingly, and somewhat surprisingly, we show that while the rate d'/3
originally established by [RR98] is indeed optimal for some product distributions
such as the standard Gaussian, it is not optimal uniformly over the class of smooth
and strongly convex potentials of interest in this work. In fact, for any choice
of d, we exhibit a product distribution with infinitely differentiable potential on
which MALA requires a stepsize much smaller than d='/3, thus resulting in a
worse mixing time. This construction confirms the limitations of the scaling limit
approach to establishing optimal dimension dependence.

Related work. The non-asymptotic performance of sampling algorithms uni-
formly over the class of smooth and strongly convex potentials has been the object
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of intense research activity recently. For example, [Dwi+19; Che+20a] show that
on this class of potentials, MRW can draw samples with at most ¢ error in
chi-squared divergence with O(dlog %) steps, thereby providing a non-asymptotic
affirmation of the scaling limit of [RGG97]. However, far less is known about op-
timal rates for MALA. The current best result for MALA on the class of smooth
and strongly convex potentials is the paper [LL.ST20], which proves a complexity of
6(dlog %) steps to achieve €2 error in chi-squared divergence. They also raise the
question of whether there is a gap between the complexities of MRW and MALA.

The paper [MV19] took a direct aim at improving the dimension dependence of
mixing time bounds for MALA. They succeeded in obtaining a bound of 5((12/ %)
albeit at the cost of stringent hypotheses. More specifically, they assume bounds
on the third and fourth derivatives of the potential V'; when these bounds are
O(1) (which is true for the standard Gaussian) then their mixing time is O(d?/3);
see the discussion in [Che+20a].

Our contributions. In this work, we show that the mixing time in chi-squared
divergence for MALA on the class of smooth and strongly convex potentials with
a warm start is ©(d'/?). Our result consists of two parts: an upper bound on the
mixing time which improves to optimality prior results such as [Dwi+19; Che+20a;
LST20], as well as the construction of smooth and strongly convex potentials on
which the mixing time of MALA is no better than d'/2.

In order to prove our upper bound on the mixing time, we introduce new
techniques based on the characterization of the Metropolis filter as a projection
of the Markov transition kernel in expected L' distance [BDO01]. Our techniques
effectively reduce the problem of bounding the mixing time to controlling the dis-
cretization error between the continuous-time and discretized Langevin processes,
which has been extensively studied in the sampling literature. We do not aim to
give a comprehensive bibliography here, but we note that our discretization analy-
sis is closest to the papers [DT12; Dall7b], as well as the Girsanov argument of §3.
In this way, our upper bound has the potential to connect the vast literature on
discretization of SDEs with the more difficult analysis of Metropolized algorithms,
although it is likely that further innovations are necessary before the study of the
latter is completely reduced to the former.

Notation. We use the symbol x to denote a d-dimensional vector, and the
plain symbol x to denote a scalar variable. We abuse notation by identifying
measures with their densities (w.r.t. Lebesgue measure); thus, for instance, =
represents the stationary distribution (a measure), and the notation 7(x) refers
to the corresponding density evaluated at x.
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B 5.2 Preliminaries

M 5.2.1 Assumptions

We consider the problem of sampling from a distribution 7 supported on R
The density of the distribution is given by 7(x) o exp(—V(x)), and we refer to
V : RY — R as the potential. Throughout the paper, we will assume that V is
twice continuously differentiable, a-strongly convex, and $-smooth, meaning

aly = V*V(x) = Bly, Va e RY.

We denote by k = /a the condition number. For the sake of normalization, we
assume that V' (0) = min V' = 0, so that VV(0) = 0.

M 5.2.2 Metropolis-adjusted Langevin algorithm (MALA)

Before stating our main results, we give some background on MALA and tools for
establishing convergence rates of Markov chains.

Given a step size h > 0, MALA produces a sequence (X ), of random points
in R? as follows. First, MALA is initialized at X ~ po. Ther_l, for n > 0, repeat
the following two-step procedure:

1. Proposal step: sample Y, 11 ~ Q(X,, ), where

1
(47h)"/

I| - —:v+hVV(ac)||2) .

Qz,-) = Ah

exp (—

This proposal density corresponds to one step of the unadjusted Langevin
algorithm.

2. Accept-reject step: set

X Y ,..1 with probability A(X,,Y 1)
") X, with probability 1 — A(X,,Y 1)

where the acceptance probability is given by
Al@,y) =1 a(z,y), a(@y):=

It is well-known that MALA outputs a sequence of random variables (X,),
that forms a reversible Markov chain with stationary distribution 7 and Markov
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transition kernel given by
T(x,dy) = [1 - A(z)] 6= (dy) + Q(z, dy) A(z,y),
= /Q(w,y) A(x,y)dy > 0.

For the rest of the chapter, it is important to note that A, @), etc. depend on the
step size h.

There are many choices to measure proximity of the MALA output with the
target distribution (see §2.2.3). In this work, we focus on the total variation
distance (TV), the Kullback—Leibler divergence (KL), the chi-squared divergence
(x?), and the 2-Wasserstein distance (W3). Given a measure of discrepancy d
between probability measures, we define the mixing time, with initial distribution
Ito, as follows:

Tmix (€, to;d) = inf{n € N : Xy ~ po, d(u,,m) <e}.

Extensions to other discrepancies, such as the p-Wasserstein distance for p < 2 or
the Hellinger distance, are straightforward and omitted for brevity.

The mixing time of a Markov chain is governed by its spectral gap, which we
now introduce. To that end, recall that the Dirichlet form associated with the
MALA kernel T is the quadratic form

(5.2)

g(fa ):Eﬂ[f(ld_T)g]a f7g€L2(7T)>
where (T'g)(xz) = [ g(y) T(z,dy). The spectral gap is defined as
A =in { \Eaj; jj) f € L*(n), var f > O} : (\)

Since it is often difficult to control the spectral gap directly, it is also convenient
to introduce the conductance, defined as

JoT( m(dx) J 1
C:= S CR < — 5. C
i { ﬂ& SCRY 7(8) < 5} ©
By Cheeger’s inequality [L.S88], it holds that
c?<a<c. (5.3)

Actually, in order for the mixing time results we invoke to be valid, we must
instead consider the %—lazy version of the chain, in which each proposal is discarded
with probability % Since this only affects the mixing time bounds by a factor of
2, we henceforth ignore this distinction.

The Metropolis-adjusted Langevin algorithm (MALA) has been studied for
nearly three decades since [Bes+95], especially within an asymptotic framework;
see, e.g., the influential work of [RR98].
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B 5.3 The Gaussian case

As our work is motivated by the diffusion scaling limit of [RR98], which predicts
a d'/? mixing time for MALA, it is natural to begin our investigations by asking
whether this is indeed the correct order of the mixing time in the simplest possible
setting: namely, when 7 is the standard Gaussian distribution. Our first contribu-
tion is to establish that it is indeed the case even for finite d. We formulate here
an informal result and postpone a more detailed statement together with a proof
to §5.8. Though it is expected, this result appears to be new.

Theorem 5.3.1 (Informal). If the target distribution 7 is the standard Gaussian
distribution, then the mizing time of MALA under a warm start is ©(d*/?), and
is achieved with step size h ~ d~/3.

The proof of this result is based on explicit calculations. While limited to
the Gaussian case, its inspection is instructive for potential extensions to other
distributions.

On the one hand, the upper bound on the mixing time relies on fine can-
cellations in the acceptance probability using the explicit form of the Gaussian
distribution, which is unavailable for more general potentials. In general, it is
difficult to control the acceptance probability directly, and this seems to be the
main obstacle to sharpening the mixing time bound in [Dwi+19]. This observation
motivates us to seek an indirect way of controlling the acceptance probability in
the next section.

On the other hand, while the Gaussian target distribution readily yields a lower
bound over the class of potentials with smooth and strongly convex potentials, it
turns out to be too loose to address the optimality of MALA. In §5.5, we show
that a tighter lower bound may be achieved using a carefully chosen perturbation
of the Gaussian distribution. B

See also [L.ST21a], which proved that the mixing time is ©(d'/?) if a warm
start is not available.

l 5.4 Upper bound

In order to prove an upper bound on the mixing time of MALA, we assume that
we have access to a warm start. This is a common assumption which has been
employed in previous works on MALA, e.g., [Dwi+19; MV19; Che+20a].

Definition 5.4.1 (Warm start). We say that the initial distribution po is M-
warm with respect to 7 if for any Borel set E C RY, it holds that jo(E) < Myn(E).
When clear from the context, we simply say that an algorithm has a My-warm start
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to indicate that it is initialized at an My-warm distribution and omit reference to
the target distribution.

We now state our upper bound on the mixing time of MALA, which shows
that under a warm start the mixing time of MALA is O(v/d).

Theorem 5.4.2. Fix ¢ > 0 and consider a target distribution m satisfying the
assumptions of §5.2.1. Then MALA with a My-warm start and step size

Cc

1 1
h=3 (d1/2 log(rdMy/2) " E)

for a sufficiently small absolute constant ¢ > 0, has mixing time given by
d M, M,
Taix (€, 1103 d) S (Hdm log 0 4 ﬁz) log<—0>
€ €
for each of the distances

d e {TV, VKL, /\2, vaW,}.

The main properties of strongly log-concave distributions that we use in the
proof are summarized in Lemma 5.6.11. As long as 7 satisfies these properties,
the upper bound technique may be applied under weaker assumptions, e.g., a
log-Sobolev inequality. We do not pursue these extensions further in this paper.

We primarily work with the total variation distance to establish the above
upper bound on the mixing time and translate this result to the chi-squared diver-
gence by using My-warmness of all the iterates of the MALA chain. In turn, this
result extends to the KL divergence using a standard comparison inequality [see,
e.g., Tsy09, §2] and ultimately to the Wasserstein distance using Talagrand’s
transport inequality for strongly log-concave distributions; see §2.2.3.

The quantity log M, is important because it can introduce additional dimen-
sional factors under a feasible start [Dwi+19]. We address this issue in §6.

Since our upper bound proof may be of interest for analyzing other sampling
algorithms based on Metropolis—Hastings filters, we now proceed to give a technical
overview of the ideas involved in the upper bound. Throughout, we use the
notation Qg(-), Tx(-), etc. as a shorthand for the kernels Q(x, -), T'(x,-), etc.

We begin by describing the approach of [Dwi+19], which will serve as a refer-
ence. The standard technique for bounding the conductance of geometric random
walks is the following lemma [see, e.g., LV18a, Lemma 13|.

Lemma 5.4.3. Suppose that for all x,y € R? with || — y|| < r, it holds that
| T —Tyllvv < 3/4. Then, the conductance of the MALA chain satisfies C 2 \/ar.
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In light of this lemma, [Dwi+19] considers the following decomposition:

1T — Tyllrv < |Te — Qelltv + Qe — Qyllrv + [Ty — Qyll7v - (5.4)

The middle term is the TV distance between two Gaussian distributions, and
using Pinsker’s inequality it is straightforward to show that

|z —yl

Von

see [Dwi+19, Lemma 3]. On the other hand, bounding the first and third terms in
the decomposition (5.4) requires carefully controlling the acceptance probability
of MALA. In [Dwi+19], the authors show that these terms can be controlled when
the step size is of order h =~ 1/d. An application of Lemma 5.4.3 with r ~ Vh
yields a conductance bound of C = Q(1/4/d) and in turn, a spectral gap bound of
A = Q(1/d) by Cheeger’s inequality (5.3). Overall, this approach yields a mixing
time bound of O(d).

In order to prove a stronger mixing time bound of O(v/d), we must consider
much larger step sizes (of order h ~ 1/v/d), and in this regime, controlling the
acceptance probabilities by hand requires a daunting computational effort. In
fact, [RR98] already resort to a computer-aided proof to study the asymptotics of
the acceptance probability. Our first main idea is to use the well-known fact [BDO01]
that for any proposal @), the corresponding Metropolis-adjusted kernel T is the
closest Markov kernel to (), among all reversible Markov kernels with stationary
distribution .

Qe — QyllTv < provided h <

o

Lemma 5.4.4. Let () be an atomless proposal kernel, and let T be the kernel
obtained from Q by Metropolis adjustment (defined by (5.1) and (5.2)). Let Q be
any kernel that is reversible with respect to m and has no atoms. Then, for x ~ T,
it holds that

E|Te — Qulltv < 2E|Qa — Qall1v -
Proof. See §5.6.2. |

We apply this result by comparing the MALA kernel T" with the transition
kernel ) of the continuous-time Langevin diffusion run for time h. In other
words, Q(z, -) is the law of X, where (X),», evolves according to the stochastic
differential equation -

dX, = -VV(X,)dt+v2dB,, Xo==, (5.5)
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and (By),s, is a standard Brownian motion. Using standard stochastic calculus

arguments (see (5.11)), we show that E||Qr — Qzlltv = O(hVd) (see (5.11)).
This suggests that we can take the step size to be h < 1/\/3 However, since
the lemma only controls the first and third terms of the decomposition (5.4) in
expectation, it is not enough to yield a good lower bound on the conductance via
Lemma 5.4.3. To remedy this, we prove a new pointwise version of the projection
characterization of Metropolis adjustment.

Theorem 5.4.5. Let Q) be an atomless proposal kernel, and let T' be the kernel
obtained from @ by Metropolis adjustment (defined by (5.1) and (5.2)). Let Q) be
any kernel that is reversible with respect to m and has no atoms. Then, for every
x € RY,

m(y) Qy, ) }Q(y,w)
m(x) Qy, x)

Consequently, for any convezr increasing function ® : R, — R, and © ~ m,

Yy~ Q(CB, ')7

17— Qallry < 211Qe — Qallrv + / 1|y, (56)

E®(IT: ~ Qullrv) < 5 EO(4Qe — Qullr) + 5 B2 (2 %223 “1)). 6)

Proof. See §5.6.2. |

Remark 5.4.6. If we take the expectation of (5.6) when x ~ w, we obtain

EHTw - QmHTV S 4E||Qw - Qa:”TVa

which qualitatively recovers Lemma 5.4.4.

The second inequality in Theorem 5.4.5 can be used in the usual way to
deduce concentration bounds for |7, — Q||vv when & ~ m. A key feature of this
approach is that both terms on the right-hand side of (5.7), in the case of MALA,
involve only quantities which measure the discrepancy between the continuous-
time Langevin kernel () and the discretized Langevin proposal (). Therefore, to
control the quantity ||T, — Qzl||Tv, it suffices to apply well-established techniques
for studying the discretization of SDEs.

Once we show that || T, — Qz|/7v is controlled with high probability, we are
then able to apply a conductance argument, similar to Lemma 5.4.3, in order to
prove our mixing time bound. We give an in-depth overview of the proof and
provide proofs of technical details in §5.6.
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B 5.5 Lower bound

It is a standard fact that the mixing time is governed by the inverse of the spectral
gap'. Hence, an upper bound on the spectral gap A yields a lower bound on the
mixing time. In addition, we know from Cheeger inequality (5.3) that A < C,
where C denotes the conductance of the Markov chain. For these reasons, we
identify a lower bound on the mixing time with an upper bound on either the
conductance C or the spectral gap A.

To complement our upper bound on the mixing time of MALA, we provide
a nearly matching lower bound, thereby settling the question of the dimension
dependence of MALA for log-smooth and strongly log-concave targets. To that
end, we exhibit a target distribution (in fact a family of distributions) such that
the MALA chain with step size h has exponentially small conductance whenever
h > d~'/2. More precisely, fix n € (0,1/4) and define the adversarial target
distribution , as a product distribution with potential V,, defined by

=l 1

d
V() 5 S Z cos(d"z;) . (5.8)

It is not hard to see that V;, is 1/2-strongly convex and 3/2-smooth. To motivate
this choice, recall from [RR98, Theorem 1] that the acceptance probability of
MALA tends to a positive constant as d — oo whenever the second moment
of the third derivative of the potential is finite and the step size is chosen as
h = ©(d~1/%). The choice V,, in (5.8) is an example of a smooth and strongly convex
potential where this condition is violated asymptotically, therefore suggesting that
h = ©(d~'/3) is too large to prevent the acceptance probability to vanish for large
d. Our first result below indicates that h should be taken significantly smaller
than d~'/3; in fact nearly as small as d~'/? when 7 ~ 1/4.
In the following theorem, we set n = 1/4 — §, for some small § > 0.

Theorem 5.5.1. Fiz § € (0,1/18), let n = 1/4 — 6, and let C denote the con-
ductance of the MALA chain with target distribution m, and step size h. Then,

C < exp[—Q(d*)] for any h € [d*%+357 d*é],

Note that as § N\, 0, the above theorem shows that MALA must take step sizes
which are (essentially) at most of order d~'/2.

By definition, the spectral gap corresponds to the smallest eigenvalue of the Dirichlet form.
Hence, for an initial distribution pg that is correlated with the eigenfunction corresponding to
A, it follows that mmix (e, to; \/)?) = Q(A\71). See, e.g., [BGL14, §4] for a rigorous treatment of
spectral theory.
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The next result shows that the spectral gap of MALA is no better than h.
Together with our upper bound, it implies in particular that the choice h ~ d—1/?
is the optimal step size for MALA for a target distribution , and hence, cannot
be improved uniformly over the class of distributions with smooth and strongly
convex potentials.

Theorem 5.5.2. The spectral gap A of MALA with target distribution m, and
step size 0 < h <1 satisfies A < h.

We give the proofs of these theorems in §5.7.

Remark 5.5.3. In fact, in our proof, we construct an event E with 7(E) > 1/2,
such that with step size h in the range [d’%+35,d’%] the acceptance probability
starting at any point in E is exp[—Q(d*)]. Note then that the initialization
po = (- | E) is My-warm w.r.t. ™ with My = 2. Hence, our construction provides
a lower bound on the mizing time of MALA from a warm start.

M 5.6 Proof of the upper bound

This section presents the proof of Theorem 5.4.2.

M 5.6.1 High-level overview of the proof

The bulk of the proof controls the mixing time in total variation and we use results
from §5.6.7 to extend it to the other distances.

For the proof, it is technically convenient to work with a refinement of the
conductance known as the s-conductance: for 0 < s < 1/2, define

JoT(, 5°) m(dx)
w(S)—s

1
C, = mf{ SCRY s <7(S) < 5} . (5.9)

A lower bound on the s-conductance translates into an upper bound on the
mixing time in total variation distance, via the following lemma.

Lemma 5.6.1 ([LS93, Corollary 1.6]). For any n € N and 0 < s < 1/2, the
distribution of the n-th iterate u,, of the MALA satisfies

H, Zn
\\pon, — 7l|vv < Hs + e eXp(— 9 ) )

where Hy = sup{|po(A) — w(A)] : 7(A) < s}.

By Holder’s inequality, we have Hy < Mys. It yields the following corollary.
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Corollary 5.6.2. Taking s = </(2M,), it follows that

2 . 2M,
|t — 7l|7v < € provided that n > aln B u

Motivated by the standard conductance lemma (Lemma 5.4.3) and the decom-
position (5.4), in order to bound the s-conductance from below we will first bound
|Te — QullTv, as in §5.4. The outline of the proof is as follows:

1. In §5.6.2, we prove the projection properties of MALA (Lemma 5.4.4 and
Theorem 5.4.5).

2. In §5.6.3, we use the projection property (Lemma 5.4.4) along with stochastic
calculus to bound the expectation E ||T;, — Q||+, when  ~ 7.

3. In §5.6.4, we use the pointwise projection property, together with more
stochastic calculus computations, in order to prove a concentration inequality
for [|Tp — QullTv when & ~ 7.

4. In §5.6.5, we use the concentration bound of §5.6.4, together with ideas from
the proof of the standard conductance lemma (Lemma 5.4.3), in order to
lower bound the s-conductance. Together with Corollary 5.6.2, it yields the
mixing time bound of Theorem 5.4.2 in total variation distance.

5. Finally in §5.6.7, we explain how the mixing time bound in total variation
distance implies mixing time bounds in other distances between probability
measures.

M 5.6.2 Proof of the projection properties
We start with a basic fact about MALA.

Proposition 5.6.3. Let () be the proposal kernel and let T be the MALA kernel
with proposal ). Then,

7.~ Qulrv = |

(2, y) - Qz.y)|dy = 1 - / Qe y) A(z, y) dy.
R\ {x} Rd

Proof. First, since T, has an atom at « and (), does not, we have

Qo = Tl =5 (Bella) + [ [Ty - Qv dy).

RA\{a}
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By the definition of the accept-reject step,
To({z}) =1 —/ T(w,y)dy =1 —/ Qz,y) Alz, y) dy,
R\ {x} Rd
whereas
[ ey -Qeyly=1- | o@yiwydy.
R\ {x} Rd

The result follows. O

We now prove the projection properties (Lemma 5.4.4 and Theorem 5.4.5).

Proof of Lemma 5.4.4. Since the kernel Q corresponding to the continuous-time
Langevin diffusion is reversible with stationary distribution 7, it follows from the
result of [BDO01] that

// Qe y)| 7(dz) dy < // Q(@,y)| (dz) dy.
(RxRE)\ A (RxRE)\ A

where A = {(z,y) € R x R? : & = y}. Since Q, and @, have no atoms, the
right-hand side is equal to 2 Ezr[|Qz — Q||Tv. On the other hand, the left-hand
side is equal to Egr||Tx — Q2 ||Tv due to Proposition 5.6.3. O

Proof of Theorem 5.4.5. For any x, we have

1T — Qallry = / {1- Alz,y)} Q. y) dy

T _ m(y) Qy, ) .
_/_1 (1/\7T(m)Q(w’y))]Q( ,y) dy
m(y) Qy, x)
< [- T8 ey dy
m(x) Q(x,y)
Q)| (y)Qy,z) Qly.x)
< [P Taeglew s [ TEERTERT

Observe that the first term is given by

f|1- 2082 ey [ - 2082)
=2[|Qz — Qalltv,
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where in the second identity, we used the reversibility of Q. This concludes the
proof of the first inequality.

We now deduce the second inequality from the first. Using monotonicity and
convexity of @ respectively, we get,

BT, = Qullr) < B0 (2010 = Qolry + [ LI ZE ) ay)
g 1 m(y) Qy,z) | Qy. )
5 (4 ||Q€B chHTV) + §E¢<2/ 71'(:13) ‘Q(y,:c) 1| dy> )

where we take expectation with respect to & ~ 7. Next, noting from stationarity
that [7(y) Q(y,z)dy = (), we apply Jensen’s inequality to yield

oz [ HETHE SR 10

_ /@(2/7r(y)ﬂ?w(§1,w) |C§(y, ) 1‘dy> o) da
< [ eeiGes -
// QE :Z> 1|) 7(x) Q(z,y) de dy

where we switched & and y in the notation of the last line. O]

Y,

B 5.6.3 Expectation of the total variation

We now bound the expectation E||T, — Q|tv when @ ~ 7 using the projection
property (Lemma 5.4.4). Akin to prior work such as [DT12], our primary tool to
analyze the discretization of the Langevin diffusion is the Girsanov theorem from
stochastic calculus [see, e.g., SV06; Le 16, for classical treatments].

Lemma 5.6.4 (Girsanov theorem). Let Qg denote the probability measure on
path space induced by the solution (Xt)te[o,h} of the continuous-Langevin diffusion
SDE (5.5) started at & and run for time h > 0. Moreover, let Qg denote the
probability measure on path space induced by the solution of the following SDE
with constant drift

dX, = -VV(x)dt+v2dB,, X,==z.
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Then, Qg is absolutely continuous with respect to Qg and has density given by
Radon—Nikodym derivative:

dQz
A& (X)) = e[ Iz [ (VX0 - TV @) aB)

- —/ IVV(X,) — VV (x)|*dt] .
Proof. See the proof of Proposition 2 in [DT12]. ]
In the following lemma, we use Lemma 5.6.12.
Lemma 5.6.5. Assume h <1/3. For any x € R?,
1Qz = Qzllrv < Bhy/d + B2 [||*.

Proof. Let end denote the function that maps a continuous curve (y¢),c( ) in RY
to its endpoint: end((yt),c()) = yn- Then, it is clear that

Qz = end# Qz and Q:c = end# Qz )

where the notation fx s denotes the pushforward of a measure ;o under the mapping
f. On the one hand, it follows from the data processing inequality that

KL(Qq [| Q) = KL(end Qo || endy Qa) < KL(Qa || Qa) -

On the other hand, the Girsanov theorem (in the form of Lemma 5.6.4) implies

14Q, 1" , )
0 X0 - 7 [ EIVVIX) - V@) a

BQ h a
== E[| X, —«|*]dt S 8°h* (d + B8R ||z|*),
0

where we used the S-smoothness of V' and Lemma 5.6.12. Now applying Pinsker’s
inequality, we obtain the desired inequality. O

It follows from Lemma 5.6.5 that when @ ~ 7, we get

El|Qs — Qallrv S BRE/d+ Ph[2lP < fhy/d+ FPhE[]?
< ph\/(1+ Brh)d,

where we used the second moment bound of Lemma 2.2.13. Together with the
projection property (Lemma 5.4.4), it yields

EHTw - QmHTV S QEHQm - QmHTV ,S ﬂh\/ (1 + ﬁﬁh) d (5'11>

We conclude this section with a concentration inequality which we use later
in the argument.

(5.10)
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Lemma 5.6.6. Assume h < 1/8 and let @ ~ 7. For any § > 0, with probability
at least 1 — 0,

Qe — Qulirw 5 By fd + h (4-+ 1og ).

Proof. Let f(x) := Shy/d+ $%h||x|/?. Then,

B2 ||

< B°h2 .
d+ 32zl

IV (@)l =

Thus, f(x) is B2h3/%-Lipschitz, and it follows from sub-Gaussian concentration
(Lemma 5.6.11) that with probability at least 1 — 0,

f(@) <E f() + 557 2

We have calculated E f(x) < Shy/(1+ Srh)din (5.10), and the result now follows
from the pointwise bound in Lemma 5.6.5. O

B 5.6.4 Concentration of the total variation

Equation (5.11) provides a control the total variation distance between the MALA
kernel and the proposal in expectation. The main result of this section is an
extension of this result to a control with high probability captured in the following
proposition.

Proposition 5.6.7. Fiz c¢g >0 and 0 < s < 1/2. Then, there exists a constant
c1 > 0, depending only on cy, such that with step size

B C1 1 1
h= B <d1/2 log(dr/s) " E> ’ (5.12)

the following holds with probability at least 1 — cosv ah,

[Tz — Qulltv < % :

The idea of the proof is to use the pointwise projection of Theorem 5.4.5, and
to obtain high probability bounds for each of the two terms in (5.6). An upper
bound for the first term follows directly from Lemma 5.6.6. To control the second
term, we will first obtain a bound on its moments.
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Lemma 5.6.8. Let k > 1 be any integer. Suppose that
1 d1/6k‘1/3 d1/2k‘
h< (1 ).
~ BdV/?k

(5.13)

K1/3 K
Then, it holds that

m(x) Qy, )

The proof, given in §5.6.4.1, uses extensively tools from stochastic calculus.
We remark that the quantity in Lemma 5.6.8 can be interpreted as a bound on
the Rényi divergence between the discretized and continuous Langevin processes.
A similar result has appeared as [GT20, Corollary 11]; see also the Girsanov
argument of §3.

We are now in a position to prove Proposition 5.6.7.

Proof of Proposition 5.6.7. Assume that the step size h is small enough so that
Lemmas 5.6.6 and 5.6.8 both hold. More specifically, since the requirement of
Lemma 5.6.8 is more stringent than that of Lemma 5.6.6, so we can simply impose
that (5.13) holds.

From Lemma 5.6.6 with § = ¢gsv/ah/2, there exists a constant C; > 0 such
that with probability at least 1 — COS\/@/ 2,

_ 2
||Q Q ||TV 1/8 \/ BH ncosm

From Lemma 5.6.8 and Markov’s inequality, there exists a constant Cy > 0 such
that for any 0 > 0, with probability at least 1 — ¢,

/ﬂ-(y) Q(yam) |Q( l‘dy < Czﬁh\/_(\/_‘i‘\/_) l/k.
() Q(y,

Taking k ~In —2— f and & = cosvVah/2, we have 6~'/% = ©(1) and hence

m(y)Qy.z) Qy.z) h L2
/ () |Q(y,w) 1‘ dy < Cofh COS\/_ (\/_ * COS\/E> '

Combining these two inequalities with the pointwise projection property (Theo-
rem 5.4.5), it follows that with probability at least 1 — cosv ah,

2
Tm - Y 5 hy/d+ Brhln
|| Q ||TV /8 \/ ﬁ COSM

(\/E + 4 /In —008\2/%) )

(5.14)
+ Bh

2
n
cosvV ah



152 CHAPTER 5. ANALYSIS OF MALA FROM A WARM START

If we choose the constant ¢; > 0 small enough, then choosing the step size as
in (5.12) makes the both terms in the left-hand side of (5.14) less than 1/12. This
completes the proof of Proposition 5.6.7. n

Ml 5.6.4.1 Proof of Lemma 5.6.8

We now prove the moment upper bound (Lemma 5.6.8). Since f y,x)dy =
7(x), we can apply Jensen’s inequality to get
m(x) Qy. z)
Qy,x
< //W(y)Q(y, )!QEy w% — 1" dz dy

- [([1E228 11" Qo) rlae),

where we switched  and y in the last line. The inner integral equals the f-
divergence D (Qg || Qx), with f(x) := |z — 1|*. Recall the definitions of Q, and
Qz in Lemma 5.6.4. Hence we may apply the data processing inequality and

bound the above by
dQg ~
Fy _/ /\dgm —1|’“de) r(dz). (5.15)

Recall from Lemma 5.6.4 that

where for ¢t > 0,

I . I .
H, = —/ (VV(X;) — VV(x),dB;) — —/ IVV(X,) - VV(z)|*ds.
\/§ 0 4 Jo
Applying It6’s formula to (Ht)t20 and the function exp, we deduce that
I .
expH, —1= —/ (exp Hy) (VV (X)) — VV(x),dBy) .
V2 Jo

In what follows, E, denotes the expectation under Q, (the measure under which
X is a continuous-time Langevin diffusion). Also, we will use the letter C' to
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denote a numerical constant which may change from line to line. Based on the
upper bound (5.15) on the k-th moment, we wish to estimate
]

_ 1 -
Fy = Eg|lexp Hy — 1}] = WEw[

h
/0 (exp Hy) (VV(X;) — VV(x),dBy)

< (CK)**E, [

/0 ' exp(2H,) [|[VV(X,) — VV (z)]||? dt‘k/ 2]

where the last line is the Burkholder-Davis-Gundy inequality with optimal con-
stants [Bur73; Dav76]. Together with the Cauchy—Schwarz inequality and Holder’s

inequality, it yields
h k/ay b _ k/4
/eXp(4Ht)dt‘ /HXt—ch‘*dt’ ]
0 0

< (o \/Em[ / " exp(41) al| " B / "X, - xfar] "]
0 0

k/2 _ " _
< (CB2k)M? pri2-1 (Em / exp(2k H,) dt) (Em / I1X, — 2|2 dt) .
0 0

N

F, < (C32k)* Ew[

We will control the two terms separately, starting with the first term @

Lemma 5.6.9. Let 0 <t <h < ﬁ Then,

InE, exp(2kH,) < B2h%K2 (8%h ||x|)® + d) .

Proof. Recall the following fact, which follows from It6’s lemma [Le 16, Theorem
5.10]: for any adapted process (Z),,, We have

B t 1 t
EweXp</ (Zs,st>——/ HZsH?ds) ~1.
0 2 0

Together with the Cauchy-Schwarz inequality, it yields

E, exp(2kH,)

— B, exp [\/ﬁk /Ot(VV(XS) — VV(z),dB,)

-5 v - vv@ea
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— B, exp [\/51{: /0 t(vvu‘(s) ~ VV(z),dB,)

dB
k. [* <
+ (a4 = 5) [ 9V - V(@)

< \/Em exp 82 /:HVV(XS) YV ()2 ds]

¢
< \/Em exp [8ﬁ2k2/ X, — ac||2ds} < \/Em exp [85%1{:2 sup || X, — ac||2} .
0

s€[0,h]

In order to upper bound the above quantity, we apply Lemma 5.6.12 with \ =
83%hk?. In order to satisfy the preconditions of Lemma 5.6.12, we impose the
restriction A < . Then, it follows that

InE, exp(2kH,) < B2h2E* (B2h ||x||* + d) .
This is our desired bound. O

Hence, from Lemma 5.6.9, we obtain

(&) < \Jhexp(O(8*h%k2 || + p2dh2h2))

Next, we estimate . In fact, Lemma 5.6.12 together with standard moment
bounds under sub-exponential concentration (e.g., [Verl8, Proposition 2.7.1]) gives

E, sup | X, — z||* < C* (B2 ||x||* + d*h* + *E),
t€[0,h]

where C' > 0 is a numerical constant. See Corollary 5.6.13 in §5.6.6.2 for details.
Hence, it holds that

h
= \/ [ Bl X~ @l de < ORI (B0 [l 4 TR ).
0
Hence,

(5.15) < (CB2K)"* W71 x (A) x
< (CB%R) R0 x M2 exp(O(B*B3E? ||z |)* + B2dh*k?))
% C*pL/2 <6khk Hw”k L gk2pks2 hk/2kk/2)
< (CBhk)"" exp(O(B2dh*k?))
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x exp(O(B*R3E? ||z||)) (BER" ||||* + d*/2h*? + hE/2EH2) .
Next, we take the expectation w.r.t. € ~ 7 and use Cauchy—Schwarz:
oljexp Hy — 1]"]
(CBhk)""? exp(O(B2dh2K?))
% B exp(O(Bh3K2 ]|2)) Eaper [32h2 ]| + diE + FERH]

Egnr E
<

For the two terms involving exponentials: the first will be bounded by a numerical
constant provided that h < m, and using concentration properties of 7 (see,

ol/3

e.g., Lemma 5.6.11), the second will be bounded provided h < CHITRET Taking
this to be the case, the moment bounds in Lemma 5.6.11 now imply the bound
Eymr Eg[|exp Hy, — 1|7]
< (C’ﬁzhk)k/Q % (afk/Qﬁkdk/Qhk + Ofk/zﬁkhkkk/z 4 dR2pR2 4 hk/Qkk/Z).

Taking k-th roots,

— 1/k
(Eamr Bgllexp Hy, — 1]7])"

< ﬂm % (Q_1/26d1/2h+06_1/26hk1/2 +d1/2h1/2 + h1/2]€1/2)
< BVE(Vd+VE),

provided that h < «/3?. This concludes the proof.

M 5.6.5 Conductance argument

In this section, we use the results from the previous sections in order to prove a
lower bound on the s-conductance. The argument is similar to the proof of the
standard conductance lemma (Lemma 5.4.3).

Towards the goal of applying the bound on the mixing time via s-conductance
given in Corollary 5.6.2, we take s := ¢/(2M,), and we choose the step size as in
Proposition 5.6.7. Then, Proposition 5.6.7 guarantees the existence of an event F
with probability m(E) > 1 — cosv/ah such that

1
el = [Ty — Qv < 5
Let S be a measurable subset of R? with s < 7(5) <
subsets of R%:

1/2. Define the following

Slzz{wES’T(m,SC)S }, bad set 1

NN
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Sy ={weS|T(xS) <
Sy == (S USy)". good set

} , bad set 2

N

If 7(S1) < w(S)/2 or w(S2) < w(S€)/2, then we may conclude from reversibility
of the MALA kernel T" that

/T(m, S) m(de) = % (/ T(x,S°) n(dx) —i—/ T(x,S) 7T(d:1:)>
s s <
I n(S) 1 _=(9)
2 2 4 16
Therefore, for the purpose of proving a lower bound on the s-conductance, we
may assume that 7(S1) A m(S2) > 7(S)/2.

Now we consider x € EN Sy and y € EN Sy. From the definitions of S; and
Ss, it follows that

1T — Tyllrv >

N —

Since x,y € E, we also have

1T — Qzlltv A || Ty — Qyllrv <

| =

Thus, using the decomposition (5.4),

1
5= 1T — Tyllrv < [[Te — Qelltv + [|Qe — Qyllrv + |7y — QyllTv
I Je—y| 1
S Lt g
6 \/2h 6

where the middle term is controlled via

Iz —y| . 2
T S 9 lfh S R
L -

see [Dwi+19, Lemma 3|. Hence, we obtain:

V2h

22—
<oyl
which implies that dist(E' N S1, E N Sy) > V2h/6 = r. By the isoperimetric
inequality (see Lemma 5.6.11), there is an absolute constant ¢ > 0 such that

V2

T((ENS))N\N(ENS,)) > e Vahr(ENS,).
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Since S;, S5, and Ss partition R?, we see that the set on the left-hand side is
contained in £ N S,.

7(S3) + cosvVah > (BN S3) > —= \f Vahn(ENS;)
> V2 ol (r(51) ~ (£}
> 2 Var (M) ey
> % Vahr(S), (5.16)
where (5.16) follows since 7(S)/2 > s/2 > 2cosv/ah > 27(ES) provided that
4cth < 1/a.

Since 7(.S) > s, it follows that, provided we choose ¢y small enough (and thus,
the constant ¢; in the step size (5.12) small enough), we obtain

7(95) > i\/_hw( S).

From this,
/ST(m,SC)W(dm) - % (/ST(:C,S°)7r(d:1:)+/CT(a:,S) 7r(d:v)>
> 2Lty > O Vaha(s).

Collecting the arguments, we obtain a lower bound on the s-conductance.

Proposition 5.6.10. If the step size h is chosen as (5.12) for a sufficiently small
constant ¢y, then the s-conductance of the MALA chain satisfies

Cs = Vah.

Together with the mixing time bound in Corollary 5.6.2, we have proven
Theorem 5.4.2.
M 5.6.6 Auxiliary lemmas

M 5.6.6.1 Standard facts about strongly log-concave measures

The following properties of strongly log-concave measures are well-known.
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Lemma 5.6.11. The a-strong convezity of V implies the following properties:
1. (moment and tail bounds) For x ~ w, it holds that E[||x|*] < d/a.
In fact, for all k > 2,

ak/2

Elle|* <

Consequently, Eexp(\||z||?) is bounded above by a universal constant, pro-

vided that 0 < X < «/(40d).

2. (isoperimetry) For any S C RY with w(A) < 1/2, it holds that w(S°\ S) 2
e/am(S), where

Se={x e R |y €S with |z —y|| <e}.

3. (sub-Gaussian concentration) For any 1-Lipschitz function f : RY — R and
0 > 0, with probability at least 1 — § it holds that

f@) B <2y

Proof. The first statement is a simplification of [DKR22, Lemma 2]. For the
second statement, in fact strongly log-concave measures satisfy a stronger isoperi-
metric inequality (sometimes called a Gaussian isoperimetric inequality, or a
log-isoperimetric inequality in [Che+20a]); we refer to [BGL14, §8.5.2] and the
monograph [BH97] which explains the relationship between integral form of the
isoperimetric inequality employed here and the more traditional differential version.
Finally, for the third statement, see Lemma 2.2.9. O]

when € ~ .

B 5.6.6.2 Stochastic calculus results

Below, we also collect together some inequalities proven via stochastic calculus.
In what follows, (X),5, is the Langevin diffusion (5.5), started at .
We use the following lemma, which follows from the proof of Lemma 3.6.22.

Lemma 5.6.12. If (X),., denotes the continuous-time Langevin process (5.5)
started at x, then for all A\ >0 and h S 1/(5V A), we have

InEexp(A sup || X, —|?) S (B°h* ||| + dh) X.

t€[0,h]
In particular, fort < 1/8,
E[| X, — x| < 6% ||«|® + dt .
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Corollary 5.6.13. Assume h < 1/5. There exists a numerical constant C > 0
such that for all k > 1,

E sup || X; —x|* < C* (B8R ||2||** + d*h* + hFE).
te[0,h]

Proof. In Lemma 5.6.12, take A < 1/h to yield

lnEeXp()\ sup HXt - sz) < B%h HwHZ +d.
te[0,h]

The result now follows from standard moment bounds under sub-exponential
concentration [see, e.g., Verl8, Proposition 2.7.1]. ]

Remark 5.6.14. Bounds such as the one in Corollary 5.6.13 are standard and
have appeared in the literature before, e.g., [Mou+22].

B 5.6.7 From total variation to other distances

In this section, we deduce the mixing time results of Theorem 5.4.2 for the KL
divergence, the chi-squared divergence, and the 2-Wasserstein distance.

We begin with the following lemma which shows that the warmness parameter
(defined in Definition 5.4.1) is preserved by the iterations of MALA. In fact, this
is true for all reversible Markov chains and is a consequence of the data-processing
inequality (Lemma 2.2.19). We give a direct proof for completeness.

Lemma 5.6.15. Let (j1,), .y denote the iterates of a Markov chain whose kernel
T is reversible with respect ot m, and assume that pg is My-warm with respect to
. Then, for all n € N, the iterate p, is also My-warm with respect to .

Proof. The proof is by induction. For any y € R?,
T
m(y) m(y) m(@) 7y
< MO/T(y,w)dw — My,

where we use the inductive assumption and the reversibility of 7. O

Under a warmness condition, the total variation distance controls the chi-
squared divergence.

Lemma 5.6.16. Let p be My-warm with respect to w. Then,

X || m) < 2My [|pe = v
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Proof. From the definition of the chi-squared divergence,
2
X (|| ) =/}§—1l dwsMo/\g—1|d7r:2Mo|m—7ruTv.

Here we use the fact that pointwise, |u/m — 1| < max{1, My — 1} < M,. ]
It immediately implies the following result on mixing times.

Corollary 5.6.17. Fiz ¢ > 0. Then, MALA initialized with a distribution pyg
which s My-warm with respect to w satisfies the following mixing time bounds:

2

Tmix (&, po; d) < Tmix( < ,MO;TV)

2M,

for each of the distances

d € {VKL, /X2, \/gm}.

Proof. The mixing time in the chi-squared distance is a straightforward conse-
quence of Lemmas 5.6.15 and 5.6.16. The result for the KL divergence now follows
since KL < x? [Tsy09, Lemma 2.7]. Finally, for the result in 2-Wasserstein distance
we can use Talagrand’s transport inequality

% W2 (p,m) < KL(u || ), for all probability measures p < 7,

which is a consequence of the strong convexity of V' [in fact it is a consequence of
the weaker assumption of a log-Sobolev inequality, see BGL14, Theorem 9.6.1]. [

Corollary 5.6.17 implies the remaining mixing time results in Theorem 5.4.2.

B 5.7 Proof of the lower bound

This section presents the proofs of Theorems 5.5.1 and 5.5.2. The majority of
this section is devoted to the proof of the upper bound on the conductance when
h > d-1/? (Theorem 5.5.1). The proof of the upper bound on the spectral gap
(Theorem 5.5.2) is given in §5.7.3.
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M 5.7.1 High-level overview of the proof
Recall that we take n = 1/4 — 9, where 6 > 0 is fixed throughout. As mentioned
in §5.5, we consider the potential

d

=l 1 .
Viz) =" - oo ; cos(d"z;) (5.17)
= VG<"B> + Vpert(w> . (518)
From the construction, it immediately follows that V' is 1/2-strongly convex and

3/2-smooth.

We begin with some intuition for the above construction. At a high level, our
construction can be seen as a “perturbed” Gaussian distribution; V4 is the poten-
tial corresponding to a standard Gaussian and Ve corresponds to a perturbation.
Having this interpretation, we are interested in constructing a distribution (i) that

is significantly different from the standard Gaussian, yet (ii) the difference is not
noticed by each step of MALA.

(i) A quick calculation (see Lemma 5.7.8) shows that KL(normal(0,1) || 7) =
O(d'™m). So, we must take n < 1/4 to ensure that 7 is significantly different
from the standard Gaussian.

(ii) On the other hand, Vi is an oscillatory perturbation. Hence, MALA would
not see the contribution from Vet as long as its movement due to the Langevin
proposal is at least as long as the length scale of the fluctuations of Vper.

With this in mind, note that the fluctuations of Vjen is of order d=", while
the movement of a single coordinate under the Langevin proposal is of order
Vh (due to the Gaussian part). Hence, MALA would essentially ignore Viert
as long as h > d=21.

We formalize the above heuristic in the rest of this section.
To prove the upper bound on the conductance in Theorem 5.5.1, we use the
following proposition.

Proposition 5.7.1. Let E be an event such that n(E) > 1/2. Then,
C<2sup [ Qz,y) Alr,y)dy.
el JRE

Proof. Let Ey be a subset of E with m(Ey) = 1/2. From the definition of the
conductance (C),

C— i Js T(z, 5¢) m(dx)

SCRY 7(

<2 / T(x, E5) m(dx)
7(S)<1/2 Fo
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< 2/E ( Q@ y)Ay) dy) m(x) de
<2 ([ Q@) Aw.y) dy) rlw)do

<2sup [ Qz,y)Alz,y)dy <2sup | Qz,y)Az,y)dy. O

zcFko JRA zeE JRd
From Proposition 5.7.1, it therefore suffices to show that there is an event

E C R? with probability w(E) > 1/2 such that

sup | Q(z,y) A(z,y) dy < exp[—Q(d™)]

xzeFE JRd

By definition of the Metropolis—Hasting accept-reject step (5.1), we have

Qz,y) Az, y) = Q(z,y) min{L %}
_ ) ay.2)

(@)
_ 1 ly —z - hVV(y)|
= G V@) - V() - T |- 19)

We substitute in the definition of our potential (5.17) and expand out the terms
in (5.19), grouping them according to whether they involve Ve or not:

(519) = o[ el = il = g5 10~ Wy = ol (5.20)
P | Vaert () = Vit (y)
0= )Y @, D)) — 7 [VVoenw)I?] - (520
Some algebra yields that (5.20) is equal to
(1—|rh2)d/zeX [_1+h2 Hy_ﬂ-m”?] 1 exp[ h? ||| ]
_ 4nh 4h 1+ h? (14 n2)%? 2(1+h?)

=:u:(y)

The first term, which we denote by . (y), is the probability density function of

the distribution normal(f;hh2 x, % I,) evaluated at y. Using this observation,
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the quantity [, Q(x,y) A(z,y) dy is upper bounded by

2 x 2
exp [2'1(1”#‘2) + Vpert(m)]
(1+h2)"?

-~

@

1 h
X By €55 ~Vien() + 5 (1= 1)y = 2, Voen(w)) — 7 [VVpen(w)l] |

-~

©)

Having this upper bound, we will prove that there is a set £ C R? with
7m(E) > 1/2 such that the following bounds hold for all € E:

1. (Lemma 5.7.5)
(D)< exp[—% d' 4 o(d" )]
2. (Lemma 5.7.6)
@ < exp[% A= 4 o(d1*4’7)} )
From these bounds and the preceding calculations, we have

sup/Q(a:,y) Az, y)dy < eXp[_é di—4n 4 O(dlf‘“’)} .

xcE

This completes the proof of Theorem 5.5.1.

The next section is devoted to proving the two main bounds (Lemmas 5.7.5
and 5.7.6).

B 5.7.2 Proofs of technical statements

B 5.7.2.1 Notation and technical lemmas

We use the following notation:

Vi(z) =3 2% — $d"*cos(d"z)
(2) = S, Vil) = &l — 3 a2 552, cos(dlia)
mi(z) o< exp(=Vi(z)),

m(x) x exp(—V(x)).

<

(5.22)
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Thus, 7 is the marginal distribution of 7. We first list useful technical lemmas
for proving Lemmas 5.7.5 and 5.7.6. First, the following trigonometric inequality
will be used several times.

Lemma 5.7.2. Let £ ~ normal(0, 1), let p be a polynomial, and let a,b € R, v > 0
be constants. Then, there exists C > 0 (depending on p, a, b, and ~y) such that

[E[p(€)sina + ba"e)) <

Proof. The key fact we use is that the characteristic function E[e™] of a Gaussian
is equal to exp(—3t?). First consider the case p = 1. Let im(-) denote the
imaginary part. Then, we have

Esin(a + bd’¢) = Eimexp(i (a + bd"€))

= im(exp(ia) Eexp(ibd'€))
b2d2'y >

=im (exp (ia —

2 72
= sin(a) exp(—b ;l 7) :

It is then clear that the result holds for p = 1. Next, when p(z) = ¢ for some
(e NTt,

E[¢! sin(a 4 bd7€)] = im(exp(ia) E[¢ exp(ibd”ﬁ)])

=im <exp(ia) i‘E [((ii_; exp(it€)

)

Thus, it is clear that the lemma holds for this choice of p too. The case of a
general polynomial follows from linearity. O

df 12

=im (exp(ia) i T exp(—a)

Clearly, the statement of the previous lemma can be substantially strengthened,
but this will not be necessary for the MALA lower bound.
Now we list some useful facts about the adversarial target distribution.

Lemma 5.7.3. Assume n < 1/4. The following hold for m and w defined
in (5.22):

(a) Let Z = [yexp(=Vi(x))dz be the one-dimensional normalizing constant.
Then, we have Z = /2 + O(d—").
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(0) Bpry[2%] <1+ O(d™). Consequently, Epr[||z|?] < d+ O(d* 7).
(¢) Egmr, [cos(dz)] < 2 d727 4+ O(d57).

Proof. (a) Letting & ~ normal(0, 1), then

1
Z — \/Zn:/exp<——x2+
R

cos(d":z:)) dz —v/2n

2 2d2n
= \/ﬁ/ exp(L cos(d”x)) M dz — V2
R 2d21 V21
1
=2n (Eexp(w cos(d"¢)) — 1)
= o E cos(d"&) + O(d™™).

By Lemma 5.7.2, we have |Ecos(d"¢)| = O(d™') = o(d~4"), since n < 1/4.
The proof of (a) then follows.

(b) Similarly, letting & ~ normal(0, 1),

o _ [ 2exp(=Vi(z))
Ezwwl[x]—/x Td&?

E[fQ exp(za%7 cos(d”f))]

O(d™*") E[¢&? exp(ﬁ cos(d"€))] .

—
N

By Taylor expansion,

E[& exp(ﬁl% cos(d’¢))] =1+ ﬁ E[¢2 cos(d"€)] + O(d*7) .

Again by Lemma 5.7.2, the second term is O(d~?"1) = o(d=%"). Hence, the
result follows.

(¢) Similarly, it holds that
V2n 1
E,r, cos(dz) = ~ E[cos(d"€) exp(ﬁ cos(d"€))]

= (1+0(d™*m) [E cos(d"¢) + ﬁl% E cos?(d"¢) + O(d_4”)] :
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By Lemma 5.7.2, the first term is Ecos(d"¢) = o(d™*"). Next, the second
term can be written

1 9 mey 1 1 .
wECOS (d g) = M—2n+mECOS(2d f)

From Lemma 5.7.2, E cos(2d"¢) = o(d~*"). Therefore, the result follows.
[l

Lemma 5.7.4. For x ~ 7, the following holds with probability at least 1 —1/(4d):

lz]|oe < 4v/In(8d) .

Proof. By symmetry, we just need to show that with probability at least 1—1/(8d),

maxx; < 4Vind.

i€[d]
Since V{" > 1/2, each |x;| will be stochastically dominated by [¢|, where £ ~

normal(0,2). Hence, if &, ..., &, are i.i.d. copies of £, we just need to show that

max &; < 4vVind

1€[d]

with probability at least 1 — 1/d. The standard argument based on the moment
generating function (e.g., [Han16, Lemma 5.1}) tells us that E{max;ciq &] < 2vInd,
and Gaussian concentration (e.g., [Han16, Theorem 3.25]) implies

2

t
P(Iiré%(& > EIZ%%(& + t) < exp(—z) .

Plug in t = 24/In(8d) and we get the lemma as claimed. 0

Now let us state and prove the technical statements in order.

M 5.7.2.2 Proof of Lemma 5.7.5

Lemma 5.7.5. Assume that 0 < h < d~'/3. Then there exists an event E, with
w(Ey) > 3/4 such that for x € Ey,

h2 ||x||?
exp 2(1|Lrl«|b|2) + Vpert(“’)}
(1+ h2)"?

1
< exp[—é d' =+ o(d' )] .
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Proof. We decompose the left-hand side as

]’L2 2
exp | 771 + Vien ()] | | B |||
(1+ h2)"? (1+h2)% 12

_ it hQ)] X exp[Vpert ()]

and bound each term separately.

We begin with the first term. By Lemma 5.7.3(b), we know that the second
moment of 7 is d + O(d*~*7). Since 7 is 1/2-strongly log concave, a standard
concentration argument (see, e.g., Lemma 5.6.11) shows that there exists a subset
EY with 7(E) > 7/8 such that for « € F,

|z||> < d+ O(d*™") + O(d*/?).

Now, using the fact that In(1 + x) > z — 2?/2 for z > 0,

1 h? ||| rh2(d+O(d"=") + 0(d'?)) d )
(11 12y eXp[Z(lJrh?)} = exp| 2(1+ h?) —pth >]
rh2(d+ O(d=") + O(d*?))  dh*  dh?
=P 2(1+ h?) 2 +T}
rh? (O(d*=*) + O(d'/?)) dh* dh*
- P 2(1+ h2) _2(1+h2)+7}
rh? (O(d*=*1) + O(d'/?)) ~ —dh* + 2dh"
= P (L + h2) ) ]

< explO(d'™""h%) + O(d"*h?)],

where the last line follows since A% < 1 /2. In order to show that the exponent
of the above term is o(d*~*"), we must check that d*/2h? = o(d*~*"), which holds
if h = o(d"/4*=2") = o(d~'/**?%). This indeed follows from our assumption that
h <d'/3.

Next, we consider the second term. Recall from the calculation in the proof of
Lemma 5.7.3(c) that E,r, [cos(d7z)] < +d™27+ O(d~%"). Hence, it follows that

Eoch[Vpert(m)] =

d
1 Loy 1-8
_ﬁ i:E 1 Exiwﬂl COS(dnl’i) = —g d " + O(d 77) .

Since 7 is 1/2-strongly log-concave, another sub-Gaussian concentration argument
(Lemma 5.6.11) shows that there exists a subset E} with 7(E}) > 7/8 such that
for @ € EY,

1
exp|Vpert ()] < exp [—g A"+ O(dh8n) + O(dl/Q_Q")}
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1
< exp[—g d' 4 o(d" )],

since 1 — 41 > 0 by the hypothesis.
Now taking F; := Ef N EY, the above calculations show that for € Ej,

2 x 2
exp h(1|er|L|2) + Voert(x )}
(1+ h2)"?

which completes the proof. n

1
< exp[—g d' 4 o(d" )],

M 5.7.2.3 Proof of Lemma 5.7.6

Lemma 5.7.6. Assume that h € [d~2% d~3]. Then there exists an event E,
with m(Ey) > 3/4 such that for € Es,

1 h
Bye ©50[ Vo (1) + 5 (1 = 1)y = &, VVoen(y)) — 7 [VVren(w) ]

1
< exp [E d 4+ o(d" )] .

Proof. Recall the definition Viper(x) = —32 d_zn Z L cos(d"x;). Since Vpert is sepa-

rable, it suffices to consider the following quantlty for fz, = normal (=l : +h2 Xy, 1?:;12)

cos(d™y;) (1 —h)y; — x;) sin(d"y;) B hsin2<d’7yz‘)> (5.23)
2d2n 4d77 16d2n . .

maxE, ., ex <
i€[d] Yirchia, P

Indeed, the lemma is proved as soon as we show
1
(5.23) < eXp[1—6 d™ + o(d™*M)] . (5.24)

For the proof, we will therefore work with a single coordinate; for simplicity of
notation, we will use the first coordinate.
To prove the inequality (5.24), let us first simplify the expression (5 23). Let-

ting & ~ normal(0, 1), we can equivalently write y; = =% z1 + th ¢ From

1+
this, we get

2h 2h

1 — e = - 1— —E€.
( h>y1 T 1+h2x1+( h) ].+h,2£

Since our regime of interest is h = o(1), we simplify the notation by defining

o b s (Q=hy
et

h,
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and treat them as being on the same order as h. Using these simplifying notations
and rearranging, we are left to consider

£ cos(d™y;) h sinZ(d"yl) 2hzy sin (d"yq) \/ f sin(d"y, ) 5 o5
eXp( 2021 1642 Adn Adn ) (5.25)
Z?gl :?82 =ZA3 :1A4

where y; = 11+_—th T1+4/1 +h2 ¢. Now we will estimate (5.25) by a Taylor expansion.

Throughout, we will assume |||/ < 44/In(8d). By Lemma 5.7.4, this holds
on an event Fy of probability 7(Fy) > 3/4. From this, we note the bounds

A =0, |As] = O(d "), |As| = O(d"h), |Au| = Op(d"Vh).

Here, O, denotes probabilistic big-O notation. Using h = O(d~/?) = o(d=4/?),
we have
|As| =0(d™™),
8] = ofd1/97)
|A3’ _ 0( (2+1/3) n)
|A4| _ Op( (1+2/3)n

)

(5.26)
)-

From, this, we see that the third- or higher-order terms in the Taylor expansion,
after taking the expectation, are o(d~°"). Indeed, the dominant term is the term

E[As’] = o(d™").

We also note that the common argument of the trigonometric terms is

—h 2h
i

d"yy = d"

so the coefficient in front of ¢ is of order d"v/h = Q(d*/?) by the assumption h >
d-3+38, Thus, the trigonometric terms precisely fit into the setting of Lemma 5.7.2,
and we will apply Lemma 5.7.2 to estimate these terms.

Now let us estimate the terms of order one and two.

o First- and lower-order terms. We have
(S 1st order) =1 +]EA1 —EAQ —]EAg —|—]EA4
By Lemma 5.7.2, we know EA; = O(d~'727) = o(d~%"). For E Ay, we have

—EA, = __h +— h E cos(2d"y,) =

—6
32421 | 3242 +old™),

32420
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where we use Lemma 5.7.2 again. For E Aj, we have

haq sin(d? ~
_EA, = — 2esintdy) Efd Y1) _ G(g-0+0R) = o(d-5m)

where the last line is due to Lemmas 5.7.2 and 5.7.4. For E A4, we have

V/ 2h¢ sin(d"
B, = £ I _ o VR — o).
where we use Lemma 5.7.2. Collecting together the terms, we have
(< 1st order) =1 — Toqm +o(d™™). (5.27)

e Second-order terms. For the reader’s convenience, we have organized the
terms which appear in the second-order Taylor expansion as Table 5.1.

O(d=27)  o(d=GFH1/3m)  o(d=(+1/3)m) op(d*(lﬂ/g’)")

O(d=27) (5.28) o(d=4) o(d—n) (5.29)
o(d=+1/3m) o(d™") o(d™") 0p(d™")
o(d~CT1/3m) o(d™"") 0p(d™"")
0p (d=(F+2/3)m) (5.30)

Table 5.1: Terms which appear in the second-order Taylor expansion. The rows and
columns are indexed by the terms Aj, Ag, As, Ay; refer to (5.26).

We now estimate the terms which are not covered by the table. Let us
estimate the remaining terms one by one. First, by Lemma 5.7.2,

cos?(d"y) 1 N cos(2d"yy) 1
8d4n  16d4n 16d4n  16d4n

Next, by Lemma 5.7.2,

V2he

8d3n

%E[A%} =E +o(d™®"). (5.28)

cos(d"yy) sin(d"y;)] = V20 E[¢ sin(2d"y,)] = o(d™™).

E[A1A4] = E[ = 16d377
(5.29)

Lastly, invoking Lemma 5.7.2 yet again,

1 2 h&? sin® (d"y, ) he? he2 cos(2dMyy)
= = = o)
2 ElA)] =E 16d2n E 32d2n 32d2n
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_h
3242

+ o(d™5") . (5.30)
Combining all together, we obtain,

h
(2nd order) =

R N Y 31
Toa T 32qz 7o) (5.31)

Therefore, we combine (5.27) and (5.31) to conclude

1 h h
25) < —d — d—*
(5.25) < exp[ 15 s+ 3aqm T O]
I -
= exp [1—6 d n + O(d 477)} ,
where the last line follows from h — h = (;Zf h —h < 0. This implies (5.24), and

hence the proof is complete. O

B 5.7.3 Upper bound on the spectral gap

Note that when 1 < 1/4, the adversarial potential defined in (5.22) satisfies the
assumptions of the following theorem, as a consequence of our computation in
Lemma 5.7.3.

Theorem 5.7.7. Consider a potential V : R? — R which is separable: V(x) =
S o(x;) for a function v : R — R. Assume that:

o V is symmetric about the origin, and V(0) = min V.
e V is O(1)-smooth.
e For the distribution m; < exp(—v), we have Eypr, [2?] < 1.

Then, spectral gap of MALA with target distribution m < exp(—V') and step size
h <1 satisfies

A<h.

Proof. Consider the function f : R — R given by f(x) = z;. Since V is
symmetric about the origin, we have E, f = 0.
From the definition the spectral gap (A),

)\SEW[fIéijf—Q]T)f] < E [m-n

y~T(x,)
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Next, using the definition of the MALA kernel T, if £ is a standard Gaussian
random variable, then

mlgﬂ_ [(xl - ?/1)2] = ;;;IE;W [(xl - y1)2 ]lproposal r—Y is accepted]
y~T(x,) y~Q(z,)
2
< E l@i—w)]= E [{W'(z1) - V2he}]
y~Q(z,) "
<2h? E [V/(21)"] + 4hE[¢?]) <h? B [23] +h < h,
by our assumptions. This completes the proof. O

M 5.7.4 Auxiliary lemmas

Lemma 5.7.8. Let v := normal(0, I;) and let ™ be the adversarial target distribu-
tion defined in (5.22). Then,

KL(y | =) < O(d"*7)..

Proof. From the definition of the KL divergence, if &;,...,&; are i.i.d. random
variables drawn according to v, then

d
KL(y | 7) = /fy(:n) ln(@fw exp Vpert(x)) der

From our estimate of the normalizing constant in Lemma 5.7.3,

Z 